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Abstract 
Increased processor performance can no longer be 

achieved through reduced feature size due to power 

density issues.  As a result, high performance designs 

increasingly rely upon multiple processors in order to 

extract parallelism.  Over the next few generations of 

designs, the core count of such machines is expected to 

increase, ultimately reaching thousands of processors.  

As the performance of multi-threaded programs has 

become increasingly important, the contemporary 

benchmarks of choice are PARSEC and Splash-2.  

Both of these suites offer great scalability from the 

program’s perspective, where approximate ideal 

speedup can be obtained up to a certain processor 

threshold. 

PARSEC and Splash-2 are attractive to many in 

the community because they offer programs that are 

highly scalable in the evaluation of large CMP designs.  

Both benchmark suites offer the inherent 

parallelization characteristics present within their 

programs as a metric for scalability.    However, the 

assessment of program characteristics including 

system-level effects may skew overall program 

scalability results.  Because speedup computed through 

Amdahl’s law is extremely sensitive to the serial 

fraction of any program on the upper end, a minute 

change in the ratio of serial to parallel work may have 

dramatic effects upon the maximum obtainable 

speedup.  The operating system, shared libraries, and 

thread synchronization incur serializing costs upon the 

overall program execution, which add to the serial code 

sections, and limit the scalability of these workloads to 

even a small number of cores.  In this study, we show 

how these effects tragically limit multi-threaded 

performance, which must be overcome in order for 

new systems with a large number of cores to be viable. 

 

1. Introduction 
Power consumption and heat dissipation have become 

limiting factors to increased performance of single-

processor designs.  These constraints have limited the 

viability of feature size reduction as a technique to 

produce faster processors.  In order to mitigate these 

effects, current high performance designs have shifted 

to include multiple processors on chip to compensate 

for decreased processor frequencies (and increased 

cycle times).  The number of cores is expected to climb 

with each new design cycle, with the ultimate goal 

being thousands of processors. 

In the past, SPEC [1]  benchmarks were sufficient 

in the evaluation of single processor designs and multi-

processor designs including a modest number of cores.  

As the number of processors has increased, it has 

become exceedingly difficult to evaluate chip 

multiprocessors in the context of throughput 

computing (where separate workloads are executed on 

individual processors).  Typically, this would involve 

the arbitrary selection of workloads equal to the 

number of processors, where the total number of “CMP 

workloads” would be equal to BCP, which is the 

combination of B benchmarks taken P at a time (where 

B is the number of workloads contained in the suite 

and P is the number of processors in the design).  

Many problems stem from this type of evaluation and 

are described in [2]. 

As the number of processors have increased, 

PARSEC [3] and Splash-2 [4] have become the 

benchmark suites of choice.  These multi-threaded 

workloads not only test the characteristics associated 

with synchronization and coherence, but also provide a 

standard substrate for individuals to compare their 

results (as well as mitigating the problems previously 

mentioned with throughput oriented workloads).  Each 

of these benchmark suites is notably attractive because 

they advertise highly scalable workloads up to a 

specified processor threshold.  PARSEC v1.0 reports 

indicate that their workloads approximately scale with 

the ideal up until 16 processors [5], and Splash-2 

reports indicate scalability up until 64 processors [4].  

Each of these reports determines the scalability of the 

program in isolation, which include program 

characteristics internally.  Any external effects 

associated with the operating system and shared system 

libraries (which implement synchronization) are 

excluded from the analysis. 

