
Duplicating and Deconstructing
Virtual Load/Store Queues

Vikas Garg
Computer Sciences Department

Univ. of Wisconsin
Madison, WI 53706

vikas@cs.wisc.edu

Sonal Agarwal
Department of Electrical and Computer Eng.

Univ. of Wisconsin
Madison, WI 53706

sagarwal1@wisc.edu

ABSTRACT
Virtual load/store queues (VLSQs) within existing physical
load/store queues (LSQ) have been proposed as an effective
mechanism for reducing energy losses and increasing perfor-
mance. The VLSQ restricts reordering of memory opera-
tions by limiting the number of memory instructions visible
to the issue logic. This decreases the amount of execution
time wasted in replay traps and leads to power savings by
reducing the number of cache accesses, pipeline flushes, and
re-executed instructions.

Our simulation-based evaluation of a VLSQ supports the
claim that it reduces power consumption by controlling spec-
ulation in the execution of memory instructions, with min-
imal impact on performance. However, our simulation re-
sults also show that simply reducing the physical load/store
queue size can be more effective than using a VLSQ. For
a range of ROB sizes, reducing the LSQ size to 16 or us-
ing a VLSQ of size 16, has a similar effect on performance.
However, compared to a VLSQ, a reduced LSQ provides an
additional reduction of 1% to 10% in trap overhead, 2% to
10% in L1 cache accesses, 1% to 3% in L1 cache misses,
and 2% to 22% in the number of pipeline operations.

Our results show that for conserving power, stalling the pipeline
earlier on memory operations is better than delaying the
stalls until the subsequent memory dependent ALU opera-
tions.

1. INTRODUCTION
Large reorder buffer (ROB), issue queues and load/store
queues (LSQ) are used in aggressive out-of-order processors
to achieve high performance [2, 9, 10]. Out-of-order issue
of memory instructions in a processor can conflict with the
processor’s memory consistency model and lead to frequent
flushing of the pipeline and re-execution of speculatively ex-
ecuted instructions (replay traps). Speculative execution of
memory instructions can also increase the number of cache
accesses and misses. This increase in the number of replay
traps and cache accesses/misses due to the reordering of
memory instructions leads to wastage of both energy and
performance. Results in a recent paper [7] show that in-
creasing the ROB size from 80 to 512 in an 8-wide super-
scalar processor leads to an increase of 10-40% in the total
execution overhead, 10-60% in the number of L1 data cache
accesses, and 10-20% in L1 data cache misses. It also in-
creases the number of replay traps by a factor of 6.

Jaleel and Jacob [7] use a virtual load/store queue (VLSQ)
within the existing physical load/store queue to reduce mem-
ory reordering, while allowing for aggressive speculative ex-
ecution of instructions that are not dependent on memory
operations. This results in a significant reduction in the
number of replay traps, cache accesses, and cache misses.
They report a net power saving of 10-22% with a perfor-
mance degradation of only 2-5%.

We implemented VLSQ using a simulation environment and
processor configuration similar to that used by Jaleel and
Jacob [7]. Our results confirm that the total execution over-
head, cache accesses and cache misses increase with an in-
crease in the out-of-order execution capabilities. Our re-
sults also validate the effectiveness of using VLSQ to achieve
power savings by reducing the negative effects of aggressive
speculative execution of memory instructions.

The VLSQ paper [7] does not compare the benefits of virtu-
ally reducing the load/store queue size to physically reduc-
ing the load/store queue size. In this paper we compare
the reduction of the physical load/store queue size to using
a comparably sized VLSQ for power/performance manage-
ment. Our results show that reducing the LSQ size has
a bigger impact on power and performance than using a
VLSQ. Across different ROB sizes, reducing the LSQ size
to 16, or using a VLSQ of size 16, has similar impact on
performance. However, reducing the LSQ size results in an
additional 2-22% reduction in the number of operations in
the front end of the pipeline and 2-10% reduction in the
number of L1 cache accesses, as compared to using a VLSQ.

