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ABSTRACT
Silent stores, i.e., stores to memory that write the same
value as already stored in that memory location, have been
observed to occur frequently. These stores not only create
redundant memory transactions, but in a multiprocessor en-
vironment result in redundant communication messages.

In this paper, we quantify the frequency of such silent
stores, in particular temporally silent stores, in typical bench-
marks such as MiBench and CommBench, and evaluate the
effectiveness of a ”dusty” cache policy on these workloads.
The dusty cache policy remembers the initial values loaded
into cache from memory, and squashes temporally silent
stores. We present results from experiments that compare
this dusty cache policy to a standard write-back cache of
comparable size.

One aspect of this work is that the evaluation environ-
ment is not simply an isolated application executing on a
target architecture, but rather includes a complete run-time
environment, including the OS. The effectiveness of dusty
caches is assessed in the context of a full multitasking sys-
tem. The empirical measurements are made using dedicated
hardware on a soft-core implementation of a SPARC V8 ISA
deployed on an FPGA.

Categories and Subject Descriptors
B.3.2 [Memory Structures]: Design Styles—Cache mem-
ories; C.4 [Performance of Systems]: Measurement Tech-
niques

General Terms
Design, Experimentation, Measurement, Performance
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1. INTRODUCTION
The relative cost of a main memory access is worsening;

that is, the speed of on-chip compute operations and cache
memory is increasing faster than the speed of the main mem-
ory bus and the memory itself. As Hennessy and Patterson
point out, memory access speed has gained 7% per-year per-
formance improvement in latency since 1980, and micropro-
cessor performance has improved between 35% and 55% per
year since 1980. This discrepancy is inconvenient for pro-
grammers and engineers who desire fast performance, not
to mention real-time programmers who require predictable,
consistent software performance. Hennessey and Patterson
state that “clearly, there is a processor-memory performance
gap that computer architects must try to close” [7].

The above suggests that we perform our operations on-
chip as often as possible, opposed to climbing the “memory
wall” [21] and suffering the lower speeds of buses and mem-
ory. The most common remedy to this problem involves
dedicating (more) on-chip area to the cache and optimizing
its behavior to absorb more of the main memory traffic.

In this paper, we examine the effectiveness of a write-
back cache policy that can eliminate some writes to mem-
ory. In [5], we introduced a new method of determining how
“soiled” a value is, saying that a value is dusty when it is al-
tered in cache, but dirty only when it differs from the value
in memory. In terms of related work, we essentially investi-
gate a form of silent stores [2, 11, 12]—in particular, tem-
porally silent stores [13]. Consider the following situation in
which a write-back is unnecessary even though the relevant
subblock is dirty. If a value is altered and promptly returns
to the same value in a subsequent write, it is still marked
dirty and is written back to main memory even though the
value in main memory is identical. Each store is not silent [2]
because the stored value is different, but the cumulative ef-
fect of the stores is temporally silent [13]. The dirty bit is
thus sufficient but not necessary to indicate whether a value
needs to be written back to main memory. We investigate
a potentially more effective cache design that verifies and
squashes some temporally silent stores. Our design is based
on a classic write-back cache whose initial organization is
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Figure 1: Write-back cache organization.

shown in Figure 1.
Our primary contribution consists of a performance analy-

sis of dusty cache mechanisms across a range of benchmarks
selected to complement the results available in the literature.
In the previous work on temporally silent stores [13], two ap-
plication sets were investigated. The first, from SPLASH-
2 [20], represents scientific workloads, and the second con-
sists of commercial workloads from [3]. Both of these ap-
plication sets are typical of desktop and/or server systems.
In addition, the focus of the earlier work was on the perfor-
mance implications for multiprocessor systems.

The benchmark set we use is focused on embedded appli-
cations executing on uniprocessors. We use 3 applications
from MiBench [6] and 4 applications from CommBench [19].
The MiBench suite is specifically designed to be represen-
tative of a wide range of embedded applications, and the
CommBench suite is designed to be representative of net-
working applications (e.g., within the routers themselves).

Our second contribution is in highlighting the importance
of including sufficient execution context when evaluating the
performance of applications. We explicitly include a full
multitasking execution environment, including the operat-
ing system. This is in contrast to many simulation-based
performance evaluations in which the application of interest
is executed in isolation on the architecture under investi-
gation. Here, we compare measurements made in isolation
with measurements made in the context of an operating sys-
tem and demonstrate the differences that exist between the
two. As is also the case in [13], the execution environment
we use for performance evaluation is explicitly designed to
accurately model typical usage patterns.