Multi-threaded programs may be broken down 

into two separate pieces, corresponding to their parallel 

and serial regions.  According to Amdahl’s law parallel 

program speedup is ultimately limited by the serial 

code sections of an application.  Represented by the 

fraction of the enhanced (Fenhanced), inherent 

parallelism indicates the percentage of the program that 

is fully parallelizable.  The remaining serial portion of 

the program may be calculated by 1-Fenhanced.  Once 



the fraction of the enhanced is known, the maximum 

achievable speedup obtainable by parallelization may 

be calculated.  Figure 1 shows the maximum 

obtainable speedup for fraction of the enhanced 

(Fenhanced) values between 0% and 99%.  Assuming 

perfect communication and no parallelization 

overhead, a program must have at least 93.75% fully 

parallel code in order to obtain 16x speedup, and at 

least 99% for 100x speedup.  Thus, for a real multi-

processor system with 16 processors to obtain ideal 

speedup and utilize all processors, the target program 

must contain at least 93.75% parallel code. The 

underlying system cannot diminish the observed 

parallelization below that percentage (due to 

synchronization, additional coherence overhead, 

additional interconnect communication delay, shared 

libraries, OS scheduler events, load balancing, etc.).  

As the number of processors increase, multi-threaded 

program system performance will increasingly rely 

upon efficient thread execution and communication. 

 
Figure 1: Maximum Speedup (0-99%) 

In this study, we evaluate the observed speedups 

of various PARSEC and Splash-2 workloads.  In order 

to understand the limitations of thread synchronization 

upon system performance, we characterize thread 

behaviors for an abstract machine model that 

incorporates operating system effects.  Section 2 

briefly describes basic thread synchronization 

mechanics studied in this work.  The experimental 

framework is described in Section 3.  Section 4 

describes the characterization of synchronization 

events within the tested workloads and discusses its 

impact upon scalability.  Section 5 discusses the 

measured speedups of workloads at varying 

workload/processor configurations and describes 

inherent obstacles to large multi-processor systems.  

Section 6 discusses related work followed by 

conclusions in Section 7. 

2. Thread Synchronization 
In multi-core systems, multi-threaded programs result 

in many concurrently executing tasks, or threads.  In 

the POSIX implementation, each task resides within 

the context of a single process, allowing certain 

process resources to be shared, but each task to have 

separate program counters, registers, and local stack.  

Multi-threaded programs may spawn more threads than 

processors in order to avoid blocking while threads are 

waiting for a resource.  However, too many active 

threads may hurt system performance due to OS 

context switching. 

Thread interaction is governed by the use of 

synchronization primitives.  The correct use of 

synchronization can prevent race conditions and other 

unexpected program behavior.  Synchronization 

primitives may be implemented in the kernel or within 

user level libraries, and usually incorporate atomic 

operations to perform bus locking and cache coherency 

management.  Atomic operations are a set of 

operations that are combined so the system perceives it 

as a single operation that succeeds or fails.  Upon 

failure the effects of all operations are undone so that 

system state remains invariant.  Examples of atomic 

operations include test-and-set, fetch-and-add, and 

compare-and-swap. 

After a thread has been spawned it will run 

independent from the parent program unless dictated 

by synchronization.  Shared resources that could be 

dynamically accessed simultaneously by multiple 

threads are often placed in critical sections to guarantee 

mutual exclusivity, typically guarded by locks or 

semaphores.  If no threads are using a particular shared 

resource, then a thread may enter the critical section 

and is in a running state.  Otherwise, the thread 

transitions to a blocked state while waiting for critical 

section access.  Previous techniques have been 

proposed to mitigate the serializing effects due to locks 

[6-8]. 

System execution of multiple threads introduces 

potential non-deterministic effects due to the complex 

interactions between the scheduler, memory hierarchy 

and interconnect.  Threads competing for a lock 

request resources from the memory hierarchy, and 

interconnect if the request misses.  The first thread to 

obtain a cache line in exclusive access will win the 

lock and continue execution.  Waiting threads will then 

obtain the lock based upon physical machine 

characteristics.  Threads may also be preempted by 

other processes and/or threads which may change the 

observed synchronization events and program 

ordering.  Non-deterministic effects may cause a 

program to behave differently over multiple runs, 

making debugging difficult. 

The concurrent execution of threads may yield 

significant speedup compared to its single-threaded 

cousin if: 1) sufficient parallel code regions exist in the 

program, and 2) they can be executed efficiently with 

minimal synchronization bottlenecks and other system 

overheads.  In this work, it is shown that 



synchronization is an important factor that must be 

considered when evaluating workload scalability. 