Our results show that although the VLSQ does restrict the
reordering of memory operations and prevents the load/store
queue from becoming a bottleneck, it is really only shifting
the bottleneck to the issue queue for ALU operations. This
suggests that throttling the memory operations causes the
memory dependent ALU operations to block the pipeline
and simply stalling the pipeline in the map stage is no worse
than delaying the stalls until the issue stage. Our results
further show that for conserving power, stalling the pipeline
earlier for memory operations is better than delaying the
stalls until the subsequent memory dependent ALU oper-
ations. These results corroborate the results of Karkhanis,
Smith, and Bose [8]. They show that for achieving maximum
energy savings with minimum performance loss, throttling
of the pipeline earlier in the fetch stage is more effective
than throttling later in the decode or issue stage.

2. VLSQ
Aggressive out-of-order processors use a large issue window
and a large load/store queue to exploit instruction level par-
allelism. Such a design supports high degree of instruction
reordering, and specifically, the large load/store queue leads
to a significant reordering of memory instructions. This can
negatively affect the program execution in two ways:

• Increased Replay Traps: Out-of-order issue of mem-
ory instructions can cause data dependency violations.
For processors that do not support selective re-execution,
data dependency violations lead to the flushing of the
pipeline and re-execution of instructions that were ex-
ecuted speculatively (replay traps). Increase in the re-
ordering of memory instructions increases the number
of replay traps and the processor ends up wasting more
energy executing instructions that will eventually get
discarded.

• Increased Cache Misses: Speculative execution of
memory instructions leads to an increase in the num-
ber of cache accesses and can negatively affect an ap-
plication’s cache locality. This leads to an increase in
the frequency of conflict misses and results in wasted
energy.

The motivation for implementing VLSQs is to reduce the
speculative execution of memory instructions by throttling
the load/store queue size as seen by the issue logic, while
at the same time allowing for the use of a large load/store
queue to support a large ROB size and speculative execution
of non-memory dependent ALU instructions.

VLSQ imposes a virtual window on the physical LSQ to
reduce the reordering of memory instructions. This virtual
window is similar to the sliding window concept used in net-
working protocols [12]. The VLSQ provides a sliding window
in the physical LSQ, so that during instruction scheduling
(issue), only the memory instructions that lie within the
sliding virtual window are allowed to be executed/issued.
The size of the sliding window (VLSQ size) determines the
number of memory instructions that will be considered for
execution. Pending memory instructions for which operands
are ready, but are not within the virtual window, will not
be considered for execution. The window slides forward as
the memory instructions at the head of the virtual window
are issued. This reduction in the reordering of memory in-
structions reduces the number of replay traps and cache ac-
cesses/misses.

The VLSQ is implemented using two additional queue point-
ers, VirtualHead and VirtualTail, that point into the con-
ventional LSQ. The VLSQ size gives the maximum distance
allowed between the VirtualHead and the VirtualTail. The
VirtualHead always points to the first non-issued memory
instruction and moves forward only when the memory in-
struction in the slot it points to is issued. The VirtualTail
moves forward when: (1) VirtualHead moves forward and
VirtualTail is not at the end of the queue; (2) a new entry is
inserted into the LSQ and the distance between the Virtual-
Head and the VirtualTail is less than the VLSQ size. Setting
the VLSQ size to infinity means that the virtual window size
is same as the physical LSQ size.

Table 1: Processor Configuration

Component Parameters

I-Cache 64KB, 2-way, 1-cycle
D-Cache 64KB, 2-way, 3-cycle

L2-Cache 2MB, 4-way, 15-cycle
TLB 128 entry, fully associative

Main Memory 1.3 GB/s DDR SDRAM [13]
Branch Predictor 2048 lines bimodal, 2-level

Branch Target Buffer 4096 entry, 4-way
Inst. Fetch Width 8
Inst. Map Width 8

Integer Issue Width 8
FP Issue Width 4

Inst. Commit Width 11
Integer Functional units 4 ALU, 4 MULT

FP Functional units 1 ALU, 1 MULT
Integer Clusters 2

FP Clusters 1
Store Wait Table 1024 entry, reset every 16384 inst.

