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ABSTRACT
Researchers have recently proposed novel hardware architectures
for enhancing system security. The proposed architectures address
security threats such as buffer overflows, format string bugs, and
information disclosure. The main advantage of hardware support
is increased visibility into system state, low overheads for secu-
rity checks, and, in some cases, compatibility with legacy binaries.
Nevertheless, hardware support is not a panacea for system secu-
rity. We review two architectures for preventing memory corrup-
tion and two for preventing information leaks. We identify signif-
icant vulnerabilities and shortcomings in these designs. We also
discuss solutions and mitigation strategies.

1. INTRODUCTION
Computing systems have become an essential part of our infrastruc-
ture for communication, commerce, government, education, and
scientific discovery. Hence, systems security is a critical research
area with far-reaching implications. Hardware support for security
can provide significant practical advantages over software-only ap-
proaches. Hardware designs provide increased visibility into sys-
tem state and allow for fine-grain tracking and checks at low perfor-
mance overhead. In contrast, software techniques can lead to per-
formance slowdown of up to 37x [20]. Hardware support can also
allow for security checks with unmodified legacy binaries, while
many software techniques require source code access for similar
functionality.

Nevertheless, the availability of hardware support does not guar-
antee that a system is 100% secure or easy to use. In this paper,
we examine four of the recently proposed architectures for system
security. Two architectures focus on tainting support to prevent
memory corruption bugs [28, 4], while the other two prevent infor-
mation leaks [32, 24]. We identify vulnerabilities and flaws in these
designs that allow us to write arbitrary locations or leak arbitrary
amounts of information. We discuss potential solutions for each
vulnerability and conclude that increased flexibility in expressing
security policies is the key requirement for robust security through
hardware mechanisms.

2. DYNAMIC INFORMATION FLOW
TRACKING

Memory corruption bugs, such as format string bugs and buffer
overflows, represent a significant threat to real-world security.
These bugs can often be prevented at runtime using tainting tech-
niques. In this section, we discuss the tainting architecture fordy-
namic information flow tracking (DIFT)proposed by Suh et al [28].
We provide an overview of the DIFT architecture, describe three
flaws in its pointer arithmetic taint propagation rule, and discuss
solutions.

2.1 DIFT Overview
Tainting techniques thwart memory corruption bugs by tracking the
flow of untrusted information in the system. Each register and stor-
age location is extended with a 1-bit tag (taint bit) that indicates if
its value is trusted or untrusted. The taint bit is set by the operat-
ing system for any inputs received from untrusted sources such as
network devices. Taint bits are propagated during program execu-
tion to track the flow of untrusted information. The hardware per-
forms runtime checks to ensure that tainted operands are not used
in potentially unsafe situations, such as code execution or pointer
dereferences.

Certain tainting architectures prevent only control (code) pointer-
based attacks [9]. Examples of such attacks include code in-
jection [1] and return-into-libc [17]. These architectures pre-
vented tainted control pointer dereferences but permitted tainted
data pointer dereferences. Researchers have shown that memory
corruption attacks using data pointers are unfortunately just as ef-
fective as the more well-known control pointer-based attacks [5].

DIFT is a tainting architecture that protects against both control
pointer and non-control data pointer attacks. Its taint checking and
propagation rules are summarized in Tables 1 and 2. Traditional
control pointer attacks are prevented by checking the taint bit on
instruction fetches and indirect branches. DIFT also prevents data
pointer attacks by checking the taint bit on pointer dereferences.
Data pointer checks require a more sophisticated taint propaga-
tion ruleset. Näıve taint propagation would OR the taint bits of
all source operands and write the result to the taint bit of the des-
tination operand. However, real-world code often bounds checks
untrusted data, and then uses the verified data to index into an ar-
ray or other data structure. Under naı̈ve propagation, combining an
untainted base pointer and a tainted index would result in a tainted
pointer. Any attempt to dereference this pointer would cause a se-
curity exception. The naı̈ve propagation rule is unaware that the
derived pointer is safe. This rule is impractical because it would
cause a significant number of spurious security exceptions in real-



Operation Example Taint Check
Instruction Fetch - T[insn]
Load ld R1, 4(R2) T[R2]
Store st 4(R1), R2 T[R1]
Indirect Branch jr R1 T[R1]

Table 1: DIFT rules for taint bit checks.

