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Abstract

A consideration of Amdahl’s Law [9] suggests a
single-chip multiprocessor with asymmetric cores is a
promising way to improve performance [16]. In this
paper, we conduct a limit study of the potential benefit
of the tighter integration of a fast sequential core de-
signed for instruction level parallelism (e.g., an out-of-
order superscalar) and a large number of smaller cores
designed for thread-level parallelism (e.g., a graphics
processor). We optimally schedule instructions across
cores under assumptions used in past ILP limit studies.
We measure sensitivity to the sequential performance
(instruction read-after-write latency) of the low-cost
parallel cores, and latency and bandwidth of the com-
munication channel between these cores and the fast
sequential core. We find that the potential speedup of
traditional “general purpose” applications (e.g., those
from SpecCPU) as well as a heterogeneous workload
(game physics) on a CPU+GPU system is low (2.2×
to 12.7×), due to poor sequential performance of the
parallel cores. Communication latency and bandwidth
have comparatively small performance impact (1.07× to
1.48×) calling into question whether integrating onto
one chip both an array of small parallel cores and a
larger core will, in practice, benefit the performance of
these workloads significantly when compared to a sys-
tem using two separate specialized chips.

1 Introduction

As the number of cores integrated on a single chip
continues to increase, the question of how useful ad-
ditional cores will be is of intense interest. Recently,
Hill and Marty [16] combined Amdahl’s Law [9] and
Pollack’s Rule [28] to quantify the notion that single-

∗Work done while the first author was at the University of

British Columbia.

chip asymmetric multicore processors may provide bet-
ter performance than using the same silicon area for a
single core or some number of identical cores. In this
paper we take a step towards refining this analysis by
considering real workloads and their behavior sched-
uled on an idealized machine while modeling commu-
nication latency and bandwidth limits.

Heterogeneous systems typically use a traditional
microprocessor core optimized for extracting instruc-
tion level parallelism (ILP) for serial tasks, while of-
floading parallel sections of algorithms to an array of
smaller cores to efficiently exploit available data and/or
thread level parallelism. The Cell processor [10] is a
heterogeneous multicore system, where a traditional
PowerPC core resides on the same die as an array
of eight smaller cores. Existing GPU compute sys-
tems [22, 2] typically consist of a GPU with a discrete
GPU attached via a card on a PCI Express bus. Al-
though development of CPU-GPU single-chip systems
has been announced [1], there is little published infor-
mation quantifying the benefits of such integration.

One common characteristic of heterogeneous multi-
core systems employing GPUs is that the small mul-
ticores for exploiting parallelism are unable to execute
a single thread of execution as fast as the larger se-
quential processor in the system. For example, recent
GPUs from NVIDIA have a register to register read-
after-write latency equivalent to 24 shader clock cy-
cles [25]1. This latency is due in part to the use of fine
grained multithreading [32] to hide memory access and
arithmetic logic unit latency [13]. Our limit study is
designed to capture this effect.

While there have been previous limit studies on
parallelism in the context of single-threaded machines
[7, 17, 15], and homogeneous multicore machines [21], a
heterogeneous system presents a different set of trade-

1The CUDA programming manual indicates 192 threads are

required to hide read-after-write latency within a single thread,

there are 32-threads per warp, and each warp is issued over four

clock cycles.



offs. It is no longer merely a question of how much par-
allelism can be extracted, but also whether the paral-
lelism is sufficient considering the lower sequential per-
formance (higher register read-after-write latency) and
communication overheads between processors. Fur-
thermore, applications with sufficient thread-level par-
allelism to hide communication latencies may diminish
the need for a single-chip heterogeneous system except
where system cost considerations limit total silicon area
to that available on a single-chip.

This paper makes the following contributions:

• We perform a limit study of an optimistic hetero-
geneous system consisting of a sequential proces-
sor and a parallel processor, modeling a traditional
CPU and an array of simpler cores for exploiting
parallelism. We use a dynamic programming algo-
rithm to choose points along the instruction trace
where mode switches should occur such that the
total runtime of the trace, including the penalties
incurred for switching modes, is minimized.

• We show the parallel processor array’s sequen-
tial performance (read-after-write latency) rela-
tive to the performance of the sequential processor
(CPU core) is a significant limitation on achievable
speedup for a set of general-purpose applications.
Note this is not the same as saying performance
is limited by the serial portion of the computa-
tion [9].

• We find that latency and bandwidth between the
two processors have comparatively minor effects
on speedup.

In the case of a heterogeneous system using a GPU-
like parallel processor, speedup is limited to only 12.7×
for SPECfp 2000, 2.2× for SPECint 2000, and 2.5× for
PhysicsBench [31]. When connecting the GPU using an
off-chip PCI Express-like bus, SPECfp achieves 74%,
SPECint 94%, and PhysicsBench 82% of the speedup
achievable without latency and bandwidth limitations.

We present our processor model in Section 2,
methodology in Section 3, analyze our results in Sec-
tion 4, review previous limit studies in Section 5, and
conclude in Section 6.

2 Modeling a Heterogeneous System

We model heterogeneous systems as having two pro-
cessors with different characteristics (Figure 1). The
sequential processor models a traditional processor core
optimized for ILP, while the parallel processor mod-
els an array of cores for exploiting thread-level paral-

Sequential
Processor

Sequential
Processor

Parallel
Processor

Parallel
Processor

Mem
Mem Mem

a. b.

➊

➋

Figure 1. Conceptual Model of a Heteroge-
neous System. Two processors with different
characteristics (a) may, or (b) may not share
memory.

lelism. The parallel processor models an array of low-
cost cores by allowing parallelism, but with a longer
register read-after-write latency than the sequential
processor. The two processors may communicate over
a communication channel whose latency is high and
bandwidth is limited when the two processors are on
separate chips. We assume that the processors are at-
tached to ideal memory systems. Specifically, for de-
pendencies between instructions within a given core
(sequential or parallel) we assume store-to-load com-
munication has the same latency as communication via
registers (register read-after-write latency) on the same
core. Thus, the effects of long latency memory access
for the parallel core (assuming GPU-like fine-grained
multi-threading to tolerate cache misses) is captured in
the long read-to-write delay. The effects of caches and
prefetching on the sequential processor core are cap-
tured by its relatively short read-to-write delay. We
model a single-chip system (Figure 1(a)) with shared
memory by only considering synchronization latency,
potentially accomplished via shared memory (➊) and
on-chip coherent caches [33]. We model a system with
private memory (Figure 1(b)) by limiting the commu-
nication channel’s bandwidth and imposing a latency
when data needs to be copied across the link (➋) be-
tween the two processors.

Section 2.1 and 2.2 describe each portion of our
model in more detail. In Section 2.3 we describe our
algorithm for partitioning and scheduling an instruc-
tion trace to optimize its runtime on the sequential
and parallel processors.

2.1 Sequential Processor

We model the sequential processor as being able
to execute one instruction per cycle (CPI of one).
This simple model has the advantage of having pre-
dictable performance characteristics that make the op-
timal scheduling (Section 2.3) of work between sequen-
tial and parallel processors feasible. It preserves the



essential characteristic of high-ILP processors that a
program is executed serially, while avoiding the mod-
eling complexity of a more detailed model. Although
this simple model does not capture the CPI effects of a
sequential processor which exploits ILP, we are mainly
interested in the relative speeds between the sequential
and parallel processors. We account for sequential pro-
cessor performance due to ILP by making the parallel
processor relatively slower. In the remainder of this
paper, all time periods are expressed in terms of the
sequential processor’s cycle time.

2.2 Parallel Processor

We model the parallel processor as a dataflow pro-
cessor, where a data dependency takes multiple cy-
cles to resolve. This dataflow model is driven by our
trace based limit study methodology described in Sec-
tion 3.2, which assumes perfectly predicted branches
to uncover parallelism. Using a dataflow model, we
avoid the requirement of partitioning instructions into
threads, as done in the thread-programming model.
This allows us to model the upper bound of parallelism
for future programming models that may be more flex-
ible than threads.

The parallel processor can execute multiple instruc-
tions in parallel, provided data dependencies are satis-
fied. Slower sequential performance of the parallel pro-
cessor is modeled by increasing the latency from the
beginning of an instruction’s execution until the time
its result is available for a dependent instruction. We
do not limit the parallelism that can be used by the
program, as we are interested in the amount of paral-
lelism available in algorithms.

Our model can represent a variety of methods of
building parallel hardware. In addition to an array
of single-threaded cores, it can also model cores us-
ing fine-grain multithreading, like current GPUs. Note
that modern GPUs from AMD [3] and NVIDIA [23,
24] provide a scalar multithreaded programming ab-
straction even though the underlying hardware is
single-instruction, multiple data (SIMD). This execu-
tion mode has been called single-instruction, multiple
thread (SIMT) [14].

In GPUs, fine-grain multithreading creates the il-
lusion of a large amount of parallelism (>10,000s of
threads) with low per-thread performance, although
physically there is a lower amount of parallelism (100s
of operations per cycle), high utilization of the ALUs,
and frequent thread switching. GPUs use the large
number of threads to “hide” register read-after-write
latencies and memory access latencies by switching to
a ready thread. From the perspective of the algorithm,

a GPU appears as a highly-parallel, low-sequential-
performance parallel processor.

To model current GPUs, we use a register read-
after-write latency of 100 cycles. For example, cur-
rent Nvidia GPUs have a read-after-write latency of 24
shader clocks [25] and a shader clock frequency of 1.3-
1.5 GHz [23, 24]. The 100 cycle estimates includes the
effect of instruction latency (24×), the difference be-
tween the shader clock and current CPU clock speeds
(about 2×), and the ability of current CPUs to ex-
tract ILP—we assume an average IPC of 2 on current
CPUs, resulting in another factor of 2×. We ignore
factors such as SIMT branch divergence [8].

We note that the SPE cores on the Cell processor
have comparable read-after-write latency to the more
general purpose PPE core. However, the SPE cores are
not optimized for control-flow intensive code [10] and
thus may potentially suffer a higher “effective” read-
after-write latency on some general purpose code (al-
though quantifying such effects is beyond the scope of
this work).

2.3 Heterogeneity

We model a heterogeneous system by allowing an
algorithm to choose between executing on the sequen-
tial processor or parallel processor and to switch be-
tween them (which we refer to as a “mode switch”).
We do not allow concurrent execution of both proces-
sors. This is a common paradigm, where a parallel
section of work is spawned off to a co-processor while
the main processor waits for the results. The runtime
difference for optimal concurrent processing (e.g., as in
the asymmetric multicore chips analysis given by Hill
and Marty [16]) is no better than 2× compared to not
allowing concurrency.

We schedule an instruction trace for alternating ex-
ecution on the two processors. Execution of a trace on
each type of core was described in Sections 2.1 and 2.2.
For each mode switch, we impose a “mode switch cost”,
intuitively modeling synchronization time during which
no useful work is performed. The mode switch cost is
used to model communication latency and bandwidth
as described in Sections 2.3.2 and 2.3.3, respectively.
Next we describe our scheduling algorithm in more de-
tail.

2.3.1 Scheduling Algorithm

Dynamic Programming is often applied to find optimal
solutions to optimization problems. The paradigm re-
quires that an optimal solution to a problem be recur-
sively decomposable into optimal solutions of smaller



sub-problems, with the solutions to the sub-problems
computed first and saved in a table to avoid re-
computation [6].

In our dynamic programming algorithm, we aim to
compute the set of mode switches (i.e., scheduling) of
the given instruction trace that will minimize execu-
tion time, given the constraints of our model. We
decompose the optimal solution to the whole trace
into sub-problems that are optimal solutions to shorter
traces with the same beginning, with the ultimate sub-
problem being the trace with only the first instruction
that can be trivially scheduled. We recursively define a
solution to a longer trace by observing that a solution
to a long trace is composed of a solution to a shorter
sub-trace, followed by a decision on whether to perform
a mode switch, followed by execution of the remaining
instructions in the chosen mode.

The dynamic programming algorithm keeps a N×2
state table when given an input trace of N instructions.
Each entry in the state table records the cost of an op-
timal scheduling for every sub-trace (N of them) and
mode that was last used in those sub-traces (2 modes).
At each step of the algorithm, a solution for the next
sub-trace requires examining all possible locations of
the previous mode switch to find the one that gives the
best schedule. For each possible mode switch location,
the corresponding entry of the state table is examined
to retrieve the optimal solution for the sub-trace that
executes all instructions up to that entry in the cor-
responding state (execution on the sequential, or the
parallel core, respectively). This value is used to com-
pute a candidate state table entry for the current step
by adding the mode switch cost (if switching modes),
and the cost to execute the remaining section of the
trace from the candidate switch point up to the current
instruction in the current mode (sequential, parallel).
The lowest cost candidate over all earlier sub-traces is
chosen for the current sub-trace.

The naive optimal algorithm described above runs
in quadratic time with respect to the instruction trace
length. For traces of millions of instructions in length,
quadratic time is too slow. We make an approxima-
tion to enable the algorithm to run in time linear in
the length of the instruction trace. Instead of looking
back at all past instructions for each potential mode
switch point, we only look back 30,000 instructions.
The modified algorithm is no longer optimal. We miti-
gate this sub-optimality by first reordering instructions
before scheduling. We observed that the amount of
sub-optimality using this approach is insignificant.

To overcome the limitation of looking back only
30,000 instructions in our algorithm, we reorder
instructions in dataflow order before scheduling.

Dataflow order is the order in which instructions would
execute if scheduled with our optimal scheduling al-
gorithm. This linear-time preprocessing step exposes
parallelism found anywhere in the instruction trace by
grouping together instructions that can execute in par-
allel.

We remove instructions from the trace that do not
depend on the result of any other instruction. Most of
these instructions are dead code created by our method
of exposing loop- and function-level parallelism, de-
scribed in Section 3.2. Since dead code can execute
in parallel, we remove these instructions to avoid hav-
ing them inflate the amount of parallelism we observe.
Across our benchmark set, 27% of instructions are re-
moved by this mechanism. Note that the dead code we
are removing is not necessarily dynamically dead [5],
but rather overhead related to sequential execution of
parallel code. The large number of instructions re-
moved results from, for example, the expansion of x86
push and pop instructions (for register spills/fills) into
a load or store micro-op (which we keep) and a stack-
pointer update micro-op (which we do not keep).

