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ABSTRACT
Register allocation is one of the most studied problems in compila-
tion. It is considered as an NP-complete problem since Chaitin et
al., in 1981, modeled the problem of assigning temporary variables
to k machine registers as the problem of coloring, withk colors,
the interference graph associated to the variables. The fact that
the interference graph can be arbitrary proves the NP-completeness
of this formulation. However, this original proof does not really
show where the complexity of register allocation comes from. Re-
cently, the re-discovery that interference graphs of SSA programs
can be colored in polynomial time raised the question: Can we ex-
ploit SSA form to perform register allocation in polynomial time,
without contradicting Chaitin et al’s NP-completeness result? To
address such a question and, more generally, the complexity of
register allocation, we revisit Chaitin et al’s proof to better iden-
tify the interactions between spilling (load/store insertion), coalesc-
ing/splitting (removal/insertion of moves between registers), criti-
cal edges (a property of the control-flow graph), and coloring (as-
signment to registers). In particular, we show that, in general (we
will make clear when), it iseasyto decide if temporary variables
can be assigned tok registers or if some spilling is necessary. In
other words, the real complexity does not come from the coloring
itself (as a wrong interpretation of the proof of Chaitin et al. may
suggest) but comes from the presence of critical edges and from the
optimizations of spilling and coalescing.

Keywords
Register allocation, SSA form, chordal graph, NP-completeness,
critical edge, permutation.

1. INTRODUCTION
Register allocation is one of the most studied problem in compi-

lation. Its goal is to find a way to map the temporary variables used
in a program into physical memory locations (either main memory
or machine registers). Accessing a register is usually much faster
than accessing memory, therefore one tries to use registers as much
as possible. Of course, this is not always possible, thus some vari-
ables must be transferred (“spilled”) to and from memory. This has
a cost, the cost of load and store operations, that should be avoided
as much as possible.

Classical approaches are based on fast graph coloring algorithms
(sometimes combined with techniques dedicated to basic blocks).
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A widely-used algorithm is iterated register coalescing proposed
by Appel and George [17], a modified version of previous develop-
ments by Chaitin et al. [9, 8], and Briggs et al. [4]. In these heuris-
tics,spilling, coalescing(removing register-to-register moves), and
coloring (assigning a variable to a register) are done in the same
framework. Priorities among these transformations are done im-
plicitly with cost functions. Splitting (adding register-to-register
moves) can also be integrated in this framework. Such techniques
are well-established and used in optimizing compilers. However,
there are at least four reasons to revisit these approaches.

1. Today’s processors are now much faster than in the past, es-
pecially faster than when Chaitin et al. developed their first
heuristics (in 1981-82). Some algorithms not considered in
the past, because they were too time-consuming, can be good
candidates today.

2. For some critical applications, especially in embedded com-
puting, industrial compilers are ready to accept longer com-
pilation times if the final code gets improved.

3. The increasing cost on most architectures of a memory ac-
cess compared to a register access suggests that it is maybe
better now to focus on heuristics that give more importance
to spilling cost minimization, possibly at the price of addi-
tional register-to-register moves, in other words, heuristics
that consider the trade-off spilling/coalescing as unbalanced.

4. There are many pitfalls and folk theorems concerning the
complexity of the register allocation problem that it is worth
clarifying.

This last point is particularly interesting to note. In 1981, Chaitin
et al. [9] modeled the problem of allocating variables of a program
to k registers as the problem of coloring, withk colors, the corre-
sponding interference graph (two variables interfere if they are si-
multaneously live at some program point). As one can build a code
corresponding to an arbitrary interference graph and because graph
coloring is NP-complete [15, Problem GT4], heuristics have been
used for spilling, coalescing, splitting, coloring, etc. The previous
argument (register allocationis graph coloring, therefore it is NP-
complete) is one of the first statements of many papers on register
allocation. This is true that most problems related to register al-
location are NP-complete but this simplifying statement can make
us forget what Chaitin et al’s proof actually shows. In particular,
it is in the common belief that, when no instruction rescheduling
is allowed, deciding if some spilling is necessary to allocate vari-
ables tok registers is NP-complete, even if live-range splitting is
allowed. This isnotwhat Chaitin et al. proved. We will even show
that this particular problem is not NP-complete except for a few



particular cases (we will make clear which ones). This is maybe a
folk theorem too but, to our knowledge, it has never been clearly
stated. Actually, going from register allocation to graph coloring
is just a way of modeling the problem, but it is not an equivalence.
In particular, this model does not take into account the fact that a
variable can be moved from a register to another one (live-range
splitting), of course at some cost, but only the cost of a move in-
struction (which is often better than a spill).

Until very recently, only a few authors tried to address the com-
plexity of register allocation in more details. Maybe the most inter-
esting complexity results are those of Liberatore et al. [22, 14], who
analyze the reasons why optimal spilling is hard for local register
allocation (i.e., register allocation for basic blocks). In brief, for
basic blocks, the coloring phase is of course easy (the interference
graph is an interval graph) but deciding which variables to spill and
where is difficult (when stores and loads have nonzero costs). We
completed this study for various models of spill cost in [2] and for
several variants of register coalescing problems in [3].