Operation Example Taint Propagation
Pointer Arith add R1, R2, R3 T[R1] = T[R2] ∨ T[R3]
Other ALU ops mul R1, R2, R3 T[R1] = T[R2] ∧ T[R3]
Load ld R1, 4(R2) T[R1] = T[M[4+R2]]
Store st 4(R1), R2 T[M[4+R1]] = T[R2]

Table 2: DIFT rules for taint bit propagation. T[i] represents
the taint for a register or memory address. M[i] designates the
value stored at memory address i.

world, legitimate code. Each exception would have to invoke the
operating system taint module, resulting in significant performance
overhead, and could even terminate legitimate applications.

DIFT solves this problem by introducing a special pointer arith-
metic taint propagation rule. This rule specifies that any instruction
used for pointer arithmetic propagates only the taint bit of the base
pointer. If the base pointer and index cannot be distinguished, then
their taint bits are AND’d and written to the taint bit of the desti-
nation operand. This allows legitimate code to index arrays using
tainted indices while preventing memory corruption attacks that use
tainted base pointers. Nevertheless, this pointer propagation rule
introduces other serious issues.

2.2 ISA Compatibility
DIFT considers instructions for scaled arithmetic (such ass4addq
on the Alpha ISA) and instructions with large displacements (such
as lea on the Intel x86) to be pointer arithmetic instructions.
Many RISC architectures, such as SPARC [27], do not include
such instructions. Instead, pointer arithmetic is implemented using
standard integer arithmetic instructions such asadd . To perform
scaled addition or use large displacements, multiple instructions
are required. It is very difficult to identify an operation broken
across multiple instructions, as the individual instructions may be
reordered, or unrelated instructions may be placed in between them
for performance reasons. On such architectures, pointer arithmetic
is often indistinguishable from integer arithmetic. Without a well-
defined set of pointer arithmetic instructions, the pointer arithmetic
taint propagation rule of DIFT cannot be applied.

2.3 Pointer Arithmetic Instruction Usage
General-purpose architectures do not reserve instructions solely for
pointer arithmetic. As a consequence, the security and stability
of DIFT can be compiler-dependent. A compiler that uses integer
arithmetic instructions for pointer arithmetic can cause false pos-
itives, terminating legitimate applications due to spurious security
exceptions. Similarly, a compiler that uses pointer arithmetic in-
structions for integer arithmetic can cause false negatives, which
may prevent DIFT from detecting real memory corruption attacks
as pointer arithmetic has a more permissive taint propagation policy
than integer arithmetic.

Real-world programs use pointer arithmetic instructions to perform
optimized integer arithmetic. Both Intel [21] and AMD [2] recom-
mend using thelea instruction to optimize certain arithmetic ex-

s4addq a0,t2,t1 ; t1 = 4*i + address of x
s8addq a0,a0,a2 ; a2 = 8*i + i
s4addq a2,a0,a2 ; a2 = 4*a2 + i

Figure 1: Alpha assembly for x[i] = 37 * i

lea 0xfffffe68(%ebp),%ecx ; ecx = address of x
lea 0xdeadbeef(%eax),%edx ; edx = i + 0xdeadbeef

Figure 2: x86 assembly for x[i] = i + 0xdeadbeef

pressions. Industry-standard compilers such as the Intel C compiler
and GCC [11] use pointer arithmetic instructions to generate opti-
mized code for integer arithmetic. Examples of this behavior for
the x86 and Alpha ISAs, which are presented as compatible with
DIFT, are given in Figures 1 and 2. GCC was used to generate
the code in these figures. Intel compiler examples can be found in
[26]. This behavior can result in dangerous false negatives, which
incorrectly label tainted data as untainted. For example, on line 2
of Figure 2, registeredx will be labelled untainted even ifeax is
tainted, due to the pointer arithmetic propagation rule. This is in-
correct becauseedx was assigned using integer arithmetic. False
negatives can be used to construct a successful attack. Continuing
our example,edx could be used in a register indirect jump, or even
stored into memory and executed, without causing a security excep-
tion. This vulnerability could enable an exploit to bypass DIFT’s
taint protetcion.

2.4 Validating Untrusted Input
The use of pointer arithmetic instructions does not imply that a
tainted index has been bounds checked or validated by the appli-
cation. Without proper validation, use of a tainted index can result
in complete application compromise. This is because the index,
derived from attacker-supplied untrusted input, may be an arbi-
trary value. Bounds checking and input validation restrict the in-
dex to safe values. Without this protection, combining the arbitrary
tainted index and an untainted base pointer will result in an arbi-
trary pointer to any memory address in the application’s address
space. If the arbitrary pointer is used as a code pointer, the attacker
can execute code at any address by varying the index to a value
of her choosing. This allows attacks such as return-into-libc [17],
which compromise an application by jumping into untainted code
in the C library. Similarly, if the pointer is used for data access, the
attacker can read or write to any address in memory. A number of
attacks, such as authentication flag corruption [5], hannibal GOT
overwrites [9], and conventional heap and stack overwrites [13],
can be performed once the attacker has arbitrary memory write ca-
pabilities.