2.3.2 Latency

We model the latency of migrating tasks between pro-
cessors by imposing a constant runtime cost for each
mode switch. This cost is intended to model the la-
tency of spawning a task, as well as transferring of
data between the processors. If the amount of data
transferred is large relative to the bandwidth of the
link between processors, this is not a good model for
the cost of a mode switch. This model is reasonable
when the mode switch is dominated by latency, for ex-
ample in a heterogeneous multicore system where the
memory hierarchy is shared (Figure 1(a)), so very little
data needs to be copied between the processors.

As described in Section 2.3, our scheduling algo-
rithm considers the cost of mode switches. A mode
switch cost of zero would allow freely switching be-
tween modes, while a very high cost would constrain
the scheduler to choose to run the entire trace on one
processor or the other, whichever was faster.

2.3.3 Bandwidth

Bandwidth is a constraint that limits the rate that data
can be transferred between processors in our model.
Note that this does not apply to the processors’ link to
its memory (Figure 1), which we assume to be uncon-
strained. In our shared-memory model (Figure 1(a))
mode switches do not need to copy large amounts of
data so only latency (Section 2.3.2) is a relevant con-
straint. In our private-memory model (Figure 1(b)),



bandwidth is consumed on the link connecting proces-
sors as a result of a mode switch.

If a data value is produced by an instruction in one
processor and consumed by one or more instructions in
the other processor, then that data value needs to be
communicated to the other processor. A consequence
of exceeding the imposed bandwidth limitation is the
addition of idle computation cycles while an instruc-
tion waits for its required operand to be transferred.
In our model, we assume opportunistic use of band-
width, allowing communication of a value as soon as it
is ready, in parallel with computation.

Each data value to be transferred is sent sequentially
and occupies the communication channel for a specific
amount of time. Data values can be sent any time after
the instruction producing the value executes, but must
arrive before the first instruction that consumes the
value is executed. Data transfers are scheduled onto
the communication channel using an “earliest deadline
first” algorithm, which produces a scheduling with a
minimum of added idle cycles.

Bandwidth constraints are applied by changing the
amount of time each data value occupies on the com-
munication channel. Communication latency is applied
by setting the deadline for a value some number of cy-
cles after the value is produced.

Computing the bandwidth requirements and idle cy-
cles needed, and thus the cost to switch modes, requires
a scheduling of the instruction trace, but the optimal
instruction trace scheduling is affected by the cost of
switching modes. We approximate the ideal behav-
ior by iteratively performing scheduling using a con-
stant mode switch overhead for each mode switch and
then updating the average penalty due to bandwidth
consumption across all mode switches, then using the
new estimate of average switch cost as input into the
scheduling algorithm, until convergence.

3 Simulation Infrastructure

We evaluate performance using micro-op traces ex-
tracted from execution of a set of x86-64 benchmarks
on the PTLsim [18] simulator. Each micro-op trace
was then scheduled using our scheduling algorithm for
execution on the heterogeneous system.

3.1 Benchmark Set

We chose our benchmarks with a focus towards
general-purpose computing. We used the reference
workloads for SPECint and SPECfp 2000 v1.3.1 (23
benchmarks, except 253.perlbmk and 255.vortex which

Benchmark Description
linear Compute average of 9 input pixels for

each output pixel. Each pixel is inde-
pendent.

sepia 3× 3 constant matrix multiply on each
pixel’s 3 components. Each pixel is in-
dependent.

serial A long chain of dependent instructions,
has parallelism approximately 1 (no
parallelism).

twophase Loops through two alternating phases,
one with no parallelism, one with high
parallelism. Needs to switch between
processor types for high speedup.

Table 1. Microbenchmarks

did not run in our simulation environment), Physics-
Bench 2.0 [31] (8 benchmarks), SimpleScalar 3.0 [29]
(used here as a benchmark), and four small mi-
crobenchmarks (described in Table 1).

We chose PhysicsBench because it contains both se-
quential and parallel phases in the benchmark, and
would be a likely candidate to benefit from heterogene-
ity, as it would be unsatisfactory if both types of phases
were constrained to one processor type [31].

Our SimpleScalar benchmark used the out-of-order
processor simulator from SimpleScalar/PISA, running
go from SPECint 95, compiled for PISA.

We used four microbenchmarks to observe behav-
ior at extremes of parallelism, as shown in Table 1.
Linear and sepia are highly parallel, serial is serial,
and twophase has alternating highly parallel and serial
phases.

Figure 2 shows the average parallelism present in our
benchmark set. As expected, SPECfp has more par-
allelism (611) than SPECint (116) and PhysicsBench
(83). Linear (4790) and sepia (6815) have the high-
est parallelism, while serial has essentially no paral-
lelism.

3.2 Traces

Micro-op traces were collected from PTLsim run-
ning x86-64 benchmarks, compiled with gcc 4.1.2 -O2.
Four microbenchmarks were run in their entirety, while
the 32 real benchmarks were run through SimPoint [30]
to choose representative sub-traces to analyze. Our
traces are captured at the micro-op level, so in this pa-
per instruction and micro-op are used interchangeably.

We used SimPoint to select simulation points of
10-million micro-ops in length from complete runs of
benchmarks. As recommended [30], we allowed Sim-
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Point to decide how many simulation points should be
used to approximate the entire benchmark run. We av-
eraged 12.9 simulation points per benchmark. This is a
significant savings over the complete benchmarks which
were typically several hundred billion instructions long.
The weighted average of the results over each set of
SimPoint traces are presented for each benchmark.

We assume branches are correctly predicted. Many
branches, like loops, can often be easily predicted or
speculated or even restructured away during manual
parallelization. As we are trying to evaluate the upper-
bound of parallelism in an algorithm, we avoid limiting
parallelism by not imposing the branch-handling char-
acteristics of sequential machines. This is somewhat
optimistic as true data-dependent branches would at
least need be converted into speculation or predicated
instructions.

Each trace is analyzed for true data dependencies.
Register dependencies are recognized if an instruction
consumes a value produced by an earlier instruction
(read-after-write). Dependencies on values carried by
the instruction pointer register are ignored, to avoid
dependencies due to instruction-pointer-relative data
addressing. Like earlier limit studies [17, 15], stack
pointer register manipulations are ignored, to extract
parallelism across function calls. Memory disambigua-
tion is perfect: Dependencies are carried through mem-
ory only if an instruction loads a value from memory
actually written by an earlier instruction.

It is also important to be able to extract loop-level
parallelism and avoid serialization of loops through the
loop induction variable. We implemented a generic so-
lution to prevent this type of serialization. We identify
instructions that produce result values that are stati-

cally known, which are instructions that have no input
operands (e.g. load constant). We then repeatedly
look for instructions dependent only on values that are
statically known and mark the values they produce as
statically known as well. We then remove dependencies
on all statically-known values. This is similar to repeat-
edly applying constant folding and constant propaga-
tion optimizations [20] to the instruction trace. The
dead code that results is removed as described in Sec-
tion 2.3.

A loop induction variable [20] is often initialized
with a constant (e.g. 0). Incrementing the induction
variable by a constant depends only on the initializa-
tion value of the induction variable, so the incremented
value is also statically known. Each subsequent incre-
ment is likewise statically known. This removes seri-
alization caused by the loop control variable, but pre-
serves genuine data dependencies between loop itera-
tions, including loop induction variable updates that
depend on a variable computed value.

4 Results

In this section, we present our analysis of our ex-
perimental results. First, we look at the speedup that
can be achieved when adding a parallel co-processor
to a sequential machine and show that the speedup is
highly dependent on the parallel instruction latency.
We define parallel instruction latency as the ratio of
the read-after-write latency of the parallel cores (recall
we assume a CPI of one for the sequential core). We
then look at the effect of communication latency and
bandwidth as parallel instruction latency is varied, and
see that the effect is significant, but small.
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Figure 3. Proportion of Instructions Sched-
uled on Parallel Core. Real benchmarks (a),
Microbenchmarks(b)

4.1 Why Heterogeneous?

Figures 3 and 4 give some intuition for the charac-
teristics of the scheduling algorithm. Figure 4 shows
the parallelism of the instructions that are scheduled
to use the parallel processor when our workloads are
scheduled for best performance. Figure 3(a) shows the
proportion of instructions that are assigned to execute
on the parallel processor. As the instruction latency
increases, sections of the workload where the benefit
of parallelism does not outweigh the cost of slower se-
quential performance become scheduled onto the se-
quential processor, raising the average parallelism of
those portions that remain on the parallel processor,
while reducing the proportion of instructions that are
scheduled on the parallel processor. The instructions
that are scheduled to run on the sequential processor
receive no speedup, but scheduling more instructions
on the parallel processor in an attempt to increase par-
allelism will only decrease speedup.

The microbenchmarks in Figure 3(b) show our
scheduling algorithm works as expected. Serial has
nearly no instructions scheduled for the parallel core.
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Figure 4. Parallelism on Parallel Processor

Twophase has about 18.5% of instructions in its serial
component that are scheduled on the sequential pro-
cessor leaving 81.5% on the parallel processor, while
sepia and linear highly prefer the parallel processor.

We look at the potential speedup of adding a par-
allel processor to an existing sequential machine. Fig-
ures 5(a) and (b) show the speedup of our benchmarks
for varying parallel instruction latency, as a speedup
over a single sequential processor. Two plots for each
benchmark group are shown: The solid plots show the
speedup of a heterogeneous system where communica-
tion has no cost, while the dashed plot shows speedup
when communication is very expensive. We focus on
the solid plots in this section.

It can be observed from Figures 5(a) and (b) that
as the instruction latency increases, there is a signifi-
cant loss in the potential speedup provided by the extra
parallel processor, becoming limited by the amount of
parallelism available in the workload that can be ex-
tracted, as seen in Figure 3. Since our parallel proces-
sor model is somewhat optimistic, the speedups shown
here should be regarded as an upper bound of what
can be achieved.

With a parallel processor with GPU-like instruc-
tion latency of 100 cycles, SPECint would be lim-
ited to a speedup of 2.2×, SPECfp to 12.7×, Physics-
Bench to 2.5×, with 64%, 92%, and 72% of instructions
scheduled on the parallel processor, respectively. The
speedup is much lower than the peak relative through-
put of a GPU compared to a sequential CPU (≈ 50×),
which shows that if a GPU-like processor were used as
the parallel processor in a heterogeneous system, the
speedup on these workloads would be limited by the
parallelism available in the workload, while still leav-
ing much of the GPU hardware idle.

In contrast, for highly-parallel workloads, the
speedups achieved at an instruction latency of 100 are
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Figure 5. Speedup of Heterogeneous System:
(a) Real benchmarks, (b) Microbenchmarks.
Ideal communication (solid), communication
forbidden (dashed, NoSwitch).

similar to the peak throughput available in a GPU. The
highly-parallel linear filter and sepia tone filter (Fig-
ure 5(b)) kernels have enough parallelism to achieve
50-70× speedup at an instruction latency of 100. A
highly-serial workload (serial) does not benefit from the
parallel processor.

Although current GPU compute solutions built with
efficient low-complexity multi-threaded cores are suf-
ficient to accelerate algorithms with large amounts
of thread-level parallelism, general-purpose algorithms
would be unable to utilize the large number of thread
contexts provided by the GPU, while under-utilizing
the arithmetic hardware available.

4.2 Communication

In this section, we evaluate the impact of com-
munication latency and bandwidth on the potential
speedup, comparing performance between the extreme
cases where communication is unrestricted and commu-
nication is forbidden. The solid plots in Figure 5 show
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Figure 6. Slowdown of infinite communica-
tion cost (NoSwitch) compared to zero com-
munication cost. Real benchmarks (a), Mi-
crobenchmarks (b).

speedup when there are no limitations on communi-
cation, while the dashed plots (marked NoSwitch) has
communication so expensive that the scheduler chooses
to run the workload entirely on the sequential pro-
cessor or parallel processor, never switching between
them. Figures 6(a) and (b) show the ratio between the
solid and dashed plots in Figures 5(a) and (b), respec-
tively, to highlight the impact of communication. At
both extremes of instruction latency, where the work-
load is mostly sequential or mostly parallel, commu-
nication has little impact. It is in the moderate range
around 100-200 where communication potentially mat-
ters most.

The potential impact of expensive (latency and
bandwidth) communication is significant. For exam-
ple, at a GPU-like instruction latency of 100, SPECint
achieves only 56%, SPECfp 23%, and PhysicsBench
44% of the performance of no communication, as can
be seen in Figure 6(a). From our microbenchmark set
(Figures 5(b) and 6(b)), twophase is particularly sen-
sitive to communication costs, and gets no speedup for
instruction latency above 10. We look at more realistic
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constraints on latency and bandwidth in the following
sections.

4.2.1 Latency

Poor parallel performance is often attributed to high
communication latency [21]. Heterogeneous processing
adds a new communication requirement—the commu-
nication channel between sequential and parallel pro-
cessors (Figure 1). In this section, we measure the
impact of the latency of this communication channel.

We model this latency by requiring that switching
modes between the two processor types causes a fixed
amount of idle computation time. In this section, we do
not consider the bandwidth of the data that needs to
be transferred. This model represents a heterogeneous
system with shared memory (Figure 1(a)), where mi-
grating a task does not involve data copying, but only
involves a pipeline flush, notification to the other pro-
cessor of work, and potentially flushing private caches
if caches are not coherent.

Figure 7 shows the slowdown when we include
100,000 cycles of mode-switch latency in our perfor-
mance model and scheduling, when compared to zero-
latency mode switch.