3. Simulation Environment 
In this study, the linux GNU C library (glibc v2.8) was 

instrumented to profile synchronization events.  Each 

type of synchronization provided by the Native POSIX 

Threading Library (pthreads) was instrumented to 

provide detailed information regarding thread 

behaviors.  The pthreads library API provides for the 

following types of synchronization: mutexes, read-

write locks, barriers, condition variables, thread 

joining, and semaphores.  Read-write locks are 

multiple readers, single writer locks.  Multiple threads 

can acquire a lock for reading purposes, but exclusive 

(write) accesses are serialized similar to mutex-based 

critical sections. 

Using the instrumented libc, a number of 

workloads were simulated using HP Labs’ COTSon 

simulator [9].  COTSon is a system-level simulator that 

models execution holistically, including: peripheral 

devices, disk I/O, network devices, and the operating 

system.  Inclusion of the operating system allows for 

system calls and system interaction to be measured.  

Internally, COTSon uses the AMD’s SimNow 

simulator [10] to provide fast native emulation of 

instructions, which are fed as a trace to COTSon timers 

for detailed measurement.  For this work, multi-

threaded workloads were simulated on top a 64-bit 

Debian operating system (kernel 2.6.26) using the 

instrumented libc. 

In order to reduce context switching effects from 

other running processes, a stripped down Debian 

operating system was utilized.  All non-necessary 

daemons were killed, and the X server was removed.  

To ensure that comparisons would be consistent across 

processor configurations, each workload was executed 

from the same operating system checkpoint image. 

In order to classify synchronization events and 

their effects on thread behaviors, workloads from the 

Splash-2 [4] and PARSEC v1.0 [3] benchmark suites 

were simulated.  COTSon provided timestamps for 

pthread events in order to determine detailed timing 

information for each type of synchronization event.  

For locks and mutexes, times were recorded for 

resource request, acquire, and release.  Additionally, 

wait and release times were also recorded for thread 

joins, barriers, and conditional variables.  The thread id 

and internal pthread data structure addresses were 

recorded to isolate individual thread behaviors and 

interaction based upon specific synchronization 

instances.  Event timestamps were used to calculate the 

time that an individual thread spent within library 

synchronization calls.  Individual thread wait times 

were determined as the cumulative difference between 

request/acquire and acquire/release events (in the case 

of locks) and wait/release events for joins, barriers, and 

condition variables.  Although code instrumentation 

may affect the timing behavior of any program, the 

instrumentation of glibc was very lightweight (an event 

id was added to a buffer) and should not significantly 

alter the actual program behavior.  Since our 

simulation environment was based on a 64-bit linux 

OS, we verified measurements on real systems 

containing eight processors for both the AMD Opteron 

and Intel Xeon architectures.  Collected measurements 

for both architectures yielded speedups consistent with 

those in our simulated environment.  Larger input sets 

were also executed on real systems and exhibited 

performance results similar to the smaller input sets. 

Data were collected using a COTSon timer that 

functionally executed instructions in a single time unit.  

The use of a functional simulator has the same effect as 

if a cycle-accurate model were used with a perfect 

cache, branch predictor, TLB, pipeline (1-issue, in-

order), interconnect, and coherence.  The purpose of 

using this configuration was to approximate a lower 

bound of synchronization overheads.   Assuming 

perfect communication across the cache hierarchy and 

interconnect, program performance is bounded by the 

serial code regions, OS interaction, and 

synchronization overheads.  Synchronization 

overheads are based upon the ordering imposed by the 

benchmark algorithm as well as costs incurred within 

the pthreads library.  The use of functional models has 

been incorporated in other studies to assess inherent 

program parallelization [3, 4].  Previous work has 

shown that Splash-2 and PARSEC have the inherent 

parallelization necessary to scale.  However, when 

including the operating system and threading library 

effects within these measurements, application speedup 

may differ significantly from the ideal case. 

4. Synchronization Characterization 
PARSEC and Splash-2 workloads discussed in this 

section were simulated for 1, 2, 4, 8, 16, and 32 

processors.  At each processor configuration, the 

number of threads equaled the number of processors.  