2. DUSTY CACHE
In this section we present our dusty data cache microarchi-

tecture optimization and discuss its design and interaction
with the machine architecture. We classify this policy as an
enhancement to a standard write-back policy. This dusty
cache specification is implemented in the Liquid Architec-
ture system (Section 3) as a data cache and is analyzed in
Sections 4 and 5.

2.1 Dusty Cache Design
The dusty cache employs the same lines (blocks), sub-

blocks, and valid bits as both traditional write-through and
write-back policies. The write-back cache policy uses a dirty
bit to decide when to write a value back to main memory.
Our proposed dusty cache uses a dusty check to decide when
to write the value back to main memory.

The Dusty Check. The dusty check is not an actual bit
(in the sense of a “dirty bit”), but is instead a mechanism
for deciding if the cached value duplicates what was fetched
from storage initially. Like the write-back policy, the dusty
cache has a dirty bit to decide whether the value has changed
since entering the cache. In addition, the dusty cache has a
second cache bank that acts as an image of main memory,
labeled DImage in Figure 2. This bank is readily accessible
without incurring the time delay of reading main memory,
discussed in Section 1, and does not impact the the access
time of DData. In our implementation, we actually dupli-
cate the data cache to realize the image; in systems offering
L2 cache, that layer could serve as the image if it can be
accessed sufficiently quickly. Lepak [11] describes a number
of alternative implementation strategies.

This dusty check occurs upon cache eviction, discussed
below in Section 2.2.

Dusty Cache Structures. The dusty cache policy has a
single Tag RAM and a set of data lines DData like write-
through and write-back, but it also has an extra set of data
lines, discussed above. We maintain that for each entry
in the Tag table Tagi the corresponding line in the DData

cache bank, Datai, is the cached value pertaining to the
address in Tagi. The corresponding value Imagei in the
DImage cache bank is an image of the value in memory at
the address specified in Tagi. We discuss the interaction of
these corresponding elements in Section 2.2.

Both cache banks have valid bits for each subblock, but
only the subblocks in DData have dirty bits. We will see
why as we discuss the behavior.

2.2 Dusty Cache Behavior
Because the DImage cache bank is an image of main mem-

ory, it is never written directly by the CPU in the event of
a memory store; instead, only DData is written. Whenever
the CPU reads from memory, however, both cache banks are
written. We update DImage to retain an accurate reference
of memory, and we write to DData because the CPU uses it
as its data cache.

Our proposed cache policy is designed to prevent the un-
necessary memory writes incurred by a write-back policy.
We examine the dusty cache’s behavior in several different
scenarios:

• Upon a read hit the value is in DData, so the value is
returned to the CPU.

• Upon a read miss the value is not in DData, so we
read the value from main memory and write it to both
DData and DImage. This can result in a cache eviction.

• Upon a write hit the value is in DData, so we alter
the value in cache and set the dirty bit. We do not
alter the value in DImage.
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Figure 2: Dusty cache structural design.

• Upon a write miss the value is not in DData, so we
write it to DData. This can result in a cache eviction.

• Upon a cache eviction, if the subblock’s dirty bit is
set, we compare the value in DData against the corre-
sponding value in DImage. If they are identical, noth-
ing is written. Otherwise, we write the value back to
main memory if the valid bit is set.

3. THE LIQUID ARCHITECTURE SYSTEM
The Liquid Architecture [9] system takes advantage of re-

configurable logic to permit timely design, prototyping, and
analysis of new hardware modules. Without such a tool,
the dusty cache idea could not have been prototyped, tested,
and analyzed at the circuit level without undue time or cost.

In this section, we describe the features of the Liquid Ar-
chitecture project that were used to conduct experiments for
this work.

3.1 Profiling
Programmers often want to know how their software uti-

lizes the underlying microarchitecture. With an accurate
view of what happens on-chip during a program run, a
programmer may optimize his or her software to take bet-
ter advantage of the hardware beneath. Feedback on such
software-microarchitecture interaction is surely useful, but
very difficult to gather. Unfortunately, many methods of
gathering accurate software performance data have funda-
mental flaws in accuracy and timeliness.

