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ABSTRACT 
Buffer overflow attacks persist in spite of advances in software 
engineering.  Numerous prevention schemes in software have 
been developed over the years, but so have techniques to 
circumvent them. Recently, improved schemes have appeared 
which are entirely in hardware or require hardware modifications 
to support them.  In this paper we describe how to defeat or 
circumvent these improved mechanisms. Included are well-known 
attacks such as the Hannibal attack (a multistage buffer-overflow 
attack) as well as a new attack which we call the "arbitrary copy" 
attack—an attack specifically designed to defeat the hardware 
approaches.  To aid the reader, the hardware prevention 
mechanisms will be described. 

Categories and Subject Descriptors 

K.6.5 [Management of Computing and Information Systems]: 
Security and Protection – invasive software, physical security, 
unauthorized access  

General Terms 
Management, Reliability, Security, Theory 

Keywords 
Buffer overflow, Buffer-Overflow Attacks, Computer security, 
Intrusion Detection, Intrusion Prevention 

1. INTRODUCTION 
In this paper, we will present two types of buffer-overflow attacks 
that are able to bypass most buffer-overflow protection 
mechanisms, especially hardware mechanisms which are the most 
effective. We refer to these attacks as “multistage buffer-overflow 
attack”[4], and “arbitrary copy”. The multistage attack is an 
attack that allows attackers to create an arbitrary pointer and 
modify any data it points to. Arbitrary copy is an attack on two 
data pointers that allows an attacker to copy data from one 
arbitrary location to another arbitrary location.  Either attack can 
result in a serious compromise of a system.  

The goal of this paper is to provide a rudimentary understanding 
of the current state-of-the-art solutions against buffer-overflow 
attacks (the best are hardware mechanisms) and then show how to 
circumvent these mechanisms. We begin by examining the the 
attacks and their potential threat. Then we look at current 
protection schemes and the impact of the attacks on them.  

2. BACKGROUND 
This section begins by reviewing the characteristics of buffer-
overflow vulnerabilities and attacks. Later we briefly analyze 
current solutions against buffer-overflow attacks. In particular, we 
will focus on a promising scheme, namely input protection. 

2.1 Buffer-Overflow Attacks 
Although, they date back to the infamous MORRIS worm of 1988 
[24], buffer-overflow attacks remain the most common. Though 
skilled programmers should write code without buffer overflows, 
no program is guaranteed free from bugs so it cannot be 
considered completely secure against buffer-overflow attacks. 
The persistence of buffer-overflow vulnerabilities speaks to the 
difficulty of eliminating them. In addition, as buffer overflow 
vulnerabilities are eliminated in operating systems, they are being 
found and exploited in applications. When applications are run 
with root or administrator privileges the impact of a buffer 
overflow is equally devastating. 

In an effort to avoid relying on individual programming skill, a 
number of researchers have proposed a variety of methods to 
protect systems from buffer-overflow attacks. Most of them are 
not able to provide complete protection. For example, some only 
prevent the original stack-smashing attack, so they can be 
circumvented by more recent attacks.  

Buffer-overflow attacks occur when a malformed input is being 
used to overflow a buffer causing a malicious or unexpected 
result. Some metadata is necessary for prevention [11]. 

There are two main targets of buffer-overflow attacks: control 
data and local variables. In the vast majority of attacks, control 
data is the target so prevention schemes have focused on control 
data. Control data can be divided into several types: return 
addresses, function pointers, and branch slots. Return addresses 
have been the primary target since their location can easily be 
guessed. More advanced buffer-overflow attacks target other 
control data. Some literature refers to attacks on return addresses 
as first-generation attacks, and those on function pointers as 
second-generation attacks [3]. 
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3. MULTISTAGE BUFFER-OVERFLOW 
ATTACK 
Multistage buffer-overflow attack (a.k.a. Hannibal Exploit [4] ) 
refers to a type of attack that requires several steps of buffer 
overflow. This type of attack is able to bypass most protection 
schemes such as Address Protection, Bounds checking, and 
Obfuscation. Fundamental to a multistage buffer-overflow attack 
is that there exists a vulnerable pointer to a buffer.  That is, there 
is a user-writeable buffer sufficiently near a useful pointer. First, 
the pointer is modified (by overflowing) to point to a specific 
location (e.g. a jump slot or a function pointer). In the second 
stage of the attack, an input is stored at the pointer’s target. These 
two steps allow attackers to create a pointer to any location (first 
stage) and overwrite the pointer’s target with a desired value 
(second stage). The next time some program jumps to that target, 
it will be redirected based on the value inserted by the attacker. In 
particular the program will be redirected to the attacker’s 
malicious code.  For example, if the program is running in 
privileged mode and the pointer points to shell code, the attacker 
will have created a privileged shell allowing free reign. Figure 1 
is an example of such a vulnerable program.   