From these data, average synchronization wait times 

were calculated (excluding one thread configurations 

because a serial program should not wait due to 

synchronization).  All experimental workloads 

implement parallelization using either pthreads or 

OpenMP.  Because the linux version of gcc internally 

uses POSIX threads by default to implement OpenMP 

pragmas, the instrumentation of pthreads was sufficient 

to capture the behavior for both types of workloads.  In 

this study, PARSEC v1.0 benchmarks were simulated 

using the simlarge input set.  Splash-2 workloads were 

also simulated using the default input size.  Vips was 

excluded because it segfaulted for the simlarge input.  

FFT was also excluded from Splash-2 because its 

execution time was too small to be reliably measured 

by the time command. 



Figure 2 shows the average time threads spent 

waiting as a percentage of program execution for the 

studied PARSEC and Splash-2 workloads.  For each of 

these workloads, wait times have been decomposed 

into their synchronization constituents.  These figures 

show the average percentage time that threads spent 

waiting for condition variables, barriers, and mutexes 

(including read-write locks) for all tested 

workload/processor configurations. 

 
 

 
Figure 2: Thread Waiting Decomposition for PARSEC 

and Splash-2 

For PARSEC, certain workloads spent 

considerable time waiting on synchronization events.  

Bodytrack waited for 49%, blackscholes for 62%, 

facesim for 65%, fluidanimate for 29%, and 

streamcluster for 38%.  Others such as dedup, 

freqmine, and x264 all wait for less than 4%.  

Interestingly, condition variables and barriers dominate 

mutexes as the cause of waiting threads.  Condition 

variables are barriers that can be selectively applied to 

individual threads.  Once a thread reaches a condition 

variable, it must wait until that condition becomes true.  

Upon receiving the wakeup signal, thread execution 

will continue.  For all workloads, mutexes account for 

less than 0.34% of thread execution.  Barriers and 

condition variables account for 8.7% and 14.3%, 

respectively.  On average, 17.3% of PARSEC 

workload execution was consumed on synchronization. 

For Splash-2 workloads, the average 

synchronization overheads for mutexes and barriers are 

1.3% and 34.2%, respectively.  No condition variable 

activity was measured for these workloads.  Similar to 

PARSEC, mutexes had minimal impact upon overall 

thread wait times.  On average, Splash-2 wait times 

consumed 35.4% of program execution.  In part, this is 

due to the short execution times of Splash-2 

workloads.  On average, all Splash-2 permutations 

executed in 0.68 seconds within the simulated 

operating system.  The short execution times of 

Splash-2 workloads may have issues associated with 

constant timeslice interruption.  However, these 

workloads are over a decade old and may be outdated 

for contemporary system evaluation.  But, even when 

these workloads were relatively new, scalability issues 

were observed [11] for NUMA architectures. 

Wait times for mutex synchronization was 

extremely low, implying threads can regularly acquire 

locks uncontested.  Similar behavior for the low 

contention rate of  mutexes in cycle-accurate 

simulation environments has been observed in [6, 7].  

Instrumented barriers are extremely costly even for our 

simulated abstract machine because all system threads 

must wait for the slowest thread to reach a specified 

execution point.  If threads have common algorithmic 

tasks and similar performance, then the slack time 

between the highest and lowest performing thread 

should be minimal.  Threads with dissimilar tasks or 

whose performance varies greatly will incur greater 

barrier costs. 

The scheduler may also impact associated barrier 

overhead because it may preempt thread execution in 

lieu of another system process.  Assuming 

homogenous execution among the remaining threads, 

the evicted process will then become the slowest 

thread, and program execution cannot continue until it 

is both rescheduled and reaches the barrier.  Here, the 

scheduler overheads provide a non-intuitive trade-off.  

If the OS time slice is too short, then threads could be 

preempted frequently by other system processes.  

Increasing the time slice interval could reduce 

preemption, but could also increase the penalties of 

preemption when it occurs.  It is currently unclear 

which scheme would most benefit the performance of 

barrier execution and is left for future research. 

