
Our Many-core Benchmarks Do Not Use That Many Cores
Paul D. Bryan Jesse G. Beu Thomas M. Conte Paolo Faraboschi Daniel Ortega

Georgia Institute of Technology HP Labs, Exascale Computing Lab

{paul.bryan, jgbeu3, conte}@gatech.edu {paolo.faraboschi, daniel.ortega}@hp.com

Abstract
Increased processor performance can no longer be

achieved through reduced feature size due to power

density issues. As a result, high performance designs

increasingly rely upon multiple processors in order to

extract parallelism. Over the next few generations of

designs, the core count of such machines is expected to

increase, ultimately reaching thousands of processors.

As the performance of multi-threaded programs has

become increasingly important, the contemporary

benchmarks of choice are PARSEC and Splash-2.

Both of these suites offer great scalability from the

program’s perspective, where approximate ideal

speedup can be obtained up to a certain processor

threshold.

PARSEC and Splash-2 are attractive to many in

the community because they offer programs that are

highly scalable in the evaluation of large CMP designs.

Both benchmark suites offer the inherent

parallelization characteristics present within their

programs as a metric for scalability. However, the

assessment of program characteristics including

system-level effects may skew overall program

scalability results. Because speedup computed through

Amdahl’s law is extremely sensitive to the serial

fraction of any program on the upper end, a minute

change in the ratio of serial to parallel work may have

dramatic effects upon the maximum obtainable

speedup. The operating system, shared libraries, and

thread synchronization incur serializing costs upon the

overall program execution, which add to the serial code

sections, and limit the scalability of these workloads to

even a small number of cores. In this study, we show

how these effects tragically limit multi-threaded

performance, which must be overcome in order for

new systems with a large number of cores to be viable.

1. Introduction
Power consumption and heat dissipation have become

limiting factors to increased performance of single-

processor designs. These constraints have limited the

viability of feature size reduction as a technique to

produce faster processors. In order to mitigate these

effects, current high performance designs have shifted

to include multiple processors on chip to compensate

for decreased processor frequencies (and increased

cycle times). The number of cores is expected to climb

with each new design cycle, with the ultimate goal

being thousands of processors.

In the past, SPEC [1] benchmarks were sufficient

in the evaluation of single processor designs and multi-

processor designs including a modest number of cores.

As the number of processors has increased, it has

become exceedingly difficult to evaluate chip

multiprocessors in the context of throughput

computing (where separate workloads are executed on

individual processors). Typically, this would involve

the arbitrary selection of workloads equal to the

number of processors, where the total number of “CMP

workloads” would be equal to BCP, which is the

combination of B benchmarks taken P at a time (where

B is the number of workloads contained in the suite

and P is the number of processors in the design).

Many problems stem from this type of evaluation and

are described in [2].

As the number of processors have increased,

PARSEC [3] and Splash-2 [4] have become the

benchmark suites of choice. These multi-threaded

workloads not only test the characteristics associated

with synchronization and coherence, but also provide a

standard substrate for individuals to compare their

results (as well as mitigating the problems previously

mentioned with throughput oriented workloads). Each

of these benchmark suites is notably attractive because

they advertise highly scalable workloads up to a

specified processor threshold. PARSEC v1.0 reports

indicate that their workloads approximately scale with

the ideal up until 16 processors [5], and Splash-2

reports indicate scalability up until 64 processors [4].

Each of these reports determines the scalability of the

program in isolation, which include program

characteristics internally. Any external effects

associated with the operating system and shared system

libraries (which implement synchronization) are

excluded from the analysis.

Multi-threaded programs may be broken down

into two separate pieces, corresponding to their parallel

and serial regions. According to Amdahl’s law parallel

program speedup is ultimately limited by the serial

code sections of an application. Represented by the

fraction of the enhanced (Fenhanced), inherent

parallelism indicates the percentage of the program that

is fully parallelizable. The remaining serial portion of

the program may be calculated by 1-Fenhanced. Once

the fraction of the enhanced is known, the maximum

achievable speedup obtainable by parallelization may

be calculated. Figure 1 shows the maximum

obtainable speedup for fraction of the enhanced

(Fenhanced) values between 0% and 99%. Assuming

perfect communication and no parallelization

overhead, a program must have at least 93.75% fully

parallel code in order to obtain 16x speedup, and at

least 99% for 100x speedup. Thus, for a real multi-

processor system with 16 processors to obtain ideal

speedup and utilize all processors, the target program

must contain at least 93.75% parallel code. The

underlying system cannot diminish the observed

parallelization below that percentage (due to

synchronization, additional coherence overhead,

additional interconnect communication delay, shared

libraries, OS scheduler events, load balancing, etc.).