Profiling software performance with other instrumented
software can yield skewed results. In most cases, the pro-
filing software adds extra overhead and provides a faulty
report of processor activity. Other times, software profiling
does not provide sufficient resolution of performance infor-
mation so the results are too vague to draw conclusions.
Simulations can provide better detail, but they can take an
extremely long time to evaluate the simplest of programs.
Moreover, many software profilers and simulators do not ac-
count for (or cannot adequately model) some of the rare or
less probable events that occur during normal execution such
as memory stalls, dynamic scheduling, operating system in-
teractions, multithreading effects, or external interrupts.

The Liquid Architecture solution combines reconfigurable

logic with a soft core processor, adding microarchitecture
support for monitoring on-chip events and a web-based con-
figuration and analysis interface. This system offers an effec-
tive solution to the above profiling problems enabling real-
time, cycle-accurate performance analysis and permitting
rapid design and testing of hardware and software struc-
tures. This infrastructure was used to provide results for
this paper.

3.2 The Liquid Processor Module
The Liquid Architecture processor began as LEON [10], a

standard SPARC V8 ISA for embedded systems, developed
by the European Space Agency. Illustrated in Figures 3
and 4, the LEON processor provides typical microarchitec-
ture features such as instruction and data caches, the entire
SPARC V8 instruction set [17], and buses for high-speed
memory access (the AHB) and low-speed peripheral control
(the APB) [1].

We have deployed the LEON processor on the Field-pro-
grammable Port Extender (FPX) platform [14]. The FPX
provides an environment where FPGA designs can be in-
terfaced with external memory and a high-speed network
interface. OS support includes both uClinux [18] when the
memory management unit (MMU) is absent and Linux ker-
nel 2.6.x when the MMU is present [4, 16]. In this work, we
limit the investigation to the case without an MMU and use
uClinux as the OS. A similar investigation which includes
the MMU is ongoing.

3.3 The Statistics Module
We modified the LEON core to add the Statistics Mod-

ule [8], a microarchitecture-level performance-measurement
system for obtaining cycle-accurate timing results, cache-
behavior statistics, and method-specific output for each. Such
statistics are typically unavailable in generic processors, and
are incredibly time-consuming to obtain through simulation.
By comparison, the Liquid Architecture processor runs pro-
grams at full (FPGA) speed.

This module is implemented as a collection of smaller
counter modules, each of which offers the following:

• Connections to the address bus, event bus, and an out-
put data bus
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Figure 3: Liquid architecture block diagram.

Figure 4: Liquid architecture photograph.

• One specific instruction or event to track

• One counter to track how many times this instruction
or event has fired

• Two memory addresses (a low and a high) that rep-
resent a program-counter range in which the event
should be counted

With this information, each counter can listen on the buses,
and if the event occurs within the designated program-counter
range, the counter is incremented. This is all done in par-
allel, so the tracking mechanisms do not add extra clock
overhead to the execution of the program.

The entire module is customizable; that is, we can in-
stantiate varying numbers of these tracking modules within
the statistics module with a simple change to the VHDL
specification. Once instantiated, we can send packets to the
microarchitecture to program the instructions and addresses
for each counter module of the Statistics Module.

An important precaution the Statistics Module takes is
overflow prevention. When a user-designated amount of
clock cycles expire, the module evicts the data from its
counters and passes the statistical data to the packetization
module to be sent back to the user. It then resets the coun-
ters and continues monitoring execution without skipping
an event.

4. EXPERIMENTAL METHODS
In this section we describe the benchmark set and the

experimental procedure.

4.1 Benchmarks
The MiBench benchmark suite [6] consists of a set of em-

bedded system workloads which differ from standard desk-
top workloads. The applications contained in the MiBench
suite were selected to capture the diversity of workloads in
embedded systems. For the purposes of this study, we chose
workloads from the networking and automotive sections of
the suite.

CommBench [19] was designed with the goal of evaluat-
ing and designing telecommunications network processors.
The benchmark consists of 8 programs, 4 of which focus on
packet header processing, and the other 4 are geared towards
data stream processing.

Following are the set of applications we have used as part
of this study:

• From MiBench:

– basicmath: This application is part of the auto-
motive applications inside MiBench. It computes
cubic functions, integer square roots and angle
conversions.

– dijkstra, sha: These are part of the networking
applications inside MiBench. Dijkstra computes
the shortest path between nodes in a graph, and
sha is a secure hash algorithm which computes a
160-bit digest of inputs.

• From CommBench:

– drr , frag : These are part of the header process-
ing apps inside CommBench. The drr algorithm
is used for bandwidth scheduling for large num-
bers of flows. Frag refers to the fragmentation
algorithm used in networking to split IP packets.

