
Defeating Buffer-Overflow Prevention Hardware
Krerk Piromsopa

Department of Computer Science and Engineering,
Michigan State University,

East Lansing, MI 48824 USA
1-517-353-3148

piromsop@cse.msu.edu

Richard J. Enbody
Department of Computer Science and Engineering,

Michigan State University
East Lansing, MI 48823 USA

1-517-353-3148

enbody@cse.msu.edu

ABSTRACT
Buffer overflow attacks persist in spite of advances in software
engineering. Numerous prevention schemes in software have
been developed over the years, but so have techniques to
circumvent them. Recently, improved schemes have appeared
which are entirely in hardware or require hardware modifications
to support them. In this paper we describe how to defeat or
circumvent these improved mechanisms. Included are well-known
attacks such as the Hannibal attack (a multistage buffer-overflow
attack) as well as a new attack which we call the "arbitrary copy"
attack—an attack specifically designed to defeat the hardware
approaches. To aid the reader, the hardware prevention
mechanisms will be described.

Categories and Subject Descriptors

K.6.5 [Management of Computing and Information Systems]:
Security and Protection – invasive software, physical security,
unauthorized access

General Terms
Management, Reliability, Security, Theory

Keywords
Buffer overflow, Buffer-Overflow Attacks, Computer security,
Intrusion Detection, Intrusion Prevention

1. INTRODUCTION
In this paper, we will present two types of buffer-overflow attacks
that are able to bypass most buffer-overflow protection
mechanisms, especially hardware mechanisms which are the most
effective. We refer to these attacks as “multistage buffer-overflow
attack”[4], and “arbitrary copy”. The multistage attack is an
attack that allows attackers to create an arbitrary pointer and
modify any data it points to. Arbitrary copy is an attack on two
data pointers that allows an attacker to copy data from one
arbitrary location to another arbitrary location. Either attack can
result in a serious compromise of a system.

The goal of this paper is to provide a rudimentary understanding
of the current state-of-the-art solutions against buffer-overflow
attacks (the best are hardware mechanisms) and then show how to
circumvent these mechanisms. We begin by examining the the
attacks and their potential threat. Then we look at current
protection schemes and the impact of the attacks on them.

2. BACKGROUND
This section begins by reviewing the characteristics of buffer-
overflow vulnerabilities and attacks. Later we briefly analyze
current solutions against buffer-overflow attacks. In particular, we
will focus on a promising scheme, namely input protection.

2.1 Buffer-Overflow Attacks
Although, they date back to the infamous MORRIS worm of 1988
[24], buffer-overflow attacks remain the most common. Though
skilled programmers should write code without buffer overflows,
no program is guaranteed free from bugs so it cannot be
considered completely secure against buffer-overflow attacks.
The persistence of buffer-overflow vulnerabilities speaks to the
difficulty of eliminating them. In addition, as buffer overflow
vulnerabilities are eliminated in operating systems, they are being
found and exploited in applications. When applications are run
with root or administrator privileges the impact of a buffer
overflow is equally devastating.

In an effort to avoid relying on individual programming skill, a
number of researchers have proposed a variety of methods to
protect systems from buffer-overflow attacks. Most of them are
not able to provide complete protection. For example, some only
prevent the original stack-smashing attack, so they can be
circumvented by more recent attacks.

Buffer-overflow attacks occur when a malformed input is being
used to overflow a buffer causing a malicious or unexpected
result. Some metadata is necessary for prevention [11].

There are two main targets of buffer-overflow attacks: control
data and local variables. In the vast majority of attacks, control
data is the target so prevention schemes have focused on control
data. Control data can be divided into several types: return
addresses, function pointers, and branch slots. Return addresses
have been the primary target since their location can easily be
guessed. More advanced buffer-overflow attacks target other
control data. Some literature refers to attacks on return addresses
as first-generation attacks, and those on function pointers as
second-generation attacks [3].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
WDDD’06, June 18, 2006, Boston, MA., USA.
Copyright 2006 ACM 1-58113-000-0/00/0004…$5.00.