As the number of processors increase, multi-threaded

program system performance will increasingly rely

upon efficient thread execution and communication.

Figure 1: Maximum Speedup (0-99%)

In this study, we evaluate the observed speedups

of various PARSEC and Splash-2 workloads. In order

to understand the limitations of thread synchronization

upon system performance, we characterize thread

behaviors for an abstract machine model that

incorporates operating system effects. Section 2

briefly describes basic thread synchronization

mechanics studied in this work. The experimental

framework is described in Section 3. Section 4

describes the characterization of synchronization

events within the tested workloads and discusses its

impact upon scalability. Section 5 discusses the

measured speedups of workloads at varying

workload/processor configurations and describes

inherent obstacles to large multi-processor systems.

Section 6 discusses related work followed by

conclusions in Section 7.

2. Thread Synchronization
In multi-core systems, multi-threaded programs result

in many concurrently executing tasks, or threads. In

the POSIX implementation, each task resides within

the context of a single process, allowing certain

process resources to be shared, but each task to have

separate program counters, registers, and local stack.

Multi-threaded programs may spawn more threads than

processors in order to avoid blocking while threads are

waiting for a resource. However, too many active

threads may hurt system performance due to OS

context switching.

Thread interaction is governed by the use of

synchronization primitives. The correct use of

synchronization can prevent race conditions and other

unexpected program behavior. Synchronization

primitives may be implemented in the kernel or within

user level libraries, and usually incorporate atomic

operations to perform bus locking and cache coherency

management. Atomic operations are a set of

operations that are combined so the system perceives it

as a single operation that succeeds or fails. Upon

failure the effects of all operations are undone so that

system state remains invariant. Examples of atomic

operations include test-and-set, fetch-and-add, and

compare-and-swap.

After a thread has been spawned it will run

independent from the parent program unless dictated

by synchronization. Shared resources that could be

dynamically accessed simultaneously by multiple

threads are often placed in critical sections to guarantee

mutual exclusivity, typically guarded by locks or

semaphores. If no threads are using a particular shared

resource, then a thread may enter the critical section

and is in a running state. Otherwise, the thread

transitions to a blocked state while waiting for critical

section access. Previous techniques have been

proposed to mitigate the serializing effects due to locks

[6-8].

System execution of multiple threads introduces

potential non-deterministic effects due to the complex

interactions between the scheduler, memory hierarchy

and interconnect. Threads competing for a lock

request resources from the memory hierarchy, and

interconnect if the request misses. The first thread to

obtain a cache line in exclusive access will win the

lock and continue execution. Waiting threads will then

obtain the lock based upon physical machine

characteristics. Threads may also be preempted by

other processes and/or threads which may change the

observed synchronization events and program

ordering. Non-deterministic effects may cause a

program to behave differently over multiple runs,

making debugging difficult.

The concurrent execution of threads may yield

significant speedup compared to its single-threaded

cousin if: 1) sufficient parallel code regions exist in the

program, and 2) they can be executed efficiently with

minimal synchronization bottlenecks and other system

overheads. In this work, it is shown that

synchronization is an important factor that must be

considered when evaluating workload scalability.

3. Simulation Environment
In this study, the linux GNU C library (glibc v2.8) was

instrumented to profile synchronization events. Each

type of synchronization provided by the Native POSIX

Threading Library (pthreads) was instrumented to

provide detailed information regarding thread

behaviors. The pthreads library API provides for the

following types of synchronization: mutexes, read-

write locks, barriers, condition variables, thread

joining, and semaphores. Read-write locks are

multiple readers, single writer locks. Multiple threads

can acquire a lock for reading purposes, but exclusive

(write) accesses are serialized similar to mutex-based

critical sections.