Before examining the code, let’s review how a jump table is used.  
Consider the slot in the table for the pointer to the printf 
executable.  A call to printf indexes to that slot in the table and 
then jumps to the printf executable. To attack this type of 
program, the buffer-overflow is done in two stages (Figure 1). 
First, the ptr pointer is overflowed to point to a desired memory 
location (1), e.g. the printf slot in the jump table.  In particular, 
argv[1] controlled by the attacker will contain the address of the 
printf slot in the jump table. The strcpy routine will copy argv[1] 
into buffer, but overflows to overwrite ptr with the printf address 
slot. In the figure, we see that the pointer ptr originally pointed to 
‘buffer’ (arc labeled ‘Before’) but now points to the jump slot (arc 
labeled ‘After'). Now that ptr points to the printf slot in the jump 
table, we need to insert a desired value into that slot. Suppose, for 
illustration, that we also have determined the address of resident 

shell code (we’ll call it residentcode). Using our modified ptr we 
will overwrite the jump table slot with the residentcode address. 
We use the second strcpy call (2) to write argv[2] (also controlled 
by the attacker and whose value is residentcode) into the target of 
ptr which now points to the printf entry in the jump table.  The 
result of that second strcpy call is that we have placed the address 
residentcode (resident shell code) into the printf slot of the jump 
table. The attacker has achieved his goal.  Now when a program 
calls printf, control passes as usual to the printf entry in the jump 
table, but now the attacker has redirected control to residentcode, 
the address of the shell code. Instead of printf a shell will be 
started.  If the program which called printf was operating in 
privileged mode, the attacker will have succeeded in creating a 
privileged shell with full system access.  

The Multistage attack seems convoluted, but it is the technique 
used by the infamous Slapper [31] worm.  Most protection 
techniques focus on protecting the stack, the return address on the 
stack, or the heap.  Neither the stack nor the heap is involved in 
this attack so all those techniques were ineffective against the 
Slapper worm. 

Less obvious is that we can use a similar approach to circumvent 
some software solutions to buffer-overflow attacks by modifying 
a handling vector which can allow us to bypass the buffer-
overflow handling routine.  

4. ARBITRARY COPY ATTACK 
There exists an arbitrary copy primitive which may allow 
attackers to modify control flow without using external control 
data. This type of attack is more advanced in that it can bypass 
protection schemes which can catch the multistage attack 
described above. Using strcpy one can construct a vulnerable 
routine such that using a buffer-overflow to modify source and 
destination pointers, an attacker can arbitrarily copy any data 
from one location to another. This technique allows an existing 
piece of control data to overwrite another piece of control data. 
The result is control flow other than what the original programmer 

 
Figure 1 Multistage Buffer-Overflow Attacks 

 



intended. Necessary conditions for the success of this type of 
attack are: 

• A vulnerable copy function such that a user can modify 
both arguments (source and destination pointers) 
(possibly using buffer-overflow attacks) as exemplified 
in Figure 2.  

• The (useful) control data is stored in the local memory 
area.  

 
char *src,*dest; 
char buff[10]; 
 
gets(buff); 
... 
strcpy(src,dest); 

Figure 2. Vulnerable code for arbitrary copy attack 
 
Both of these conditions must be true. If one fails, the attack fails. 
Though the first condition could be satisfied in any arbitrarily 
program, the code generated by the compiler could render the 
attack impossible. For example, any level of optimization should 
use registers for storing the source and destination variables. If 
either or both are in registers, a buffer-overflow to modify both 
variables will fail. We will analyze the possible cases where both 
conditions concurrently occur later. 

4.1 Example 
To ease understanding, Figure 3 presents a sample case of an 
attack on non-control data where the vulnerability might be 
applicable. 

In this example, main calls function “a” which then calls the 
vulnerable function “b”. Within “b” the user inputs buff which can 
overflow to both overwrite *src to point to the return address of a 
previous call (e.g.  "a()") and overwrite *dest to point to the target 
address (e.g. return address of “b()” or “main()”). Note that this 
overflow is possible only if all optimization is turned off so that 
neither src nor dest is in a register. Under these circumstances it is 
possible to change the control flow without replacing control data 
with external data—only internal data is used. Note that the 
damage in this example is to create an infinite loop or crash the 
program, effectively a denial of service to the process.  