Overall, tainted indices are unsafe; only bounds checks ensure
that their use does not compromise system security. However,
the pointer arithmetic propagation rule in DIFT does not track
bounds checking instructions. Instead, it optimistically assumes
that bounds checking is always performed before pointer arith-
metic. As a consequence, the burden of preventing these attacks
falls on the application, which must properly bounds check all
tainted operands before they are used in pointer arithmetic. This
significantly weakens DIFT’s protection against data pointer at-
tacks. To ensure that bounds checks are always correctly per-
formed, software would have to rely on compiler bounds check-
ing [23, 16]. Compiler bounds checking has high overhead, re-
quires source code access, and is often incompatible with legacy
code. Furthermore, an application with full bounds checking will



be completely protected from memory corruption bugs by the
bounds checks themselves and does not need the tainting support
of DIFT.

2.5 Potential Solutions
To avoid the problem described in Section 2.4, we recommend
untainting operands only in instructions used for input validation.
Such an untainting policy ensures that only values verified by the
application are marked as safe to use. The instructions chosen for
untainting will depend upon the bugs the architecture must pre-
vent, and how applications validate inputs to filter out these bugs.
To address the issues in Section 2.3 and reduce false positives and
negatives, the validation instructions should not be used for other
purposes. Furthermore, the architecture should ensure that the set
of validation instructions is not compiler-dependent. If the architec-
tural design is meant to be portable, validation instructions should
be selected to be simple and common to existing RISC and CISC
ISAs.

These principles for input validation can be found in both hardware
and software security systems. In the tainting architecture by Chen
et al discussed in Section 3, a tainted operand is untainted only if
it has been compared against an untainted value [4]. Comparison
instructions are the most common way to validate untrusted pointer
indices. Perl’s taint mode [22] also untaints only during an input
validation operation. Tainted Perl strings are untainted only when a
regular expression is applied. Perl assumes that the regular expres-
sion filters out any values that would violate the system security
policy, much like Chen et al. assume that a comparison instruction
detects any out of bounds values.

3. POINTER TAINTEDNESS DETECTION
Pointer taintedness detection (PTD)by Chen et al is a novel tainting
scheme to prevent memory corruption attacks [4]. Like DIFT, PTD
protects against both control pointer and data pointer attacks; how-
ever, PTD does not have an optimistic pointer arithmetic propaga-
tion rule. Instead, an operand is untainted only when it is compared
to an untainted value. This rule addresses the problems discussed
in Section 2.4 and provides superior memory corruption protection
by untainting an operand only when it is very likely that it has been
bounds checked by the application. Unlike DIFT, PTD does not
have a taint check for instruction execution. In all other respects,
the PTD check and taint propagation rules mirror the DIFT rules.
In this section, we describe weaknesses in PTD that allow mem-
ory corruption attacks to result in application compromise. Unless
otherwise noted, these attacks apply to DIFT as well.

3.1 Code Overwrite Attacks
PTD requires taint checks for load, store, and indirect branch ad-
dresses. However, code does not receive a taint check before being
executed. When code is mapped into a writeable memory seg-
ment, it can be overwritten with arbitrary instructions by an at-
tacker. Without proper taint checks, execution of this malicious
code will result in complete application compromise. Any applica-
tion with memory segments that are writeable and executable may
be attacked using code overwrites.

Unfortunately, there are real-world situations that require mem-
ory segments to be mapped writeable and executable for legiti-
mate reasons. For example, the SPARC Application Binary In-
terface requires the Procedure Linkage Table (PLT) to be mapped
both writeable and executable for all SPARC binaries [30]. The

PLT is a code segment used for dynamic linking in the ELF object
file format [31]. All procedure calls to dynamically resolved sym-
bols go through the PLT, whose code is updated by the dynamic
linker at runtime. We have successfully overwritten PLT code on
a Linux Sparc64 host. Compilers and language runtime environ-
ments may require executable data segments. For example, GCC
executes code on the stack when calling nested functions. Previous
versions of the Linux kernel (2.4 and below) required an executable
stack to return from signal handlers. Applications that dynamically
generate code, such as JIT compilers, interpreters, or virtual ma-
chines, often require an executable heap.

DIFT solves this issue by checking that an instruction is untainted
before allowing its execution. This prevents malicious code over-
writes while maintaining backwards compatibility with applica-
tions that legitimately need writeable (untainted) code segments.