The impact of imposing a delay for every mode
switch has only a minor effect on runtime. Although
Figure 6(a) suggested that the potential for perfor-
mance loss due to latency is great, even when each
mode switch costs 100,000 cycles (greater than 10us
at current clock rates), most of the speedup remains.
We can achieve ≈85% of the performance of a hetero-
geneous system with zero-cost communication. Stated
another way, reducing latency between sequential and
parallel cores might provide an average ≈ 18% perfor-
mance improvement.

To gain further insight into the impact of mode
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Figure 8. Mode switches as switch latency
varies: (a) zero cycles, (b) 10 cycles, (c) 1000
cycles.

switch latency, Figure 8 illustrates the number of mode
switches per 10 million instructions as we vary the cost
of switching from zero to 1000 cycles. As the cost of
a mode switch increases the number of mode switches
decreases. Also, more mode switches occur at interme-
diate values of parallel instruction latency where the
benefit of being able to use both types processors out-
weighs the cost of switching modes.

For systems with private memory (e.g. discrete
GPU), data copying is required when migrating a task
between processors at mode switches. We consider
bandwidth constraints in the next section.

4.2.2 Bandwidth

In the previous section, we saw that high communi-
cation latency had only a minor effect on achievable
performance. Here, we place a bandwidth constraint
on the communication between processors. Data that
needs to be communicated between processors is re-
stricted to a maximum rate, and the processors are
forced to wait if data is not available in time for an
instruction to use it, as described in Section 2.3.3. We
also include 1,000 cycles of latency as part of the model.

We first construct a model to represent PCI Express,
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as discrete GPUs are often attached to the system this
way. PCI Express x16 has a peak bandwidth of 4GB/s
and latency around 250ns [4]. Assuming current pro-
cessors perform about 4 billion instructions per second
on 32-bit data values, we can model PCI Express us-
ing a latency of about 1,000 cycles and bandwidth of 4
cycles per 32-bit value. Being somewhat pessimistic to
account for overheads, we use a bandwidth of 8 cycles
per 32-bit value (about 2GB/s).

Figure 9 shows the performance impact of restrict-
ing bandwidth to one 32-bit value every 8 clocks with
1,000 cycles of latency. Slowdown is worse than with
100,000 cycles of latency, but the benchmark set af-
fected the most (SPECfp) can still achieve ≈67.4% of
the ideal performance at a parallel instruction latency
of 100. Stated another way, increasing bandwidth be-
tween sequential and parallel cores might provide an

average 1.48× performance improvement for workloads
like SPECfp. For workloads such as PhysicsBench and
SPECint the potential benefits appear lower (1.33×
and 1.07× potential speedup, respectively). Compar-
ing latency (Figure 7) to bandwidth (Figure 9) con-
straints, SPECfp and PhysicsBench has more perfor-
mance degradation than under a pure-latency con-
straint, but SPECint performs better, suggesting that
SPECint is less sensitive to bandwidth.

The above plots suggest that a heterogeneous sys-
tem attached without a potentially-expensive, low-
latency, high-bandwidth communication channel can
still achieve much of the potential speedup.

To further evaluate whether GPU-like systems could
be usefully attached using even lower bandwidth in-
terconnect, we measure the sensitivity of performance
to bandwidth for instruction latency 100. Figure 10
shows the speedup for varying bandwidth. Bandwidth
(x-axis) is normalized to 1 cycle per datum, equivalent
to about 16GB/s in today’s systems. Speedup (y-axis)
is relative to the workload running on a sequential pro-
cessor.

SPECfp and PhysicsBench have similar sensitivity
to reduced bandwidth, while SPECint’s speedup loss
at low bandwidth is less significant (Figure 10). Al-
though there is some loss of performance at PCI Ex-
press speeds (normalized bandwidth = 1/8), about half
of the potential benefit of heterogeneity remains at
PCI-like speeds (normalized bandwidth = 1/128). At
PCI Express x16 speeds, SPECint can achieve 92%,
SPECfp 69%, and PhysicsBench 78% of the speedup
achievable without latency and bandwidth limitations.

As can be seen from the above data, heteroge-
neous systems can potentially provide significant per-
formance improvements on a wide range of applica-
tions, even when system cost sensitivity demands high-
latency, low-bandwidth interconnect. However, it also
shows that applications are not entirely insensitive to
latency and bandwidth, so high-performance systems
will still need to worry about increasing bandwidth and
lowering latency.

The lower sensitivity to latency than to bandwidth
suggests that a shared-memory multicore heteroge-
neous system would be of benefit, as sharing a single
memory system avoids data copying when migrating
tasks between processors, leaving only synchronization
latency. This could increase costs, as die size would
increase, and the memory system would then need to
support the needs of both sequential and parallel pro-
cessors. A high-performance off-chip interconnect like
PCI Express or HyperTransport may be a good com-
promise.



5 Related Work

There have been many limit studies on the amount
of parallelism within sequential programs.

Wall [7] studies parallelism in SPEC92 under vari-
ous limitations in branch prediction, register renaming,
and memory disambiguation. Lam et al. [17] stud-
ies parallelism under branch prediction, condition de-
pendence analysis, and multiple-fetch. Postiff et al.
[15] perform a similar analysis on the SPEC95 suite
of benchmarks. These studies showed that significant
amounts of parallelism exist in typical applications un-
der optimistic assumptions. These studies focused on
extracting instruction-level parallelism on a single pro-
cessor. As it becomes increasingly difficult to extract
ILP out of a single processor, performance increases
often comes from multicore systems.

As we move towards multicore systems, there are
new constraints, such as communication latency, that
are now applicable. Vachharajani et al. [21] studies
speedup available on homogeneous multiprocessor sys-
tems. They use a greedy scheduling algorithm to assign
instructions to cores. They also scale communication
latency between cores in the array of cores and find
that it is a significant limit on available parallelism.

In our study, we extend these analyses to heteroge-
neous systems, where there are two types of processors.
Vachharajani examined the impact of communication
between processors within a homogeneous processor ar-
ray. We examine the impact of communication between
a sequential processor and an array of cores. In our
model, we roughly account for communication latency
between cores within an array of cores by using higher
instruction read-after-write latency.

Heterogeneous systems are interesting because they
are commercially available [10, 25, 2] and, for GPU
compute systems, can leverage the existing software
ecosystem by using the traditional CPU as its sequen-
tial processor. They have also been shown to be more
area and power efficient [16, 26, 27] than homogeneous
multicore systems.

Hill and Marty [16] uses Amdahl’s Law to show that
there are limits to parallel speedup, and makes the
case that when one must trade per-core performance
for more cores, heterogeneous multiprocessor systems
perform better than homogeneous ones because non-
parallelizable fragments of code do not benefit from
more cores, but do suffer when all cores are made slower
to accommodate more cores. They indicate that more
research should be done to explore “the scheduling and
overhead challenges that Amdahl’s model doesn’t cap-
ture”. Our work can be viewed as an attempt to further
quantify the impact that these challenges present.

6 Conclusion

We conducted a limit study to analyze the behavior
of a set of general purpose applications on a heteroge-
neous system consisting of a sequential processor and
a parallel processor with higher instruction latency.

We showed that instruction read-after-write latency
of the parallel processor was a significant factor in per-
formance. In order to be useful for applications without
copious amounts of parallelism, we believe that instruc-
tion read-after-write latencies of GPUs will need to de-
crease and thus GPUs can no longer rely exclusively on
fine-grain multithreading to keep utilization high. We
note that VLIW or superscalar issue combined with
fine-grained multithreading [3, 19] do not inherently
mitigate this read-after-write latency, though adding
forwarding [12] might. Our data shows that latency
and bandwidth of communication between the parallel
cores and the sequential core, while significant factors,
have comparatively minor effects on performance. La-
tency and bandwidth characteristics of PCI Express
was sufficient to achieve most of the available perfor-
mance.

Note that since our results are normalized to the
sequential processor, our results scale as processor de-
signs improve. As sequential processor performance
improves in the future, the read-after-write latency
of the parallel processor will also need to improve to
match.

Manufacturers have and will likely continue to build
single-chip heterogeneous multicore processors. The
data presented in this paper may suggest the reasons
for doing so are other than to obtain higher perfor-
mance from reduced communication overheads on gen-
eral purpose workloads. A subject for future work is
evaluating whether such conclusions hold under more
realistic evaluation scenarios (limited hardware paral-
lelism, detailed simulations, real hardware) along with
exploration of a wider set of applications (ideally in-
cluding real workloads carefully tuned specifically for a
tightly coupled single-chip heterogeneous system). As
well, this work does not quantify the effect that in-
creasing problem size [11] may have on the question of
the benefits of heterogeneous (or asymmetric) multi-
core performance.
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Abstract 
Increased processor performance can no longer be 

achieved through reduced feature size due to power 

density issues.  As a result, high performance designs 

increasingly rely upon multiple processors in order to 

extract parallelism.  Over the next few generations of 

designs, the core count of such machines is expected to 

increase, ultimately reaching thousands of processors.  

As the performance of multi-threaded programs has 

become increasingly important, the contemporary 

benchmarks of choice are PARSEC and Splash-2.  

Both of these suites offer great scalability from the 

program’s perspective, where approximate ideal 

speedup can be obtained up to a certain processor 

threshold. 

PARSEC and Splash-2 are attractive to many in 

the community because they offer programs that are 

highly scalable in the evaluation of large CMP designs.  

Both benchmark suites offer the inherent 

parallelization characteristics present within their 

programs as a metric for scalability.    However, the 

assessment of program characteristics including 

system-level effects may skew overall program 

scalability results.  Because speedup computed through 

Amdahl’s law is extremely sensitive to the serial 

fraction of any program on the upper end, a minute 

change in the ratio of serial to parallel work may have 

dramatic effects upon the maximum obtainable 

speedup.  The operating system, shared libraries, and 

thread synchronization incur serializing costs upon the 

overall program execution, which add to the serial code 

sections, and limit the scalability of these workloads to 

even a small number of cores.  In this study, we show 

how these effects tragically limit multi-threaded 

performance, which must be overcome in order for 

new systems with a large number of cores to be viable. 

 

1. Introduction 
Power consumption and heat dissipation have become 

limiting factors to increased performance of single-

processor designs.  These constraints have limited the 

viability of feature size reduction as a technique to 

produce faster processors.  In order to mitigate these 

effects, current high performance designs have shifted 

to include multiple processors on chip to compensate 

for decreased processor frequencies (and increased 

cycle times).  The number of cores is expected to climb 

with each new design cycle, with the ultimate goal 

being thousands of processors. 

In the past, SPEC [1]  benchmarks were sufficient 

in the evaluation of single processor designs and multi-

processor designs including a modest number of cores.  

As the number of processors has increased, it has 

become exceedingly difficult to evaluate chip 

multiprocessors in the context of throughput 

computing (where separate workloads are executed on 

individual processors).  Typically, this would involve 

the arbitrary selection of workloads equal to the 

number of processors, where the total number of “CMP 

workloads” would be equal to BCP, which is the 

combination of B benchmarks taken P at a time (where 

B is the number of workloads contained in the suite 

and P is the number of processors in the design).  

Many problems stem from this type of evaluation and 

are described in [2]. 

As the number of processors have increased, 

PARSEC [3] and Splash-2 [4] have become the 

benchmark suites of choice.  These multi-threaded 

workloads not only test the characteristics associated 

with synchronization and coherence, but also provide a 

standard substrate for individuals to compare their 

results (as well as mitigating the problems previously 

mentioned with throughput oriented workloads).  Each 

of these benchmark suites is notably attractive because 

they advertise highly scalable workloads up to a 

specified processor threshold.  PARSEC v1.0 reports 

indicate that their workloads approximately scale with 

the ideal up until 16 processors [5], and Splash-2 

reports indicate scalability up until 64 processors [4].  

Each of these reports determines the scalability of the 

program in isolation, which include program 

characteristics internally.  Any external effects 

associated with the operating system and shared system 

libraries (which implement synchronization) are 

excluded from the analysis. 

Multi-threaded programs may be broken down 

into two separate pieces, corresponding to their parallel 

and serial regions.  According to Amdahl’s law parallel 

program speedup is ultimately limited by the serial 

code sections of an application.  Represented by the 

fraction of the enhanced (Fenhanced), inherent 

parallelism indicates the percentage of the program that 

is fully parallelizable.  The remaining serial portion of 

the program may be calculated by 1-Fenhanced.  Once 



the fraction of the enhanced is known, the maximum 

achievable speedup obtainable by parallelization may 

be calculated.  Figure 1 shows the maximum 

obtainable speedup for fraction of the enhanced 

(Fenhanced) values between 0% and 99%.  Assuming 

perfect communication and no parallelization 

overhead, a program must have at least 93.75% fully 

parallel code in order to obtain 16x speedup, and at 

least 99% for 100x speedup.  Thus, for a real multi-

processor system with 16 processors to obtain ideal 

speedup and utilize all processors, the target program 

must contain at least 93.75% parallel code. The 

underlying system cannot diminish the observed 

parallelization below that percentage (due to 

synchronization, additional coherence overhead, 

additional interconnect communication delay, shared 

libraries, OS scheduler events, load balancing, etc.).  

As the number of processors increase, multi-threaded 

program system performance will increasingly rely 

upon efficient thread execution and communication. 

 
Figure 1: Maximum Speedup (0-99%) 

In this study, we evaluate the observed speedups 

of various PARSEC and Splash-2 workloads.  In order 

to understand the limitations of thread synchronization 

upon system performance, we characterize thread 

behaviors for an abstract machine model that 

incorporates operating system effects.  Section 2 

briefly describes basic thread synchronization 

mechanics studied in this work.  The experimental 

framework is described in Section 3.  Section 4 

describes the characterization of synchronization 

events within the tested workloads and discusses its 

impact upon scalability.  Section 5 discusses the 

measured speedups of workloads at varying 

workload/processor configurations and describes 

inherent obstacles to large multi-processor systems.  

Section 6 discusses related work followed by 

conclusions in Section 7. 

2. Thread Synchronization 
In multi-core systems, multi-threaded programs result 

in many concurrently executing tasks, or threads.  In 

the POSIX implementation, each task resides within 

the context of a single process, allowing certain 

process resources to be shared, but each task to have 

separate program counters, registers, and local stack.  