While most internal data targets will be benign, one can imagine 
malicious possibilities. For example, if for some reason a 
programmer created a function pointer to shell and had both a 
vulnerable copy routine and no optimization; one could copy that 
shell pointer elsewhere to allow a shell call someplace different 
than the programmer intended. Note that the desired privileged-
elevated shell is not possible with this attack because the best 
buffer-overflow prevention schemes will prevent privilege-
elevation attacks. Alternatively, (again with a vulnerable copy 
routine and no optimization) if one had function pointers to both 
an authorization “accept” function and a “reject” function one 
might be able to redirect program flow to subvert an authorization 
routine to the “accept” function when the “reject” function was 
expected. Figure 4 shows a possible scenario.  

 

int b() { 
 char *src,*dest; 
 char buff[10]; 
 printf("Input string:.\n"); 
// Overflow *src, *dest 
 gets(buff); 
// Copy src to dest 
 strcpy(src,dest); 
} 
 
int a() { 
 … 
 b(); 
 … 
} 
 
int main (int argc,char *argv[]) 
{ 
 a(); 
} 
Figure 3 Sample Buffer-Overflow attacks on non-control data 

 
Figure 4 a possible scenario 

4.2 Issues 
Consider the second condition of arbitrary copy: the presence of a 
useful address in local memory. We know that input protection 
mechanisms prevent the use of input as control data, thus only 
purely local data that is not derived from input is a potential 
threat. One’s first thought might be that any function call could 
provide an address of that function. However, because of 
relocation, local calls use relative addresses which cannot be used 
for this attack. Other sources of control targets such as jumps are 
also relative addresses and not useful. Given this observation, 
potential sources of addresses are narrowed to the presence of a 
shared library or a function pointer. 

src 

dest 

Global Offset Table 

Entry Address 
accept() 0xAAAAAA 
reject() 0xAAAAAA 

main() { 

 … 

 vulnerable(); 

 … 

if (valid) 

 accept(); 

else 

 reject(); 

} 



Shared library. In the case of shared libraries (the function is 
located in the shared library), a call to the function means there 
exists a useful entry in the Global Offset Table (GOT).  

Function Pointer. The assignment of a function address to a 
function pointer (frequently found in C++) would create a pointer 
available for reuse. 

If a useful address is stored as an entry in the GOT or a function 
pointer, the buffer-overflow described above can be used to 
replace a target address with this address. Target address might be 
return addresses, function pointers, or an entry in GOT itself. 

The probability that all conditions are applicable is considered to 
be low. In fact, some researchers [4] do not believe that it will be 
a problem or suggest that encoding addresses in GOT should be 
sufficient for preventing the attack. However, that prevention 
might not be able to protect some function pointers in C++. 

We have to eliminate at least one critical condition. There are 
three possible methods.  

• Prevent a raw address from being stored directly in the 
program.  

• Secure the target address from being modified (e.g. 
GOT and function pointers).  

• Validate that both the source and destination pointer 
have not been maliciously modified.  

Rather than storing an address directly into the GOT table or 
function pointer, we may choose to store an encoded version of an 
address or store a relative address. Even a trivial encoding such as 
XOR (like PointGuard [7]) with some constant would be 
sufficient. However, this approach does not prevent a copy 
between locations that share the same encoding scheme or key 
used to encrypt the address (e.g. between function pointers or 
entries in the GOT). Note that PointGuard [7] can be used to 
reduce the probability of overwriting source and destination 
pointers. However, if the key and algorithm can be circumvented, 
it is possible to overwrite it with a valid copy. In fact, we may be 
able to overflow the value (e.g. index) that is used for pointer 
arithmetic rather than modifying the pointer directly. 

Rather than making the useful address useless, we can protect the 
target from being modified. In the case of GOT, we can protect 
the GOT from being a target by declaring it as read only after the 
shared library is configured. Nonetheless, we cannot apply the 
same idea to protect function pointers or return addresses in 
general. 

Alternatively, we can validate (assert) the source and destination 
pointers before running the “strcpy(..)” function. If the source and 

destination pointers can be validated, the attack can be prevented. 
However, a false alarm may be generated when a pointer is the 
arithmetic result of input. 