Table 2: Baseline Out-of-Order Configurations

ROB Issue Queue LSQ VLSQ
Size INT/FP Size Size

80 20/15 32/32 Infinite
128 40/30 64/64 Infinite
256 80/60 128/128 Infinite
512 160/120 256/256 Infinite

The VLSQ essentially decouples the LSQ seen by the front
end of the pipeline from the LSQ seen by the issue logic.
For the instruction fetch and decode stages, VLSQ presents
a large traditional LSQ, so that the front end of the pipeline
does not stall due to lack of space in the LSQ. At the same
time it presents a smaller LSQ to the issue logic to reduce
the amount of speculation in the execution of memory op-
erations. This decoupling is based on the assumption that
the throttling of memory instructions will not cause other
pipeline stages to stall due to memory dependencies.

3. SIMULATION SETUP
We use an execution driven Alpha 21264 simulator sim-
alpha [6] for all of the simulations. Table 1 gives the proces-
sor configuration used in our simulations; as much as possi-
ble, these match the parameters used in the original VLSQ
study, with the exception that we do not simulate a stride
pre-fetcher. A stride pre-fetcher will have some impact on
performance numbers [3], but this variation in the abso-
lute numbers will be similar for both VLSQ and LSQ. Also
a stride pre-fetcher will not change the relative impact on
power and performance of using VLSQ or LSQ to control
the out-of-order capabilities of the processor.

To study a range of out-of-order capabilities, we varied the
ROB size, issue queue size, LSQ size and VLSQ size. Table
2 enumerates the four sets of baseline out-of-order configura-
tion parameters used in our experiments. An infinite VLSQ

size means that VLSQ is not used and corresponds to a con-
ventional load/store queue. To duplicate the VLSQ results
reported in [7], we use the baseline configuration and VLSQ
sizes of 2, 4, 8, 16, 32, 64, and Infinity. To study the ef-
fect of reducing the LSQ size, we performed the simulations
with LSQ sizes ranging from 2 to 64, for each of the baseline
configurations.

Like the original study, we used a subset of the SPEC2000
benchmark suite: art, applu, gcc, gzip, mgrid, mcf,

twolf, and swim. The data were gathered for 500 million
instructions after fast forwarding the first 2 billion instruc-
tions. This simulation setup matches the simulation setup
used in [7].

Unless stated otherwise, all the results presented in this pa-
per are the arithmetic mean of the results obtained for each
of the eight individual SPEC2000 benchmarks used. Instead
of reporting power savings, we report the reduction in the
number of pipeline operations. There is a direct correla-
tion between the power consumption numbers reported in
the original VLSQ study and the number of operations in
various stages of the pipeline [4, 11]. So the percentage re-
duction in number of pipeline operations is equivalent to the
percentage reduction in power consumption. In addition to
the power savings due to reduction in pipeline operations,
a smaller load/store queue will consume less power com-
pared to VLSQ because of the reduced physical size of the
load/store queue.

4. RESULTS
We present the results for the impact of variation in VLSQ
and LSQ on performance, stalls, traps, cache accesses/misses,
and pipeline operations. For all of the results presented,
when the VLSQ size is varied, the LSQ size is set to the
physical LSQ size used in the baseline configuration. The
data point labeled “Inf” in the VLSQ graphs means that an
infinite VLSQ size is used i.e. the virtual load/store queue
is disabled. When the LSQ size is varied, the VLSQ is set to
infinity. The data point labeled “Base” in the LSQ graphs
corresponds to the LSQ size used in the baseline configura-
tion. For a given ROB size the data points corresponding to
“Base” for LSQ and “Inf” for VLSQ represent the identical
baseline configuration.

4.1 Performance
Figure 1 shows the variation in CPI for different VLSQ sizes.
For a VLSQ size of 2 there is a performance degradation of
17-27% as we increase the ROB size from 80 to 512. These
results closely match the numbers presented in the original
study, where they show a performance degradation of 15-
30% for small VLSQ sizes.

As the VLSQ size is increased, the amount of throttling de-
creases, and the performance approaches that of the baseline
configuration. For a VLSQ size of 16 or greater, the CPI is
within 2% of the baseline CPI. This indicates that we can
use a VLSQ size of 16 without having a significant impact
on performance. These numbers also match the results pre-
sented in the original study where the authors show that for
VLSQ sizes of 16 and 32, the performance is within 2-5% of
the traditional load/store queue.