Today, most compilers go through an intermediate code repre-
sentation, the (strict) SSA form (static single assignment) [12],
which makes many code optimizations simpler. In such a code,
each variable is defined textually only once and is alive only along
the dominance tree associated to the control-flow graph. Some so-
calledφ functions are used to transfer values along the control flow
not covered by the dominance tree. The consequence is that, with
an adequate interpretation ofφ functions, the interference graph of
such a code is, again, not arbitrary: it is a chordal graph, there-
fore easy to color. Furthermore, it can be colored withk colors if
and only if Maxlive ≤ k where Maxlive is the maximal number
of variables simultaneously live. What does this property imply?
One can imagine to decompose the register allocation problem into
two phases. The first phase decides which values are spilled and
where, so as to get to a code with Maxlive≤ k. This phase is
calledallocation in [22] as it decides which variables are allocated
in memory and which variables are allocated in registers. The sec-
ond phase (calledregister assignmentin [22]) maps variables to
registers, possibly removing (i.e., coalescing) or introducing (i.e.,
splitting) move instructions (also called shuffle code in [23]). Con-
sidering that loads and stores are more expensive than moves, such
an approach is worth exploring. This is the approach experimented
by Appel and George [1] and also advocated in [20, 2, 19].

The fact that interference graphs of strict SSA programs are chor-
dal is not a new result if one makes the connection between graph
theory and SSA form. Indeed, a theorem of Walter (1972), Gavril
(1974), and Buneman (1974) (see [18, Theorem 4.8]) shows that
an interference graph is chordal if and only if it is the interference
graph of a family of subtrees (here the live-ranges of variables) of a
tree (here the dominance tree). Furthermore, maximal cliques cor-
respond to program points. We re-discovered this property when
trying to better understand the interplay of register allocation and
coalescing for out-of-SSA conversion [13]. Independently, Brisk
et al. [6], Pereira and Palsberg [25], and Hack et al. [19] made the
same observation on the chordality of SSA interference graphs. A
direct proof of the chordality property for strict SSA programs can
be given, see for example [2, 19].

Many papers [12, 5, 21, 28, 7, 27] address the problem of how
to go out of SSA, i.e., how to generate a code, after SSA optimiza-
tions, that does not containφ functions (which are not machine
code) anymore. The difficulties are how to handle renaming con-
straints (due to specific requirements of the architecture), critical
edges (a fundamental property of the control-flow graph that will be
discussed hereafter), and how to reduce the number of moves that
need to be introduced. However, in these papers, register allocation

is performedafterout-of-SSA conversion: in other words, the num-
ber of registers is not a constraint when going out of SSA and, con-
versely, the SSA form is not exploited to perform register alloca-
tion. In [19] on the other hand, the SSA form is used to do register
allocation. Spilling and coloring (i.e., register assignment) are done
in SSA and some permutations of colors are placed on new prede-
cessor blocks of theφ points to emulate the semantics ofφ func-
tions. Such permutations can always be performed with register-
to-register moves (and possibly register swaps or XOR functions)1.
All these new results related to SSA form, combined with the idea
of spilling before coloring so that Maxlive≤ k, has led Pereira and
Palsberg [26] to wonder where the NP-completeness of Chaitin et
al’s proof (apparently) disappeared: “Can we do polynomial-time
register allocation by first transforming the program to SSA form,
then doing linear-time register allocation for the SSA form, and fi-
nally doing SSA elimination while maintaining the mapping from
temporaries to registers?” (all this when Maxlive≤ k of course,
otherwise some spilling needs to be done). They show that, if reg-
ister swaps are not available, the answer is no unless P=NP.

The NP-completeness proof of Pereira and Palsberg is interest-
ing, but we feel it does not completely explain why register alloca-
tion is difficult. Basically, it shows that if we decidea priori what
the splitting points are, i.e., the program points where register-to-
register moves can be placed (in their case, the splitting points are
theφ points), then it is NP-complete to choose the right colors (they
do not allow register swaps as in [19]). However, there is no rea-
son to restrict to splitting points given by SSA. Actually, we show
in this paper that, when we can choose the splitting points, when
we are free to add program blocks so as to remove critical edges
(a standard technique callededge splitting), then it is in general
easy (we will make clear when) to decide if and how we can assign
variables to registers without spilling. More generally, the goal of
this paper is to discuss the implications of Chaitin et al’s proof (and
what it does not imply) and to make clearer the interactions be-
tween spilling, splitting, coalescing, critical edges, and coloring.

In Section 2, we first reproduce Chaitin et al’s proof and analyze
it more carefully. The proof shows that when the control-flow graph
has critical edges, which we are not allowed to remove with addi-
tional blocks, then it is NP-complete to decide whetherk registers
are enough, even if splitting variables is allowed. In Section 3, we
address the same question as Pereira and Palsberg in [26]: we show
that Chaitin et al’s proof can be easily extended to show that, when
the graph has no critical edge but if splitting points are fixed (at en-
try and exit of basic blocks), the problem remains NP-complete if
register swaps are not available. In Section 4, we show, again with
a slight variation of Chaitin et al’s proof, that even if we can split
variables wherever we want, the problem remains NP-complete,
but only when there are machine instructions that can create two
new variables at a time. However, in this case, it is more likely that
the architecture can also perform register swaps and thenk registers
are enough if and only if Maxlive≤ k. Finally, we show that it is
also easy to decide ifk registers are enough when only one variable
can be created at a given time (as in traditional assembly-level code
representation) and register swaps are not available. Therefore, this
study shows that the NP-completeness of register allocation (for a
fixed schedule) isnotdue to the coloring phase (as a misinterpreta-
tion of Chaitin et al’s proof may suggest), but is due to the presence
of critical edges or not, and to the optimization of spilling costs and
coalescing costs. In Section 5, we summarize our results and dis-
cuss how they can be used to improve previous approaches and to
develop new register allocation schemes.