3.2 Format String Vulnerabilities
Format string vulnerabilities are a recently discovered class of
memory corruption bug [19]. They occur when a variadic (variable
argument) C function is given untrusted input as its format string.
Due to lack of type safety in C, variadic functions cannot deter-
mine how many arguments were actually passed. The format string
can specify an arbitrary number of arguments, which can result in
application compromise.

Most format string vulnerabilities occur due to misuse of the
printf family of functions. These include functions such as
printf(),sprintf(), vfprintf(), andsyslog(). In a printf-style
function, the format string controls character output. Ordinary
characters in the format string are written to the output stream as-is,
while conversion specifiers (denoted by a leading ‘%’) format and
output printf arguments. Unfortunately, if there are more conver-
sion specifiers than actual arguments, printf will unwittingly obtain
its arguments from prior stack frames. For example,

printf("%x %x %x %x");

will print four words from the stack frame above printf.

We examine conventional format string attacks and how they are
prevented by DIFT and PTD. We then present a new attack that
succeeds on tainting architectures.

3.2.1 Format String Attack Overview
Conversion specifiers are used to output printf arguments in an ap-
propriate format. For example, the%x specifier treats the next ar-
gument as an unsigned integer, and writes it to the output stream
in hexadecimal form. If all conversion specifiers only output their
arguments, format string attacks would only be able to leak infor-
mation. Unfortunately, the specifier%n writes to its argument. On
a %n, the number of characters output so far is written to the ad-
dress specified by the next argument on the stack. Attackers can use
this feature to overwrite arbitrary memory addresses, such as those
containing code pointers, with attacker-chosen malicious values.

To choose the value written by%n, the attacker must control the
number of characters output by the tainted format string. Small
values can be easily manufactured using ordinary characters in the
format string. However, the vulnerable program might not allow a
format string containing thousands of characters. To overcome this
issue, conventional format string attacks use constant field widths



which determine the minimum number of characters that must be
output when writing a conversion specifier to the output stream.
For example,

printf("%101x");

will output the next argument on the stack as a hexadecimal integer,
padded with leading spaces to 101 characters. The attacker can
carefully choose field width values to output an arbitrary number
of characters without long format strings.

Still, to create a 32-bit pointer to the stack, one would have to out-
put a huge number of characters (billions), exceeding the practical
limits of printf functions. To circumvent this restriction, conven-
tional format string attacks use the halfword type modifier ‘h’. This
modifier can be used with the%n specifier to write only the least
significant halfword of the character output counter. The attacker
can then write any 32-bit value, even a program address, using two
16-bit writes. This allows truly large values, such as232 − 1, to be
written because the attacker must only ensure that the character out-
put counter modulo216 is the desired value when each 16-bit write
occurs. The maximum number of characters that must be output
to create an arbitrary 16-bit value is216 − 1, which is practical in
real-world situations.

Using these mechanisms, an attacker can write a chosen value to
an arbitrary, attacker-defined address. The attacker first embeds the
target address in the format string itself. Conversion specifiers such
as%x are used to traverse the stack until the next argument is the
attacker-supplied target address. Then a%hnis used to write to the
target address. After this, another value may be constructed, and
a second address written. Use of field widths will ensure that the
values written by%hnare determined by the attacker.

3.2.2 Attack Prevention with Pointer Tainting
Conventional format string attacks are prevented by DIFT and
PTD. In a conventional attack, both the value written and the ad-
dress written to are tainted. Internally, printf maintains a counter
to track the number of characters written so far. This counter is the
value written during a%n. The counter becomes tainted because
the field width is added to it, and the field width comes from tainted
format string. The target address is tainted because it is embedded
in the tainted format string. Hence, the attack will be prevented
when the target address is dereferenced. Both DIFT and PDT for-
bid tainted pointer dereferences.

3.2.3 Constructing an Arbitrary Untainted Value
A successful attack must write an untainted, arbitrary value to
an attacker-specified address. An untainted value may overwrite
security-critical data in memory, such as pointers and code, with-
out failing taint checks. Conventional attacks produce tainted val-
ues due to their use of constant field widths. However, the printf
family supports an alternative method for specifying widths. If a
conversion specifier uses a ‘*’ for its field width, printf interprets
the next argument on the stack as the field width. The argument is
then added to the character output counter to compute the number
of characters output so far. If the width argument is untainted, the
character output counter will remain untainted. Hence, the attacker
can construct arbitrary untainted values by using specially chosen
untainted width arguments.