3. MULTISTAGE BUFFER-OVERFLOW
ATTACK
Multistage buffer-overflow attack (a.k.a. Hannibal Exploit [4])
refers to a type of attack that requires several steps of buffer
overflow. This type of attack is able to bypass most protection
schemes such as Address Protection, Bounds checking, and
Obfuscation. Fundamental to a multistage buffer-overflow attack
is that there exists a vulnerable pointer to a buffer. That is, there
is a user-writeable buffer sufficiently near a useful pointer. First,
the pointer is modified (by overflowing) to point to a specific
location (e.g. a jump slot or a function pointer). In the second
stage of the attack, an input is stored at the pointer’s target. These
two steps allow attackers to create a pointer to any location (first
stage) and overwrite the pointer’s target with a desired value
(second stage). The next time some program jumps to that target,
it will be redirected based on the value inserted by the attacker. In
particular the program will be redirected to the attacker’s
malicious code. For example, if the program is running in
privileged mode and the pointer points to shell code, the attacker
will have created a privileged shell allowing free reign. Figure 1
is an example of such a vulnerable program.

Before examining the code, let’s review how a jump table is used.
Consider the slot in the table for the pointer to the printf
executable. A call to printf indexes to that slot in the table and
then jumps to the printf executable. To attack this type of
program, the buffer-overflow is done in two stages (Figure 1).
First, the ptr pointer is overflowed to point to a desired memory
location (1), e.g. the printf slot in the jump table. In particular,
argv[1] controlled by the attacker will contain the address of the
printf slot in the jump table. The strcpy routine will copy argv[1]
into buffer, but overflows to overwrite ptr with the printf address
slot. In the figure, we see that the pointer ptr originally pointed to
‘buffer’ (arc labeled ‘Before’) but now points to the jump slot (arc
labeled ‘After'). Now that ptr points to the printf slot in the jump
table, we need to insert a desired value into that slot. Suppose, for
illustration, that we also have determined the address of resident

shell code (we’ll call it residentcode). Using our modified ptr we
will overwrite the jump table slot with the residentcode address.
We use the second strcpy call (2) to write argv[2] (also controlled
by the attacker and whose value is residentcode) into the target of
ptr which now points to the printf entry in the jump table. The
result of that second strcpy call is that we have placed the address
residentcode (resident shell code) into the printf slot of the jump
table. The attacker has achieved his goal. Now when a program
calls printf, control passes as usual to the printf entry in the jump
table, but now the attacker has redirected control to residentcode,
the address of the shell code. Instead of printf a shell will be
started. If the program which called printf was operating in
privileged mode, the attacker will have succeeded in creating a
privileged shell with full system access.

The Multistage attack seems convoluted, but it is the technique
used by the infamous Slapper [31] worm. Most protection
techniques focus on protecting the stack, the return address on the
stack, or the heap. Neither the stack nor the heap is involved in
this attack so all those techniques were ineffective against the
Slapper worm.

Less obvious is that we can use a similar approach to circumvent
some software solutions to buffer-overflow attacks by modifying
a handling vector which can allow us to bypass the buffer-
overflow handling routine.

4. ARBITRARY COPY ATTACK
There exists an arbitrary copy primitive which may allow
attackers to modify control flow without using external control
data. This type of attack is more advanced in that it can bypass
protection schemes which can catch the multistage attack
described above. Using strcpy one can construct a vulnerable
routine such that using a buffer-overflow to modify source and
destination pointers, an attacker can arbitrarily copy any data
from one location to another. This technique allows an existing
piece of control data to overwrite another piece of control data.
The result is control flow other than what the original programmer

Figure 1 Multistage Buffer-Overflow Attacks

intended. Necessary conditions for the success of this type of
attack are:

• A vulnerable copy function such that a user can modify
both arguments (source and destination pointers)
(possibly using buffer-overflow attacks) as exemplified
in Figure 2.

• The (useful) control data is stored in the local memory
area.

char *src,*dest;
char buff[10];

gets(buff);
...
strcpy(src,dest);

Figure 2. Vulnerable code for arbitrary copy attack

Both of these conditions must be true. If one fails, the attack fails.
Though the first condition could be satisfied in any arbitrarily
program, the code generated by the compiler could render the
attack impossible. For example, any level of optimization should
use registers for storing the source and destination variables. If
either or both are in registers, a buffer-overflow to modify both
variables will fail. We will analyze the possible cases where both
conditions concurrently occur later.

4.1 Example
To ease understanding, Figure 3 presents a sample case of an
attack on non-control data where the vulnerability might be
applicable.