Multi-threaded programs may spawn more threads than 

processors in order to avoid blocking while threads are 

waiting for a resource.  However, too many active 

threads may hurt system performance due to OS 

context switching. 

Thread interaction is governed by the use of 

synchronization primitives.  The correct use of 

synchronization can prevent race conditions and other 

unexpected program behavior.  Synchronization 

primitives may be implemented in the kernel or within 

user level libraries, and usually incorporate atomic 

operations to perform bus locking and cache coherency 

management.  Atomic operations are a set of 

operations that are combined so the system perceives it 

as a single operation that succeeds or fails.  Upon 

failure the effects of all operations are undone so that 

system state remains invariant.  Examples of atomic 

operations include test-and-set, fetch-and-add, and 

compare-and-swap. 

After a thread has been spawned it will run 

independent from the parent program unless dictated 

by synchronization.  Shared resources that could be 

dynamically accessed simultaneously by multiple 

threads are often placed in critical sections to guarantee 

mutual exclusivity, typically guarded by locks or 

semaphores.  If no threads are using a particular shared 

resource, then a thread may enter the critical section 

and is in a running state.  Otherwise, the thread 

transitions to a blocked state while waiting for critical 

section access.  Previous techniques have been 

proposed to mitigate the serializing effects due to locks 

[6-8]. 

System execution of multiple threads introduces 

potential non-deterministic effects due to the complex 

interactions between the scheduler, memory hierarchy 

and interconnect.  Threads competing for a lock 

request resources from the memory hierarchy, and 

interconnect if the request misses.  The first thread to 

obtain a cache line in exclusive access will win the 

lock and continue execution.  Waiting threads will then 

obtain the lock based upon physical machine 

characteristics.  Threads may also be preempted by 

other processes and/or threads which may change the 

observed synchronization events and program 

ordering.  Non-deterministic effects may cause a 

program to behave differently over multiple runs, 

making debugging difficult. 

The concurrent execution of threads may yield 

significant speedup compared to its single-threaded 

cousin if: 1) sufficient parallel code regions exist in the 

program, and 2) they can be executed efficiently with 

minimal synchronization bottlenecks and other system 

overheads.  In this work, it is shown that 



synchronization is an important factor that must be 

considered when evaluating workload scalability. 

3. Simulation Environment 
In this study, the linux GNU C library (glibc v2.8) was 

instrumented to profile synchronization events.  Each 

type of synchronization provided by the Native POSIX 

Threading Library (pthreads) was instrumented to 

provide detailed information regarding thread 

behaviors.  The pthreads library API provides for the 

following types of synchronization: mutexes, read-

write locks, barriers, condition variables, thread 

joining, and semaphores.  Read-write locks are 

multiple readers, single writer locks.  Multiple threads 

can acquire a lock for reading purposes, but exclusive 

(write) accesses are serialized similar to mutex-based 

critical sections. 

Using the instrumented libc, a number of 

workloads were simulated using HP Labs’ COTSon 

simulator [9].  COTSon is a system-level simulator that 

models execution holistically, including: peripheral 

devices, disk I/O, network devices, and the operating 

system.  Inclusion of the operating system allows for 

system calls and system interaction to be measured.  

Internally, COTSon uses the AMD’s SimNow 

simulator [10] to provide fast native emulation of 

instructions, which are fed as a trace to COTSon timers 

for detailed measurement.  For this work, multi-

threaded workloads were simulated on top a 64-bit 

Debian operating system (kernel 2.6.26) using the 

instrumented libc. 

In order to reduce context switching effects from 

other running processes, a stripped down Debian 

operating system was utilized.  All non-necessary 

daemons were killed, and the X server was removed.  

To ensure that comparisons would be consistent across 

processor configurations, each workload was executed 

from the same operating system checkpoint image. 

In order to classify synchronization events and 

their effects on thread behaviors, workloads from the 

Splash-2 [4] and PARSEC v1.0 [3] benchmark suites 

were simulated.  COTSon provided timestamps for 

pthread events in order to determine detailed timing 

information for each type of synchronization event.  

For locks and mutexes, times were recorded for 

resource request, acquire, and release.  Additionally, 

wait and release times were also recorded for thread 

joins, barriers, and conditional variables.  The thread id 

and internal pthread data structure addresses were 

recorded to isolate individual thread behaviors and 

interaction based upon specific synchronization 

instances.  Event timestamps were used to calculate the 

time that an individual thread spent within library 

synchronization calls.  Individual thread wait times 

were determined as the cumulative difference between 

request/acquire and acquire/release events (in the case 

of locks) and wait/release events for joins, barriers, and 

condition variables.  Although code instrumentation 

may affect the timing behavior of any program, the 

instrumentation of glibc was very lightweight (an event 

id was added to a buffer) and should not significantly 

alter the actual program behavior.  Since our 

simulation environment was based on a 64-bit linux 

OS, we verified measurements on real systems 

containing eight processors for both the AMD Opteron 

and Intel Xeon architectures.  Collected measurements 

for both architectures yielded speedups consistent with 

those in our simulated environment.  Larger input sets 

were also executed on real systems and exhibited 

performance results similar to the smaller input sets. 

Data were collected using a COTSon timer that 

functionally executed instructions in a single time unit.  

The use of a functional simulator has the same effect as 

if a cycle-accurate model were used with a perfect 

cache, branch predictor, TLB, pipeline (1-issue, in-

order), interconnect, and coherence.  The purpose of 

using this configuration was to approximate a lower 

bound of synchronization overheads.   Assuming 

perfect communication across the cache hierarchy and 

interconnect, program performance is bounded by the 

serial code regions, OS interaction, and 

synchronization overheads.  Synchronization 

overheads are based upon the ordering imposed by the 

benchmark algorithm as well as costs incurred within 

the pthreads library.  The use of functional models has 

been incorporated in other studies to assess inherent 

program parallelization [3, 4].  Previous work has 

shown that Splash-2 and PARSEC have the inherent 

parallelization necessary to scale.  However, when 

including the operating system and threading library 

effects within these measurements, application speedup 

may differ significantly from the ideal case. 

4. Synchronization Characterization 
PARSEC and Splash-2 workloads discussed in this 

section were simulated for 1, 2, 4, 8, 16, and 32 

processors.  At each processor configuration, the 

number of threads equaled the number of processors.  

From these data, average synchronization wait times 

were calculated (excluding one thread configurations 

because a serial program should not wait due to 

synchronization).  All experimental workloads 

implement parallelization using either pthreads or 

OpenMP.  Because the linux version of gcc internally 

uses POSIX threads by default to implement OpenMP 

pragmas, the instrumentation of pthreads was sufficient 

to capture the behavior for both types of workloads.  In 

this study, PARSEC v1.0 benchmarks were simulated 

using the simlarge input set.  Splash-2 workloads were 

also simulated using the default input size.  Vips was 

excluded because it segfaulted for the simlarge input.  

FFT was also excluded from Splash-2 because its 

execution time was too small to be reliably measured 

by the time command. 



Figure 2 shows the average time threads spent 

waiting as a percentage of program execution for the 

studied PARSEC and Splash-2 workloads.  For each of 

these workloads, wait times have been decomposed 

into their synchronization constituents.  These figures 

show the average percentage time that threads spent 

waiting for condition variables, barriers, and mutexes 

(including read-write locks) for all tested 

workload/processor configurations. 

 
 

 
Figure 2: Thread Waiting Decomposition for PARSEC 

and Splash-2 

For PARSEC, certain workloads spent 

considerable time waiting on synchronization events.  

Bodytrack waited for 49%, blackscholes for 62%, 

facesim for 65%, fluidanimate for 29%, and 

streamcluster for 38%.  Others such as dedup, 

freqmine, and x264 all wait for less than 4%.  

Interestingly, condition variables and barriers dominate 

mutexes as the cause of waiting threads.  Condition 

variables are barriers that can be selectively applied to 

individual threads.  Once a thread reaches a condition 

variable, it must wait until that condition becomes true.  

Upon receiving the wakeup signal, thread execution 

will continue.  For all workloads, mutexes account for 

less than 0.34% of thread execution.  Barriers and 

condition variables account for 8.7% and 14.3%, 

respectively.  On average, 17.3% of PARSEC 

workload execution was consumed on synchronization. 

For Splash-2 workloads, the average 

synchronization overheads for mutexes and barriers are 

1.3% and 34.2%, respectively.  No condition variable 

activity was measured for these workloads.  Similar to 

PARSEC, mutexes had minimal impact upon overall 

thread wait times.  On average, Splash-2 wait times 

consumed 35.4% of program execution.  In part, this is 

due to the short execution times of Splash-2 

workloads.  On average, all Splash-2 permutations 

executed in 0.68 seconds within the simulated 

operating system.  The short execution times of 

Splash-2 workloads may have issues associated with 

constant timeslice interruption.  However, these 

workloads are over a decade old and may be outdated 

for contemporary system evaluation.  But, even when 

these workloads were relatively new, scalability issues 

were observed [11] for NUMA architectures. 

Wait times for mutex synchronization was 

extremely low, implying threads can regularly acquire 

locks uncontested.  Similar behavior for the low 

contention rate of  mutexes in cycle-accurate 

simulation environments has been observed in [6, 7].  

Instrumented barriers are extremely costly even for our 

simulated abstract machine because all system threads 

must wait for the slowest thread to reach a specified 

execution point.  If threads have common algorithmic 

tasks and similar performance, then the slack time 

between the highest and lowest performing thread 

should be minimal.  Threads with dissimilar tasks or 

whose performance varies greatly will incur greater 

barrier costs. 

The scheduler may also impact associated barrier 

overhead because it may preempt thread execution in 

lieu of another system process.  Assuming 

homogenous execution among the remaining threads, 

the evicted process will then become the slowest 

thread, and program execution cannot continue until it 

is both rescheduled and reaches the barrier.  Here, the 

scheduler overheads provide a non-intuitive trade-off.  

If the OS time slice is too short, then threads could be 

preempted frequently by other system processes.  

Increasing the time slice interval could reduce 

preemption, but could also increase the penalties of 

preemption when it occurs.  It is currently unclear 

which scheme would most benefit the performance of 

barrier execution and is left for future research. 

A detailed decomposition of thread behaviors at 

the varying thread counts is shown in Figure 3 and 

Figure 4 for interesting workloads with the highest 

average wait times.  For these workloads, the cost of 

synchronization increases with the number of threads.  

Bodytrack and facesim both result in increased wait 

times for conditional variables.  Fluidanimate, 

streamcluster, barnes, lu, ocean, and water-spatial all 

result in greater barrier costs at higher thread counts.  

Wait times for bodytrack are in contrast with the other 

workloads (which exhibited decreased barrier wait 



times as the number of threads increased) because one 

thread spent the majority of its time waiting for all 

other worker threads to complete.  The addition of 

threads in this workload caused the overall wait times 

to decrease because it was averaged over more running 

threads. 

 
Figure 3: Thread Waiting vs. Thread Count for a subset 

of PARSEC 

 
Figure 4: Barrier Overhead vs. Thread Count for a 

subset of Splash-2 

Measured wait times were dependent upon the 

time spent within synchronization library functions, 

other miscellaneous system calls, and thread execution.  

As the numbers of threads are increased, highly 

parallel workloads that scale well have significantly 

less execution time.  If the synchronization costs are 

fixed, then this would result in linear wait percentage 

increases.  Insufficient parallel code or poor 

synchronization performance may cause workloads to 

scale poorly.  In either case, the addition of threads that 

synchronize over the same shared structures (via 

condition variables or barriers) increases the overhead 

of the pthreads library.  Such overheads, however 

minimal, may have dramatic impacts upon the 

observable scalability that can be extracted from a 

multi-threaded program at high thread counts, and are 

discussed in Section 6.  In this study, many programs 

contain inflection points where the addition of threads 

will no longer help performance (or worse, hurt 

performance).  A more detailed discussion of 

simulation times is discussed in Section 5. 

The synchronization penalties of mutexes among 

the tested workloads were numerous and light.  

Although the specific behavior is workload dependent, 

the wait times associated with mutexes generally were 

very small and contributed little to overall thread 

waiting.  Additionally, dynamic instances of barriers 

and condition variables were much less frequent than 

mutexes but had dramatically higher overhead. 

5. Observed Speedup 
Simulated speedups of each program were compared 

against the ideal case and were based upon the “real” 

execution from the perspective of the simulated OS.  

Execution times for each of the different processor 

counts were compared against the single-threaded case 

to derive the parallelizable fraction of execution.  This 

resulted in five Fenhanced ratios for each workload: one 

calculated by the observed speedup between 1 thread 

and 2 threads, between 1 thread and 4 threads, between 

1 thread and 8 threads, etc.  For each of the five 

computed fractions, the maximum was selected 

because it revealed the best parallelism that was 

observed at the system level.  Measured fractions lower 

than the maximum indicate overheads that inhibited 

concurrency.  While the program in isolation may 

inherently contain a fraction higher than the observed, 

it is important to include the serializing system-level 

effects in the measurement.  Derived Fenhanced values 

for the PARSEC and Splash-2 benchmark suites are 

shown in Table 1 and Table 2 and indicate the 

maximum projected speedup for the largest Fenhanced 

measurement. 

 
Figure 5: PARSEC Threads vs. Speedup 

Figure 5 and Figure 6 show measured speedups of 

simulated workloads as the number of threads and 

processors are increased logarithmically.  Surprisingly, 

even if a perfect processor model is incorporated, no 

workload is able to scale past 10x once system-level 

effects are incorporated.  Associated speedup for the 



two benchmark suites were dramatically impacted by 

the wait times of synchronization.  Splash-2 suffered 

higher synchronization event wait times than 

PARSEC, which accounts for the lower obtained 

speedup values for these workloads. 