A fortunate attacker may find the target value already in memory,
untainted. However, if the value is not present in memory, the at-

tacker must find a combination of untainted values that sum to the
target value. Each untainted value can be used as the field width
for a conversion specifier, and the total number of characters out-
put will be the sum of the untainted values. This approach is made
practical by a little-known printf feature, positional parameters. Po-
sitional parameters explicitly state the argument to be used for each
conversion specifier and field width. This allows arguments to be
used multiple times, and in any order. The attacker can freely
choose the values used for field widths, even re-using values an
arbitrary number of times. As an example,

printf("%17$*3$d");

will output the 17th argument as a decimal, with a field width speci-
fied by the third argument. Although not a part of the C99 standard,
positional parameters are included in the Single Unix Specifica-
tion [29] and supported by real-world C libraries such as the GNU
C Library.

By using positional parameters, we constructed a format string at-
tack that bypasses tainting checks by DIFT and PTD. We have suc-
cessfully exploited a vulnerable test program using only a few un-
tainted values. A summary of the attack is presented in Appendix
A.

3.2.4 Potential Solutions
Complete protection from format string attacks can be achieved by
performing a format string taint check whenever a function in the
printf family is called. The check would ensure that there are no
tainted bytes in the format string. Even attacks that do not rely
on memory corruption, such as format string information leaks [4],
would be prevented. Format string taint checks have been imple-
mented in software tainting systems [20]. Current hardware taint-
ing architectures are not flexible enough to efficiently support for-
mat string taint checks. PTD cannot intercept function calls, while
DIFT would require an exception (trapping to the operating system)
each time a monitored function was called.

Although format string checks provide superior protection, they
only protect functions known to be in the printf family. C is type-
less, and the architecture cannot automatically detect variadic func-
tions. Instead, programmers must specify which functions are vari-
adic. Any functions not included in the programmer-specified list
will not be protected. In contrast, data pointer taint checks protect
all variadic functions without requiring any annotation or human
assistance. We see these two techniques as complementary: for-
mat string taint checks provide complete protection from format
string attacks but apply only to known variadic functions, while
data pointer taint checks apply to all functions but provide incom-
plete protection.

3.3 Translation Tables
Applications often translate untrusted input from one format to an-
other. This may be done to change the input into a simpler, internal
format. For example, base64 strings may be decoded into bytes for
ease of manipulation. Typically, this translation is performed using
a translation table. The table serves as a statically-defined mapping
between source and destination encoding formats. Inputs are used
as indices into the translation table, and the value loaded from the
table index is the translation of the input.

Unfortunately, DIFT and PTD may label the translation table out-
put untainted, even when the table input is untrusted and further



validation is required. The value loaded from the table is still the
user input, albeit in a different format or encoding. However, the
table is a statically-defined translator whose values are untainted
and set by the application. For example, the table may contain a
mapping from ASCII to Unicode, or from the integer digits 0-9 to
their ASCII representations. Using a translation table only changes
the format of any untrusted input; no validation is performed. If the
table output is later used in an unsafe manner before being verified
or validated, no attack will be detected by PTD. The untainted ta-
ble output will pass any taint checks, and can be used to overwrite
pointers and code. The attacker’s input has been effectively white-
washed by using a translation table. The issue of translation tables
and their effect on tainting is briefly discussed in [28] and [9].

Real-world code uses translation tables in many different situations,
such as base64 encoding/decoding, string-to-integer (and reverse)
conversion, uuencode/uudecode, and URL/URI escape sequence
conversion. The GNU C library uses translation tables for popu-
lar functions such asatoi(),strtol(), sprintf(),toupper(), and
tolower(). Unfortunately, translation tables have also played a
role in many real-world vulnerabilities. For example, in a number
of critical vulnerabilities in Microsoft IIS [10, 6], untrusted URI-
encoded input was translated to Unicode using a translation table.
The table output was then used in an unsafe manner, resulting in
memory corruption and directory traversal vulnerabilities. Devas-
tating worms such as as Code Red [8] and NIMDA [7] exploited
these vulnerabilities. PTD would be unable to detect these exploits
because the attacks use the output of a translation table.