In this example, main calls function “a” which then calls the
vulnerable function “b”. Within “b” the user inputs buff which can
overflow to both overwrite *src to point to the return address of a
previous call (e.g. "a()") and overwrite *dest to point to the target
address (e.g. return address of “b()” or “main()”). Note that this
overflow is possible only if all optimization is turned off so that
neither src nor dest is in a register. Under these circumstances it is
possible to change the control flow without replacing control data
with external data—only internal data is used. Note that the
damage in this example is to create an infinite loop or crash the
program, effectively a denial of service to the process.

While most internal data targets will be benign, one can imagine
malicious possibilities. For example, if for some reason a
programmer created a function pointer to shell and had both a
vulnerable copy routine and no optimization; one could copy that
shell pointer elsewhere to allow a shell call someplace different
than the programmer intended. Note that the desired privileged-
elevated shell is not possible with this attack because the best
buffer-overflow prevention schemes will prevent privilege-
elevation attacks. Alternatively, (again with a vulnerable copy
routine and no optimization) if one had function pointers to both
an authorization “accept” function and a “reject” function one
might be able to redirect program flow to subvert an authorization
routine to the “accept” function when the “reject” function was
expected. Figure 4 shows a possible scenario.

int b() {
 char *src,*dest;
 char buff[10];
 printf("Input string:.\n");
// Overflow *src, *dest
 gets(buff);
// Copy src to dest
 strcpy(src,dest);
}

int a() {
 …
 b();
 …
}

int main (int argc,char *argv[])
{
 a();
}
Figure 3 Sample Buffer-Overflow attacks on non-control data

Figure 4 a possible scenario

4.2 Issues
Consider the second condition of arbitrary copy: the presence of a
useful address in local memory. We know that input protection
mechanisms prevent the use of input as control data, thus only
purely local data that is not derived from input is a potential
threat. One’s first thought might be that any function call could
provide an address of that function. However, because of
relocation, local calls use relative addresses which cannot be used
for this attack. Other sources of control targets such as jumps are
also relative addresses and not useful. Given this observation,
potential sources of addresses are narrowed to the presence of a
shared library or a function pointer.

src

dest

Global Offset Table

Entry Address
accept() 0xAAAAAA
reject() 0xAAAAAA

main() {

 …

 vulnerable();

 …

if (valid)

 accept();

else

 reject();

}

Shared library. In the case of shared libraries (the function is
located in the shared library), a call to the function means there
exists a useful entry in the Global Offset Table (GOT).

Function Pointer. The assignment of a function address to a
function pointer (frequently found in C++) would create a pointer
available for reuse.

If a useful address is stored as an entry in the GOT or a function
pointer, the buffer-overflow described above can be used to
replace a target address with this address. Target address might be
return addresses, function pointers, or an entry in GOT itself.

The probability that all conditions are applicable is considered to
be low. In fact, some researchers [4] do not believe that it will be
a problem or suggest that encoding addresses in GOT should be
sufficient for preventing the attack. However, that prevention
might not be able to protect some function pointers in C++.

We have to eliminate at least one critical condition. There are
three possible methods.

• Prevent a raw address from being stored directly in the
program.

• Secure the target address from being modified (e.g.
GOT and function pointers).

• Validate that both the source and destination pointer
have not been maliciously modified.

Rather than storing an address directly into the GOT table or
function pointer, we may choose to store an encoded version of an
address or store a relative address. Even a trivial encoding such as
XOR (like PointGuard [7]) with some constant would be
sufficient. However, this approach does not prevent a copy
between locations that share the same encoding scheme or key
used to encrypt the address (e.g. between function pointers or
entries in the GOT). Note that PointGuard [7] can be used to
reduce the probability of overwriting source and destination
pointers. However, if the key and algorithm can be circumvented,
it is possible to overwrite it with a valid copy. In fact, we may be
able to overflow the value (e.g. index) that is used for pointer
arithmetic rather than modifying the pointer directly.

Rather than making the useful address useless, we can protect the
target from being modified. In the case of GOT, we can protect
the GOT from being a target by declaring it as read only after the
shared library is configured. Nonetheless, we cannot apply the
same idea to protect function pointers or return addresses in
general.

Alternatively, we can validate (assert) the source and destination
pointers before running the “strcpy(..)” function. If the source and

destination pointers can be validated, the attack can be prevented.
However, a false alarm may be generated when a pointer is the
arithmetic result of input.