Using the instrumented libc, a number of

workloads were simulated using HP Labs’ COTSon

simulator [9]. COTSon is a system-level simulator that

models execution holistically, including: peripheral

devices, disk I/O, network devices, and the operating

system. Inclusion of the operating system allows for

system calls and system interaction to be measured.

Internally, COTSon uses the AMD’s SimNow

simulator [10] to provide fast native emulation of

instructions, which are fed as a trace to COTSon timers

for detailed measurement. For this work, multi-

threaded workloads were simulated on top a 64-bit

Debian operating system (kernel 2.6.26) using the

instrumented libc.

In order to reduce context switching effects from

other running processes, a stripped down Debian

operating system was utilized. All non-necessary

daemons were killed, and the X server was removed.

To ensure that comparisons would be consistent across

processor configurations, each workload was executed

from the same operating system checkpoint image.

In order to classify synchronization events and

their effects on thread behaviors, workloads from the

Splash-2 [4] and PARSEC v1.0 [3] benchmark suites

were simulated. COTSon provided timestamps for

pthread events in order to determine detailed timing

information for each type of synchronization event.

For locks and mutexes, times were recorded for

resource request, acquire, and release. Additionally,

wait and release times were also recorded for thread

joins, barriers, and conditional variables. The thread id

and internal pthread data structure addresses were

recorded to isolate individual thread behaviors and

interaction based upon specific synchronization

instances. Event timestamps were used to calculate the

time that an individual thread spent within library

synchronization calls. Individual thread wait times

were determined as the cumulative difference between

request/acquire and acquire/release events (in the case

of locks) and wait/release events for joins, barriers, and

condition variables. Although code instrumentation

may affect the timing behavior of any program, the

instrumentation of glibc was very lightweight (an event

id was added to a buffer) and should not significantly

alter the actual program behavior. Since our

simulation environment was based on a 64-bit linux

OS, we verified measurements on real systems

containing eight processors for both the AMD Opteron

and Intel Xeon architectures. Collected measurements

for both architectures yielded speedups consistent with

those in our simulated environment. Larger input sets

were also executed on real systems and exhibited

performance results similar to the smaller input sets.

Data were collected using a COTSon timer that

functionally executed instructions in a single time unit.

The use of a functional simulator has the same effect as

if a cycle-accurate model were used with a perfect

cache, branch predictor, TLB, pipeline (1-issue, in-

order), interconnect, and coherence. The purpose of

using this configuration was to approximate a lower

bound of synchronization overheads. Assuming

perfect communication across the cache hierarchy and

interconnect, program performance is bounded by the

serial code regions, OS interaction, and

synchronization overheads. Synchronization

overheads are based upon the ordering imposed by the

benchmark algorithm as well as costs incurred within

the pthreads library. The use of functional models has

been incorporated in other studies to assess inherent

program parallelization [3, 4]. Previous work has

shown that Splash-2 and PARSEC have the inherent

parallelization necessary to scale. However, when

including the operating system and threading library

effects within these measurements, application speedup

may differ significantly from the ideal case.

4. Synchronization Characterization
PARSEC and Splash-2 workloads discussed in this

section were simulated for 1, 2, 4, 8, 16, and 32

processors. At each processor configuration, the

number of threads equaled the number of processors.

From these data, average synchronization wait times

were calculated (excluding one thread configurations

because a serial program should not wait due to

synchronization). All experimental workloads

implement parallelization using either pthreads or

OpenMP. Because the linux version of gcc internally

uses POSIX threads by default to implement OpenMP

pragmas, the instrumentation of pthreads was sufficient

to capture the behavior for both types of workloads. In

this study, PARSEC v1.0 benchmarks were simulated

using the simlarge input set. Splash-2 workloads were

also simulated using the default input size. Vips was

excluded because it segfaulted for the simlarge input.

FFT was also excluded from Splash-2 because its

execution time was too small to be reliably measured

by the time command.

Figure 2 shows the average time threads spent

waiting as a percentage of program execution for the

studied PARSEC and Splash-2 workloads. For each of

these workloads, wait times have been decomposed

into their synchronization constituents. These figures

show the average percentage time that threads spent

waiting for condition variables, barriers, and mutexes

(including read-write locks) for all tested

workload/processor configurations.