����
����
����

�������������	
��
��� ������������

Figure 1: VLSQ Performance

����
����
����

�������������� !"#
$%& �'(#�)*����)�

Figure 2: LSQ Performance

Figure 2 shows the variation in CPI for different LSQ sizes.
For an LSQ size of 2 there is a performance degradation of
61-80% for various ROB sizes. We show in the following
sections that the bigger drop in performance for LSQ is due
to the reduced amount of speculation and an increase in the
number of cycles that the processor is stalled in the map
stage waiting for empty load/store queue entries. As the
LSQ size is increased, performance approaches the baseline
performance. For an LSQ size of 16 or greater, there is
almost no performance degradation, and the CPI numbers
match the CPI numbers for VLSQ.

4.2 Stalls
To get a better understanding of the impact of variation in
VLSQ and LSQ on the processor pipeline, we measured the
distribution of stall cycles. Stall cycles are the the cycles
for which, due to lack of resources, the number instructions
mapped is less than the map width. We classify these stall
cycles into three categories:

����
����������
����������

����	
�������������������������������	
�������������������������������������	
�������������������������������������	
�� !"# $%&$'
()*+%�,-.,%�/
01234356674

Figure 3: VLSQ Stall Cycle Distribution

8988
:;888:;988
<;888<;988

=>?@ABC=>?DE=>?FG=>?HD=>?==>?E=>?GHG=?@ABCHG=?DEHG=?FGHG=?HDHG=?=HG=?EHG=?GGID?@ABCGID?DEGID?FGGID?HDGID?=GID?EGID?GIHG?@ABCIHG?DEIHG?FGIHG?HDIHG?=IHG?EIHG?GJKLMNOPOQRSTUVWXXYZ[X\]̂_̀
abc]Wdefd]Vg
JKLhihjOOki

Figure 4: LSQ Stall Cycle Distribution

• ROB: Stalls due to lack of entries in the reorder buffer
and the physical register file.

• MEM: Stalls due to lack of entries in the load/store
queues

• ISSUE: Stalls due to lack of entries in the Integer/FP
issue queues.

Figure 3 shows the variation in the total number of stall cy-
cles per thousand committed instructions, broken into the
three categories for different VLSQ sizes; Figure 4 plots the
total number of stall cycles, and the stall distribution for
various LSQ sizes. For the baseline configurations, the total
number of stall cycles per thousand committed instructions
decreases from 881 to 236 as we increase the ROB size from
80 to 512. For large VLSQ and LSQ sizes, both the LSQ
and VLSQ have a similar number of stall cycles across all
the different ROB sizes. For a given ROB size, as we de-
crease the VLSQ and LSQ sizes, the total number of stall
cycles increases significantly. Reducing the LSQ size causes
a bigger increase in the total number of stall cycles com-

pared to using VLSQ. For a ROB size of 512, reducing the
LSQ size to 2 causes the number of stall cycles per thousand
instructions to go up by 1950, compared to an increase of
761 for a VLSQ of size 2.

Beyond a ROB size of 128, the reorder buffer and the phys-
ical register file are no longer a bottleneck. For large ROB
sizes, all the stalls are caused by the issue queue or the
load/store queue. For a given ROB size, as we reduce the
LSQ size, the number of MEM stalls increase and over-
shadow the ROB and ISSUE stalls. For a ROB size of 128,
as the LSQ size is reduced from 64 to 2, the contribution of
MEM stalls to the total number of stall cycles, goes from
less than 10% to almost 100%. This shows that reducing
the size of LSQ causes it to become a bottleneck. The small
load/store queue fills up with instructions that miss in the
L1 cache. Due to lack of space in the load/store queue, no
more instructions can be mapped, and this stalls the entire
pipeline.