1However, minimizing the number of such permutations is NP-
complete [19].



2. DIRECT CONSEQUENCES OF CHAITIN
ET AL’S NP-COMPLETENESS PROOF

Let us look at Chaitin et al’s NP-completeness proof again. The
proof is by reduction from graphk-coloring [15, Problem GT4]:
Given an undirected graphG = (V,E) and an integerk, can we
color the graph withk colors, i.e., can we define, for each vertex
v ∈ V, a colorc(v) in {1, . . . , k} such thatc(v) , c(u) for each edge
(u, v) ∈ E? The problem is well-known to be NP-complete ifG is
arbitrary, even for a fixedk ≥ 3. For the reduction, Chaitin et al.
create a program with|V| + 1 variables, one for each vertexu ∈ V
and an additional variablex, and the following structure:

• For each (u, v) ∈ E, a blockBu,v definesu, v, andx.

• For eachu ∈ V, a blockBu readsu andx, and returns a new
value.

• Each blockBu,v is a direct predecessor in the control-flow
graph of the blocksBu andBv.

• An entry block switches to all blocksBu,v.

Consider the graph depicted in Figure 1, a cycle of length 4, with
edges (a,b), (a, c), (b,d), and (c,d). This is also the example used
in [26]. The corresponding program is given in Figure 2. It is
clear that the interference graph associated to such a program is
the graphG plus a vertex for variablex with an edge (u, x) for
eachu ∈ V (thus this new vertex must use an extra color). If one
interprets a register as a color thenG is k-colorable if and only if
each variable can be assigned to a unique register for a total of at
mostk + 1 registers. This is what Chaitin et al. proved: for such
programs, deciding if one can assign the variables,this way, to
k ≥ 4 registers is thus NP-complete.

Chaitin et al’s proof, at least in its original interpretation, does
not address the possibility of splitting [10] the live-range of a vari-
able (set of program points where the variable is live2). In other
words, each vertex of the interference graph represents the com-
plete live-range as an atomic object, and it is assumed that one vari-
able must always reside in the same register. The fact that the reg-
ister allocation problem is modeled through the interference graph
loses information on the program itself and the exact location of
interferences. This is a well-known fact, which has led to many
different register allocation heuristics but with no corresponding
complexity study even though their situations are not covered by
the previous NP-completeness proof.

This raises the question: What if we allow to split live-ranges?
Consider Figure 2 again and one of the variables, for examplea.

2Actually, Chaitin et al’s definition of interference is slightly dif-
ferent: Two variables interfere only if one is live at the definition of
the other one. However, the two definitions coincide for programs
where any static control-flow path from the beginning of the pro-
gram to a given use of a variable goes through a definition of this
variable. Such programs are calledstrict. This is the case for all
the programs we manipulate in our NP-completeness proofs.

c

d

a

b

c

d

x
a

b

Figure 1: Cycle of length4 and interference graph for Figure 2.

In block Ba, variablea is needed for the instruction “returna + x”,
and this value can come from blocksBa,b andBa,c. If we split the
live-range ofa in block Ba before it is used, some register must still
contain the value ofa both at the exit of blocksBa,b andBa,c. The
same is true for all other variables. In other words, if we consider
the possible copies live at exit of blocks of typeBu,v and at entry
of blocks of typeBv, we get the same interference graphG for the
copies and each copy must remain in the same register. Therefore,
the problem remains NP-complete even if we allow live-range split-
ting. Splitting live-ranges does not help here because the control-
flow edges fromBu,v to Bu are critical edges, i.e., they go from
a block with more than one successor to a block with more than
one predecessor. In Chaitin et al’s model, each vertex is atomic
and must be assigned a unique color. Live-range splitting redefines
these objects. In general, defining preciselywhat is colored is in-
deed important as the subtle title of Cytron and Ferrante’s paper
“What’s in a name?” pointed out [11]. However, here, because of
critical edges, whatever the splitting, there remains atomic objects
hard to color, defined by the copies live on the edges.

To conclude this section, we can interpret Chaitin et al’s original
proof as follows. It shows that it is NP-complete to decide if the
variables of an arbitrary program can be assigned tok registers,
even if live-range splitting is allowed, but only when the program
has critical edges that we are not allowed to split (i.e., we cannot
change the structure of the control flow graph and add new blocks).