5. CURRENT PROTECTION SCHEMES 
Current approaches against buffer-overflow attacks include both 
software and hardware techniques and can be partitioned into 
three broad categories: static analysis, dynamic solutions, and 
isolation. We focus on the hardware mechanisms, but mention the 
software solutions for completeness. Static analysis is a software 
methodology which tries to fix functions that are vulnerable to 
buffer-overflow attacks. Dynamic approaches can be entirely in 
software, entirely in hardware or some combination.  Dynamic 
techniques monitor or protect data that is either a target or the 
source of buffer-overflow attacks. Isolation seeks to limit the 
damage of attacks and attempts a broader protection than simply 
buffer overflow.  The best-known isolation techniques are in 
hardware. To ease understanding, Figure 5 shows taxonomy of 
protection schemes. We will base our discussion on this 
classification. 

The main idea of “Static analysis” is to find and solve the 
problem before deploying a program. To do so, we first analyze 
the source code or disassembly of the program by looking for 
code with a predefined signature. Examples of tools in this 
category are: ITS4 [29], FlawFinder [9], RATS [25], and STOBO 
[12] 

Isolation schemes isolate the attacker either to eliminate an attack 
vector or to contain damage after a successful attack. Preventing 
the execution of code in stack memory isolates the stack from the 
attacker.  Alternatively, limiting the memory of a process can 
isolate a compromised process. Non-executable memory is an 
example of the former while sandboxing is an example of the 
latter. Examples include AMD NX [17], non-executable stack 
[27], SPEF [16], and sandboxing. 

Knowing which data are critical to attacks, we can prevent attacks 
by validating the integrity of that data. As mentioned above, the 
data of interest are control data such as (but not limited to) return 
addresses. We name these “Dynamic Solutions” because data are 
dynamically managed and verified in the run-time environment.  
The most effective prevention mechanisms fall in this category. 

In a survey of buffer-overflow protection [23], it was suggested 
that metadata is necessary for validating the integrity of data. 
While the assumptions of critical data and the methods for storing 
and validating metadata vary from one solution to another, 
dynamic solutions can be classified into four groups: 

 
Figure 5 Taxonomy of protection schemes 



• Address Protection 
• Input Protection 
• Bounds Checking 
• Obfuscation 

5.1.1 Address Protection 
The address protection schemes share the assumption that 
addresses (e.g. return address) are critical data and must be 
tagged. In these schemes the metadata is created by functions that 
create the address (e.g. call instruction), and verified by the many 
instructions that use the address (e.g. return instruction). The 
schemes within this group are differentiated by the types of 
metadata they use (e.g. software managed and hardware 
supported. Methods with hardware supported metadata are 
StackGuard [6], ProPolice [8], StackGhost [10], RAS [18], [43], 
[44], SmashGuard [45], SCACHE [14], Split Stack [43], and 
Hardware Supported PointGuard [26],.  

5.1.2 Input Protection 
The input protection schemes are all in hardware and are the most 
promising. These schemes assume that external data are 
untrustworthy and should not be used as internal control data. The 
underlining concept is that “All input is evil until proven 
otherwise” [13]. In most cases, metadata are tightly coupled to the 
data in hardware (e.g. tagged memory). Data from external 
sources are tagged so it can be recognized, if there is an attempt to 
use it as control data. The schemes in this group differ in the 
management of metadata.  

The underlying assumption is that that input data should be 
treated differently from local data, and should not be used as 
control data. Four methods Minos [4], [5], Tainted Pointer [2], 
Dynamic Flow Tracking [28], Dynamic Tainted Analysis [19], 
and Secure Bit [22] share the same assumption, but different 
implementations. Minos views data across segments as input. 
Tainted Pointer considers data passed from the operating system 
as input. Dynamic Flow Tracking relies on operating systems for 
marking input. Finally, Secure Bit treats data passing between 
processes through the kernel as input. 

Tainted Pointer additionally tried to prevent input from being 
used as a pointer. However, input is sometimes used as a part of 
pointer arithmetic (e.g. indexing) so protecting pointers can lead 
this scheme to break many programs. 
Secure Bit protects a process from external control data, but does 
not prevent buffer-overflow attacks on non-control data. That 
raises the question: can an attacker use a buffer-overflow attack 
on non-control data to manipulate local control data to modify 
control flow? 