Figure 2: Thread Waiting Decomposition for PARSEC

and Splash-2

For PARSEC, certain workloads spent

considerable time waiting on synchronization events.

Bodytrack waited for 49%, blackscholes for 62%,

facesim for 65%, fluidanimate for 29%, and

streamcluster for 38%. Others such as dedup,

freqmine, and x264 all wait for less than 4%.

Interestingly, condition variables and barriers dominate

mutexes as the cause of waiting threads. Condition

variables are barriers that can be selectively applied to

individual threads. Once a thread reaches a condition

variable, it must wait until that condition becomes true.

Upon receiving the wakeup signal, thread execution

will continue. For all workloads, mutexes account for

less than 0.34% of thread execution. Barriers and

condition variables account for 8.7% and 14.3%,

respectively. On average, 17.3% of PARSEC

workload execution was consumed on synchronization.

For Splash-2 workloads, the average

synchronization overheads for mutexes and barriers are

1.3% and 34.2%, respectively. No condition variable

activity was measured for these workloads. Similar to

PARSEC, mutexes had minimal impact upon overall

thread wait times. On average, Splash-2 wait times

consumed 35.4% of program execution. In part, this is

due to the short execution times of Splash-2

workloads. On average, all Splash-2 permutations

executed in 0.68 seconds within the simulated

operating system. The short execution times of

Splash-2 workloads may have issues associated with

constant timeslice interruption. However, these

workloads are over a decade old and may be outdated

for contemporary system evaluation. But, even when

these workloads were relatively new, scalability issues

were observed [11] for NUMA architectures.

Wait times for mutex synchronization was

extremely low, implying threads can regularly acquire

locks uncontested. Similar behavior for the low

contention rate of mutexes in cycle-accurate

simulation environments has been observed in [6, 7].

Instrumented barriers are extremely costly even for our

simulated abstract machine because all system threads

must wait for the slowest thread to reach a specified

execution point. If threads have common algorithmic

tasks and similar performance, then the slack time

between the highest and lowest performing thread

should be minimal. Threads with dissimilar tasks or

whose performance varies greatly will incur greater

barrier costs.

The scheduler may also impact associated barrier

overhead because it may preempt thread execution in

lieu of another system process. Assuming

homogenous execution among the remaining threads,

the evicted process will then become the slowest

thread, and program execution cannot continue until it

is both rescheduled and reaches the barrier. Here, the

scheduler overheads provide a non-intuitive trade-off.

If the OS time slice is too short, then threads could be

preempted frequently by other system processes.

Increasing the time slice interval could reduce

preemption, but could also increase the penalties of

preemption when it occurs. It is currently unclear

which scheme would most benefit the performance of

barrier execution and is left for future research.

A detailed decomposition of thread behaviors at

the varying thread counts is shown in Figure 3 and

Figure 4 for interesting workloads with the highest

average wait times. For these workloads, the cost of

synchronization increases with the number of threads.

Bodytrack and facesim both result in increased wait

times for conditional variables. Fluidanimate,

streamcluster, barnes, lu, ocean, and water-spatial all

result in greater barrier costs at higher thread counts.

Wait times for bodytrack are in contrast with the other

workloads (which exhibited decreased barrier wait

times as the number of threads increased) because one

thread spent the majority of its time waiting for all

other worker threads to complete. The addition of

threads in this workload caused the overall wait times

to decrease because it was averaged over more running

threads.

Figure 3: Thread Waiting vs. Thread Count for a subset

of PARSEC

Figure 4: Barrier Overhead vs. Thread Count for a

subset of Splash-2

Measured wait times were dependent upon the

time spent within synchronization library functions,

other miscellaneous system calls, and thread execution.

As the numbers of threads are increased, highly

parallel workloads that scale well have significantly

less execution time. If the synchronization costs are

fixed, then this would result in linear wait percentage

increases. Insufficient parallel code or poor

synchronization performance may cause workloads to

scale poorly. In either case, the addition of threads that

synchronize over the same shared structures (via

condition variables or barriers) increases the overhead

of the pthreads library. Such overheads, however

minimal, may have dramatic impacts upon the

observable scalability that can be extracted from a

multi-threaded program at high thread counts, and are

discussed in Section 6. In this study, many programs

contain inflection points where the addition of threads

will no longer help performance (or worse, hurt

performance). A more detailed discussion of

simulation times is discussed in Section 5.