– reed enc, reed dec: These are part of the packet
processing applications in CommBench. They are
the encoder and decoder used in the Reed-Solomon
forward error correction scheme.

4.2 Procedure
For each of the applications, the following sequence of

actions was taken:

• The application was executed standalone (i.e., no OS)
on the Liquid Architecture system. For benchmarks
that require disk-based input data, the benchmark was
altered to either read compile-time initialized data or
synthetically generate the input data. This step is
required because there is no file system available for
standalone execution. In addition, the benchmark was
adapted to initiate the statistics collection subsystem
(this required the addition of a single call at the be-
ginning of the code).

• The modified application was also executed under the
uClinux OS. Even though we have a file system for
this case, our desire to study the impact of applica-
tions running with and without an OS motivated us to
use the identical (altered) applications from the stan-
dalone runs.



• A number of different configurations of the LEON pro-
cessor were generated. Cache sizes of 1, 2, 4, and 8
Kbytes were included for a traditional direct-mapped,
write-back cache, and cache sizes of 1, 2, and 4 Kbytes
were included for a dusty cache. For the dusty cache,
the sizes above do not include the DImage memory,
so the actual on-chip memory usage for a dusty cache
configuration is twice that listed above. That is, the
listed cache size is the amount visible to the processor,
DData.

• Each of the applications was executed on each of the
processor configurations, measuring loads, stores, cache
hits, cache misses, memory reads, and memory writes.
It is the decrease in memory writes for a dusty cache
that we wish to examine.

5. PERFORMANCE RESULTS
Table 1 shows the total number of loads and stores for

each of the benchmark applications.

Table 1: Total number of load and store instructions
for each benchmark.

Benchmark Loads Stores

basicmath 74,151,136 46,577,732
bitcnts 68,009,977 15,626,007
dijkstra 60,985,966 8,925,084
drr 180,171,104 92,676,773
frag 178,058,884 96,099,734
reed enc 149,063,969 62,261,586
reed dec 208,593,061 89,553,034
sha 424,476,497 158,084,970

5.1 Standalone Execution
The initial performance results are presented for the appli-

cations running standalone. Figure 5 shows, for each appli-
cation and each cache size, the total count of memory writes
that occur in an individual execution. Given that this is a
write-back cache, these writes to the memory subsystem oc-
cur primarily as a result of cache evictions. This represents
the baseline memory write traffic with the write-back cache,
which is what we hope to improve with the dusty cache.

Figure 6 shows the savings in memory writes (as a per-
centage of the original number of memory writes shown in
Figure 5) for each application and cache size when using a
dusty cache. Note that the on-chip memory requirements
have doubled for the dusty cache implementation, so this
comparison only makes sense when in a design environment
where this extra memory requirement isn’t critical. This
might be the case, for example, in a multi-level cache system,
where the DImage memory is actually implemented as part
of the next level in the memory hierarchy. Additional imple-
mentation techniques that do not explicitly require double
the memory are described in [11]. An alternative way to
view this figure is that it is a measure of the frequency of
silent stores that potentially can be squashed, irrespective
of the cost of the method.

What is noteworthy here is the number of cases where
the savings are quite substantial, frequently well above 80%.
This is an even greater frequency of silent stores than that
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Figure 6: Percentage of memory writes saved with
a dusty cache. The applications are executing stan-
dalone.

reported in [13]. The surprisingly large fraction of silent
stores in the dijkstra benchmark is due to the repeated
traversals of the graph, most of the time writing values that
are already present.

When constructing a dusty cache system where the DImage

memory doesn’t come for free, a more appropriate compari-
son is between a write-back cache of some size and the dusty
cache of half that size. This fairly adjusts the comparison
for the actual memory usage of the dusty cache implemen-
tation (accounting for both DData and DImage memory re-
quirements). This is shown in Figure 7.

Here, we clearly see different tradeoffs playing out in dis-
tinct applications. For example, the drop in memory writes
saved for the basicmath benchmark is reasonable given the
initial number of memory writes (as shown in Figure 5) is
so strongly cache size dependent.