3. SPLIT POINTS ON ENTRY & EXIT OF
BLOCKS AND TREE-LIKE PROGRAMS

In [26], Pereira and Palsberg pointed out that the construction of
Chaitin et al. (as done in Figure 2) is not enough to prove anything
about register allocation through SSA. Indeed, to assign variables
to registers for programs built as in Section 2, one just have to add
extra blocks (where out-of-SSA code is traditionally inserted) and
to perform some register-to-register moves in these blocks. Any
such program can now be allocated with only 3 registers (see Fig-
ure 3 for a possible allocation of the program of Figure 2). In-
deed, we can place (color) the two variables of each basic block
of type Bu,v in two registers (independently of other blocks), for
example always usingr1 for u, r2 for v, andr3 for x, and then “re-
pair”, when needed, the coloring to match the colors at each join,
i.e., each basic block of typeBu. This is done by introducing an
adequate re-mapping of registers (here a single move, in general a
permutation) in the new block along the edge fromBu,v to Bu.

When there are no critical edges, one can indeed go through
SSA (or any representation of live-ranges as subtrees of a tree), i.e.,
consider that all definitions of a given variable belong to different
live-ranges, and to color them withk colors, if possible, in linear
time (because the corresponding interference graph is chordal) in
a greedy fashion. At this stage, it is of course easy to decide ifk
registers are enough. This is possible if and only if Maxlive, the
maximal number of values live at any program point, is less thank.
Indeed, Maxlive is obviously a lower bound for the minimal num-
ber of registers needed, as all variables live at a given point inter-
fere (at least for strict programs). Furthermore, this lower bound
can be achieved by coloring because of a double property of such
live-ranges: a) Maxlive is equal to the size of a maximal clique in
the interference graph (in general, it is only a lower bound); b) the
size of a maximal clique and the chromatic number of the graph
are equal (as the graph is chordal). Furthermore, ifk registers are
not enough, additional splitting will not help as splitting does not
change Maxlive.

If k colors are enough, it is still possible that the colors chosen for



b = 2
x = a + b

a = 3
c = 4
x = a + c

b = 5

x = b + d x = c + d

returna + x returnb + x returnc + x returnd + x

switch

Ba Bb Bc Bd

Ba,c Bc,dBa,b Bb,d

a = 1
d = 6

c = 7
d = 8

Figure 2: The program associated to a cycle of length4.

switch

Ba,c Bc,dBa,b Bb,d

r1 = 3
r2 = 4

r1 = 5
r2 = 6

r1 = 7
r2 = 8

r3 = r1 + r2 r3 = r1 + r2 r3 = r1 + r2

Ba Bb Bc Bd

returnr1 + r3 returnr1 + r3 returnr1 + r3 returnr1 + r3

r1 = r2 r1 = r2 r1 = r2r1 = r2

r1 = 1
r2 = 2
r3 = r1 + r2

Figure 3: The program of Figure 2 assigned to3 registers, with additional basic blocks.



the split live-ranges do not match at join points where live-ranges
were split. Some “shuffle” [23], i.e., permutation of registers is
needed in the block along the edge where colors do not match. The
fact that the edge is not critical guarantees that the shuffle will not
propagate along other control flow paths. If some register is avail-
able at this program point, i.e., if Maxlive< k, then any remapping
can be performed as a sequence of register-to-register moves, pos-
sibly using the free register as temporary storage. Otherwise, one
additional register is needed unless one can perform register swaps
(arithmetic operations such as XOR are also possible but maybe
only for integer registers).

This view of coloring through the insertion of permutations is
the base of any approach that optimizes spilling first [20, 1, 2, 19].
Some spilling and splitting are done (optimally or not) so as to
reduce the register pressure (Maxlive) to at mostk. In [1], this ap-
proach is even used in the most extreme form: live-ranges are split
at each program point in order to address the problem of optimal
spilling. After the first spilling phase, there is a potential permuta-
tion between any two program points. Then, live-ranges are merged
back, as most as possible, thanks to coalescing.

In other words, it seems that going through SSA (for example
but not only) makes easy the problem of deciding ifk registers are
enough. The only possible remaining case is if we do not allow
any register swap. If colors do not match at a joint point where
Maxlive = k, then the permutation cannot be performed. This is
the question addressed by Pereira and Palsberg in [26]: Can we
easily choose an adequate coloring of the SSA representation so
that no permutation (different than identity) is needed? The answer
is no, the problem is NP-complete.

To show this result, Pereira and Palsberg use a reduction from
the problem of coloring circular-arc graphs, proved NP-complete
by Garey et al. [16]. Basically, the idea is to start from a circular-
arc graph, to cut all arcs at some point to get an interval graph,
to represent this interval graph as the interference graph of a basic
block, to add a back edge to form a loop, and to make sure that
Maxlive = k on the back edge. Then, coloring the basic block
so that no permutation is needed on the back edge is equivalent
to coloring the original circular-arc graph. This is the same proof
technique used in [16] to reduce the coloring of circular-arc graphs
from a permutation problem.

This proof shows that if we restrict to the split points defined
by SSA, then it is difficult to choose the right coloring of the SSA
representation (and thus decide ifk registers are enough) even for
a simple loop and a single split point. However, for a fixedk, this
specific problem is polynomial as it is the case for thek-coloring
problem of circular-arc graphs, by propagating possible permuta-
tions. We now show that, with a simple variation of Chaitin et al’s
proof, a similar result can be proved even for a fixedk, but for an
arbitrary program.