For a given ROB size, as we reduce the VLSQ size, the
number of ISSUE stalls goes up, while there is no increase
in the number of MEM stalls. For a ROB size of 128, de-
creasing the VLSQ size from 64 to 2 results in the number
of ISSUE stalls to increase from around 80% to more than
90% of the total number of stalls, while the number of MEM
stalls stays at less than 1%. This shows that a large physi-
cal load/store queue helps to avoid stalls due to instructions
that miss in the L1 cache by providing adequate buffering
for the delayed instructions. Although there is a large pool
of pending memory instructions, the VLSQ throttles the
execution of these instructions to avoid memory reordering.
This slows down the effective rate of completion of memory
instructions, and the ALU instructions that are dependent
on these memory instructions have to wait longer in the is-
sue queue before they can be issued. This causes the issue
queue to back up and become the bottleneck. So, although
the physical load/store queue is not a bottleneck anymore,
the reduced speculation in memory instructions is becoming
a bottleneck indirectly, by causing the memory dependent
ALU operations to stall. The increase in the issue queue
size as the ROB size is increased helps in alleviating the is-
sue bottleneck, as indicated by the reduction in the number
of stalls for a ROB size of 512.

4.3 Replay Traps
Figures 5 and 6 give the percentage of total execution cycles
spent in handling replay traps for different VLSQ and LSQ
configurations respectively. Just as in [7], the execution cy-
cles lost in handling traps is determined by keeping track of
the difference in number of cycles between the original in-
struction fetch and the subsequent re-fetch due to a replay
trap. The number of cycles spent in trap handling corre-
sponds to the extra work that the processor performs and
then discards. For the baseline configuration, as the ROB
size increases from 80 to 512, the trap overhead increases
from 24% to 45% of the total execution time, compared to a
25-60% increase in the original VLSQ study. This confirms
the results that as the amount of speculation is increased,
the percentage of wasted execution cycles goes up. Reducing
LSQ size is more effective in decreasing the number of cycles
spent handling traps. For a ROB size of 512 and a queue
size of 16, VLSQ reduces the percentage of time wasted in

�����
������
������

�����������	
����
��������������
�������� !"#���������

Figure 5: VLSQ Replay Trap Overhead

$%&$%
'$%($%
)$%*$%

+$&'+'*,*&'-./0123
4567589:;<=>?8
@5ABC>:=D /EF3,)('&,+)'

Figure 6: LSQ Replay Trap Overhead

replay traps by 9%, compared to a reduction of 19% for
LSQ. This indicates that the VLSQ is allowing more specu-
lative execution and causing more wasted computation than
a small LSQ. This corroborates the results presented in the
previous section where we show that reducing the LSQ size
results in a larger increase in the number of stall cycles and
hence a bigger reduction in speculative execution, compared
to a VLSQ of the same size.

Both the study presented here and [7] use a 1024-entry store-
wait table that is cleared after every 16K instructions [5,9].
The store-wait table is indexed using the PC of the instruc-
tion causing the load-store replay trap. If during instruction
fetch the store-wait table indicates a load-store dependency,
the load is not issued until all the prior stores are resolved.
The store-wait table is effective in avoiding load-store replay
traps, our results show that the store-wait eliminates 95%
of the load-store replay traps. The simulation setup also
causes replay traps on load-load dependencies. Load-load
dependencies are not a problem in uni-processor machines,
but need to be handled in multiprocessor systems to avoid
memory consistency violations [1]. Even in multiprocessor

GHGGIGG
JGGKGGLGG
MGGNGG

OGHIOILMLHIPQRSTUVWX
YZZ[\\[\][̂_̀
ab\cdefd\gh ijkMKJIHMOKI

Figure 7: VLSQ L1 Accesses

lmllnll
ollpllqll
rllsll

tlmntnqrqmnuvwxyz{|}
~������������
����������� w��{rponmrtpn

Figure 8: LSQ L1 Accesses

systems, load-load dependencies should cause a replay trap
only if there is an intervening commit from another proces-
sor. As a result, both the original paper and our study over-
estimate the reduction in replay traps by blindly flushing
the pipeline on all load-load dependencies. Our simulation
results show that disabling the load-load replay traps re-
duces the trap frequency from one trap per 328 committed
instructions to one trap per 1584 committed instructions,
for a ROB size of 512. This reduction in replay trap fre-
quency reduces the replay trap overhead by 53% and results
in a 16% improvement in the CPI for a ROB size of 512.
Even with load-load traps disabled, both the VLSQ and a
small LSQ provide similar relative reductions in the trap
overhead.