 
Figure 6: Splash-2 Speedup vs. Processor Count 

Benchmark Fenhanced 
Projected 

Speedup 

bodytrack 0.8740 6.52x 

dedup 0.9481 12.27x 

facesim 0.7127 3.23x 

fluidanimate 0.8676 6.27x 

freqmine 0.9331 10.41x 

streamcluster 0.9615 14.59x 

x264 0.9709 16.83x 

blackscholes 0.9512 12.73x 

Table 1: PARSEC Parallelizable Fraction 

Benchmark Fenhanced 
Projected 

Speedup 

barnes 0.9533 13.08x 

cholesky 0.6949 3.06x 

fmm 0.9600 14.28x 

lu 0.8000 4.44x 

ocean 0.7843 4.16x 

radiosity 0.9835 21.20x 

raytrace 0.9520 12.87x 

volrend 0.3864 1.59x 

water-nsquared 0.7843 4.16x 

water-spatial 0.8627 6.08x 

radix 0.5000 1.85x 

Table 2: Splash-2 Parallelizable Fraction 

At 32 processors, x264 had the highest speedup of 

9.38x and facesim had the smallest speedup of 2.13x.  

On average, workloads with 2 processors had a 

speedup of 1.79.  Increasing the processor counts to 4, 

8, 16, and 32 had average speedups of 3.06x, 4.69x, 

5.62x, and 5.58x, respectively.  The performance of all 

workloads increased up until 16 processors.  After this 

point, the simulation times for certain workloads 

actually increased.  When comparing 16 and 32 

processors, the program execution time of facesim 

increased from 13.8s to 14.2s, and streamcluster 

increased from 3.26s to 6.29s.  Splash-2 workloads 

exhibit similar behavior and are included in Figure 6.  

Radiosity, raytrace, fmm, and barnes all scaled well 

relative to the ideal case up until two processors.  

Beyond two processors, only radiosity and raytrace 

scaled up to 8 before saturating.  Cholesky suffered 

slowdowns at 16 and 32 processors, and radix suffered 

slowdowns beyond 2.  An average speedup factor for 

both suites was less than 6x at 32 processors. 

 
 

 
Figure 7: Speedup Gap Between the Projected and 

Measured 

Figure 7 shows the gap between the measured 

speedup of benchmark performance relative to the 

predicted speedup from calculated Fenhanced values.  

Parallelization fractions represent the maximum 

amount of observed parallelism from the simulated 

workloads, including all system overheads.  As the 

number of processors and threads increase, the 

difference between the projected speedup and the 

simulated speedup is directly attributable to additional 

system overheads.  The parallelization projected by the 

PARSEC and Splash-2 workloads did not yield 

sufficient scalability for even a small number of cores.  

Up to 8 processors PARSEC had adequate scaling, but 

saturated at 16.  Most workloads obtained little gain 



beyond 16 processors, and some exhibited degradation.  

Reported speedups for PARSEC workloads indicate 

that inherent program parallelism will scale up to 16 

processors.  When OS and synchronization overheads 

are taken into consideration, ideal scaling was not seen.  

Furthermore, as designs increasingly incorporate 32 

processors, scalability for these workloads will become 

a much greater issue.  For Splash-2, only two 

workloads were resistant to the OS and 

synchronization effects.  The remaining workloads 

began to show saturation or performance degradation 

after two processors. 

6. Putting It All Together 
In order to more adequately understand the system 

bottlenecks associated with workload scalability, 

additional experiments were conducted within the 

simulated OS for each workload/processor 

combination using OProfile.  On average, 33% of 

program execution of PARSEC workloads and 52% of 

Splash-2 workloads were spent within the linux kernel.  

This does not imply inefficiencies within the OS, but 

rather is an artifact of the interaction between waiting 

threads and the scheduler.  Due to potentially high wait 

times associated with thread execution (shown in 

Section 4), threads often cannot make forward progress 

due to synchronization stalls.  (Also, newly spawned 

threads that have yet to be given any useful work are 

started in the idle state.)  If a thread is stalled, and thus 

not performing any useful work, it will eventually be 

removed from the run queue by the scheduler, and sent 

to a wait queue. 

Decomposition of the time spent within the linux 

kernel shows that approximately 97% of the time is 

spent within the default_idle kernel function and 3% is 

spent for all other OS services (e.g. memory mapping, 

scheduling, I/O, filesystem bookkeeping, etc.).  

Outliers from this type of behavior are dedup and 

streamcluster from PARSEC, and water-nsquared from 

Splash-2.  Dedup and water-nsquared spend 12% and 

9% of their execution within the OS on non-idle 

services and can be attributed to poor paging behavior.  

Water-nsquared also exhibits behavior similar to 

dedup.  Streamcluster spends approximately 31.2% of 

its execution with the OS on non-idle services due to 

load imbalancing issues.  The behaviors of barriers 

within streamcluster indicate that approximately half of 

the threads never wait for barriers, while the other half 

spend considerable time waiting. 

In general, time spent within shared libraries was 

small, however significant times were measured for the 

standard C++/C, math, and pthread shared libraries and 

varied between less than 1% and 5% (excluding thread 

wait times that were measured within the default_idle 

kernel function).  When excluding the default_idle 

kernel function from the OS measurements, the OS 

component of workload execution varied between less 

than 1% and 31%. 

Previous work [12] has demonstrated the impact 

that system calls and kernel code may have upon 

system performance, and advocate its inclusion within 

single-threaded simulation.  We are advocating that 

synchronization, system calls and OS behavior must be 

considered when evaluating possible speedups that 

could be obtained from multi-threaded workloads.  

Future systems containing hundreds or even thousands 

of cores will increasingly rely upon massively parallel 

code in order to obtain speedup.  In these systems, 

effective processor utilization is dependent upon input 

workloads that converge upon 100% parallelization.  

For example, if a system can execute 99.99% of a 

program in parallel, then the maximum attainable 

speedup is 10000x.  Decreasing the enhanced fraction 

by 0.09 to 99.9% reduces the maximum obtainable 

speedup by 9000x! 

The parallelization requirements of contemporary 

workload/system pairs are modest in comparison to 

that of the hypothetical 1000 core machine.  In our 

experiments, measured Fenhanced values indicate that at 

least three of the benchmark inputs contained the 

inherent parallelism necessary to scale to 16 

processors, and two benchmark inputs contained the 

parallelism to scale above 20x.  Yet, no input for any 

benchmark was able to obtain speedup past 11x when 

considering the additional system overheads included 

in our model. 

7. Related Work 
When discussing parallel benchmarking sets, various 

methods have been proposed to discuss the inherent 

parallelization characteristics.  Woo et al [4] measure 

speedup for Splash-2 workloads using perfect caches 

and communication.  All instructions executed in their 

environment complete in one cycle.  The authors note 

that non-deterministic behaviors of programs make it 

difficult to compare data when architectural parameters 

are varied because the execution path may change.  

Bienia et al [3] measure the inherent program 

concurrency based upon the number of instructions 

executed in the parallel and serial regions of code.  

Delays due to blocking and load imbalance are not 

studied because they focus on the fundamental 

program characteristics.  Our characterization differs in 

that we consider the operating system, shared system 

libraries, and detailed thread synchronization in our 

analysis. 

8. Conclusion 
As more processors are added to next generation 

designs, it is important to identify the capabilities of 

application parallelization.  If a new system has a large 

number of cores, then programs must be able to 

adequately leverage its resources in order to be 



effective.  For the studied workloads, parallel 

execution was insufficient to scale along with the ideal 

case.  This is in contrast to other work which describes 

the identified parallelism found within the workloads 

in isolation.  However, discrepancies between the two 

can be explained by synchronization, the OS and other 

shared system libraries that are measured within our 

infrastructure.  Synchronization incurs significant 

overheads which must be measured to obtain realistic 

performance projections as the number of cores scale.  

The effect of pthread calls causes many threads to 

block, thereby increasing serial sections of the multi-

threaded program and decreasing Fenhanced.  

Furthermore, additional OS overheads increase serial 

code sections and limit parallelization opportunities.  

As more processors are added to commodity systems, 

the OS and shared libraries will play an increasingly 

important role in the available parallelism that can be 

achieved in a multi-threaded workload. 
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Abstract

Mondriaan memory protection is a hardware/soft-
ware system that provides efficient fine-grained
memory protection. Other researchers have em-
braced the Mondriaan design as an efficient way to
associate metadata with each 32-bit word of mem-
ory. However, the Mondriaan design is efficient only
when the metadata has certain properties. This paper
tries to clarify when a Mondriaan-like design is ap-
propriate for a particular problem. It explains how to
reason about the space overhead of a Mondriaan de-
sign and identifies the significant time overheads as
refills to the on-chip metadata cache and the time for
software to encode and write metadata table entries.

1 Introduction

Mondriaan memory protection (MMP) is hardware/-
software co-design for fine-grained memory protec-
tion. Like page tables, the heart of MMP is a
set of hardware structures and software-written data
structures that efficiently associate protection meta-
data with user data. Other researchers have used
Mondriaan-like structures when they need to effi-
ciently associate non-protection metadata with user
data [ZKDK08, CMvPT07]. However, MMP is only
efficient under certain assumptions about the meta-
data and data. This paper tries to clarify these as-
sumptions to guide researchers in when MMP can be
useful to address their problems.

While the computer science publication system is
effective at creating incentives for researchers to pub-
lish innovative results, it is less effective at encour-
aging researchers to reflect on, and publicly critique,
their own work. Students of the field are often left
wondering why a promising sounding idea was left

unimplemented. Or they wonder why certain ideas
from an early paper on a subject are left out of follow-
on work. Did those ideas fail or were they simply not
explored?

While journals provide some outlet to summarize
the progress of a research project, they often default
to extended versions of conference papers. This pa-
per is much shorter than a journal paper and tries to
convey insights and experience, rather than rigorous
quantitative evidence for its conclusions.

While providing a compact summary of MMP re-
search, this paper highlights the assumptions made by
various MMP implementations that are required for
high performance. These assumptions do not always
apply to systems developed by other researchers. The
purpose of this paper is to allow other researchers
to quickly determine if their application is likely to
perform well with MMP-like hardware or what they
would have to modify to make it perform well.

This paper discusses the interplay between the fol-
lowing design decisions.

1. Space overhead.The space overhead for MMP
is approximately the average number of meta-
data bits per data item. MMP keeps space over-
head low by storing 2 bits of protection informa-
tion per 32-bit word (approximately a 6% over-
head). Tables can be encoded for greater space
efficiency if there are long stretches of memory
with identical metadata values.

2. PLB reach. MMP includes an on-chip associa-
tive memory for its metadata called the protec-
tion lookaside buffer (PLB). For the PLB hard-
ware to be an effective cache, the metadata must
have particular properties, either much of it is
coarse-grained, or it has long segments with
identical metadata values.

3. Software overheads. MMP requires system
software to write the metadata tables. The meta-

1



data format must be simple enough and written
infrequently enough to prevent software from
significantly reducing performance.

2 MMP history

MMP started in 2002 as follow-on work to low-power
data caches [WLAA01]. Our idea was to automati-
cally migrate unused program data to a portion of the
cache/memory hierarchy that requires lower power to
maintain state. To track program objects, which tend
to be small and not naturally aligned, we needed a
data structure. The data structure would be written by
software and read by hardware because we thought
the hardware would make frequent decisions about
what data belongs in high-power fast memory and
what can reside in low-power slow memory.

During the design of the hardware data structure,
we realized that solving the basic problem of hav-
ing hardware track user-defined data structures was
more profound than the application of moving data to
save energy. We soon left that motivation and chose
fine-grained protection. The plugin model for pro-
gram functionality extension made the motivation for
fine-grained protection clear. Programs (like the OS
and a web browser) load user-supplied code directly
into their address space to extend functionality. The
problem with this approach is that a bug can crash the
entire program—plugins are fast, but not safe. Fine-
grained protection can restore the safety without re-
ducing the speed of the plugin extensibility model.

The first MMP paper focused on the format of the
hardware tables [WCA02]. This paper is most often
cited by those interested in MMP. It introduces the
basic idea of MMP and presents both a simple table
format and a more advanced table format, a technical
innovation explained in§3.2. It also contains a design
for fine-grained memory remapping, which allows a
user to stitch together bits of memory into a contigu-
ous buffer. The design for remapping is a bit compli-
cated, but provides good support for zero-copy net-
working. The issues for supporting protection dom-
inated the project after this paper and the remapping
was dropped, simply for lack of space.

The follow-on paper [WA03] describes how the OS
support for fine-grained protection domains would
work and how to support safe calling between pro-

tection domains. Though our experience was limited
at the time, much of our design ended up in our final
implementation. My thesis [Wit04] continued to re-
fine the OS support and added ideas for protecting the
stack. MMP culminated in an SOSP paper [WRA05],
which is the most complete implementation of the
system, though it is not often cited. Most of the inter-
est in MMP comes from computer architects, many of
whom do not regularly read the proceedings of SOSP.

3 MMP technical summary

This section provides a high-level summary of how
MMP works, with a focus on how MMP-like hard-
ware would be used for other applications. The
three main features of MMP are memory protection,
protected cross-domain calling, and stack protection.
The feature most attractive for other uses is a gen-
eralization of memory protection, which associates
metadata with every word of user data. This section
focuses on the general design of that protection mech-
anism.

3.1 CPU modifications

MMP consists of hardware and software to provide
fine-grained memory protection. MMP modifies the
processor pipeline to check permissions on every
load, store, and instruction fetch. MMP is designed
to be simple enough to allow an efficient implemen-
tation for modern processors, but powerful enough to
allow a variety of software services to be built on top
of it. The permissions information managed by MMP
could be generalized to any metadata.

Figure 1 shows the basics of the MMP hardware.
MMP adds aprotection lookaside buffer (PLB) that is
an associative memory, like a TLB. The PLB caches
entries of a memory-resident permissions (or meta-
data) table, just as a TLB caches entries of a memory-
resident page table. The PLB is indexed by virtual
address. MMP also adds two registers, the protection
domain ID, and a pointer to the base of the permis-
sions table. The protection domain ID identifies the
protection (or metadata) context of a particular kernel
thread to the PLB, just as an address space identifier
identifies a kernel thread to a TLB.

