
Deconstructing Redundant Memory Synchronization

Christoph von Praun
IBM T.J. Watson Research Center

Yorktown Heights

Abstract
In multiprocessor systems with weakly consistent shared
memory, memory fence (also know as barrier) instructions
are necessary to establish memory consistency at synchro-
nization points in a parallel program. Programs that fol-
low an acquire-release synchronization protocol (e.g., Java)
make frequent use of such fence instructions and hence the
thrifty use and efficient implementation of such instruc-
tions is an important performance aspect. Perhaps sur-
prisingly, this paper demonstrates on the example of multi-
threaded Java benchmarks that most fences occurring in a
program execution are - ex post - unnecessary according to
the rules of memory consistency demanded by the software
(max. 99.9%, avg. > 98%). We conclude that the model
for memory synchronization offered by current multiproces-
sor systems is not well aligned with the requirements of the
widely used acquire-release software synchronization proto-
col.

1. Introduction
Modern multiprocessor systems provide a weakly consistent
view of memory to individual processors. This means that
different processors may observe the shared memory in dif-
ferent states at the same time. The weak memory model
results from mechanisms inside individual processors that
serve to optimize the memory access path (caches) and ag-
gressively reorder memory accesses [8].

1.1 Acquire-Release synchronization protocol
The acquire-release protocol [6] defines the rules of memory
synchronization that threads must observe if their control
flow crosses a specific synchronization point, i.e., an access to
a variable or construct that is designated for synchronization
purpose (e.g., a lock). The control flows of synchronizing
threads conceptually “meet” at such synchronization points.
To be general, we refer in this presentation to synchroniza-
tion variables and synchronization point, not to locks and
lock access.

Definition 1: Acquire-release protocol
Acquire and release operations are associated with accesses
to synchronization variables. All acquire and release oper-
ations that occur for the same synchronization variable are
totally ordered. The acquire-release protocol imposes the
following obligations on threads that access the same syn-
chronization variable:

• A release operation guarantees that updates to shared
memory that the current processor has issued prior to
the release can be visible to other processors.

• An acquire operation guarantees that the current pro-
cessor can correctly observe updates of shared memory
that other processors have made available through a
release operation (preceding the acquire).

These memory consistency guarantees do not necessarily
hold for acquire and release that occur on different synchro-
nization variables. �

Acquire and release are conceptual operations. The im-
plementation at the hardware-level depends on the shared
memory model that is supported by the machine architec-
ture. Some architectures associate memory synchronization
semantics with atomic operations, e.g., [9], while other ar-
chitectures separate the aspects of memory synchronization
and atomic operations, e.g., [18]. The discussion and obser-
vations made by this paper are independent of a specific pro-
cessor architecture. Hence throughout this paper the term
synchronization operation is used to refer to the conceptual
operations acquire or release. The term memory fence shall
refer to a specific implementation.

At the programming level, acquire and release operations are
implied by higher-level synchronization primitives. Several
thread packages implement this model of memory synchro-
nization, and recently also the Java programming language
adopted these memory semantics for its synchronized and
volatile language constructs [14].

1.2 Example: PowerPC
Figure 1 illustrates the implementation of a lock with
acquire-release semantics on the PowerPC architecture [18].

The load-reserve (lwarx) and store-conditional (stwcx) in-
structions are executed in a loop to achieve an atomic read
and update of the lock variable. Once a thread succeeds
to store its id <tid> in the lock variable, it won the race
for the lock. This code is simplified and does not contain
provisions for back-off and queued waiting. The isync in-
struction ensures that preceding instructions complete and
discards the results of instructions that follow (in program
order) that may have speculatively begun execution in the
out-of-order (OOO) execution pipeline. In particular, all
read memory accesses that precede isync will perform be-

1 // lock
2 while (true) {
3 tmp = lwarx(lock);
4 if (!tmp && stwcx(<tid>, &lock))
5 break;
6 isync; // memory acquire operation
7 }
8
9 <critical region>

10
11 // unlock
12 sync; // memory release operation
13 lock = 0;

Figure 1: Lock implementation with acquire-release memory
semantics on the PowerPC.

fore the read accesses that follow isync. The sync instruc-
tion is similar to isync instruction but more comprehensive.
In addition to the local sequencing of instructions that pre-
ceded and respectively follow it, sync ensures that the un-
derlying memory subsystem performs loads and stores due
to instructions that preceded sync, before loads and stores
that are due to instruction that follow sync (in program
order). While the guarantees of sync are actually stronger
than those demanded by the acquire-release protocol1, we
do not elaborate the discussion in this paper and refer the
reader for a comprehensive specification of memory fences
to [8, 18]. The precise definitions of the terms ’complete’
and ’has performed’ are given in in [6].