A detailed decomposition of thread behaviors at 

the varying thread counts is shown in Figure 3 and 

Figure 4 for interesting workloads with the highest 

average wait times.  For these workloads, the cost of 

synchronization increases with the number of threads.  

Bodytrack and facesim both result in increased wait 

times for conditional variables.  Fluidanimate, 

streamcluster, barnes, lu, ocean, and water-spatial all 

result in greater barrier costs at higher thread counts.  

Wait times for bodytrack are in contrast with the other 

workloads (which exhibited decreased barrier wait 



times as the number of threads increased) because one 

thread spent the majority of its time waiting for all 

other worker threads to complete.  The addition of 

threads in this workload caused the overall wait times 

to decrease because it was averaged over more running 

threads. 

 
Figure 3: Thread Waiting vs. Thread Count for a subset 

of PARSEC 

 
Figure 4: Barrier Overhead vs. Thread Count for a 

subset of Splash-2 

Measured wait times were dependent upon the 

time spent within synchronization library functions, 

other miscellaneous system calls, and thread execution.  

As the numbers of threads are increased, highly 

parallel workloads that scale well have significantly 

less execution time.  If the synchronization costs are 

fixed, then this would result in linear wait percentage 

increases.  Insufficient parallel code or poor 

synchronization performance may cause workloads to 

scale poorly.  In either case, the addition of threads that 

synchronize over the same shared structures (via 

condition variables or barriers) increases the overhead 

of the pthreads library.  Such overheads, however 

minimal, may have dramatic impacts upon the 

observable scalability that can be extracted from a 

multi-threaded program at high thread counts, and are 

discussed in Section 6.  In this study, many programs 

contain inflection points where the addition of threads 

will no longer help performance (or worse, hurt 

performance).  A more detailed discussion of 

simulation times is discussed in Section 5. 

The synchronization penalties of mutexes among 

the tested workloads were numerous and light.  

Although the specific behavior is workload dependent, 

the wait times associated with mutexes generally were 

very small and contributed little to overall thread 

waiting.  Additionally, dynamic instances of barriers 

and condition variables were much less frequent than 

mutexes but had dramatically higher overhead. 

5. Observed Speedup 
Simulated speedups of each program were compared 

against the ideal case and were based upon the “real” 

execution from the perspective of the simulated OS.  

Execution times for each of the different processor 

counts were compared against the single-threaded case 

to derive the parallelizable fraction of execution.  This 

resulted in five Fenhanced ratios for each workload: one 

calculated by the observed speedup between 1 thread 

and 2 threads, between 1 thread and 4 threads, between 

1 thread and 8 threads, etc.  For each of the five 

computed fractions, the maximum was selected 

because it revealed the best parallelism that was 

observed at the system level.  Measured fractions lower 

than the maximum indicate overheads that inhibited 

concurrency.  While the program in isolation may 

inherently contain a fraction higher than the observed, 

it is important to include the serializing system-level 

effects in the measurement.  Derived Fenhanced values 

for the PARSEC and Splash-2 benchmark suites are 

shown in Table 1 and Table 2 and indicate the 

maximum projected speedup for the largest Fenhanced 

measurement. 

 
Figure 5: PARSEC Threads vs. Speedup 

Figure 5 and Figure 6 show measured speedups of 

simulated workloads as the number of threads and 

processors are increased logarithmically.  Surprisingly, 

even if a perfect processor model is incorporated, no 

workload is able to scale past 10x once system-level 

effects are incorporated.  Associated speedup for the 



two benchmark suites were dramatically impacted by 

the wait times of synchronization.  Splash-2 suffered 

higher synchronization event wait times than 

PARSEC, which accounts for the lower obtained 

speedup values for these workloads. 