Whether or not using half of the available on-chip memory
space to build a dusty cache is now application dependent,
with potentially large swings in performance either direc-
tion. In addition, the overall performance of the application
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Figure 7: Percentage of memory writes saved with
a dusty cache of comparable memory requirements.
The applications are executing standalone. Note
that the y-axis has been truncated at -200%, and
the actual values for those exceeding -200% are well
below.

will now be impacted in other ways by the difference in cache
size. For example, Figure 8 plots the miss rate for reads as
the cache size varies. Clearly, all of these factors will have
to be considered before one can reliably choose the best per-
forming configuration. Under these circumstances, whether
or not to use a dusty cache is yet another microarchitectural
tuning knob for systems such as [15].
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Figure 8: Data cache miss rate for processor load
instructions. The applications are executing stan-
dalone.

Returning to the assumption that the cost of the DImage

is not prohibitive, we next consider an alternative control
mechanism. Figure 9 shows the writeback savings at the
full block level, rather than the subblock level of Figure 6.
Under the assumption that memory transactions occur for
complete cache lines, the dusty cache will save a memory
write only when the entire cache line is either not dirty or
matches the contents of DImage. As can be seen in the plot,
the savings are qualitatively very similar to the case where
decisions are being made at the individual subblock level.

We attribute the improvements seen in some cases (e.g., drr,
reed enc, and reed dec for both 4 KB and 8 KB cache sizes)
to write locality.
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Figure 9: Percentage of line evictions saved with a
dusty cache. The applications are executing stan-
dalone.

5.2 Execution with the Operating System
When running the benchmark applications on the OS, we

do not separately measure memory operations for the appli-
cation and the OS, but rather measure aggregate memory
writes from all sources. Figure 10 plots the number of mem-
ory write operations for each application and cache size when
running on the uClinux OS. Note that in virtually all cases,
the memory performance is noticeably different (including
both increases and decreases in memory writes) than the
standalone case.
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Figure 10: Count of memory writes for traditional
write-back, direct-mapped cache for each applica-
tion and cache size. The applications are executing
on the OS.

Following in the pattern of the previous subsection, we
next show the percentage of memory writes saved with a
dusty cache implementation that is of the same size DData

as the write-back cache. This is illustrated in Figure 11.



While the particular results are distinct from the standalone
execution, the savings are still surprisingly large.
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Figure 11: Percentage of memory writes saved with
a dusty cache. The applications are executing on
the OS.

We next plot the savings in memory writes when the to-
tal memory usage for the write-back cache is equivalent to
that of the dusty cache. This is shown in Figure 12. Once
again, the tradeoff is application specific, but the answer as
to whether a larger traditional cache or a smaller dusty cache
has better memory performance is dependent on whether or
not the application is running on the OS.
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Figure 12: Percentage of memory writes saved with
a dusty cache of comparable memory requirements.
The applications are executing on the OS.

Maintaining the symmetry with Section 5.1, we next present
(in Figure 13) the data cache miss rates for reads when the
benchmarks are being executed on the OS. Again, we see
similar qualitative patterns, but clear quantitative distinc-
tions when running standalone or with an OS. We hypothe-
size that for cases that have improved miss rates with the OS
(e.g., basicmath, dijkstra) the improved miss rates within
the OS proper are amortizing the poor miss rates in the
application itself.

Finally, Figure 14 shows the savings due to the dusty
cache policy if writeback decisions are being made at the
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Figure 13: Data cache miss rate for processor load
instructions. The applications are executing on the
OS.

full block level rather than the subblock level. An interest-
ing observation to be made here is that there is generally
better similarity between word evictions and line evictions
(i.e., comparing Figure 6 to Figure 9 and Figure 11 to Fig-
ure 14) than there is similarity between executing standalone
and with the OS (i.e., comparing Figure 6 to Figure 11 and
Figure 9 to Figure 14).
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Figure 14: Percentage of line evictions saved with a
dusty cache. The applications are executing on the
OS.

6. CONCLUSIONS
There are a number of conclusions that can be drawn from

the above data. First, temporally silent stores are frequently
occurring. The embedded benchmarks examined here ex-
hibit even greater frequency of silent stores than previously
published results (which focused on scientific and commer-
cial workloads). Second, when deciding between a dusty
cache system and a traditional write-back cache of compa-
rable memory usage, the properties of the particular ap-
plication(s) to be executed are critical. Finally, the above
decision cannot be made by examining the application in
isolation, but rather must include the impact of the run



time system, as that can change the end result as to which
approach will have better performance.

The significant differences seen in the results with and
without the OS have motivated us to further our investi-
gations in this area. The Liquid Architecture measurement
infrastructure enables us to probe more deeply into the prop-
erties of the execution, and we plan to use this capability to
better understand when standalone execution measurements
can and cannot be trusted for performance evaluation pur-
poses.
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