4.4 Cache Behavior
Figures 7 and 8 give the number of L1 data accesses per
thousand committed instructions for the different VLSQ and
LSQ configurations. For the baseline configuration, as the
ROB size is increased from 80 to 512, the number of L1 ac-
cesses increases by 38%. This matches the increase in the

���������	
���������	���������	�
��������	���������������
�����������
 ��!��"��
" ���"# �$%&'&()*+,-./
012345.6178/1
9:;<;=>:?@ABC
DEFDEGDEHDE
IDEJDEKDE
KIHGFKLIGMNOPOQRSTUVWX
YZ[\]̂W_Z̀aXZ
bcdefghdijklmno
pqrpqspqtpq
upqvpqwpq
wutsrwxusyz{|{}~������
�������������

Figure 9: VLSQ Reduction in Pipeline Operations��� ¡¢�£¤�¥¦§̈
©ª«©ª¬©ª©ª
®©ª̄©ª°©ª
°®¬«°±®¬²³́³µ¶·̧¹º»
¼½¾¿ÀÁÂ»Ã¾ÄÅ¼¾
ÆÇÈÉÈÊËÇÌÍÎÏÐ
ÑÒÓÑÒÔÑÒÕÑÒ
ÖÑÒ×ÑÒØÑÒ
ØÖÕÔÓØÙÖÔÚÛÜÛÝÞßàáâãä
åæçèéêãëæìíäæ
îïðñòóôðõö÷øùúû
üýþüýÿüý�üý
�üý�üý�üý
���ÿþ���ÿ�����	
����
�������������

Figure 10: LSQ Reduction in Pipeline Operations

time spent handling traps as the ROB size is increased, and
corresponds to the speculatively executed instructions that
are discarded because of pipeline flushes. Using a VLSQ,
or a smaller LSQ, reduces the number of replay traps and
this translates directly into a reduction in the number of L1
cache accesses. Just as with stalls and replay traps, reduc-
ing the LSQ size has a bigger impact on L1 cache accesses,
compared to using a VLSQ. A VLSQ of size 16 achieves a
reduction of 15% in the number of cache accesses per thou-
sand committed instructions, compared to a reduction of
18% with an LSQ of size 16. The number of cache misses
per thousand committed instructions increases from 91 to
96, as the ROB size is increased from 80 to 512. Using a
VLSQ size of 16 leads to a reduction of 0-2% in the number
of cache misses, compared to a reduction of 1-5% with an
LSQ of size 16.

4.5 Pipeline Operations
Figure 9 gives the reduction in the number of operations
in the various stages of the pipeline for VLSQ and Figure
10 gives the corresponding results for LSQ. These numbers
are normalized to the baseline configuration for each of the
ROB sizes. For a ROB size of 512, using a VLSQ of size 16,
reduces the number of operations in the various stages of
the pipeline by an average of 12%. With an LSQ of size 16,
the number of operations goes down by an average of 27%
in the various pipeline stages. The results show that de-
creasing the amount of speculation (smaller VLSQ and LSQ
sizes) reduces the number of pipeline operations, with LSQ

being more effective than VLSQ in reducing the number of
operations, and hence power consumption, in the various
pipeline stages.

4.6 Discussion
To better understand the impact of using VLSQs and to
compare their use with simply reducing the physical LSQ
size, we compare the simulation results for the baseline con-
figuration, a VLSQ size of 16 and an LSQ of size 16, across
all the different ROB sizes. We present data for VLSQ and
LSQ sizes of 16 because the performance for a VLSQ size
of 16 is comparable to the performance for an LSQ of size
16, and for both of them performance is within 2% of the
performance for the baseline configurations.

In Table 3, the “Base” columns correspond to the baseline
configurations as defined in Table 2. The “VLSQ” configura-
tions are derived from the “Base” configurations by changing
the VLSQ size from infinity to 16, and the “LSQ” configura-
tions are derived from the “Base” configurations by changing
the LSQ size to 16.