The protection domain ID register is not necessary,
but without it, the entire PLB must be flushed on
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Figure 1: The major components of the Mondriaan
memory protection system.

every domain switch. For some kinds of metadata,
this might be acceptable. For example, if each ker-
nel thread is its own domain, then domain switches
only happen on context switches, which are relatively
rare. In this case, the protection domain ID can be
dispensed with, just as the x86 does not tag its TLB.
However, many consider the lack of tags in the x86
TLB a major design flaw.

On a memory reference, the processor checks the
PLB for permissions (or performs whatever metadata
check is specified by a system using an MMP-like
structure). If the PLB does not have the permissions
information, either hardware or software looks it up
in the permissions table residing in memory. The
reload mechanism caches the matching entry from
the permissions table in the PLB, and possibly writes
it to the address register sidecar registers. Sidecar
registers were a feature of the early MMP design.
They are a cache for the PLB, meant to reduce the
energy cost of indexing the PLB. They are simply an
energy optimization, and because they are inessential,
we do not mention them further.

Just like the TLB, the PLB is indexed by virtual
address. The PLB lookup can happen in parallel with
address translation because MMP stores its metadata
per virtual address. Virtual addresses that alias to the
same physical address can have different permissions
values in MMP.

One of the hardware efficiencies of MMP is that
the permissions check can start early in the pipeline
and can overlap most of the address translation stages
and computational steps of the pipeline. The permis-
sions check need finish only before instruction retire-

ment.

3.2 Permissions table

The MMP protection table represents eachuser seg-
ment, using one or moretable segments. A user seg-
ment is a contiguous run of memory words with a
single permissions value that has some meaning to
the user. For example, a memory block returned
from kmalloc would be a user segment. User seg-
ments start at any word boundary and do not have
to be aligned. A table segment is a unit of permis-
sions representation convenient for the permissions
table. MMP is not efficient for arbitrary user seg-
ments, it assumes certain properties of user segments
to achieve efficient execution (§3.2).

System software converts user segments into table
entries when permissions are set on a memory region.
As explained in§4.3, the frequency and complexity
of transforming user segments into table segments de-
termines whether software is an appropriate choice
for encoding table segments. Some table entry for-
mats are inefficient for software to write at the update
rates required of applications.

Mid Index (10) Leaf Index (6)

Effective address (bits 31−0)

Bits (21−12) Bits (11−6) Bits (5−0)Bits (31−22)

Leaf Offset (6)Root Index (10)

Figure 2: How an address indexes the trie.

MMP uses a trie to store metadata, just like a page
table. The top bits of an address index into a table,
whose entry can be a pointer to another table which
is indexed by the most significant bits remaining in
the address.

Figure 2 shows which bits of a 32-bit virtual ad-
dress are used to index a particular level of the
MMP permissions table trie. Three loads are suffi-
cient to find the metadata for any user 32-bit word.
The lookup algorithm (that can be implemented in
software or hardware, just like a TLB) is shown in
pseudo-code in Figure 3. The root table has 1024 en-
tries, each of which maps a 4 MB block. Entries in
the mid-level table map 4 KB blocks. The leaf level
tables have 64 entries, each providing individual per-
missions for at least 16 four-byte words. The table in-
dices are expanded for 64-bit address spaces [Wit04].
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PERM_ENTRY lookup(addr_t addr) {
PERM_ENTRY e = root[addr >> 22];
if(is_tbl_ptr(e)) {
PERM_TABLE* mid = e<<2;
e = mid[(addr >> 12) & 0x3FF];
if(is_tbl_ptr(e)) {

PERM_TABLE* leaf = e<<2;
e = leaf[(addr >> 6) & 0x3F];

}
}
return e;

}

Figure 3:Pseudo-code for the trie table lookup algorithm.
The table is indexed with an address and returns a permis-
sions table entry. The base of the root table is held in a ded-
icated CPU register. The implementation ofis tbl ptr
depends on the encoding of the permission entries.

The granularity of the metadata is determined by
the level at which it appears. Each two-bit entry in
a leaf table encodes permissions for a user word of
memory. At one level higher, each mid-level entry
represents permissions for an entire 4KB page. Re-
gions of at least 4KB that share a single permissions
value can therefore be represented with less space
overhead. This space savings happens regardless of
the entry format.

MMP designs have used different permissions en-
try formats, notably bitmaps and run-length encoded
(RLE) entries (shown in Figure 4). Each leaf entry
in bitmap format has 16 two-bit values indicating the
permissions for each of 16 words. Run-length en-
coded entries encode permissions as 4 regions with
distinct permissions values, dedicating 8 out of 32
bits to metadata.

RLE entries cannot represent arbitrary word-level
metadata. They assume that contiguous words have
the same metadata value. For MMP’s RLE entries,
there can be no more than 4 distinct metadata regions
in the entry’s 16 data words. If each word has a meta-
data value distinct from its immediate neighbors, then
there are 16 metadata regions and that cannot be rep-
resented with an RLE entry. Bitmap entries are used
as backup in this case.

The permissions data in MMP run-length encoded
entries overlaps with previous and succeeding en-
tries. In addition to permissions information for the

16 words, they can also contain permissions for up
to 31 words previous and 32 words subsequent to the
16. In the best case a single RLE entry can contain
permissions from 5 distinct bitmap entries.

MMP uses RLE entries to overlap permissions in-
formation, but they can be used to save space in leaf-
level tables. A 32-bit RLE entry can represent per-
missions information about 79 words. Taking into
account alignment, each entry could encode permis-
sions for 64 words instead of 16, bringing down the
average space overheads for leaf-level tables from 6%
to 1.6%. Doing so would change the lookup algo-
rithm in Figure 3, because the leaf index would re-
quire only 4 bits, leaving 8 bits for the leaf offset.
This new RLE format would be more restrictive, only
allowing 4 permissions regions in every aligned 64
word block.

4 Requirements for good MMP per-
formance

This section distills our observations on the factors
salient for a particular instantiation of an MMP-like
system to have good performance.

4.1 Space overhead

While physical memory capacity continues to grow
at an impressive rate, MMP-like systems consume
memory in proportion to the virtual memory used by
a process. As processes use more memory, MMP
uses more memory to hold the metadata associated
with the data. Keeping the size of the metadata tables
reasonable is a first order concern for the practicality
of the system.

For the simplest Mondriaan system [WCA02], the
space overhead of the most fine-grained tables is ap-
proximately 6%, for 2 bits of metadata per 32-bit
data word. Both bitmaps and run-length encoded en-
tries dedicate two bits of table entry per user word in
leaf-level tables that manage permissions for 32-bit
words. The run-length encoding could be adjusted
for lower space overhead (§3.2). The mid-level en-
tries that manage permissions for 4KB pages specify
2 bits of metadata per aligned 512 bytes of data, for a
space overhead of 0.8%.

Mondrix [WRA05] (the application of Mondriaan
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Figure 4: The bit allocation for a run-length encoded (RLE) permission table entry.

memory protection to the Linux kernel), modifies the
kernel memory allocator to create larger, aligned data
regions. The slab [Bon94] allocator takes a memory
page and breaks it into equal sized chunks that are
doled out bykmalloc, the general-purpose kernel
memory allocator. By turning read/write permissions
on and off for the entire page, rather than for each in-
dividual call tokmalloc, Mondrix greatly reduced
the space overheads of the permissions. The cost is
less memory protection. A read or write into the unal-
located area of a page being used as a slab is an error
can be detected if the page’s permissions are man-
aged on a per-word basis. However, Mondrix forgoes
this protection, enabling read and write permissions
to the entire page once any of it is used.

Colorama [CMvPT07] uses a Mondriaan design
and extends the permission table entries with 12-bit
color identifiers that allow the processor to infer syn-
chronization for user data. The color identifiers bring
the overhead from 2 bits per 32-bit word to 14 bits per
32-bit word, which is a 44% space overhead. Run-
length encoding can bring down this overhead. Us-
ing MMP’s RLE entry expands the 8 permissions bits
to 48 for a 14% space overhead (though keeping en-
tries aligned, which is necessary for a realistic design,
would increase the space overhead to nearly 19%).
Furthermore, not every data item needs to be colored,
only those accessed by multiple threads. The Col-
orama implementation has a measured overhead of
0–28% space overhead.

Loki [ZKDK08] uses tagged memory to reduce the
amount of trusted code in the HiStar operating sys-
tem. Loki differs from MMP in that the tags are for
physical memory. Additionally, Loki maintains two
distinct maps, one from physical memory address to
tag and another from tag to access permissions.

Loki segregates pages on the basis of whether they
need fine-grained tags. Pages with fine-grained tags
have 100% space overhead (a 32-bit tag for a 32-bit
word), while pages without fine-grained tags (one tag
for the entire page) have 0.1% space overhead. The
authors see a variable fraction of memory pages that

use fine-grained tags, from 3–65%. For this scenario,
the fraction of memory pages using fine-grained tags
dictates the memory overhead, so the application that
uses fine-grained tags for 65% of its pages, experi-
ences a space overhead of 65%. Loki does not use an
MMP design for its tags, but the designers note that
MMP’s RLE entries could save space.

4.2 PLB reach

MMP uses a protection lookaside buffer (PLB) to
cache permissions information for data accessed by
the CPU, avoiding long walks through the memory
resident permissions table. A high hit rate for the
PLB is essential for low latency performance. With-
out a high hit rate, the processor is constantly fetch-
ing data from the permissions tables, which increases
memory pressure, cache area pressure and decreases
the rate at which instructions can retire.

MMP contains several features to enhance the hit
rate in the PLB that can be adopted as-is by other
projects. The PLB allows different entries to apply to
different power-of-two sized ranges. This mechanism
allows large granularity entries to co-exist with word-
granularity entries (much like super-pages in TLBs).
The PLB tags also include protection domain IDs to
avoid flushing the PLB on domain switches. Tags are
important for Mondrix because its fine-grained pro-
tection domains can be crossed as frequently as every
664 cycles [WRA05]. Other applications of MMP
might not have such frequent domain crossings.

The main technique for MMP to increase PLB
reach is to use large granularity entries (which is done
by Mondrix) or run-length encoded entries (e.g., vpr
and twolf from SPEC2000 [WCA02]). The PLB miss
rate for Mondrix was lower than 1% for all workloads
and the execution penalty for PLB refill was less than
4% of execution time because kernel text and data
sections are represented with a single entry, and as
mentioned in the previous section, the kernel mem-
ory allocator was modified to manage protections at
the granularity of a page.
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When each user allocation for vpr and twolf is pro-
tected by inaccessible words at the start and end of
the allocation, the system spends 10–20% of its mem-
ory references refilling the PLB [WCA02] when us-
ing bitmap entries. Run-length encoded entries in-
crease PLB reach by effectively encoding large user
segments that share a permissions value with the start
of the entry and/or its end. Using run-length en-
coded entries, memory accesses to the permissions
table drop to 7.5% for both SPEC2000 benchmarks.
As §3.2 discusses, RLE entries encode overlapping
permissions information. A single RLE entry can
contain the permissions information from multiple
bitmapped entries, eliminating PLB refills.

Because Colorama only monitors shared data ac-
cesses, that decreases traffic to the on-chip meta-
data cache (the Colorama PLB). The Colorama im-
plementation uses run-length encoded entries (called
mini-SST entries in the original design [WCA02]),
which should be effective at making PLB reach large
enough for high performance. Additionally, the au-
thors mention that color metadata could be aggre-
gated into larger granularity chunks, by doing pooled
memory allocation.

Loki’s support for page-granularity metadata tags
is crucial to keeping its runtime overheads low. For
one fork/exec benchmark, page-granularity tags
reduces the time overhead from 55% to 1%. It has
an 8-entry cache to map from physical page to tag
or pointer to a page of fine-grained tags. The fine-
grained tags are stored in the CPU’s cache. The
physical address to tag map does not need to be
flushed on a context switch. Loki also has a 32-entry
2-way associative cache that maps tags to permis-
sions. This cache does need to be flushed on context
switches, but does not need to be flushed when mem-
ory changes tags.

4.3 Software overheads

In an MMP-like design, metadata is managed like
page tables are managed, software writes table entries
that are read by hardware. Mondrix writes protec-
tion tables frequently to protect memory allocations,
to protect network packets, and to protect arguments
to cross-domain calls. The time for software to write
the tables can become a significant performance cost,
up to 10% of the kernel execution time in one Mon-

drix workload.
It is possible that a given application for an MMP-

like system will have infrequent metadata updates.
Having software encode table entries is a good choice
for systems that update metadata infrequently be-
cause software is so flexible. However, we found that
the only reliable technique for evaluating the cost of
the software encoding is to implement it and run it
on realistic inputs. The software entry encoding does
not need to play a functional role in the system, but it
is necessary for benchmarking.

The MMP ASPLOS paper [WCA02] does not
evaluate the cost of writing table entries in software
as it is a typical hardware evaluation paper that lacks
system software support. In its defense, the sys-
tem software required years of development effort,
though effort to develop the table-entry encoder was
a small fraction of that time. One unexpected conse-
quence of writing the software to encode table entries
is measuring the high runtime cost of writing run-
length encoded entries. On one trace of memory pro-
tection calls extracted from Mondrix execution, writ-
ing run-length encoded entries is three times slower
than writing bitmap entries. The run-length encoded
entries are slow for software to write because they are
complicated to encode, and because they overlap up-
dates to an entry requires complicated logic for break-
ing and coalescing adjacent entries. While we devel-
oped and debugged the code to write run-length en-
coded entries (a task that required a solid month), we
never deployed it in Mondrix because of its poor per-
formance. Also, Mondrix had enough coarse-grained
allocations that it did not need run-length encoded en-
tries. Because of our experience with the software,
we believe that any MMP implementation with run-
length encoded entries will require hardware to en-
code the table entries.