5. CURRENT PROTECTION SCHEMES
Current approaches against buffer-overflow attacks include both
software and hardware techniques and can be partitioned into
three broad categories: static analysis, dynamic solutions, and
isolation. We focus on the hardware mechanisms, but mention the
software solutions for completeness. Static analysis is a software
methodology which tries to fix functions that are vulnerable to
buffer-overflow attacks. Dynamic approaches can be entirely in
software, entirely in hardware or some combination. Dynamic
techniques monitor or protect data that is either a target or the
source of buffer-overflow attacks. Isolation seeks to limit the
damage of attacks and attempts a broader protection than simply
buffer overflow. The best-known isolation techniques are in
hardware. To ease understanding, Figure 5 shows taxonomy of
protection schemes. We will base our discussion on this
classification.

The main idea of “Static analysis” is to find and solve the
problem before deploying a program. To do so, we first analyze
the source code or disassembly of the program by looking for
code with a predefined signature. Examples of tools in this
category are: ITS4 [29], FlawFinder [9], RATS [25], and STOBO
[12]

Isolation schemes isolate the attacker either to eliminate an attack
vector or to contain damage after a successful attack. Preventing
the execution of code in stack memory isolates the stack from the
attacker. Alternatively, limiting the memory of a process can
isolate a compromised process. Non-executable memory is an
example of the former while sandboxing is an example of the
latter. Examples include AMD NX [17], non-executable stack
[27], SPEF [16], and sandboxing.

Knowing which data are critical to attacks, we can prevent attacks
by validating the integrity of that data. As mentioned above, the
data of interest are control data such as (but not limited to) return
addresses. We name these “Dynamic Solutions” because data are
dynamically managed and verified in the run-time environment.
The most effective prevention mechanisms fall in this category.

In a survey of buffer-overflow protection [23], it was suggested
that metadata is necessary for validating the integrity of data.
While the assumptions of critical data and the methods for storing
and validating metadata vary from one solution to another,
dynamic solutions can be classified into four groups:

Figure 5 Taxonomy of protection schemes

• Address Protection
• Input Protection
• Bounds Checking
• Obfuscation

5.1.1 Address Protection
The address protection schemes share the assumption that
addresses (e.g. return address) are critical data and must be
tagged. In these schemes the metadata is created by functions that
create the address (e.g. call instruction), and verified by the many
instructions that use the address (e.g. return instruction). The
schemes within this group are differentiated by the types of
metadata they use (e.g. software managed and hardware
supported. Methods with hardware supported metadata are
StackGuard [6], ProPolice [8], StackGhost [10], RAS [18], [43],
[44], SmashGuard [45], SCACHE [14], Split Stack [43], and
Hardware Supported PointGuard [26],.

5.1.2 Input Protection
The input protection schemes are all in hardware and are the most
promising. These schemes assume that external data are
untrustworthy and should not be used as internal control data. The
underlining concept is that “All input is evil until proven
otherwise” [13]. In most cases, metadata are tightly coupled to the
data in hardware (e.g. tagged memory). Data from external
sources are tagged so it can be recognized, if there is an attempt to
use it as control data. The schemes in this group differ in the
management of metadata.

The underlying assumption is that that input data should be
treated differently from local data, and should not be used as
control data. Four methods Minos [4], [5], Tainted Pointer [2],
Dynamic Flow Tracking [28], Dynamic Tainted Analysis [19],
and Secure Bit [22] share the same assumption, but different
implementations. Minos views data across segments as input.
Tainted Pointer considers data passed from the operating system
as input. Dynamic Flow Tracking relies on operating systems for
marking input. Finally, Secure Bit treats data passing between
processes through the kernel as input.

Tainted Pointer additionally tried to prevent input from being
used as a pointer. However, input is sometimes used as a part of
pointer arithmetic (e.g. indexing) so protecting pointers can lead
this scheme to break many programs.
Secure Bit protects a process from external control data, but does
not prevent buffer-overflow attacks on non-control data. That
raises the question: can an attacker use a buffer-overflow attack
on non-control data to manipulate local control data to modify
control flow?

5.1.3 Bounds Checking
Rather than tagging data, bounds checking schemes explicitly
bound buffers to prevent overflow. In this case, the metadata is
associated with every block of allocated data and is used to bound
accesses. A classic hardware approach uses segmentation, but the
granularity of the hardware usually isn’t sufficiently fine grained
(e.g. a function pointer within a data structure)—a notable
exception is the i432 [30]. Array Bounds Checking [15] can be
done entirely (and with some cost) in software or can be done
with hardware support. Type-safe programming languages are
examples of entirely software approaches.