The total number of stall cycles per thousand committed in-
structions goes down as we increase the ROB size. Both the
VLSQ and LSQ have a greater number of total stalls com-
pared to the baseline configurations. The LSQ and VLSQ
have a different distribution of stall cycles across the three
categories (ROB, MEM and ISSUE). LSQ has many more
MEM stalls, due to lack of entries in the load/store queue,

Table 3: Comparison of Baseline, VLSQ size of 16 and an LSQ of size 16

Rob Size 80 128 256 512
Configuration Base VLSQ LSQ Base VLSQ LSQ Base VLSQ LSQ Base VLSQ LSQ

CPI 1.47 1.47 1.47 1.34 1.34 1.35 1.32 1.34 1.35 1.35 1.34 1.35
ROB Stall Cycles 507 513 467 86 113 6 8 2 0 1 0 0
MEM Stall Cycles 3 2 131 2 0 409 2 0 519 3 0 534
ISSUE Stall Cycles 371 379 295 404 455 185 330 470 24 233 363 1
Total Stall Cycles 881 893 893 492 569 600 340 473 543 236 364 536
Traps 24% 23% 22% 36% 30% 26% 38% 33% 26% 45% 36% 26%
L1 Accesses 469 452 442 549 469 451 591 480 451 648 499 451
L1 Misses 91 91 90 94 93 91 96 93 91 96 94 91
Fetch Ops 0% 1% 3% 0% 7% 12% 0% 8% 20% 0% 12% 31%
Map Ops. 0% 2% 4% 0% 7% 14% 0% 9% 23% 0% 12% 34%
Exec Ops. 0% 2% 3% 0% 7% 10% 0% 9% 13% 0% 12% 18%

and has almost no stalls in the issue queue. The VLSQ, on
the other hand, has almost no stalls in the load/store queue,
and most of the stalls are in the issue queue because the issue
queues fill up with memory dependent ALU instructions.

The percentage of execution cycles lost due to replay traps
goes up as the ROB size is increased. This corresponds to
the increased out-of-order execution and greater misspec-
ulation. This increase in trap overhead represents wasted
computation cycles. Both the VLSQ and LSQ help reduce
the replay trap overhead, with the LSQ being more effective
than the VLSQ.

Similar to the replay trap overhead, L1 accesses per thou-
sand instructions go up with an increase in the ROB size
and LSQ is more effective than VLSQ in reducing the num-
ber of L1 accesses. The pipeline operations are measured as
the reduction in the number of operations, relative to the
baseline configuration, for a given ROB size. Consequently,
the baseline numbers are all zero. Overall, both the VLSQ
and LSQ provide a significant reduction in the number of
pipeline operations, with LSQ having a bigger impact than
VLSQ.

The results shows that the VLSQ is achieving its goal of
preventing the negative effects of reordered memory instruc-
tions, without causing the load/store queue to become a
bottleneck. The results also show that some amount of
stalling in the front end of the pipeline is useful for reduc-
ing the amount of speculative execution and helps to reduce
the unnecessary execution and flushing of misspeculated in-
structions. Physical reduction in the LSQ size causes the
pipeline to stall sooner rather than later, and is more ef-
fective in reducing the negative effects of reordered memory
instructions.

5. CONCLUSIONS
Simulation results using our implementation of a VLSQ con-
firm the results presented by Jaleel and Jacob [7]. Using a
VLSQ within a conventional LSQ can reduce the negative
effects of reordered memory instructions. It helps to reduce
the speculative execution of memory instructions without
making the LSQ a bottleneck. Using a VLSQ of size 16
has almost no impact on performance, and can lead to re-
duced replay trap overhead, less cache activity, and signifi-

cant power savings.

Our results also show that reducing the physical LSQ size
results in a performance drop that is similar to the reduc-
tion in performance with a comparably-sized VLSQ. How-
ever physically reducing the load/store queue size results
in lower trap overhead, reduced cache activity, and higher
power savings compared to using a VLSQ. This analysis does
not take into consideration the power savings because of the
reduced physical size of the LSQ. Factoring in these savings
will further increase the effectiveness of using a smaller LSQ
to conserve power, compared to using the VLSQ scheme
proposed in [7].