Memory corruption bugs due to translation tables cannot be thor-
oughly addressed with a better tainting algorithm. A translation
table access is indistinguishable from a normal scalar array access.
Both access types use a bounds checked index to access an un-
tainted value. The key difference is that the value loaded from the
translation table is a copy of the user input in a different format,
and may be used in a subsequent attack if the program has a se-
curity flaw. To solve this problem, programmers must be able to
specify that a data strucure is untrusted. The contents of a transla-
tion table that encodes or decodes tainted input should be tainted. If
the programmer can express this by annotating each translation ta-
ble as untrusted, then translation tables can be effectively protected
by a pointer tainting architecture. This does not require source code
access or recompilation; only the virtual address range of the un-
trusted data needs to be known. Legacy binaries may still work
with this technique, so long as the address of their translation table
can be found. An alternative tainting algorithm could propagate
taint on load and store addresses, so that any value loaded from a
tainted address or stored to a tainted address would become tainted.
However, this cannot be directly applied to tainting architectures
for memory corruption prevention, as these architectures do not al-
low tainted pointer dereferences. An architecture that supported
multiple concurrent tainting algorithms could track untrusted input
across translation tables while still protecting against memory cor-
ruption bugs.

4. RIFLE
Ensuring the confidentiality of sensitive data is a significant un-
solved problem. Current systems provide little assurance that data
confidentiality is maintained. Although access to data may be re-
stricted using access control systems, there is no way to track the
propagation or use of data once access has been granted. RIFLE
is an architectural framework designed to address this problem by
providing dynamicinformation flow security(IFS) [32]. In this

if (a == 0) b = 1;
elseb = 0;
// equivalent tob = !a

Figure 3: Implicit information flow.

section, we show that RIFLE is vulnerable to a runtime attack that
results in information leaks.

4.1 Overview
IFS policies consist of securitylabelsand legalflows. Security la-
bels are annotations associated with each storage location. Labels
are used to classify information, such as indicating its level of se-
crecy or type. For example, the labelfinancemight be attached to
data related to income taxes. We refer to the label of variablea as
a. Flows are label pairs that determine valid information flow. For
example, the flowl1 → l2 allows information to flow from labell1
to labell2. RIFLE augments program state (memory and registers)
with security labels, and propagates labels during program execu-
tion. The RIFLE hardware performs runtime checks to ensure that
no illegal flows occur.

To ensure data confidentiality, RIFLE must track all forms of in-
formation flow. Computation and data movement instructions have
explicit information flow. In these instructions, information propa-
gates from the source operands to the destination operand. RIFLE
tracks this information flow by assigning thejoin (⊕) of the source
operand labels to the destination operand label. The join of a set of
labels is the most permissive label that is at least as restrictive as its
operands. For example,a = b + c would result in the information
flow a = b⊕ c.

Unfortunately, not all instructions have only explicit information
flow. For example, information clearly flows betweena andb in
Figure 3. This is known as implicit information flow, and occurs
because explicit information flow only captures data dependences
and not control dependences. Implicit information flow is caused
by conditional branches. To track implicit information flow, RIFLE
instruments the assembly code of the program. A set of security
register operands are introduced to track the labels used in implicit
information flow. These registers are used as additional operands
when computing the information flow of any instructions depen-
dent upon the conditional branch. We indicate that an instruction
uses security register S[1] as an additional operand for information
flow by prefixing the instruction with<S[1]>. RIFLE transforms
conditional branches so that(R[1]) branch .L1 becomes

join S[c] = R[1], S[c]
<S[c] > (R[1]) branch .L1

The first instruction ensures that the security register is updated
with the current label of the branch condition register. Then the
branch, and any instructions control dependent upon the branch,
will use the security register as an additional operand when com-
puting information flow.

4.2 Bypassing RIFLE Instrumentation Code
Unfortunately, RIFLE incorrectly assumes that its inserted instruc-
tions cannot be bypassed at runtime. A malicious or accidental con-
trol flow transfer can jump directly to a branch instruction, bypass-
ing the join instructions inserted by RIFLE. As a consequence, the



join S[1] = S[1], R[1]
(R[1]) branch .L1

<S1> mov R[2] = 1
.L1: <S1> join S[3] = S[3], R[2]

. . .

Figure 4: Tracking implicit information flow in RIFLE.

branch may execute without updating the appropriate security reg-
ister, resulting in an information leak. Consider the branch instruc-
tion in Figure 4, taken from an example in the RIFLE paper [32].
If control is transferred to the branch at line 2, S[1] may not con-
tain the label of R[1] because line 1 is not executed. Without this
label, the implicit information flow between R[1] and R[2] will not
be tracked, causing an information leak.

This flaw may be exploited by a remote adversary, who will only
succeed if the branch condition’s label has not yet been added to
the security operand. The attacker must exploit a memory corrup-
tion vulnerability, and corrupt a code pointer so that it bypasses the
RIFLE guard instructions. More dangerously, an untrusted appli-
cation can use this attack to leak arbitrary amounts of sensitive in-
formation. To leak a sensitive variablex, the untrusted application
performs this attack beforex has been used as a branch condition.
Security operand registers only track implicit information flow. If
x has not been used as branch condition, it will not have been used
in any implicit information flow, and thus its label will not be con-
tained in any security operand.