The synchronization penalties of mutexes among

the tested workloads were numerous and light.

Although the specific behavior is workload dependent,

the wait times associated with mutexes generally were

very small and contributed little to overall thread

waiting. Additionally, dynamic instances of barriers

and condition variables were much less frequent than

mutexes but had dramatically higher overhead.

5. Observed Speedup
Simulated speedups of each program were compared

against the ideal case and were based upon the “real”

execution from the perspective of the simulated OS.

Execution times for each of the different processor

counts were compared against the single-threaded case

to derive the parallelizable fraction of execution. This

resulted in five Fenhanced ratios for each workload: one

calculated by the observed speedup between 1 thread

and 2 threads, between 1 thread and 4 threads, between

1 thread and 8 threads, etc. For each of the five

computed fractions, the maximum was selected

because it revealed the best parallelism that was

observed at the system level. Measured fractions lower

than the maximum indicate overheads that inhibited

concurrency. While the program in isolation may

inherently contain a fraction higher than the observed,

it is important to include the serializing system-level

effects in the measurement. Derived Fenhanced values

for the PARSEC and Splash-2 benchmark suites are

shown in Table 1 and Table 2 and indicate the

maximum projected speedup for the largest Fenhanced

measurement.

Figure 5: PARSEC Threads vs. Speedup

Figure 5 and Figure 6 show measured speedups of

simulated workloads as the number of threads and

processors are increased logarithmically. Surprisingly,

even if a perfect processor model is incorporated, no

workload is able to scale past 10x once system-level

effects are incorporated. Associated speedup for the

two benchmark suites were dramatically impacted by

the wait times of synchronization. Splash-2 suffered

higher synchronization event wait times than

PARSEC, which accounts for the lower obtained

speedup values for these workloads.

Figure 6: Splash-2 Speedup vs. Processor Count

Benchmark Fenhanced
Projected

Speedup

bodytrack 0.8740 6.52x

dedup 0.9481 12.27x

facesim 0.7127 3.23x

fluidanimate 0.8676 6.27x

freqmine 0.9331 10.41x

streamcluster 0.9615 14.59x

x264 0.9709 16.83x

blackscholes 0.9512 12.73x

Table 1: PARSEC Parallelizable Fraction

Benchmark Fenhanced
Projected

Speedup

barnes 0.9533 13.08x

cholesky 0.6949 3.06x

fmm 0.9600 14.28x

lu 0.8000 4.44x

ocean 0.7843 4.16x

radiosity 0.9835 21.20x

raytrace 0.9520 12.87x

volrend 0.3864 1.59x

water-nsquared 0.7843 4.16x

water-spatial 0.8627 6.08x

radix 0.5000 1.85x

Table 2: Splash-2 Parallelizable Fraction

At 32 processors, x264 had the highest speedup of

9.38x and facesim had the smallest speedup of 2.13x.

On average, workloads with 2 processors had a

speedup of 1.79. Increasing the processor counts to 4,

8, 16, and 32 had average speedups of 3.06x, 4.69x,

5.62x, and 5.58x, respectively. The performance of all

workloads increased up until 16 processors. After this

point, the simulation times for certain workloads

actually increased. When comparing 16 and 32

processors, the program execution time of facesim

increased from 13.8s to 14.2s, and streamcluster

increased from 3.26s to 6.29s. Splash-2 workloads

exhibit similar behavior and are included in Figure 6.

Radiosity, raytrace, fmm, and barnes all scaled well

relative to the ideal case up until two processors.

Beyond two processors, only radiosity and raytrace

scaled up to 8 before saturating. Cholesky suffered

slowdowns at 16 and 32 processors, and radix suffered

slowdowns beyond 2. An average speedup factor for

both suites was less than 6x at 32 processors.

Figure 7: Speedup Gap Between the Projected and

Measured

Figure 7 shows the gap between the measured

speedup of benchmark performance relative to the

predicted speedup from calculated Fenhanced values.