Table 1 reports the approximate number of cycles taken
to execute memory fence and atomic exchange instructions.
The numbers have been determined with a single-threaded
microbenchmark on a 8-way Power4 1.1 GHz system and a
4-way Power5 1.6GHz system. sync, isync, and lwsync are
variants of memory synchronization instructions; the com-
bination of the lwarx and stwcx read and update a variable
atomically. Note that the cycle time of these instructions is
not constant and depends on the dynamic context (like the
number of pending stores); the cycle times reported in the
table demonstrate nevertheless that cost of memory fence
instructions is substantial and can be several times to cost
of a memory access.

instruction Power4 Power5
sync ∼ 140 ∼ 50
lwsync ∼ 110 ∼ 25
isync ∼ 30 ∼ 30
lwarx/stwcx ∼ 80 ∼ 75

Table 1: Approximate cycle times for memory synchroniza-
tion and atomic-read-update instructions on a Power4 and
Power5 multiprocessor server.

1.3 Claims and contribution
This work studies the execution of multi-threaded programs
and classifies the occurrence of acquire and release oper-
ations according to their role in establishing a consistent
memory view among software threads. The classification of
memory synchronization operations in the execution trace
of a program is done ex post, i.e., after all synchronization

1On the PowerPC, a light-weight variant of the sync in-
struction, i.e., lwsync, is sufficient to achieve the semantics
of release.

events during a program execution are known. The classi-
fication is solely based on the synchronization structure in
the execution trace and independent of the processor archi-
tecture and events that control memory or cache coherence
at the hardware level.

Based on this classification, it is argued that on average more
than 98% (max 99.9%) of the dynamic memory synchroniza-
tion operations are unnecessary, i.e., they could have been
omitted without compromising the acquire-release memory
synchronization protocol.

2. Sources of redundancy
This section describes different models for the classification
of memory synchronization operations in an execution and
defines the condition in each model under which a synchro-
nization operation is “unnecessary”. An empirical assess-
ment of each model and its capability to assess the redun-
dancy of synchronization operations is given in Section 3.

2.1 Thread-confined synchronization variables
A variable is said to be thread-confined if it is accessed only
by a single thread. In this study thread-confinement is de-
termined dynamically, based on all accesses to a specific
synchronization variable. If all accesses are done by the
same thread, then the variable and the accesses are thread-
confined. In specific cases, a static program analysis can
determine thread-confinement, e.g., [1, 3, 23, 17]. Such a
static analysis is however necessarily conservative and hence
would report fewer cases of thread-confinement.

Claim.
Memory synchronization (acquire and release) that occurs
with access to a thread-confined synchronization variable is
redundant.

Proof.
First, it is assumed that threads are self-consistent, i.e., a
thread does not have to apply acquire and release opera-
tions to make its updates to memory visible to itself. As
threads are an abstraction of a processor provided by the
operating system (OS), we assume that the OS transpar-
ently applies memory synchronization if necessary (e.g., the
thread is scheduled to a different processor). The memory
synchronization at the OS-level is not part of this study.

According to Definition 1, all threads that aim for a con-
sistent memory view must access the same synchronization
variable. An access to a thread-confined synchronization
variable is hence only obliged to provide memory consis-
tency within the accessing thread. This corresponds to the
self-consistency that is implied by the thread abstraction of
the OS. Hence explicit acquire or release synchronization op-
erations that occur along with the access to thread-confined
synchronization variables are not necessary. �

2.2 Thread and processor locality of synchronization
Synchronization locality is a situation where a synchroniza-
tion variable is accessed in an immediate sequence by the
same thread (thread locality) or processor (processor local-
ity). The case of thread-confined synchronization variables
that is discussed in the previous section is a special case of

A

R

isync

sync

A

R

isync

sync

A

R

isync

sync

A

R

isync

sync

4

4

processor 1

A

R

acquire

release

����
processor 2

1

1

2

2

3

3

[]

[
[

[

]
]

]

processor locality

Figure 2: Locality of synchronization on the example of a
lock that is subsequently acquired and released on the same
processor. All accesses target the same synchronization vari-
able.

thread locality, where the locality of access to a synchroniza-
tion variable extends over the whole lifetime of the variable.