This attack allows an untrusted application to leak an unbounded
amount of sensitive information, bypassing RIFLE’s protection
mechanisms. We do not require the host system, or RIFLE itself, to
be compromised in any way for this attack to succeed. The only re-
quirement is that the user run an untrusted application. This breaks
RIFLE’s protection model, as RIFLE is intended to prevent un-
trusted applications from leaking information.

4.3 Solutions
To solve this issue, control flow must be restricted so that the in-
structions inserted by RIFLE may not be bypassed. Software tech-
niques such as dynamic binary translation [3, 18] can ensure that
no instrumented code is bypassed at runtime. However, binary
translation incurs its own performance, memory, and compatibility
costs. A hardware solution would need to prevent direct or indi-
rect jumps to marked instructions (in this case, branches). This is
similar to iWatcher [34], which monitors reads and writes to speci-
fied words in memory. A hardware-based approach would maintain
backwards compatibility with existing legacy code and incur no
performance overhead unless a program tried to violate RIFLE’s
IFS policy.

5. INFOSHIELD
Another way to provide data confidentiality is to restrict sensitive
information access to the block of trusted code that currently re-
quires it. The trusted code block then authorizes the next block
of trusted code that will require access, forming a chain of trusted
code for sensitive information management. This concept is known
as information usage safety, and is provided by the InfoShield ar-
chitecture [24]. In this section, we show that InfoShield is vulnera-
ble to runtime attacks that result in information leaks.

5.1 Overview

Address Code

0xC000 mov r2, 0xD020 ; prepare next valid PC block
0xC004 mov r3, 0xD0A0 ; big switch statement ...
0xC008 ld r1, [r7] ; secure read key val
0xC00C sas r0, r2, r3 ; slide the protection window

Figure 5: InfoShield trusted code block.

InfoShield protects sensitive information using a Security-aware
Register (SR) hardware table. Each entry in the SR table specifies
a piece of sensitive data and a trusted code block that may access
that data. The sensitive data and code blocks are given as virtual
address ranges. Only instructions in the trusted code block may
access the sensitive data or specify the next trusted code block for
that data. Data access occurs with ordinary loads and stores, while
the next trusted code block is specified using the Secure Address
Shift (SAS) instruction. By restricting sensitive information access
to trusted code, InfoShield prevents buggy or malicious untrusted
application code from causing information leaks.

5.2 Inserting Arbitrary Trusted Code Blocks
Unfortunately, this scheme is vulnerable to runtime attacks.
InfoShield restricts sensitive data access to trusted code blocks, but
does not prevent an adversary from jumping to an arbitrary instruc-
tion inside the code block itself. A crafty attacker will set the regis-
ters to carefully chosen values and jump into the middle of a trusted
code block. The trusted code will then use the attacker-crafted val-
ues, assuming that they were set by previous instructions within
the block. For example, the attacker can set appropriate registers
to the upper and lower bounds of an untrusted block of code, and
jump into the SAS instruction inside the trusted code block. This
instruction will set the attacker-specified address range to be the
next trusted code block for the sensitive data. This untrusted code
can then leak information at will. The attacker can also make the
entire program one large trusted code block, and then return control
to printing or I/O routines to disclose sensitive information.

For example, consider the trusted code block in Figure 5, taken
from an example in the InfoShield paper [24]. An attacker can leak
information by jumping to address0xC00C with registers r2 and
r3 set to the bounds of a malicious or untrusted code block. When
control is later transferred to this attacker-chosen code, InfoShield
will allow access to sensitive data, which will then be leaked to the
attacker.

This attack can be performed on any application with a memory
corruption vulnerability that overwrites code pointers. The attacker
uses the overwritten code pointer to transfer control to the middle
of a trusted code block. We do not require trusted code to be vul-
nerable; only the untrusted code must have a memory corruption
flaw. This breaks the InfoShield protection model, as InfoShield is
intended to protect sensitive information from access by buggy or
insecure untrusted code.

5.3 Solutions
To prevent this attack, InfoShield must ensure that trusted code
blocks may only be entered at their designated entry point. Fur-
thermore, any storage locations relied upon by trusted code must
be protected from accidental or malicious access by untrusted code.
Without this protection, the attacker may overwrite values in mem-
ory or on the stack that are relied upon by trusted code blocks,
but not marked sensitive. Techniques from software fault isolation



can be used to ensure the integrity of data relied upon by trusted
code [25, 15, 33].