Parallelization fractions represent the maximum

amount of observed parallelism from the simulated

workloads, including all system overheads. As the

number of processors and threads increase, the

difference between the projected speedup and the

simulated speedup is directly attributable to additional

system overheads. The parallelization projected by the

PARSEC and Splash-2 workloads did not yield

sufficient scalability for even a small number of cores.

Up to 8 processors PARSEC had adequate scaling, but

saturated at 16. Most workloads obtained little gain

beyond 16 processors, and some exhibited degradation.

Reported speedups for PARSEC workloads indicate

that inherent program parallelism will scale up to 16

processors. When OS and synchronization overheads

are taken into consideration, ideal scaling was not seen.

Furthermore, as designs increasingly incorporate 32

processors, scalability for these workloads will become

a much greater issue. For Splash-2, only two

workloads were resistant to the OS and

synchronization effects. The remaining workloads

began to show saturation or performance degradation

after two processors.

6. Putting It All Together
In order to more adequately understand the system

bottlenecks associated with workload scalability,

additional experiments were conducted within the

simulated OS for each workload/processor

combination using OProfile. On average, 33% of

program execution of PARSEC workloads and 52% of

Splash-2 workloads were spent within the linux kernel.

This does not imply inefficiencies within the OS, but

rather is an artifact of the interaction between waiting

threads and the scheduler. Due to potentially high wait

times associated with thread execution (shown in

Section 4), threads often cannot make forward progress

due to synchronization stalls. (Also, newly spawned

threads that have yet to be given any useful work are

started in the idle state.) If a thread is stalled, and thus

not performing any useful work, it will eventually be

removed from the run queue by the scheduler, and sent

to a wait queue.

Decomposition of the time spent within the linux

kernel shows that approximately 97% of the time is

spent within the default_idle kernel function and 3% is

spent for all other OS services (e.g. memory mapping,

scheduling, I/O, filesystem bookkeeping, etc.).

Outliers from this type of behavior are dedup and

streamcluster from PARSEC, and water-nsquared from

Splash-2. Dedup and water-nsquared spend 12% and

9% of their execution within the OS on non-idle

services and can be attributed to poor paging behavior.

Water-nsquared also exhibits behavior similar to

dedup. Streamcluster spends approximately 31.2% of

its execution with the OS on non-idle services due to

load imbalancing issues. The behaviors of barriers

within streamcluster indicate that approximately half of

the threads never wait for barriers, while the other half

spend considerable time waiting.

In general, time spent within shared libraries was

small, however significant times were measured for the

standard C++/C, math, and pthread shared libraries and

varied between less than 1% and 5% (excluding thread

wait times that were measured within the default_idle

kernel function). When excluding the default_idle

kernel function from the OS measurements, the OS

component of workload execution varied between less

than 1% and 31%.

Previous work [12] has demonstrated the impact

that system calls and kernel code may have upon

system performance, and advocate its inclusion within

single-threaded simulation. We are advocating that

synchronization, system calls and OS behavior must be

considered when evaluating possible speedups that

could be obtained from multi-threaded workloads.

Future systems containing hundreds or even thousands

of cores will increasingly rely upon massively parallel

code in order to obtain speedup. In these systems,

effective processor utilization is dependent upon input

workloads that converge upon 100% parallelization.

For example, if a system can execute 99.99% of a

program in parallel, then the maximum attainable

speedup is 10000x. Decreasing the enhanced fraction

by 0.09 to 99.9% reduces the maximum obtainable

speedup by 9000x!

The parallelization requirements of contemporary

workload/system pairs are modest in comparison to

that of the hypothetical 1000 core machine. In our

experiments, measured Fenhanced values indicate that at

least three of the benchmark inputs contained the

inherent parallelism necessary to scale to 16

processors, and two benchmark inputs contained the

parallelism to scale above 20x. Yet, no input for any

benchmark was able to obtain speedup past 11x when

considering the additional system overheads included

in our model.

7. Related Work
When discussing parallel benchmarking sets, various

methods have been proposed to discuss the inherent

parallelization characteristics. Woo et al [4] measure

speedup for Splash-2 workloads using perfect caches

and communication. All instructions executed in their

environment complete in one cycle. The authors note

that non-deterministic behaviors of programs make it

difficult to compare data when architectural parameters

are varied because the execution path may change.