5.1.4 Obfuscation
Instead of protecting the data directly, obfuscation schemes
reorganize memory to obscure memory, making malicious
manipulation of memory through buffer overflows more difficult.
These schemes assume that attackers rely on a certain snapshot of
addresses to overflow the critical data. If the snapshot is random
or difficult to guess, an attack is more difficult. Being a software
approach, it is easy to deploy. However, this scheme, unlike some
hardware approaches, is vulnerable to brute force. Address
Obfuscation [1] and ASLR [20] are good examples.

6. HARDWARE PROTECTION
Up to this point, we have covered the wide variety of protection
schemes and the range of buffer-overflow attacks. In this section,
we will individually analyze each hardware protection scheme.
Based on our taxonomy, contemporary hardware solutions lie in
four categories: isolation, address protection, bounds checking
and input protection. We will briefly show the weakness of each
one.

6.1 Isolation
Isolation schemes isolate the attacker either to eliminate an attack
vector or to contain damage after a successful attack. Preventing
the execution of code in stack memory isolates the stack from the
attacker. Alternatively, limiting the memory of a process can
isolate a compromised process. NX non-executable memory is an
example of the former while sandboxing is an example of the
latter.

Neither multistage buffer-overflow attacks nor arbitrary copy
attacks require injection of code so they will work in the face of
isolation schemes. In fact, many simpler attacks work.

Non-Executable Memory
Many non-X86 processors such as SPARC support non-
executable memory, and AMD has recently added a similar
feature named “NX” [17]. Non-executable memory prevents code
in the buffer on the stack from being executed, effectively
protecting against a class of buffer overflow attacks that executes
code in the buffer on the stack. However, the integrity of the
return address is not protected—leaving the system vulnerable to
attacks using the address of either a resident shell or code in the
heap. In certain cases, such as a signal handler return on Linux,
the system requires an executable stack in order to function
properly. Moreover, any LISP-like functional language requires
an executable stack in their normal operation (a.k.a. trampoline).
As a result, this method only protects against a narrow range of
attacks.

Secure Code Installation
Instead of protecting the data, a Secure Program Execution
Framework [16] (SPEF) aims at making a system difficult to
inject malicious code. SPEF is a platform that consists of
hardware mechanisms and compilation tools. The installation of a
program requires both encryption and transformation. As a result,
injecting the malicious code is not simple and requires a special
process. This method prevents the injection of malicious code.
Nonetheless, we have shown that it is possible to overflow the
buffer and modify the return address or the function pointer to

point to a known address without injecting any code. Similar
methods include [32] and instruction-set randomization [33]

Sandboxing
Sandboxing is a policy-enforcement mechanism. Since buffer-
overflow occurs when information is passed from one domain to
another domain, sandboxing a process intuitively cannot prevent
such attacks. With appropriate policy rules, it is, however,
possible to limit the damage of buffer-overflow attacks.
Sandboxing can be done at several levels: kernel level [34], user
level [35], or even hardware-supported sandboxing (e.g. Intel
LaGrande [36], TCPA [37], [38], TrustZone [38], Microsoft
NGSCB [39], ChipLock [40], Bear [41].) Like tagged memory,
there exists a very fine-grained approach to memory management
(e.g. MMP [42]), but such approaches can be successful for
buffer-overflow protection only if a perfect combination of a
security policy and an implementation exists. We believe that it
is complementary to other techniques rather than a replacement.

6.2 Hardware Enhanced Address Protection
There are three types of hardware enhanced address protection
schemes: Address Encoding, Copy of Address and Tags.

PointGuard [7] and Hardware Supported PointGuard [26] are
good example of Address Encoding. They use a pre-defined key
to encode every pointer before storing in memory and decode it
before dereferencing. Ignoring the performance and compatibility
issue, it is still possible to modify data using pointer arithmetic
without overflowing the pointer (e.g. overflowing a variable i
would allow us to create an arbitrary pointer if there is code such
as “ptr = ptr+i”). Hence, a naïve arbitrary copy should be able to
bypass this type of protection.

StackGhost [10], RAS [18], [43], [44], SmashGuard [45],
SCACHE [14], and Split Stack [43] use a hardware redundant
copy of a return address (such as cache memory, register window,
return address stack, or hardware stack) for validating the return
address. Ignoring the dynamic update of return address (e.g. non-
LIFO control flow [21]), this mechanism only prevents the simple
stack smashing attack. In fact, there exists an attack that modifies
the exception pointer and totally bypasses the protection
mechanism by bypassing the handling routine.