5.1.3 Bounds Checking 
Rather than tagging data, bounds checking schemes explicitly 
bound buffers to prevent overflow.  In this case, the metadata is 
associated with every block of allocated data and is used to bound 
accesses. A classic hardware approach uses segmentation, but the 
granularity of the hardware usually isn’t sufficiently fine grained 
(e.g. a function pointer within a data structure)—a notable 
exception is the i432 [30]. Array Bounds Checking [15] can be 
done entirely (and with some cost) in software or can be done 
with hardware support.  Type-safe programming languages are 
examples of entirely software approaches. 

5.1.4 Obfuscation 
Instead of protecting the data directly, obfuscation schemes 
reorganize memory to obscure memory, making malicious 
manipulation of memory through buffer overflows more difficult. 
These schemes assume that attackers rely on a certain snapshot of 
addresses to overflow the critical data. If the snapshot is random 
or difficult to guess, an attack is more difficult. Being a software 
approach, it is easy to deploy. However, this scheme, unlike some 
hardware approaches, is vulnerable to brute force. Address 
Obfuscation [1] and ASLR [20] are good examples. 

6. HARDWARE PROTECTION 
Up to this point, we have covered the wide variety of protection 
schemes and the range of buffer-overflow attacks. In this section, 
we will individually analyze each hardware protection scheme. 
Based on our taxonomy, contemporary hardware solutions lie in 
four categories: isolation, address protection, bounds checking 
and input protection. We will briefly show the weakness of each 
one. 

6.1 Isolation 
Isolation schemes isolate the attacker either to eliminate an attack 
vector or to contain damage after a successful attack.  Preventing 
the execution of code in stack memory isolates the stack from the 
attacker.  Alternatively, limiting the memory of a process can 
isolate a compromised process. NX non-executable memory is an 
example of the former while sandboxing is an example of the 
latter. 

Neither multistage buffer-overflow attacks nor arbitrary copy 
attacks require injection of code so they will work in the face of 
isolation schemes.  In fact, many simpler attacks work. 

Non-Executable Memory 
Many non-X86 processors such as SPARC support non-
executable memory, and AMD has recently added a similar 
feature named “NX” [17]. Non-executable memory prevents code 
in the buffer on the stack from being executed, effectively 
protecting against a class of buffer overflow attacks that executes 
code in the buffer on the stack. However, the integrity of the 
return address is not protected—leaving the system vulnerable to 
attacks using the address of either a resident shell or code in the 
heap. In certain cases, such as a signal handler return on Linux, 
the system requires an executable stack in order to function 
properly. Moreover, any LISP-like functional language requires 
an executable stack in their normal operation (a.k.a. trampoline). 
As a result, this method only protects against a narrow range of 
attacks.  

Secure Code Installation 
Instead of protecting the data, a Secure Program Execution 
Framework [16] (SPEF) aims at making a system difficult to 
inject malicious code. SPEF is a platform that consists of 
hardware mechanisms and compilation tools. The installation of a 
program requires both encryption and transformation. As a result, 
injecting the malicious code is not simple and requires a special 
process. This method prevents the injection of malicious code. 
Nonetheless, we have shown that it is possible to overflow the 
buffer and modify the return address or the function pointer to 



point to a known address without injecting any code. Similar 
methods include [32] and instruction-set randomization [33]  

Sandboxing  
Sandboxing is a policy-enforcement mechanism. Since buffer-
overflow occurs when information is passed from one domain to 
another domain, sandboxing a process intuitively cannot prevent 
such attacks. With appropriate policy rules, it is, however, 
possible to limit the damage of buffer-overflow attacks. 
Sandboxing can be done at several levels: kernel level [34], user 
level [35], or even hardware-supported sandboxing (e.g. Intel 
LaGrande [36], TCPA [37], [38], TrustZone [38], Microsoft 
NGSCB [39], ChipLock [40], Bear [41].) Like tagged memory, 
there exists a very fine-grained approach to memory management 
(e.g. MMP [42]), but such approaches can be successful for 
buffer-overflow protection only if a perfect combination of a 
security policy and an implementation exists.  We believe that it 
is complementary to other techniques rather than a replacement. 

6.2 Hardware Enhanced Address Protection 
There are three types of hardware enhanced address protection 
schemes: Address Encoding, Copy of Address and Tags.  

PointGuard [7] and Hardware Supported PointGuard [26] are 
good example of Address Encoding. They use a pre-defined key 
to encode every pointer before storing in memory and decode it 
before dereferencing. Ignoring the performance and compatibility 
issue, it is still possible to modify data using pointer arithmetic 
without overflowing the pointer (e.g. overflowing a variable i 
would allow us to create an arbitrary pointer if there is code such 
as “ptr = ptr+i”). Hence, a naïve arbitrary copy should be able to 
bypass this type of protection. 