Example
A scenario of processor locality of synchronization is illus-
trated in Figure 2. The example is based on the PowerPC
implementation of a lock given in Figure 1. Processor 2
executes an immediate sequence of lock and unlock opera-
tions on the same lock variable. The instructions isync2

and isync3 are unnecessary, because reads following isync1

can expect that data is already consistent on processor 2.
The sync instructions on processor 2 are proactive, such
that sync1 and sync2 turn out to be unnecessary in ret-
rospect. In the figure, unnecessary memory synchronization
is enclosed in square brackets.

Claim.
In a thread or processor local sequence of release operations,
all but the last release operation is redundant. The dual
holds for all but the first acquire operation.

Proof.
The proof is similar to the one given for thread-confined syn-
chronization variables. For the period of locality, synchro-
nization operations (acquire resp. release) can be regarded to
occur on a synchronization variable that is confined to a spe-
cific environment (thread or processor). This environment is
self-consistent and hence explicit memory synchronization is
redundant. An exception are the first acquire operation and
the last release operation that ensure memory consistency
(wrt. to the synchronization variable) at the entry and exit
of the access sequence. �

Thread and processor locality can be combined: In the com-
bined model, a synchronization operation is considered as
redundant if it is redundant due to thread or processor lo-
cality.

2.3 Eager releases and repetitive acquires
Definition 1 states that acquire and release operations that
occur with different synchronization variables are indepen-
dent, i.e., a release operation performed for a synchroniza-
tion variable s1 does not provide a consistent visibility of

memory to an acquire operation on a synchronization vari-
able s2 (s1 6= s2).

In current processor architectures such as the PowerPC, the
implementation of acquire and release operations is oblivious
to the synchronization variable with which these operations
are associated, i.e., memory fence instructions establish con-
sistency for the overall memory. Hence the guarantees of the
implementation are actually stronger than what is required
by in Definition 1.

This section defines a stronger notion of the acquire and
release operation that corresponds more closely to the im-
plementation of memory fences in current processor archi-
tectures. Then, this section explores if – given the stronger
semantics of acquire and release – additional memory oper-
ations can be regarded as redundant.

Definition 2: Strong acquire-release protocol
Acquire and release operations are associated with accesses
to synchronization variables. There is a partial order among
acquire and release operations that is defined as follows: A
release operation precedes an acquire operation if (1) both
operations occur in the same thread and are respectively or-
dered in the control-flow, or (2) acquire and release occur
in different threads and there are accesses to the same syn-
chronization variable in the local control-flow of the threads
following the release and preceding the acquire operation.

The strong acquire-release protocol imposes the following
obligations on threads accessing any shared synchronization
variable:

• A release operation guarantees that updates to shared
memory that the current processor has issued prior to
the release can be visible to other processors.

• An acquire operation guarantees that the current pro-
cessor can correctly observe updates of shared memory
that other processors have made available through a
release operation (preceding the acquire).

The effect of strong acquire and release operations is in-
dependent of the synchronization variable with which they
occur. �

Example
The following example illustrates the difference between nor-
mal acquire/release operations (Definition 1) and the strong
variant (Definition 2). With acquire/release semantics ac-
cording to Definition 1, none of the synchronization opera-
tions in Figure 3 would be redundant.

Given the strong semantics (Definition 2), some of the re-
lease operations occur over-eagerly (e.g, sync1, sync3) be-
cause there is a timely subsequent release with the same ef-
fect (e.g, sync2, sync4). Some acquire operations are repet-
itive (e.g, isync2, isync4), because there is some earlier
acquire that already established consistency (e.g, isync1,
isync3). In Figure 3, unnecessary memory synchronization
is enclosed in square brackets.

A

R

isync

sync

1

1

A

R

isync

sync

2

2

A

R

isync

sync

A

R

isync

sync

A

R

acquire

release

lock 1

lock 1

lock 2

lock 2

[

[]

3

3

4

4

lock 1

lock 1

lock 2

lock 2[]

[]

]

processor 1 processor 2

Figure 3: Eager releases and repetitive acquires in the strong
acquire release model.

Note that these observations apply only to the specific exe-
cution, i.e., synchronization interleaving, that is illustrated
in the figure.

Claim.
This claim assumes strong acquire and release semantics
(Definition 2). Definition 2 implies that there is a partial or-
der among memory synchronization operations that is com-
patible with the partial order of accesses to synchronization
variables.