Run-length encoded entries might be effective for
Colorama, because the metadata update rate should
be lower than Mondrix’s. Mondrix writes the permis-
sions table on memory allocations, and also during
data structure processing (e.g., packet reception) and
for cross-domain calls. The Colorama implementa-
tion measures low allocation rates for some applica-
tions (every 129K-288M instructions), and high rates
for others, every 2–4K instructions. The authors con-
servatively assume that every allocation is for colored
data, while the true rate for changing the color table
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might be lower. The encoding costs for the run-length
encoded entries might be an issue if the color tables
are actually updated every 2–4K instructions.

Loki’s simple data layout can be efficiently written
by software. Page-granularity tags are held in an ar-
ray, and fine-grained tags occupy the same offset in a
page as their associated data.

Summary. The trade-offs among space overhead,
PLB reach and software overheads are complex for
a high-performance MMP-like system. Applying
MMP to SPEC2000 and to the Linux kernel resulted
in different trade-offs. For projects that only tangen-
tially involve an MMP-like structure, the details of
these trade-offs is out of scope. However, a high-level
argument for the plausibility of a specific application
is necessary to make an argument for the efficiencies
of an MMP implementation.

5 Conclusion

The hardware and software designs for Mondriaan
memory protection can be used to associate arbitrary
metadata with individual user words at reasonable
storage and execution time costs. However, keeping
those costs limited requires careful design. The orig-
inal MMP design makes assumptions that follow-on
work may violate.

We encourage others to use MMP-like structures,
and to include a discussion about space overhead,
PLB reach, and software overheads. We hope this pa-
per can act as a guide. The original MMP design lim-
its space overhead to 6% by using 2 metadata bits for
each data word. It increases PLB reach either by us-
ing run-length encoded entries or by relying on large
user segments. MMP limits software overheads by
writing bitmaps in software and run-length encoded
entries in hardware.
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Hardware works, software doesn’t: En-
forcing modularity with Mondriaan
memory protection. InHotOS, 2003.

[WCA02] Emmett Witchel, Josh Cates, and Krste
Asanovíc. Mondrian memory protec-
tion. In 10th International Conference
on Architectural Support for Program-
ming Languages and Operating Sys-
tems, Oct 2002.

[Wit04] Emmett Witchel. Mondriaan Memory
Protection. PhD thesis, Massachus-
setts Institute of Technology, January
2004.

[WLAA01] Emmett Witchel, Sam Larsen, C. Scott
Ananian, and Krste Asanović. Direct
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Abstract

Chip multi-processors (CMPs) have become ubiquitous,
while tools that ease concurrent programming have not.
The promise of increased performance for all applications
through ever more parallel hardware requires good tools
for concurrent programming, especially for average pro-
grammers. Transactional memory (TM) has enjoyed re-
cent interest as a tool that can help programmers program
concurrently.

The TM research community claims that programming
with transactional memory is easier than alternatives (like
locks), but evidence is scant. In this paper, we describe a
user-study in which 147 undergraduate students in an op-
erating systems course implemented the same programs
using coarse and fine-grain locks, monitors, and trans-
actions. We surveyed the students after the assignment,
and examined their code to determine the types and fre-
quency of programming errors for each synchronization
technique. Inexperienced programmers found baroque
syntax a barrier to entry for transactional programming.
On average, subjective evaluation showed that students
found transactions harder to use than coarse-grain locks,
but slightly easier to use than fine-grained locks. De-
tailed examination of synchronization errors in the stu-
dents’ code tells a rather different story. Overwhelm-
ingly, the number and types of programming errors the
students made was much lower for transactions than for
locks. On a similar programming problem, over 70% of
students made errors with fine-grained locking, while less
than 10% made errors with transactions.

1 Introduction

Transactional memory (TM) has enjoyed a wave of atten-
tion from the research community. The increasing ubiq-
uity of chip multiprocessors has resulted in a high avail-
ability of parallel hardware resources, without many con-
current programs. TM researchers position TM as an
enabling technology for concurrent programming for the
“average” programmer.

Transactional memory allows the programmer to de-
limit regions of code that must execute atomically and in

isolation. It promises the performance of fine-grain lock-
ing with the code simplicity of coarse-grain locking. In
contrast to locks, which use mutual exclusion to serialize
access to critical sections, TM is typically implemented
using optimistic concurrency techniques, allowing critical
sections to proceed in parallel. Because this technique dra-
matically reduces serialization when dynamic read-write
and write-write sharing is rare, it can translate directly
to improved performance without additional effort from
the programmer. Moreover, because transactions elimi-
nate many of the pitfalls commonly associated with locks
(e.g. deadlock, convoys, poor composability), transac-
tional programming is touted as being easier than lock
based programming.

Evaluating the ease of transactional programming rel-
ative to locks is largely uncharted territory. Naturally,
the question of whether transactions are easier to use
than locks is qualitative. Moreover, since transactional
memory is still a nascent technology, the only available
transactional programs are research benchmarks, and the
population of programmers familiar with both transac-
tional memory and locks for synchronization is vanish-
ingly small.

To address the absence of evidence, we developed a
concurrent programming project for students of an under-
graduate Operating Systems course at the University of
Texas at Austin, in which students were required to imple-
ment the same concurrent program using coarse and fine-
grained locks, monitors, and transactions. We surveyed
students about the relative ease of transactional program-
ming as well as their investment of development effort
using each synchronization technique. Additionally, we
examined students’ solutions in detail to characterize and
classify the types and frequency of programming errors
students made with each programming technique.

This paper makes the following contributions:

• A project and design for collecting data relevant to
the question of the relative ease of programming with
different synchronization primitives.

• Data from 147 student surveys that constitute the
first (to our knowledge) empirical data relevant to the
question of whether transactions are, in fact, easier to
use than locks.
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Figure 1: A screen-shot of sync-gallery, the program undergraduate OS students were asked to implement. In the
figure the colored boxes represent 16 shooting lanes in a gallery populated by shooters, orrogues. A red or blue box
represents a box in which a rogue has shot either a red or blue paint ball. A white box represents a box in which no
shooting has yet taken place. A purple box indicates a line inwhich both a red and blue shot have occurred, indicating
a race condition in the program. Sliders control the rate at which shooting and cleaning threads perform their work.

• A taxonomy of synchronization errors made with dif-
ferent synchronization techniques, and a characteri-
zation of the frequency with which such errors occur
in student programs.

2 Sync-gallery

In this section, we describe sync-gallery, the Java pro-
gramming project we assigned to students in an under-
graduate operating systems course. The project is de-
signed to familiarize students with concurrent program-
ming in general, and with techniques and idioms for us-
ing a variety of synchronization primitives to manage data
structure consistency. Figure 1 shows a screen shot from
the sync-gallery program.

The project asks students to consider the metaphor of a
shooting gallery, with a fixed number of lanes in which
rogues (shooters) can shoot in individual lanes. Being
pacifists, we insist that shooters in this gallery use red or
blue paint balls rather than bullets. Targets are white, so
that lanes will change color when a rogue has shot in one.
Paint is messy, necessitatingcleaners to clean the gallery
when all lanes have been shot. Rogues and cleaners are
implemented as threads that must check the state of one
or more lanes in the gallery to decide whether it is safe
to carry out their work. For rogues, this work amounts
to shooting at some number of randomly chosen lanes.
Cleaners must return the gallery to it’s initial state with all
lanes white. The students must use various synchroniza-
tion primitives to enforce a number of program invariants:

1. Only one rogue may shoot in a given lane at a time.
2. Rogues may only shoot in a lane if it is white.
3. Cleaners should only clean when all lanes have

been shot (are non-white).
4. Only one thread can be engaged in the process of

cleaning at any given time.

If a student writes code for a rogue that fails to respect
the first two invariants, the lane can be shot with both red
and blue, and will therefore turn purple, giving the student
instant visual feedback that a race condition exists in the
program. If the code fails to respect to the second two
invariants, no visual feedback is given (indeed these in-
variants can only be checked by inspection of the code in
the current implementation).

We ask the students to implement 9 different versions
of rogues (Java classes) that are instructive for different
approaches to synchronization. Table 1 summarizes the
rogue variations. Gaining exclusive access to one or two
lanes of the gallery in order to test the lane’s state and then
modify it corresponds directly to the real-world program-
ming task of locking some number of resources in order to
test and modify them safely in the presence of concurrent
threads.

2.1 Locking

We ask the students to synchronize rogue and cleaner
threads in the sync-gallery using locks to teach them
about coarse and fine-grain locking. To ensure that stu-
dents write code that explicitly performs locking and
unlocking operations, we require them to use the Java
ReentrantLock class and do not allow use of the
synchronized keyword. In locking rogue variations,
cleaners do not use dedicated threads; the rogue that col-
ors the last white lane in the gallery is responsible for
becoming a cleaner and subsequently cleaning all lanes.
There are four variations on this rogue type:Coarse, Fine,
Coarse2 and Fine2. In the coarse implementation, stu-
dents are allowed to use a single global lock which is ac-
quired before attempting to shoot or clean. In the fine-
grain implementation, we require the students to imple-
ment individual locks for each lane. The Coarse2 and
Fine2 variations require the same mapping of locks to ob-

2



f i n a l i n t x = 10 ;
C a l l a b l e c = new C a l l a b l e<Void> {

p u b l i c Void c a l l ( ) {
/ / t x n l code
y = x ∗ 2 ;
r e t u r n n u l l ;

}
}
Thread . d o I t ( c ) ;

T r a n s a c t i o n t x = new T r a n s a c t i o n ( i d ) ;
boo lean done = f a l s e ;
wh i l e ( ! done ) {

t r y {
t x . B e g i n T r a n s a c t i o n ( ) ;
/ / t x n l code
done = t x . Commi tTransac t ion ( ) ;

} c a t c h ( Abo r tExcep t i on e ){
t x . A b o r t T r a n s a c t i o n ( ) ;
done = f a l s e ;

}
}

Figure 2:Examples of (left) DSTM2 concrete syntax, and (right) JDASTMconcrete syntax.

jects in the gallery as their counterparts above, but intro-
duce the additional stipulation that rogues must acquire
access to and shoot at two random lanes rather than one.
The pedagogical value is illustration that fine-grain lock-
ing requires a lock-ordering discipline to avoid deadlock,
while a single coarse lock does not. Naturally, the use of
fine grain lane locks complicates the enforcement of in-
variants 3 and 4 above.

2.2 Monitor implementations

Students must use condition variables along with sig-
nal/wait to implement both fine and coarse locking ver-
sions of the rogue programs. These two variations intro-
duce dedicated threads for cleaners: shooters and cleaners
must use condition variables to coordinate shooting and
cleaning phases. In the coarse version (CoarseCleaner),
students use a single global lock, while the fine-grain ver-
sion (FineCleaner) requires per-lane locks.

2.3 Transactions

Finally, the students are asked to implement 3 TM-based
variants of the rogues that share semantics with some lock-
ing versions, but use transactional memory for synchro-

nization instead of locks. The most basic TM-based rogue,
TM, is analogous to the Coarse and Fine versions: rogue
and cleaner threads are not distinct, and shooters need
shoot only one lane, while theTM2 variation requires that
rogues shoot at two lanes rather than one. In theTM-
Cleaner, rogues and cleaners have dedicated threads. Stu-
dents can rely on the TM subsystem to detect conflicts and
restart transactions to enforce all invariants, so no condi-
tion synchronization is required.

2.4 Transactional Memory Support

Since sync-gallery is a Java program, we were faced with
the question of how to support transactional memory. The
ideal case would have been to use a software transactional
memory (STM) that provides support for atomic blocks,
allowing students to write transactional code of the form:

vo id sh o o t ( ) {
a tomic {

Lane l = getLane ( rand ( ) ) ;
i f ( l . g e t C o l o r ( ) == WHITE)

l . sh o o t ( t h i s . c o l o r ) ;
}

}

Rogue name Technique R/C Threads Additional Requirements
Coarse Single global lock not distinct.

Coarse2 Single global lock not distinct rogues shoot at 2 random lanes
CoarseCleaner Single global lock, conditions distinct conditions, wait/notify

Fine Per lane locks not distinct
Fine2 Per lane locks not distinct rogues shoot at 2 random lanes

FineCleaner Per lane locks, conditions distinct conditions, wait/notify
TM TM not distinct

TM2 TM not distinct rogues shoot at 2 random lanes
TMCleaner TM distinct

Table 1: The nine different rogue implementations requiredfor the sync-gallery project. The technique column in-
dicates what synchronization technique was required. The R/C Threads column indicates whether coordination was
required between dedicated rogue and cleaner threads or not. A value of “distinct” means that rogue and cleaner in-
stances run in their own thread, while a value of “not distinct” means that the last rogue to shoot an empty (white) lane
is responsible for cleaning the gallery.
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No such tool is yet available; implementing compiler
support for atomic blocks, or use of a a source-to-source
compiler such as spoon [1] were considered out-of-scope
for the project. The trade-off is that students are forced to
deal directly with the concrete syntax of our TM imple-
mentation, and must manage read and write barriers ex-
plicitly. We assigned the lab to 4 classes over 2 semesters.
During the first semester both classes used DSTM2 [14].
For the second semester, both classes used JDASTM [24].

The concrete syntax has a direct impact on ease of pro-
gramming, as seen in Figure 2. Both examples pepper
the actual data structure manipulation with code that ex-
plicitly manages transactions. We replaced DSTM2 in the
second semester because we felt that JDASTM syntax was
somewhat less baroque and did not require students to
deal directly with programming constructs like generics.
Also, DSTM2 binds transactional execution to specialized
thread classes. However, both DSTM2 and JDASTM re-
quire explicit read and write barrier calls for transactional
reads and writes.

3 Methodology

Students completed the sync-gallery program as a pro-
gramming assignment as part of several operating systems
classes at the University of Texas at Austin. In total, 147
students completed the assignment, spanning two sections
each in classes from two different semesters of the course.
The semesters were separated by a year. We provided an
implementation of the shooting gallery, and asked students
to write the rogue classes described in the previous sec-
tions, respecting the given invariants.