 
Figure 6: Splash-2 Speedup vs. Processor Count 

Benchmark Fenhanced 
Projected 

Speedup 

bodytrack 0.8740 6.52x 

dedup 0.9481 12.27x 

facesim 0.7127 3.23x 

fluidanimate 0.8676 6.27x 

freqmine 0.9331 10.41x 

streamcluster 0.9615 14.59x 

x264 0.9709 16.83x 

blackscholes 0.9512 12.73x 

Table 1: PARSEC Parallelizable Fraction 

Benchmark Fenhanced 
Projected 

Speedup 

barnes 0.9533 13.08x 

cholesky 0.6949 3.06x 

fmm 0.9600 14.28x 

lu 0.8000 4.44x 

ocean 0.7843 4.16x 

radiosity 0.9835 21.20x 

raytrace 0.9520 12.87x 

volrend 0.3864 1.59x 

water-nsquared 0.7843 4.16x 

water-spatial 0.8627 6.08x 

radix 0.5000 1.85x 

Table 2: Splash-2 Parallelizable Fraction 

At 32 processors, x264 had the highest speedup of 

9.38x and facesim had the smallest speedup of 2.13x.  

On average, workloads with 2 processors had a 

speedup of 1.79.  Increasing the processor counts to 4, 

8, 16, and 32 had average speedups of 3.06x, 4.69x, 

5.62x, and 5.58x, respectively.  The performance of all 

workloads increased up until 16 processors.  After this 

point, the simulation times for certain workloads 

actually increased.  When comparing 16 and 32 

processors, the program execution time of facesim 

increased from 13.8s to 14.2s, and streamcluster 

increased from 3.26s to 6.29s.  Splash-2 workloads 

exhibit similar behavior and are included in Figure 6.  

Radiosity, raytrace, fmm, and barnes all scaled well 

relative to the ideal case up until two processors.  

Beyond two processors, only radiosity and raytrace 

scaled up to 8 before saturating.  Cholesky suffered 

slowdowns at 16 and 32 processors, and radix suffered 

slowdowns beyond 2.  An average speedup factor for 

both suites was less than 6x at 32 processors. 

 
 

 
Figure 7: Speedup Gap Between the Projected and 

Measured 

Figure 7 shows the gap between the measured 

speedup of benchmark performance relative to the 

predicted speedup from calculated Fenhanced values.  

Parallelization fractions represent the maximum 

amount of observed parallelism from the simulated 

workloads, including all system overheads.  As the 

number of processors and threads increase, the 

difference between the projected speedup and the 

simulated speedup is directly attributable to additional 

system overheads.  The parallelization projected by the 

PARSEC and Splash-2 workloads did not yield 

sufficient scalability for even a small number of cores.  

Up to 8 processors PARSEC had adequate scaling, but 

saturated at 16.  Most workloads obtained little gain 



beyond 16 processors, and some exhibited degradation.  

Reported speedups for PARSEC workloads indicate 

that inherent program parallelism will scale up to 16 

processors.  When OS and synchronization overheads 

are taken into consideration, ideal scaling was not seen.  

Furthermore, as designs increasingly incorporate 32 

processors, scalability for these workloads will become 

a much greater issue.  For Splash-2, only two 

workloads were resistant to the OS and 

synchronization effects.  The remaining workloads 

began to show saturation or performance degradation 

after two processors. 

6. Putting It All Together 
In order to more adequately understand the system 

bottlenecks associated with workload scalability, 

additional experiments were conducted within the 

simulated OS for each workload/processor 

combination using OProfile.  On average, 33% of 

program execution of PARSEC workloads and 52% of 

Splash-2 workloads were spent within the linux kernel.  

This does not imply inefficiencies within the OS, but 

rather is an artifact of the interaction between waiting 

threads and the scheduler.  Due to potentially high wait 

times associated with thread execution (shown in 

Section 4), threads often cannot make forward progress 

due to synchronization stalls.  (Also, newly spawned 

threads that have yet to be given any useful work are 

started in the idle state.)  If a thread is stalled, and thus 

not performing any useful work, it will eventually be 

removed from the run queue by the scheduler, and sent 

to a wait queue. 

Decomposition of the time spent within the linux 

kernel shows that approximately 97% of the time is 

spent within the default_idle kernel function and 3% is 

spent for all other OS services (e.g. memory mapping, 

scheduling, I/O, filesystem bookkeeping, etc.).  