Consider the control-flow graph as Chaitin et al. do, but after
critical edges have been split, as shown in Figure 3. Given an ar-
bitrary graphG = (V,E), the program has three variablesu, xu, yu

for each vertexu ∈ V and a variablexu,v for each edge (u, v) ∈ E. It
has the following structure:

• For each (u, v) ∈ E, a blockBu,v definesu, v, andxu,v.

• For eachu ∈ V, a blockBu readsu, yu, andxu, and returns a
new value.

• For each blockBu,v, there is a path to the blocksBu andBv.
Along the path fromBu,v to Bu, a block readsv and xu,v to
defineyu, and then definesxu.

• An entry block switches to all blocksBu,v.

The interference graph restricted to variablesu (those that corre-
spond to vertices ofG) is still exactlyG. Consider again a cycle of
length 4, with edges (a,b), (a, c), (b, d), and (c, d), as in Figure 4
(on the left). The corresponding program is given in Figure 5 and
its interference graph in Figure 4 (on the right).

a c

b d

c

db

a

xa,b xc,d

xa,c

xb,d

xb

xc

xd

yc

ydyb

xa

ya

Figure 4: Cycle of length4 and interference graph for Figure 5.

Assume that permutations can be placed only along the edges,
or equivalently on entry or exit of the intermediate blocks, between
blocks of typeBu,v and typeBu. We claim that the program can be
assigned to 3 registers if and only ifG is 3-colorable. Indeed, for
eachu andv, exactly 3 variables are live on exit ofBu,v and on entry
of Bu and Bv. Thus, if only 3 registers are used, no permutation
different than identity can be performed. As a consequence, the
live-range of any variableu ∈ V cannot be split, i.e., each variable
must be assigned to a unique color. Using the same color for the
corresponding vertex inG gives a 3-coloring ofG. Conversely,
if G is 3-colorable, assign to each variableu the same color as the
vertex u. It remains to color the variablesxu,v, xu, andyu. This
is easy: in blockBu,v, only two colors are used so far, the colors
for u andv, so xu,v can be assigned the remaining color. Finally
assignxu and yu to two colors different than the color ofu (see
Figure 4 again to visualize the cliques of size 3). This gives a valid
register assignment.

To get a similar proof for any fixedk ≥ 3, add (k − 3) variables
in the switch block and make their live-ranges traverse all blocks.
To conclude, this slight variation of Chaitin et al’s proof shows that
if we cannot split inside basic blocks but are allowed to split only
on entries and exits of blocks (as this is traditionally done when
going out of SSA), then it is NP-complete to decide ifk registers
are sufficient, even for a fixedk ≥ 3 and even for a program with
no critical edge.

4. IF SPLIT POINTS CAN BE ANYWHERE
Does the study of Section 3 completely answer the question? Not

quite. Indeed, who said that split points need to be on entry and exit
of blocks? Why can’t we shuffle registers at any program point, in
particular in the middle of a block if this allows us to perform a
permutation? Consider Figure 5 again. The register pressure is 3
on any control-flow edge, but it is not 3 everywhere. In particular,
between the definitions of eachyu and eachxu, the register pressure
drops to 2. At this point, some register-to-register moves could
be inserted to permute two colors. Actually, if we allow to split
wherever we want then, for such a program, 3 registers are always
enough. (To follow the discussion, consider Figure 5 again.) In-
deed, one can color independently the top part (including the vari-
ablesyu) and the bottom part (including the variablesxv), then place
permutations between the definitions of variablesyu andxu. More
precisely, for each blockBu,v independently, color the definitions



of u, v, and xu,v with three different colors, arbitrarily. For each
block Bu, do the same foru, xu, andyu (i.e., define arbitrarily three
registers whereu, xu, andyu are supposed to be on block entry). In
the block betweenBu,v andBu, keepu in the same register asBu,v,
give to xu the same color it has inBu and storeyu in a register not
used byu in Bu,v. So far, all variables are correctly colored except
that there may be a need of register moves for the valuesu andyu,
after the definition ofyu, and before their uses inBu, if the colors do
not match. But, between the definitions ofyu andxu, only two reg-
isters contain a live value: one containingu defined inBu,v and one
containingyu. These two values can thus be moved to the registers
where they are supposed to be inBu, with at most three moves in
case of a swap, using the available register in whichxu is going to
be placed just after this shuffle.