A release operation is eager, if there is an immediate succes-
sor (in the partial order) release operation that is executed
on the same processor. An acquire operation is repetitive if
there is an acquire operation issued by the same thread that
is immediately preceding in the partial order.

Eager release operations and repetitive acquire operations
are redundant.

Proof.
Follows from Definition 2. �

3. Evaluation
The evaluation is based on a commercial Java VM with an
extension that traces the occurrence of lock operations on
the fly, i.e, during program execution. The experiments are
done on a 4-way Power5 1.6 GHz server with symmetric
multi-threading (SMT), i.e., there are 2 hardware threads
per processor (overall 8 hardware threads in the multipro-
cessor system). For the study of processor locality, each
hardware thread is treated as self-consistent logical proces-
sor.

The tracing extension slows down the program execution;
the slowdown is relative to the frequency of lock operations
between 5% and 1700% (average 75%) of the total execution
time. There are two sources for the slowdown: First, certain
optimization in the code generation are disabled; this affects
in particular the efficiency of the lock enter and exit code.
Second, the instrumentation and corresponding library calls
add code to the execution that is not found in the orig-
inal program. While the tracing extension is designed to
allow multi-threaded execution, it might affect the paral-
lelism and skew the execution of a parallel application. We

believe, however, that the potential skew would not unduly
affect or support the claims made in this paper (redundancy
in memory synchronization): Due to the overhead of the
tracing extension, phases of locality could be shortened and
hence opportunities for redundancy might even disappear.

The following set set of multi-threaded scientific and server
benchmark program are investigated:

• mtrt is a multi-threaded raytracer from the JVM98
benchmark suite [19] configured with two threads.

• mold(yn), ray(tracer), and monte(carlo) are multi-
threaded numeric application kernels from the Java
Grande benchmark suite [10]. All benchmarks are ex-
ecuted with two threads in the ’size B’ configuration.

• hedc is a warehouse for scientific data developed at
ETH Zürich [21]. This benchmark represents an ap-
plication kernel that implements a meta crawler for
searching multiple Internet archives in parallel. In
the benchmark configuration, four driver threads issue
random queries to two archives each. The individual
queries are handled by reusable worker threads.

• jigsaw is a http-server implementation [22] (version
2.2.4). The workload in the experiments is created
by two http-clients that fetch a total of 2500 random
web-pages of 1024 bytes.

• pseudojbb and trade6 emulate the transaction process-
ing and WWW front-end of typical e-commerce ap-
plications. pseudojbb is a variant of SPECjbb [20]
processes a fixed number of transactions (500,000, no
ramp-up) instead of a fixed amount of time (original
version). Configurations with 4 and 16 warehouses
represent one scenario with fewer resp. more software
threads than hardware threads (in the multiprocessor
system that is used for this study). trade6 is configured
with a 120 sec. ramp-up period followed by a 240 sec.
stress test. All components of the benchmark, includ-
ing the database, executed on the same machine (2-tier
configuration).

Table 2 reports the rate at which the benchmarks execute
memory synchronization operations. The numbers are ap-
proximate (adjusted by the slowdown due to the VM ex-
tension) and refer to the sum of operations in the 4-way
multiprocessor system, i.e., the rate per processor is actu-
ally lower. Each pair of acquire and release is counted as
one operation. The VM implements an aggressive compiler-
based lock elimination that is enabled for all experiments
(this optimization reduces the frequency of memory syn-
chronization). We report only memory synchronization that
is associated with non-reentrant lock operations – not, e.g.,
synchronization that occurs with accesses to volatile vari-
ables.

For monte, pseudojbb, and trade6, the frequency of lock
events is relatively high, such that synchronization opera-
tions contribute noticeably to the overall execution time; we
validated this for the example of specjbb, where the omis-
sion of memory synchronization in a run with one warehouse

benchmark thousand ops / sec CPU util
mtrt 120 170
mol � 1 380
monte 1650 290
ray � 1 350
hedc 30 100
jigsaw 45 130
pseudojbb (4 wh) 1530 280
pseudojbb (16 wh) 2320 240
trade6 630 290

Table 2: Frequency of synchronization operations and CPU
utilization (max. 400% on a 4-way machine).

(i.e., quasi single-threaded) reduced the execution time by
a few percent.