Outliers from this type of behavior are dedup and 

streamcluster from PARSEC, and water-nsquared from 

Splash-2.  Dedup and water-nsquared spend 12% and 

9% of their execution within the OS on non-idle 

services and can be attributed to poor paging behavior.  

Water-nsquared also exhibits behavior similar to 

dedup.  Streamcluster spends approximately 31.2% of 

its execution with the OS on non-idle services due to 

load imbalancing issues.  The behaviors of barriers 

within streamcluster indicate that approximately half of 

the threads never wait for barriers, while the other half 

spend considerable time waiting. 

In general, time spent within shared libraries was 

small, however significant times were measured for the 

standard C++/C, math, and pthread shared libraries and 

varied between less than 1% and 5% (excluding thread 

wait times that were measured within the default_idle 

kernel function).  When excluding the default_idle 

kernel function from the OS measurements, the OS 

component of workload execution varied between less 

than 1% and 31%. 

Previous work [12] has demonstrated the impact 

that system calls and kernel code may have upon 

system performance, and advocate its inclusion within 

single-threaded simulation.  We are advocating that 

synchronization, system calls and OS behavior must be 

considered when evaluating possible speedups that 

could be obtained from multi-threaded workloads.  

Future systems containing hundreds or even thousands 

of cores will increasingly rely upon massively parallel 

code in order to obtain speedup.  In these systems, 

effective processor utilization is dependent upon input 

workloads that converge upon 100% parallelization.  

For example, if a system can execute 99.99% of a 

program in parallel, then the maximum attainable 

speedup is 10000x.  Decreasing the enhanced fraction 

by 0.09 to 99.9% reduces the maximum obtainable 

speedup by 9000x! 

The parallelization requirements of contemporary 

workload/system pairs are modest in comparison to 

that of the hypothetical 1000 core machine.  In our 

experiments, measured Fenhanced values indicate that at 

least three of the benchmark inputs contained the 

inherent parallelism necessary to scale to 16 

processors, and two benchmark inputs contained the 

parallelism to scale above 20x.  Yet, no input for any 

benchmark was able to obtain speedup past 11x when 

considering the additional system overheads included 

in our model. 

7. Related Work 
When discussing parallel benchmarking sets, various 

methods have been proposed to discuss the inherent 

parallelization characteristics.  Woo et al [4] measure 

speedup for Splash-2 workloads using perfect caches 

and communication.  All instructions executed in their 

environment complete in one cycle.  The authors note 

that non-deterministic behaviors of programs make it 

difficult to compare data when architectural parameters 

are varied because the execution path may change.  

Bienia et al [3] measure the inherent program 

concurrency based upon the number of instructions 

executed in the parallel and serial regions of code.  

Delays due to blocking and load imbalance are not 

studied because they focus on the fundamental 

program characteristics.  Our characterization differs in 

that we consider the operating system, shared system 

libraries, and detailed thread synchronization in our 

analysis. 

8. Conclusion 
As more processors are added to next generation 

designs, it is important to identify the capabilities of 

application parallelization.  If a new system has a large 

number of cores, then programs must be able to 

adequately leverage its resources in order to be 



effective.  For the studied workloads, parallel 

execution was insufficient to scale along with the ideal 

case.  This is in contrast to other work which describes 

the identified parallelism found within the workloads 

in isolation.  However, discrepancies between the two 

can be explained by synchronization, the OS and other 

shared system libraries that are measured within our 

infrastructure.  Synchronization incurs significant 

overheads which must be measured to obtain realistic 

performance projections as the number of cores scale.  

The effect of pthread calls causes many threads to 

block, thereby increasing serial sections of the multi-

threaded program and decreasing Fenhanced.  

Furthermore, additional OS overheads increase serial 

code sections and limit parallelization opportunities.  

As more processors are added to commodity systems, 

the OS and shared libraries will play an increasingly 

important role in the available parallelism that can be 

achieved in a multi-threaded workload. 
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