Here, we will present the concepts embedded in the IBM
System/38 [46] as a representative of protection against buffer-
overflow attacks provided by tagged architectures. In general, a
hardware bit is used to indicate a type of data. On creation of a
return address a call instruction sets the tag of a return address.
Similarly with a function pointer, a special instruction sets the tag
of a function pointer. Control instructions validate the tag bit
before using it as a control address. Though return addresses and
function pointers cannot be overflowed directly, an arbitrary copy
is sufficient for bypassing this mechanism since no function
pointer is being created—only an existing pointer is used.

6.3 Bounds Checking
Limited hardware protection has existed in various processors for
many years, e.g. segmentation. Segmentation is primarily used as
a mechanism to support the relocation of memory. In the early
implementation of segmentation, a base register was required for
each memory access. IA-32 and I432 [30] also adopted the idea

and associated segmentation with base address, boundary check,
and rings. By explicitly declaring and associating every buffer
with a base and boundary, segmentation can protect against
buffer-overflow attacks. A drawback of segmentation is the extra
storage for storing segment descriptors. In IA-32, every memory
access (in protected mode) requires a base and limit. However,
most operating systems (e.g. Windows and Linux) bypass
segmentation by setting one large segment for all memory in
order to maintain portability and gain better performance. I432
was a CISC architecture that was designed with security
awareness. Based on the paradigm of the ADA programming
language, it checked every data boundary and forced every
function call to create a new domain (segment). Since I432
instructions are bit encoded, ranging from six to 321 bits,
computation took 10 to 20 times as long as the contemporary
VAX 11/780 [47]. Consequently, I432 was a commercial failure.
A similar concept can also apply to a function pointer. For
example, one of the 1960s architecture, ICL 2900 series systems
[48], had a native hardware 'pointer' type (a.k.a. descriptor) that
included in it the size of the object pointed to. The hardware
would check that any dereferences were not out of bounds.
Bounds checking could prevent both attacks we present, but the
commercial market has decided that a bounds check of every
reference carries too much overhead.

6.4 Input Protection
Some methods assume that input data should be treated
differently from local data. As a result, a bit is used for tracking
the data passing across domains and preventing it from being used
as control data. Examples include Secure Bit [22], Minos [4], [5],
Tainted Pointer [2], and Dynamic Flow Tracking [28]. Since the
malicious nature of buffer overflow attacks includes the
modification of control data using input, this concept is able to
protect against a large class of buffer-overflow attacks. A
reasonable argument can be made that this type of approach
currently provides the best protection against buffer-overflow
attacks. For example, the address in the table of the multistage
attack can be protected using input protection (but not all the
implementations achieve that). However, arbitrary copy escapes
handling because no input is being used as control data.

7. POINTER PROTECTION
Arbitrary Copy shows that viable attacks can occur by
manipulating pointers which are not used (directly) for control so
it is critical that pointers must also be protected from overflow.
Unlike control data, pointers can be arbitrarily derived from input
(a good example is array indexing). While input protection is
shown to be useful for protecting buffer-overflow attacks on
control data, we cannot apply the same concept directly to protect
pointers. Differentiating between “good” and “bad” use of
pointers is not possible without input from the user or compiler.

8. CONCLUSION
Hardware buffer-overflow protection provides greater protection
than existing software schemes. In addition, the hardware
mechanisms themselves are more difficult to attack. However,
holes in the defense remain. In this paper we presented two
attacks which even the new hardware schemes cannot prevent
(some prevent one, but most prevent neither).

9. REFERENCES
[1] BHATKAR, S., DUVARNEY, D. C., AND SEKAR, R.

2003. Address Obfuscation: an Efficient Approach to
Combat a Broad Range of Memory Error Exploits. In Proc.
of the 12th USENIX Security Symposium.

[2] CHEN, S., XU, J., NAKKA, N., KALBARCZYK, Z., IYER,
R. K. 2005. Defeating Memory Corruption Attacks via
Pointer Taintedness Detection, in Proc. Of IEEE
International Conf. on Dependable Systems and Networks
(DSN), Yokohama, Japan, June 28 - July 1, 2005

[3] CHIEN, E. AND SZÖR, P. 2002. Blended Attacks Exploits,
Vulnerabilities and Buffer-Overflow Techniques in
Computer Viruses. In Proc. of Virus Bulletin Conf.