The VLSQ provides an easy mechanism for dynamic run-
time control over the power/performance trade-off by re-
ducing the reordering of memory instructions at the issue
stage. However, for dynamically controlling the degree of
speculation, it will be advantageous to dynamically restrict
the number of load/store queue entries available during the
mapping stage. Restricting speculation at the map stage
will provide more power saving, for a similar drop in per-
formance, compared to restricting the speculation at issue
stage. In fact it might be useful to just shut down a sec-
tion of the LSQ, instead of virtually reducing the load/store
queue size. This will result in more power savings because
of the reduction in the active LSQ size.

Our results show that stalling earlier in the pipeline to con-
trol the amount of out-of-order execution is an effective way
to reduce the number of pipeline flushes and wasted execu-
tion power. For power savings, it will be useful to provide
some kind of a predictive feedback loop that stalls the front
end of the pipeline in a manner similar to the Just In Time
Instruction Delivery proposal [8]. If speculative execution
results in a large number of replay traps, then it makes sense
to stall pro-actively in the front end of the pipeline, instead
of waiting for the pipeline flushes.

6. ACKNOWLEDGEMENTS
We would like to thank Jim Smith for his invaluable support
and guidance. The authors will also like to thank Saisan-
thosh Balakrishnan, Aamer Jaleel, and the anonymous re-
viewers for their feedback and help in calrifying some of the
underlying concepts.

7. REFERENCES
[1] S. V. Adve and K. Gharachorloo. Shared memory

consistency models: A tutorial. IEEE Computer,
29(12):66–76, 1996.

[2] H. Akkary, R. Rajwar, and S. T. Srinivasan.
Checkpoint Processing and Recovery: An Efficient,
Scalable Alternative to Reorder Buffers. IEEE Micro,
23(6):11–19, 2003.

[3] J.-L. Baer and T.-F. Chen. Effective Hardware-Based
Data Prefetching for High-Performance Processors.
IEEE Trans. Comput., 44(5):609–623, 1995.

[4] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: a
framework for architectural-level power analysis and
optimizations. In ISCA ’00: Proceedings of the 27th
annual international symposium on Computer
architecture, pages 83–94, New York, NY, USA, 2000.
ACM Press.

[5] G. Z. Chrysos and J. S. Emer. Memory Dependence
Prediction Using Store Sets. In ISCA, pages 142–153,
1998.

[6] R. Desikan, D. Burger, S. Keckler, and T. Austin.
Sim-alpha: a validated execution driven Alpha 21264
simulator, 2001.

[7] A. Jaleel and B. Jacob. Using Virtual Load/Store
Queues (VLSQs) to Reduce the Negative Effects of
Reordered Memory Instructions. In HPCA ’05, pages
191–200, 2005.

[8] T. Karkhanis, J. E. Smith, and P. Bose. Saving energy
with just in time instruction delivery. In ISLPED ’02:
Proceedings of the 2002 international symposium on
Low power electronics and design, pages 178–183, New
York, NY, USA, 2002. ACM Press.

[9] R. E. Kessler. The Alpha 21264 Microprocessor. IEEE
Micro, 19(2):24–36, 1999.

[10] A. R. Lebeck, J. Koppanalil, T. Li, J. Patwardhan,
and E. Rotenberg. A large, fast instruction window for
tolerating cache misses. In ISCA ’02: Proceedings of
the 29th annual international symposium on Computer
architecture, pages 59–70, Washington, DC, USA,
2002. IEEE Computer Society.

[11] K. Natarajan, H. Hanson, S. W. Keckler, C. R.
Moore, and D. Burger. Microprocessor pipeline energy
analysis. In ISLPED ’03: Proceedings of the 2003
international symposium on Low power electronics and
design, pages 282–287, New York, NY, USA, 2003.
ACM Press.

[12] RFC793. Transmission Control Protocol. September
1981. DARPA Internet Program Protocol
Specification.

[13] D. Wang, B. Ganesh, N. Tuaycharoen, K. Baynes,
A. Jaleel, and B. Jacob. DRAMsim: a memory system
simulator. SIGARCH Computer Architecture News,
33(4):100–107, 2005.