4.1 Simultaneous definitions
So, is it really NP-complete to decide ifk registers are enough

when splitting can be done anywhere and swaps are not available?
The problem with the previous construction is that there is no way,
with simple statements, to avoid a program point with a low reg-
ister pressure while keeping the reduction with graph 3-coloring.
This is illustrated in Figure 6: on the left, the previous situation
with Maxlive = 2, in the middle, a situation with Maxlive= 3
but that does not keep the equivalence with the 3-colorability of
the graph. However, if we are considering the complexity of regis-
ter allocation for an instruction set architecture where instructions
can define more than one value, it is easy to modify the proof. In a
block betweenBu,v andBu, use a statement that consumesv andxu,v

and producesyu andxu simultaneously, for example something like
(xu, yu) = (b + xu,v,b − xu,v) as illustrated on the right of Figure 6.
Now, Maxlive = 3 everywhere in the program and, even if splitting
is allowed anywhere, the program can be mapped to 3 registers if
and only ifG is 3-colorable. Therefore, it is NP-complete to decide
if k registers are enoughif two variables can be created simultane-
ously by a machine instruction, even if there is no critical edge and
if we can split wherever we want. (Also such an instruction should
consume at least two values, otherwise, the register pressure drops
to Maxlive−1 just before and a permutation can be placed.) Notice
the similarity with circular-arc graphs: as noticed in [16], the prob-
lem of coloring circular-arc graphs remains NP-complete even if at
most two circular arcs can start at any point (but not if only one can
start, as we show below).

Besides, if such machine instructions exist, it is likely that a reg-
ister swap is also provided in the architecture (we discuss such ar-
chitectural subtleties at the end of this section). In this case, we
are back to the easy case where any permutation can be done andk
registers are enough if and only if Maxlive= k. Thus, it remains
to consider one case: what ifonly onevariable can be created at
a given time as it is in traditional sequential assembly-level code
representation and register swaps are not available?

4.2 Only one definition at a time
If blocks can be introduced to split critical edges and live-range

splitting can be done anywhere, we claim that it is polynomial to
decide ifk registers are enough, in the case of a strict program. We
proceed as follows.

Consider the program after edge splitting and compute Maxlive,
the maximal number of values live at any program point. As we
already discussed, if Maxlive< k, it is always possible to assign
variables tok registers by splitting live-ranges because adequate
permutations can always be performed, thanks to a remaining avail-
able register at any point. If Maxlive> k, this is not possible3,
3This is true for a strict program. For a non-strict program, two

more spilling has to be done. The remaining case is thus when
Maxlive = k.

If Maxlive = k, restrict to the control-flow graph defined by pro-
gram points where exactlyk variables are live. We claim that, in
each connected component of this graph, ifk registers are enough,
there is a unique solution, up to a permutation of colors. Indeed,
for each connected component, start from an arbitrary program
point and an arbitrary coloring of thek variables live at this point.
Propagate this coloring in a greedy fashion, backwards and for-
wards along the control flow until all points are reached. In this
process, there is no ambiguity to choose a color: at any program
point, the number of live variables remains equal tok, one variable
(and only one) is created, thus exactly one must become dead, and
the new variable must be assigned the same color as the dead one.
Therefore, for each connected component, going backwards and
forwards defines auniquesolution (up to the initial permutation of
colors), if it exists. In other words, if there is a solution, we can
define it, for each connected component, by propagation. Further-
more, if, during this traversal, we reach a program point already
assigned and if the colors do not match, thisprovesthatk registers
are not enough. Finally, if the propagation of colors on each con-
nected component is possible, thenk registers are enough for the
whole program. Indeed, we can color the rest (where Maxlive< k)
in a greedy (but not unique) fashion and, when we reach a point
already assigned, we can resolve a possible register mismatch be-
cause at most (k− 1) variables are live at this point.

To summarize, to decide ifk registers suffice when Maxlive≤ k,
one just need to propagate colors along the control flow. We first
propagate along program points where Maxlive= k. If we reach a
program point already colored and the colors do not match, more
spilling needs to be done. Otherwise, we start a second phase of
propagation, along all remaining program points. If we reach a
program point already colored and the colors do not match, we
resolve the problem with a permutation of at most (k− 1) registers,
possibly using the remaining available register.

4.3 Subtleties of the architectures
To conclude this section, let us illustrate the impact of architec-

tural subtleties with respect to the complexity of the previously an-
alyzed cases, when edge splitting is allowed. We use the example
of the ST200 core family from STMicroelectronics, which was the
target of this study.

As for many other processors, some variables need to be as-
signed to specific registers: they areprecolored. Let us show that
such precoloring constraints do not change the complexity of de-
ciding if some spilling is necessary. First consider the case where
swaps are available. Without precoloring constraints, Maxlive≤ k
was the condition to be able to color withk registers. This is
still true, since we can insert adequate permutations, possibly us-
ing swaps, when colors do not match the precolored constraints.
Reducing these mismatches is a coalescing problem, as in a regu-
lar Chaitin-like approach. Now, consider the second case that was
polynomial, i.e., when no register swap is available and instructions
create at most one variable. Even with precolored constraints, a
similar greedy approach can be used to decide, in polynomial time,
if k registers are enough. It just propagates colors from precolored
variables, along program points with exactlyk live variables, i.e.,
with no freedom, so it is easy to check if colors match.

A similar situation occurs when trying to exploit auto-increments

variables interfere only if one is live at the definition of the other,
which makes possible to use fewer than Maxlive registers. We do
not address non-strict programs here. Some open questions remain
for such programs.
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Figure 5: The program associated to a cycle of length4.
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rx++, i.e., rx = rx + 1. An instructionx++ apparently prevents the
coloring under SSA asx is redefined, unless it is first rewritten as
y = x + 1. A coalescer may then succeed in coloringy andx the
same way. To enforce such an auto-increment, one can also simply
ignore the definition ofx in the auto-increment and consider that
the live-range ofx go through the instruction, as a larger SSA-like
live-range.