[4] CRANDALL, J.R. AND CHONG. F.T. 2004. Minos:
Control Data Attack Prevention Orthogonal to Memory
Model. Intl. Sym. on Microarchitecture.

[5] CRANDALL, J.R. AND CHONG. F.T. 2005. A Security
Assessment of the Minos Architecture. ACM SIGARCH, Vol
33. No. 1

[6] COWAN, C., BEATTIE, S., DAY, R. F., PU, C., WAGLE,
P., AND WALTHINSEN, E. 1999. Protecting Systems from
Stack Smashing Attacks with StackGuard. the Linux Expo,
Raleigh, NC

[7] COWAN, C., BEATTIE, S., JOHANSEN J., AND WAGLE,
P. 2003. PointGuard: Protecting Pointers From Buffer
Overflow Vulnerabilities. In Proc. of the 12th USENIX
Security Symposium.

[8] ETOH, J. 2000. GCC extension for protecting applications
from stack-smashing attacks. IBM

[9] Flawfinder, http://www.dwheeler.com/flawfinder/
[10] FRANTZEN, M.S. M. 2000. StackGhost: Hardware

facilitated stack protection. In Proc. of the 10th USENIX
Security Symposium

[11] Glew, A. 2003. "Segments, Capabilities, and Buffer Overrun
Attacks," Computer Architecture NEWS, ACM SIG
Computer Architecture Vol.31, No.4 - September 2003, pp.
26 – 31

[12] HAUGH, E. BISHOP, M. Testing C Programs for Buffer
Overflow Vulnerabilities. In Proc. of the 2003 Symposium on
Networked and Distributed System Security (SNDSS 2003)
(Feb. 2003)

[13] HOWARD, M. AND LEBLANC, D. 1965. Chapter 10:All
Input Is Evil!. Writing Secure Code, Microsoft Press, 2nd
ed.(1965)

[14] INOUE, K. 2005. Energy-Security Tradeoff in a Secure
Cache Architecture Against Buffer Overflow Attacks. ACM
SIGARCH, Vol 33. No. 1

[15] JONES, R. W. M. AND KELLY, P.H.J. 1997. Backwards-
compatible bounds checking for arrays and pointers in C
programs. In The 3rd Intl. Workshop on Automated
Debugging.

[16] KIROVSKI, D. DRINIC, M. AND POTKONJAK, M. 2002.
Enabling Trusted Software Integrity. ACM Intl. Conf. on
Architectural Support for Programming Languages and
Operating Systems

[17] KRAZIT, T. 2004. PCWorld - News - AMD Chips Guard
Against Trojan Horses. IDG News Service.

[18] MCGREGOR, J. P., KARIG, D. K., SHI, Z., AND LEE, R.
B. 2003. A Processor Architecture Defense against Buffer
Overflow Attacks. In Proc. of the IEEE Intl. Conf. on
Information Tech.: Research and Education (ITRE 2003),
243-250.

[19] NEWSOME, J., AND SONG, D. 2005. Dynamic Taint
Analysis: Automatic Detection and Generation of Software
Exploit Attacks. In NDSS (Feb, 2005)

[20] PAX TEAM. 2003. Documentation for the PaX project
[21] PIROMSOPA, K. AND ENBODY, R. 2004. Buffer

Overflow: Fundamental. Technical Reports #MSU-SE-04-
47, Department of Computer Science and Engineering,
Michigan State University

[22] PIROMSOPA, K. AND ENBODY, R. 2005. Secure Bit2 :
Transparent, Hardware Buffer-Overflow Protection.
Technical Reports #MSU-CSE-05-9, Department of
Computer Science and Engineering, Michigan State
University (2005)

[23] PIROMSOPA, K. AND ENBODY, R. 2006. Survey of
Buffer-Overflow Protection Technical Reports #MSU-CSE-
06-3, , Department of Computer Science and Engineering,
Michigan State University (2006)

[24] SCHMIDT, C., AND Darby, T. The What, Why, and How of
the 1988 Internet Worm,
http://www.snowplow.org/tom/worm/worm.html

[25] RATS, http://www.securesw.com/rats/
[26] SHAO, Z., ZHUGE, Q., HE, Y., SHA, E. H.-M. 2004.