Bienia et al [3] measure the inherent program

concurrency based upon the number of instructions

executed in the parallel and serial regions of code.

Delays due to blocking and load imbalance are not

studied because they focus on the fundamental

program characteristics. Our characterization differs in

that we consider the operating system, shared system

libraries, and detailed thread synchronization in our

analysis.

8. Conclusion
As more processors are added to next generation

designs, it is important to identify the capabilities of

application parallelization. If a new system has a large

number of cores, then programs must be able to

adequately leverage its resources in order to be

effective. For the studied workloads, parallel

execution was insufficient to scale along with the ideal

case. This is in contrast to other work which describes

the identified parallelism found within the workloads

in isolation. However, discrepancies between the two

can be explained by synchronization, the OS and other

shared system libraries that are measured within our

infrastructure. Synchronization incurs significant

overheads which must be measured to obtain realistic

performance projections as the number of cores scale.

The effect of pthread calls causes many threads to

block, thereby increasing serial sections of the multi-

threaded program and decreasing Fenhanced.

Furthermore, additional OS overheads increase serial

code sections and limit parallelization opportunities.

As more processors are added to commodity systems,

the OS and shared libraries will play an increasingly

important role in the available parallelism that can be

achieved in a multi-threaded workload.

9. References

[1] J. L. Henning, "SPEC CPU2006 benchmark

descriptions," SIGARCH Comput. Archit. News, vol. 34,

pp. 1-17, 2006.

[2] J. Vera, F. J. Cazorla, A. Pajuelo, O. J. Santana, E.

Fernandez, and M. Valero, "FAME: FAirly MEasuring

Multithreaded Architectures," in Parallel Architecture

and Compilation Techniques, 2007. PACT 2007. 16th

International Conference on, 2007, pp. 305-316.

[3] C. Bienia, S. Kumar, and L. Kai, "PARSEC vs.

SPLASH-2: A quantitative comparison of two

multithreaded benchmark suites on Chip-

Multiprocessors," in Workload Characterization, 2008.

IISWC 2008. IEEE International Symposium on, 2008,

pp. 47-56.

[4] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A.

Gupta, "The SPLASH-2 programs: characterization and

methodological considerations," in Proceedings of the

22nd annual international symposium on Computer

architecture S. Margherita Ligure, Italy: ACM, 1995.

[5] C. Bienia, S. Kumar, J. P. Singh, and K. Li, "The

PARSEC benchmark suite: characterization and

architectural implications," in Proceedings of the 17th

international conference on Parallel architectures and

compilation techniques Toronto, Ontario, Canada:

ACM, 2008.[6] R. Rajwar and J. R. Goodman,

"Speculative lock elision: enabling highly concurrent

multithreaded execution," in Proceedings of the 34th

annual ACM/IEEE international symposium on

Microarchitecture Austin, Texas: IEEE Computer

Society, 2001.

[7] M. A. Suleman, O. Mutlu, M. K. Qureshi, and Y. N.

Patt, "Accelerating critical section execution with

asymmetric multi-core architectures," in Proceeding of

the 14th international conference on Architectural

support for programming languages and operating

systems Washington, DC, USA: ACM, 2009.

[8] R. Rajwar and J. R. Goodman, "Transactional lock-free

execution of lock-based programs," in Proceedings of

the 10th international conference on Architectural

support for programming languages and operating

systems San Jose, California: ACM, 2002.

[9] E. Argollo, A. Falc, P. Faraboschi, M. Monchiero, and

D. Ortega, "COTSon: infrastructure for full system

simulation," SIGOPS Oper. Syst. Rev., vol. 43, pp. 52-

61, 2009.

[10] R. Bedicheck, "SimNow: Fast platform simulation

purely in software," Hot Chips 16, 2004.

[11] A. Chauhan, B. Sheraw, and C. Ding, "Scability and

Data Placement on SGI Origin," Technical Report

TR98-305, 1998.

[12] J. A. Redstone, S. J. Eggers, and H. M. Levy, "An

analysis of operating system behavior on a simultaneous

multithreaded architecture," SIGPLAN Not., vol. 35, pp.

245-256, 2000.