We asked students to record the amount of time they
spent designing, coding, and debugging each program-
ming task (rogue). We use the amount of time spent on
each task as a measure of the difficulty that task presented
to the students. This data is presented in Section 4.1. Af-
ter completing the assignment, students rated their famil-

iarity with concurrent programming concepts prior to the
assignment. Students then rated their experience with the
various tasks, ranking synchronization methods with re-
spect to ease of development, debugging, and reasoning
(Section 4.2).

While grading the assignment, we recorded the type and
frequency of synchronization errors students made. These
are the errors still present in the student’s final version of
the code. We use the frequency with which students made
errors as another metric of the difficulty of various syn-
chronization constructs.

To prevent experience with the assignment as a whole
from influencing the difficulty of each task, we asked
students to complete the tasks in different orders. In
each group of rogues (single-lane, two-lane, and separate
cleaner thread), students completed the coarse-grained
lock version first. Students then either completed the
fine-grained or TM version second, depending on their
assigned group. We asked students to randomly assign
themselves to groups based on hashes of their name. Due
to an error, nearly twice as many students were assigned to
the group completing the fine-grained version first. How-
ever, there were no significant differences in programming
time between the two groups, suggesting that the order in
which students implemented the tasks did not affect the
difficulty of each task.

3.1 Limitations

Perhaps the most important limitation of the study is the
much greater availability of documentation and tutorial in-
formation about locking than about transactions. The nov-
elty of transactional memory made it more difficult both
to teach and learn. The concrete syntax of transactions is
also a barrier to ease of understanding and use (see§4.2).
Lectures about locking drew on a larger body of under-
standing that has existed for a longer time. It is unlikely
that students from one year influenced students from the

Figure 3: Average design, coding, and debugging time spent for analogous rogue variations.
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Figure 4: Distributions for the amount of time students spent coding and debugging, for all rogue variations.

next year given the difference in concrete syntax between
the two courses.

4 Evaluation

We examined development time, user experiences, and
programming errors to determine the difficulty of pro-
gramming with various synchronization primitives. In
general, we found that a single coarse-grained lock had
similar complexity to transactions. Both of these primi-
tives were less difficult, caused fewer errors, and had bet-
ter student responses than fine-grained locking.

4.1 Development time

Figures 4 and 3 characterize the amount of time the
students spent designing, coding and debugging with
each synchronization primitive. On average, transactional
memory required more development time than coarse
locks, but less than required for fine-grain locks and condi-
tion synchronization. With more complex synchronization
tasks, such as coloring two lanes and condition synchro-
nization, the amount of time required for debugging in-
creases relative to the time required for design and coding
(Figure 3).

We evaluate the statistical significance of differences in
development time in Table 2. Using a Wilcoxon signed-
rank test, we evaluated the alternative hypothesis on each
pair of synchronization tasks that the row task required

less time than the column task. Pairs for which the signed-
rank test reports a p-value of< .05 are considered statisti-
cally significant, indicating that the row task required less
time than the column. If the p-value is greater than .05,
the difference in time for the tasks is not statistically sig-
nificant or the row task required more time than the col-
umn task. Results for the different class years are sep-
arated due to differences in the TM part of the assign-
ment(Section 2.4).

We found that students took more time to develop the
initial tasks while familiarizing themselves with the as-
signment. Except for fine-grain locks, later versions of
similar synchronization primitives took less time than
earlier, e.g. the Coarse2 task took less time than the
Coarse task. In addition, condition synchronization is dif-
ficult. For both rogues with less complex synchroniza-
tion (Coarse and TM), adding condition synchronization
increases the time required for development. For fine-
grain locking, students simply replace one complex prob-
lem with a second, and so do not require significant addi-
tional time.

In both years, we found that coarse locks and transac-
tions required less time than fine-grain locks on the more
complex two-lane assignments. This echoes the promise
of transactions, removing the coding and debugging com-
plexity of fine-grain locking and lock ordering when more
than one lock is required.
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4.2 User experience

To gain insight into the students’ perceptions about the
relative ease of using different synchronization techniques
we asked the students to respond to a survey after com-
pleting the sync-gallery project. The survey ends with 6
questions asking students to rank their favorite technique
with respect to ease of development, debugging, reasoning
about, and so on.

A version of the complete survey can be viewed at [2].
In student opinions, we found that the more baroque

syntax of the DSTM2 system was a barrier to entry for
new transactional programmers. Figure 5 shows student
responses to questions about syntax and ease of thinking
about different transactional primitives. In the first class
year, students found transactions more difficult to think
about and had syntax more difficult than that of fine-grain
locks. In the second year, when the TM implementation
was replaced with one less cumbersome, student opinions
aligned with our other findings: TM ranked behind coarse
locks, but ahead of fine-grain. For both years, other ques-
tions on ease of design and implementation mirrored these
results, with TM ranked ahead of fine-grain locks.

4.3 Synchronization Error Characteriza-
tion

We examined the solutions from the second year’s class in
detail to classify the types of synchronization errors stu-
dents made along with their frequency. This involved both
a thorough reading of every student’s final solutions and
automated testing. While the students’ subjective evalu-
ation of the ease of transactional programming does not

clearly indicate that transactional programming is easier,
the types and frequency of programming errors does.

While the students showed an impressive level of cre-
ativity with respect to synchronization errors, we found
that all errors fit within the taxonomy described below.

1. Lock ordering (lock-ord). In fine-grain locking so-
lutions, a program failed to use a lock ordering dis-
cipline to acquire locks, admitting the possibility of
deadlock.

2. Checking conditions outside a critical section
(lock-cond). This type of error occurs when code
checks a program condition with no locks held, and
subsequently acts on that condition after acquiring
locks. This was the most common error in sync-
gallery, and usually occurred when students would
check whether to clean the gallery with no locks held,
subsequently acquiring lane locks and proceeding to
clean. The result is a violation of invariant 4 (§2).
This type of error may be more common because no
visual feedback is given when it is violated (unlike
races for shooting lanes, which can result in purple
lanes).

3. Forgotten synchronization (lock-forgot). This
class of errors includes all cases where the program-
mer forgot to acquire locks, or simply did not realize
that a particular region would require mutual exclu-
sion to be correct.

4. Exotic use of condition variables (cv-exotic). We
encountered a good deal of signal/wait usage on con-
dition variables that indicates no clear understanding
of what the primitives actually do. The canonical ex-
ample of this is signaling and waiting the same con-

Year 1

Best syntax
Answers 1 2 3 4

Coarse 69.6% 17.4% 0% 8.7%
Fine 13.0% 43.5% 17.4% 21.7%
TM 8.7% 21.7% 21.7% 43.5%

Conditions 0% 21.7% 52.1% 21.7%

Easiest to think about
Answers 1 2 3 4

Coarse 78.2% 13.0% 4.3% 0%
Fine 4.3% 39.1% 34.8% 17.4%
TM 8.7% 21.7% 26.1% 39.1%

Conditions 4.3% 21.7% 30.4% 39.1%

Year 2

Best syntax
Answers 1 2 3 4

Coarse 61.6% 30.1% 1.3% 4.1%
Fine 5.5% 20.5% 45.2% 26.0%
TM 26.0% 31.5% 19.2% 20.5%

Cond. 5.5% 20.5% 28.8% 39.7%

Easiest to think about
Answers 1 2 3 4

Coarse 80.8% 13.7% 1.3% 2.7%
Fine 1.3% 38.4% 30.1% 28.8%
TM 16.4% 31.5% 30.1% 20.5%

Cond. 4.1% 13.7% 39.7% 39.7%

Figure 5: Selected results from student surveys. Column numbers represent rank order, and entries represent what
percentage of students assigned a particular synchronization technique a given rank (e.g. 80.8% of students ranked
Coarse locks first in the “Easiest to think about category”).In the first year the assignment was presented, the more
complex syntax of DSTM made TM more difficult to think about. In the second year, simpler syntax alleviated this
problem.
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Coarse Fine TM Coarse2 Fine2 TM2 CoarseCleaner FineCleaner TMCleaner
Coarse Y1 1.00 0.03 0.02 1.00 0.02 1.00 0.95 0.47 0.73

Y2 1.00 0.33 0.12 1.00 0.38 1.00 1.00 0.18 1.00
Fine Y1 0.97 1.00 0.33 1.00 0.24 1.00 1.00 0.97 0.88

Y2 0.68 1.00 0.58 1.00 0.51 1.00 1.00 0.40 1.00
TM Y1 0.98 0.68 1.00 1.00 0.13 1.00 1.00 0.98 0.92

Y2 0.88 0.43 1.00 1.00 0.68 1.00 1.00 0.41 1.00
Coarse2 Y1 <0.01 <0.01 <0.01 1.00 <0.01 <0.01 <0.01 <0.01 <0.01

Y2 <0.01 <0.01 <0.01 1.00 <0.01 0.45 <0.01 <0.01 <0.01
Fine2 Y1 0.98 0.77 0.87 1.00 1.00 1.00 1.00 1.00 0.98

Y2 0.62 0.49 0.32 1.00 1.00 1.00 0.99 0.59 1.00
TM2 Y1 <0.01 <0.01 <0.01 0.99 <0.01 1.00 0.04 <0.01 <0.01

Y2 <0.01 <0.01 <0.01 0.55 <0.01 1.00 <0.01 <0.01 <0.01
CoarseCleaner Y1 0.05 <0.01 <0.01 1.00 <0.01 0.96 1.00 <0.01 0.08

Y2 <0.01 <0.01 <0.01 1.00 <0.01 1.00 1.00 <0.01 0.96
FineCleaner Y1 0.53 0.03 0.02 1.00 <0.01 1.00 0.99 1.00 0.46

Y2 0.83 0.60 0.59 1.00 0.42 1.00 1.00 1.00 1.00
TMCleaner Y1 0.28 0.12 0.08 1.00 0.03 1.00 0.92 0.55 1.00

Y2 <0.01 <0.01 <0.01 0.99 <0.01 1.00 0.04 <0.01 1.00

Table 2: Comparison of time taken to complete programming tasks for all students. The time to complete the task on
the row is compared to the time for the task on the column. Eachcell contains p-values for a Wilcoxon signed-rank
test, testing the hypothesis that the row task took less timethan the column task. Entries are considered statistically
significant whenp < .05, meaning that the row task did take less time to complete thanthe column task, and are
marked in bold. Results for first and second class years are reported separately, due to differing transactional memory
implementations.

dition in the same thread.
5. Condition variable use errors (cv-use). These

types of errors indicate a failure to use condition vari-
ables properly, but do indicate a certain level of un-
derstanding. This class includes use ofif instead of
while when checking conditions on a decision to
wait, or failure to check the condition at all before
waiting.

6. TM primitive misuse (TM-exotic). This class of er-
ror includes any misuse of transactional primitives.
Technically, this class includes mis-use of the API,
but in practice the only errors of this form we saw
were failure to callBeginTransaction before
callingEndTransaction. Omission of read/write
barriers falls within this class as well, but it is inter-
esting to note that we found no bugs of this form.

7. TM ordering (TM-order). This class of errors rep-
resents attempts by the programmer to follow some
sort of locking discipline in the presence of trans-
actions, where they are strictly unnecessary. Such
errors do not result in an incorrect program, but do
represent a misunderstanding of the primitive.

8. Forgotten TM synchronization (TM-forgot). Like
the forgotten synchronization class above (lock-
forgot), these errors occur when a programmer failed
to recognize the need for synchronization and did not
use transactions to protect a data structure.

Table 3 shows the characterization of synchronization
for programs submitted in year 2. Figure 6 shows the
overall portion of students that made an error on each pro-
gramming task. Students were far more likely to make an
error on fine-grain synchronization than on coarse or TM.

lock-ord lock-cond lock-forgot cv-exotic cv-use TM-exotic TM-order TM-forgot
occurrences 11 62 26 11 14 5 4 1

opportunities 134 402 402 134 134 201 201 201
rate 8.2% 6.5% 15.4% 8.2% 10.5% 2.5% 2.0% 0.5%

Table 3: Synchronization error rates for year 2. The occurrences row indicates the number of programs in which at
least one bug of the type indicated by the column header occurred. Theopportunities row indicates the sample size
(the number of programs we examined in which that type of bug could arise: e.g. lock-ordering bugs cannot occur in
with a single coarse lock). Therate column expresses the percentage of examined programs containing that type of
bug. Bug types are explained in Section 4.3.
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Figure 6: Overall error rates for programming tasks. Error bars show a 95% confidence interval on the error rate.
Fine-grained locking tasks were more likely to contain errors than coarse-grained or transactional memory (TM).

About 70% of students made at least one error on the Fine
and Fine2 portions of the assignment.

5 Related work

Hardware transactional memory research is an active re-
search field with many competing proposals [4–7, 9–11,
15–17, 19–23, 26]. All this research on hardware mech-
anism is the cart leading the horse if researchers never
validate the assumption that transactional programming is
actually easier than lock-based programming.

This research uses software transactional memory
(which has no shortage of proposals [3, 12–14, 18, 25]),
but its purpose is to validate how untrained programmers
learn to write correct and performant concurrent programs
with locks and transactions. The programming interface
for STM systems is the same as HTM systems, but with-
out compiler support, STM implementations require ex-
plicit read-write barriers, which are not required in an
HTM. Compiler integration is easier to program than us-
ing a TM library [8]. Future work research could inves-
tigate whether compiler integration lowers the perceived
programmer difficulty in using transactions.

6 Conclusion

To our knowledge, no previous work directly addresses
the question of whether transactional memory actually de-
livers on its promise of being easier to use than locks.
This paper offers evidence that transactional program-
ming really is less error-prone than high-performance
locking, even if newbie programmers have some trouble
understanding transactions. Students subjective evalua-
tion showed that they found transactional memory slightly
harder to use than coarse locks, and easier to use than fine-
grain locks and condition synchronization. However, anal-
ysis of synchronization error rates in students’ code yields
a more dramatic result, showing that for similar program-
ming tasks, transactions are considerably easier to get cor-
rect than locks.
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