Defending Embedded Systems Against Buffer Overflow via
Hardware/Software. In Proc. of the 20th Annual Computer
Security Applications Conference, Tucson, Arizona (Dec. 6-
10, 2004)

[27] SOLAR DESIGNER. 2002. Linux kernel patch from the
Openwall Project (Non-Executable User Stack).
http://www.openwall.com/

[28] SUH, G., LEE, J., AND DEVADAS, S. 2004. Secure
program execution via dynamic information flow tracking. In
ASPLOS XI (Oct, 2004.)

[29] VIEGA, J. BLOCH, J.T. KOHNO, Y AND MCGRAW, G.
2000. ITS4: A Static Vulnerability Scanner for C and C++
Code. In Proc. of the 16th Annual Computer Security
Applications Conference.

[30] ORGANICK, E. 1983. A programmer's View of the Intel
432 System, McGraw-Hill

[31] HSIANGREN, S. 2002. Apache/mod_ssl (slapper) Worm.
GIAC Certified Incident Handler.

[32] MILENKOVIE, M., MILENKOVIC, A., JOVANOV, E.
2005. Using Instruction Block Signatures to Counter Code
Injection Attacks. ACM SIGARCH, Vol 33. No. 1

[33] KC, G. S., KEROMYTIS, A. D. AND PREVELAKIS, V.
2003. Countering Code-Injection Attacks With Instruction-
Set Randomization. In Proc. of the 10th ACM Conf. on
Comp. and Comm. Security

[34] PETERSON, D. S. BISHOP, M. AND PANDEY, R. 2002.
Flexible Containment Mechanism for Executing Untrusted
Code. In Proc. of the 11th USENIX UNIX Security
Symposium

[35] CHANG, F. ITZKOVITZ, A. AND KARAMCHETI, V.
2000. User-level Resource-constrained Sandboxing. USENIX
Windows System Symposium

[36] Intel Corporation. 2003. LaGrande Tech. Architectural
Overview.

[37] MACDONALD, R., SMITH, S. W., MARCHESINI, J. AND
WILD, O. 2003. Bear: An Open-Source Virtual Secure
Coprocessor based on TCPA. Tech. Report TR2003-471,
Department of Computer Science, Dartmouth College.

[38] Trusted Computing Platform Alliance. 2004. TCPA IT
White paper.

[39] Microsoft Corporation. 2004. The Next-Generation Secure
Computing Base: An Overview.

[40] KGIL, T., FALK, L., MUDGE, T. 2005 ChipLock: Support
for Secure Microarchitectures. ACM SIGARCH, Vol 33. No.
1

[41] MACDONALD, R., SMITH, S. W., MARCHESINI, J. AND
WILD, O. 2003. Bear: An Open-Source Virtual Secure
Coprocessor based on TCPA. Tech. Report TR2003-471,
Department of Computer Science, Dartmouth College.

[42] WITCHEL, E., CATES, J. AND ASANOVIC, K. 2002.
Mondrian memory protection. In ASPLOS-X, Oct 2002.

[43] XU, J., KALBARCZYK, Z., PATEL, S., AND IYER, R. K.
2002. Architecture Support for Defending Against Buffer
Overflow Attacks. In Workshop on Evaluating and
Architecting Systems for Dependability.

[44] YE, D., KAELI, D. 2005. A Reliable Return Address Stack:
Microarchitectural Features to Defeat Stack Smashing. ACM
SIGARCH, Vol 33. No. 1

[45] OZDOGANOGLU, H., VIJAYKUMAR, T.N., BRODLEY,
C.E., JALOTE, A. AND KUPERMAN, B. A. 2003.
SmashGuard: A Hardware Solution to Prevent Security
Attacks on the Function Return Address. Tech Report (TR-
ECE 03-13), Department of Electrical and Computer
Engineering, Purdue University.

[46] DAHLBY, S.H. HENRY, G.G. REYNOLDS, D.N. AND
TAYLOR, P.T. 1982. Chapter 32. The IBM System/38: A
High-Level Machine. Computer Structures: Principles and
Examples.

[47] COLWELL, R. P., ET AL. 1985. Instruction Sets and
Beyond: Computers, Complexity and Controversy. IEEE
Computer.

[48] GENHRINGER, E. F. AND KEEDY, J. L. 1985 Tagged
architecture: how compelling are its advantages?. Intl.
symposium on Computer architecture, pp. 162-170