More annoying are the NP-complete cases due to the fact that
register swaps are not available and that some machine instructions
can define more than one variable. In the ST200 core family, two
types of instructions can create more than one variable: the function
calls that can have up to 8 results and the 64 bits load operations
that loads a 64 bits value into two 32 bits registers.

• For a function call, the constraint Maxlive≤ k needs to be
refined. Spilling must be done so that the number of live vari-
ables at the call, excluding parameters and results, is less than
the number of callee-save registers. In the ST200 core fam-
ily, the set of registers used for the results is strictly included
in the set of caller-save registers. Therefore, just after the
call and before the possible reloads of caller-saved registers,
there is at least one free caller-save register that can be used
to permute colors if needed. Therefore, function calls do not
make the problem NP-complete, even if they can have more
than one result. Also, if no caller-save register was available,
as results of function calls are in general precolored, this sit-
uation could also be solved as previously explained.

• The second type of instruction that can define more than one
variable are the 64 bits loads, such asrx, ry = load(rz), with
the additional constraint thaty = x + 1, i.e., the results are
two consecutive registers. Such a load instruction has only
one variable argument. So, if the number of live variables
is k after definingrx andry, it is at mostk−1 just before, so a
permutation can be done and there is no problem for coloring
with k registers. The fact thatrx andry must be consecutive
can be addressed by placing a permutation just before the
load so as to make two successive registers available. Thus,
again, despite the fact that such an instruction has two results,
it does not make the problem NP-complete because it has
only one variable argument.

Finally, even if no swap operation is available in the instruction
set, a swap can be simulated thanks to the parallelism available in
the ST200 core family. In the compiler infrastructure, one needs to
work with a pseudo-operation swapRx,Ry = swap(Ri ,Rj), which
will then be replaced by two parallel operations scheduled in the
same cycle:Rx = move(Ri) andRy = move(R j). Also, for integer
registers, another possibility to swap without an additional register
is to use the instruction XOR.

In conclusion, when edge splitting is allowed, even if one needs
to pay attention to the subtleties of the architecture, the cases where
deciding if some spilling is necessary is NP-complete seem to be
quite artificial. In practice, swaps can usually be done and one just
has to check that Maxlive≤ k. If not, one can rely on a greedy col-
oring, propagating only along program points where Maxlive= k.
Instructions with more than one result could make this greedy col-
oring non deterministic (and the problem NP-complete) but, fortu-
nately, at least for the ST200, these instructions have a neighbor
point (either just before or just after) where the number of live vari-
ables is strictly less thank. Thus, it is in general easy to decide if
some spilling is necessary or if, at the price of additional register-
to-register moves, the code can be assigned tok registers.

5. CONCLUSION
In this paper, we tried to clarify where the complexity of register

allocation comes from. Our goal was to recall what Chaitin et al’s
original proof really proves and to extend this result. The main
question addressed by Chaitin et al. is something of the following
type: Can we decide ifk registers are enough for a given program
or if some spilling is necessary?

5.1 Summary of results
The original proof of Chaitin et al. [9] proves that this problem is

NP-complete when live-range splitting is not allowed, i.e., with the
constraint that each variable can be assigned to only one register.
We showed that Chaitin et al’s construction also proves that the
problem remains NP-complete when live-range splitting is allowed
but not (critical) edge splitting.

Recently, Pereira and Palsberg [26] proved that, ifk is arbi-
trary and the program is a simple loop, then the problem is still
NP-complete with the constraint that live-range splitting is only
allowed on a block of the back edge and register swaps are not
available. This is a particular form of register allocation through
SSA. We showed that Chaitin et al’s proof can be extended to show
a bit more. When register swaps are not available, the problem re-
mains NP-complete for a fixedk ≥ 3 (but for a general control-flow
graph), even if the program has no critical edge and if live-range
splitting can be done on any control-flow edge, i.e., on entry and
exit of blocks, but not inside basic blocks.

These results do not address the general case where live-range
splitting can be done anywhere, includinginsidebasic blocks. We
showed that the problem remains NP-complete only if some in-
structions can define two variables at the same time but register
swaps are not available. Such a situation might not be so com-
mon in practice. For a strict program, we can answer the remaining
cases in polynomial time. If Maxlive= k and register swaps are
available, or if Maxlive< k, thenk registers are enough. If register
swaps are not available and only one variable can be defined at a
given program point, then a simple greedy approach can be used to
decide ifk registers are enough.

This study shows that the NP-completeness of register allocation
is not due to the coloring phase, as may suggest a misinterpreta-
tion of Chaitin et al’s proof, which uses a reduction from graph
k-coloring. If live-range splitting is taken into account, deciding
if k registers are enough or if some spilling is necessary is not as
hard as one might think. The NP-completeness of register alloca-
tion is due to three factors: the presence of critical edges or not, the
optimization of spilling costs, i.e., how to reduce Maxlive tok, and
the optimization of coalescing costs, i.e., which live-ranges should
be fused while keeping the graphk-colorable.