StackGhost [10], RAS [18], [43], [44], SmashGuard [45], 
SCACHE [14], and Split Stack [43] use a hardware redundant 
copy of a return address (such as cache memory, register window, 
return address stack, or hardware stack) for validating the return 
address. Ignoring the dynamic update of return address (e.g. non-
LIFO control flow [21]), this mechanism only prevents the simple 
stack smashing attack. In fact, there exists an attack that modifies 
the exception pointer and totally bypasses the protection 
mechanism by bypassing the handling routine. 

Here, we will present the concepts embedded in the IBM 
System/38 [46] as a representative of protection against buffer-
overflow attacks provided by tagged architectures. In general, a 
hardware bit is used to indicate a type of data. On creation of a 
return address a call instruction sets the tag of a return address.  
Similarly with a function pointer, a special instruction sets the tag 
of a function pointer. Control instructions validate the tag bit 
before using it as a control address. Though return addresses and 
function pointers cannot be overflowed directly, an arbitrary copy 
is sufficient for bypassing this mechanism since no function 
pointer is being created—only an existing pointer is used.  

6.3 Bounds Checking 
Limited hardware protection has existed in various processors for 
many years, e.g. segmentation. Segmentation is primarily used as 
a mechanism to support the relocation of memory. In the early 
implementation of segmentation, a base register was required for 
each memory access. IA-32 and I432 [30] also adopted the idea 

and associated segmentation with base address, boundary check, 
and rings. By explicitly declaring and associating every buffer 
with a base and boundary, segmentation can protect against 
buffer-overflow attacks. A drawback of segmentation is the extra 
storage for storing segment descriptors. In IA-32, every memory 
access (in protected mode) requires a base and limit. However, 
most operating systems (e.g. Windows and Linux) bypass 
segmentation by setting one large segment for all memory in 
order to maintain portability and gain better performance. I432 
was a CISC architecture that was designed with security 
awareness. Based on the paradigm of the ADA programming 
language, it checked every data boundary and forced every 
function call to create a new domain (segment). Since I432 
instructions are bit encoded, ranging from six to 321 bits, 
computation took 10 to 20 times as long as the contemporary 
VAX 11/780 [47]. Consequently, I432 was a commercial failure. 
A similar concept can also apply to a function pointer. For 
example, one of the 1960s architecture, ICL 2900 series systems 
[48], had a native hardware 'pointer' type (a.k.a. descriptor) that 
included in it the size of the object pointed to. The hardware 
would check that any dereferences were not out of bounds.  
Bounds checking could prevent both attacks we present, but the 
commercial market has decided that a bounds check of every 
reference carries too much overhead. 

6.4 Input Protection 
Some methods assume that input data should be treated 
differently from local data. As a result, a bit is used for tracking 
the data passing across domains and preventing it from being used 
as control data. Examples include Secure Bit [22], Minos [4], [5], 
Tainted Pointer [2], and Dynamic Flow Tracking [28]. Since the 
malicious nature of buffer overflow attacks includes the 
modification of control data using input, this concept is able to 
protect against a large class of buffer-overflow attacks.  A 
reasonable argument can be made that this type of approach 
currently provides the best protection against buffer-overflow 
attacks. For example, the address in the table of the multistage 
attack can be protected using input protection (but not all the 
implementations achieve that). However, arbitrary copy escapes 
handling because no input is being used as control data. 

7. POINTER PROTECTION 
Arbitrary Copy shows that viable attacks can occur by 
manipulating pointers which are not used (directly) for control so 
it is critical that pointers must also be protected from overflow. 
Unlike control data, pointers can be arbitrarily derived from input 
(a good example is array indexing). While input protection is 
shown to be useful for protecting buffer-overflow attacks on 
control data, we cannot apply the same concept directly to protect 
pointers. Differentiating between “good” and “bad” use of 
pointers is not possible without input from the user or compiler. 

8. CONCLUSION 
Hardware buffer-overflow protection provides greater protection 
than existing software schemes. In addition, the hardware 
mechanisms themselves are more difficult to attack.  However, 
holes in the defense remain.  In this paper we presented two 
attacks which even the new hardware schemes cannot prevent 
(some prevent one, but most prevent neither). 
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