6. CONCLUSIONS AND FUTURE DIREC-
TIONS

This paper analyzes four different hardware architectures for sys-
tems security. We examine two tainting architectures for memory
corruption prevention, and present novel attacks that can circum-
vent their protection mechanisms. We also examine two architec-
tures for information leak prevention, and present attacks that can
leak arbitrary amounts of information. Solutions and mitigation
strategies are described for all four designs.

We believe this paper demonstrates a need for increased flexibil-
ity in the implementation of information flow policies. Current ar-
chitectures such as PTD and RIFLE have static, inflexible policies
tailored to a specific bug or vulnerability. Many of the attacks pre-
sented in this paper can be prevented by using a more flexible pol-
icy. For example, if RIFLE could check the tag of a branch desti-
nation, our attack bypassing guard instructions could be prevented.
Similarly, if PTD could check for tainted format strings when a
printf-style function is called, our format string attack would be
unsuccessful.

Furthermore, a more flexible policy can be used to protect against
additional classes of bugs. For example, Web vulnerabilities such
as SQL injection and directory traversal can be prevented using
tainting [14, 12]. However, current tainting architectures lack the
flexbility needed to express the taint check and propagate rules for
these bugs. Rather than rely on per-problem, fixed solutions, an
architecture should provide a flexible policy for information checks
and propagation.
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APPENDIX
A. NEW FORMAT STRING ATTACK
The goal of our format string attack is to write an arbitrary un-
tainted value to an arbitrary target address. We cannot embed the
target address in the format string, as this would be detected by
current tainting architectures. If the address to be written to is al-
ready on the stack and untainted, we may write to this address using
a positional parameter with the%n (or %hn) conversion specifier.
Otherwise, we must use existing untainted pointers, and place our
target address in memory.

To write an arbitrary valuev to an arbitrary addressa, whena is
not present in memory, we perform the following operations:

1. Locate two pairs of pointers, p1 and p2, such that the pointers
within each pair reference adjacent halfwords in memory.

2. Write addressa one halfword at a time to the adjacent half-
words pointed to by p1.

3. Write addressa + 2 one halfword at a time to the adjacent
halfwords pointed to by p2.

4. Write the most (or least if little-endian) significant halfword
of valuev to addressa, whose value we placed in memory in
step 2.

5. Write the least (or most if little-endian) significant halfword
of valuev to addressa+2, whose value we placed in memory
in step 3.

In this attack, all values are constructed using the techniques out-
lined in Section 3.2.3, and all writes are performed using%hn. We
require pointers to the least and most significant halfwords of our
write destinations because%hnwrites only one halfword; two half-
word writes are required to store a 32-bit value in memory.

A local attacker can always satisfy the requirement for this attack:
that there must be two pairs of pointers such that each pair refer-
ences adjacent halfwords in memory. This can be done by exe-
cuting a program with four environment variables of length1 ap-
propriately placed in memory. Each attacker-crafted environment
variable will be stored in one halfword, consisting of a single char-
acter and the string null terminator. The attacker can ensure that
the variables are adjacent in memory. The four (untainted) envi-
ronment pointers to these variables will serve as our two pointer
pairs. On Unix-based systems, the user always determines the en-
vironment, even for setuid or privileged programs. This is because
all Unix program are executed using theexecve system call, which

takes the program arguments and environment from the user. Con-
sequently, a local attacker can create an environment to ensure the
success of this format string attack.

Once the pointer pair has been located, we write pointers to the
most and least significant halfwords of the target addressa to the
pointer pairs. This places our target address in memory, where we
can now write to it using%hn. We write our desired valuev in
halfword-sized chunks toa anda + 2. When this is complete, we
have successfully written an arbitrary value to an arbitrary memory
address without violating any taint checks. We have confirmed that
this attack works on a synthetic test program. Unfortunately, we
have not yet been able to run our test cases on the DIFT or PTD
architectures. However, we have confirmed that our technique will
not produce tainted values, or write to tainted addresses, by manual
inspection of the GNU C Library source code.

As an implementation-dependent caveat, theprintf() implemen-
tation in the GNU C Library reads all positional parameters before
performing any writes to memory. Due to this quirk, the attack
must be broken up across two printf statements, with the first printf
executing steps 1-3 and the second executing steps 4-5. If this is
unacceptable, it is theoretically possible to implement this class of
format string attack without using positional parameters, in which
case steps 1-5 could all be placed in the same format string.