5.2 Research directions
What does such a study imply for the developments of regis-

ter allocation strategies? Most approaches decide to spill because
their coloring technique fails to color the live-ranges of the pro-
gram. But, for coloring, a heuristic is used and this may generate
some useless spills. Our study shows that, instead of using anap-
proximation heuristicto decide when to spill, we can use anexact
algorithm to spill only when necessary. Such a test is fundamental
to develop register allocation schemes where the spilling phase is
decoupled from the coloring/coalescing phase. However, we point
out that this “test”, which is, roughly speaking, to make sure that
Maxlive ≤ k, does not indicate which variables should be spilled
and where the store and load operations should be placed, so as to
get an optimal code in terms of spill cost (if not execution time).
Optimal spilling is a much more complex problem, even for basic



blocks [22, 14], for which several heuristics, as well as an exact
integer linear programming approach [1], have been proposed.

Existing register allocators give satisfying results, when mea-
sured on average for a large set of benchmarks. But many bench-
marks do not need any spill for current architectures. However, for
some applications, when the register pressure is high, we noticed
some possible improvements in terms of spill cost. For example, in
Chaitin’s first approach, when all variables interfere with at leastk
other variables, one of them is selected to be spilled and the pro-
cess iterates. We measured, with a benchmark suite from STMi-
croelectronics, that such a strategy produces manyuselessspills:
we say that a spill is useless if after spilling all chosen variables
except this one, Maxlive is still less thank. A similar fact was no-
ticed by Briggs et al. [4] who decided to delay the spill decision
to the coloring phase. If a potential spill does not get a color dur-
ing the coloring phase, it is marked as anactual spill, else it is
useless. This strategy significantly reduces the number of useless
spills compared to Chaitin’s initial approach. Other improvements
include biased coloring, which in general reduces the number of
actual spills, or conservative coalescing and iterated register coa-
lescing [17], as coalescing can reduce the number of neighbors of
some vertex of the interference graph.

We applied a very simple strategy in our preliminary experi-
ments: in the set of variables selected for spilling, we choose the
most expensive useless spill and we remove it from the set. This
process is repeated until no useless spill remains. This simple addi-
tional check is enough to reduce the spill cost of Chaitin’s initial ap-
proach to the same order of magnitude as a biased iterated register
coalescing, although it remains a bit worse on average. Also, even
for a biased iterated register coalescing, this strategy still detects
some useless spills and can improve the spill cost. With this more
precise view of necessary spills, one can also avoid the successive
phases of spilling needed for a RISC machine: for a RISC machine,
a spilled live-range leaves small live-ranges to perform the reloads
(the same is true if the live-range is partially spilled). Because of
this, a Chaitin-like approach needs to generate spill code and start
again. With an exact criterion for spilling needs, we can take into
account the new live-ranges to measure Maxlive and decide if more
spilling is necessary.

Once spilling is done, variables still have to be assigned to reg-
isters. The test “Is some spilling necessary?” does not really give
a coloring. For example, if swaps are available, the test is sim-
ply Maxlive ≤ k. One still needs to make sure that coloring with
Maxlive registers is possible. As the previous complexity study
shows, a possibility is to split all critical edges and to color in
polynomial time with Maxlive colors, possibly inserting color per-
mutations. The most extreme possibility is to color independently
each program point, whose corresponding interference graph is a
clique of at most Maxlive variables, and to insert a permutation
between any two points. This amounts to split live-ranges every-
where, as done in [1]. Of course, such a strategy leads to a valid
k-coloring, but with an unacceptable number of moves. This can
be improved by treating the optimization of moves as a coalescing
problem, although it is in general NP-complete [3]. As there are
many moves to remove, with tricky structures, a conservative ap-
proach does not work well, and an optimistic coalescing [24] seems
preferable [1]. Another way is to color independently each basic
block, with Maxlive colors, in linear time after renaming each vari-
able so that it is defined only once. This will save all moves inside
the blocks. Then permutations between blocks can be improved by
coalescing. One can try to extend the basic blocks to larger regions,
while keeping them easy to color. This is the approach of fusion-
based register allocation [23], except that the spilling decision test

is Chaitin’s test, thus a heuristic that can generate useless spills.
One can also go through SSA, color in polynomial time, and place
adequate permutations. This will save for free all moves along the
dominance tree. But this may not be the best way because this
can create split points with many moves to implement the permuta-
tions. A better way seems a) to design a cost model for permutation
placement and edge splitting, b) to choose low-frequency potential
split points to place permutations, and c) to color the graph with
a coalescing-coloring algorithm, splitting points – and thus live-
ranges – on the fly when necessary. In the worse case, the split-
ting will lead to a tree (but not necessarily the dominance tree) for
which one can be sure that coloring with Maxlive registers is pos-
sible. The cost of moves can be further reduced by coalescing and
permutation motion.

Designing and implementing such a coloring mechanism has still
to be done in details. How to spill remains also a fundamental issue.
Finally, it is also possible that a too tight spilling, with many points
with k live variables, constrains too much the coalescing. In this
case, it is maybe better to spill a bit more so as to balance the spill
cost and the move cost. Such tradeoffs need to be evaluated with
experiments before concluding. The same is true for edge splitting
versus spilling, but possibly with less importance, as splitting an
edge does not always imply introducing a jump.
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