In the runs of pseudojbb, about half of the real (wall clock)
time is spent for the creation of the warehouses, which
is single-threaded, then follows the actual multi-threaded
transaction processing. This is the reason for the relatively
low CPU utilization of this benchmark. mtrt has only two
threads (maximum utilization is 200%). hedc and jigsaw are
I/O bound. The values for trade6 include the start-up and
stop phase of WebSphere.

Thread-confined synchronization
Table 3 reports the fraction of synchronization operations
that occur on thread-confined synchronization variables.
The baseline (100%) is the total number of synchronization
operations that occur for non-reentrant Java locks.

benchmark thr-conf
mtrt 99.3
mol 82.7
monte 99.6
ray 81.3
hedc 89.6
jigsaw 45.5
pseudojbb (4 wh) 33.5
pseudojbb (16 wh) 18.9
trade6 30.3
average 64.5

Table 3: Fraction of synchronization events that are thread-
confined in percent [%].

Thread-confined synchronization points are mainly an id-
iosyncrasy of Java’s programming model and standard li-
brary implementation. A single-threaded application would
report 100% redundancy according to this model. Despite
the aggressive elimination of thread-confined locking by the
compiler, yet a large fraction of thread-confined lock use
and memory synchronization remains. The implementation
of jigsaw and trade6, which is based on WebSphere, seems
to be carefully designed to avoid and reduce the occurrence
of thread-confined locking.

Thread and processor locality
Table 4 reports the fraction of synchronization operations
that are redundant due to thread locality and processor lo-
cality. The baseline (100%) is again the total number of
synchronization operations for non-reentrant Java locks.

Column thr-loc includes operations that are redundant due
to thread-confinement reported in Table 3. The additional

benchmark thr-loc proc-loc com-loc
mtrt 99.9 99.9 99.9
mol 98.4 98.2 98.5
monte 99.8 98.8 99.8
ray 99.0 99.0 99.2
hedc 97.2 97.6 98.1
jigsaw 84.8 91.8 91.8
pseudojbb (4 wh) 99.7 94.9 99.7
pseudojbb (16 wh) 99.7 91.7 99.7
trade6 74.5 64.5 76.7
average 94.8 92.9 95.9

Table 4: Fraction of synchronization events that are redun-
dant due to a locality context in percent [%].

cases in Table 4, are due to immediate sequences of ac-
quire and release operations inside the same thread but for
synchronization variables that are shared, i.e., during their
entire lifetime accessed by more than one thread. For all
benchmarks, the case thr-loc covers an overwhelming ma-
jority of synchronization operations.

Column proc-loc reports redundancy due to processor local-
ity. If different threads execute on the same processor – this
model can include cases that are not identified as redundant
according to thread locality. When a thread is migrated
to a different processor, however, processor locality breaks
for synchronization variables that are actually thread local.
Hence, there is no clear benefit of one model over the other,
assuming that thread migration occurs rarely. The redun-
dancies reported in column com-loc reflects the combined
model, which subsumes the cases of thread and processor
locality.

Eager release or repetitive acquires
Table 5 reports a refinement of combined locality (Ta-
ble 4, column com-loc). Especially for those benchmarks
where synchronization locality not so pronounced (jigsaw
and trade6), still a significant share of synchronization events
can be deemed to be eager releases and repetitive acquires –
and hence are classified as redundant. The numbers in Ta-
ble 5 are rounded to a hundredth of a percent. In mtrt, e.g.,
for example, a mere 16 out of over 700,000 synchronization
operations are not redundant.

benchmark com-loc not eager or repetitive
mtrt 99.99
mol 99.17
monte 99.90
ray 99.56
hedc 99.66
jigsaw 98.05
pseudojbb (4 wh) 99.97
pseudojbb (16 wh) 99.99
trade6 93.65
average 98.88

Table 5: Fraction of synchronization events with combined
locality that are not eager or repetitive in percent [%].

4. Related work
There are several lines of research that identify thread lo-
cality in the synchronization as optimization opportunity.
In particular, there are highly efficient lock implementa-
tions that leverage the effect of thread-locality in locking:
Kawachiya et. al. and Ogasawara et. al. [11, 12], e.g., avoid

atomic operations for locking up to the point where a lock
is accessed by more than one thread. Tentative ownership
locks (TO-lock) [16] avoid atomic operations even if locks are
shared, exploiting phases of lock locality. The experimental
findings on the existence and amount of lock locality is con-
sistent with our report. Most of the lock optimization work
for Java has focused on the optimization of atomic opera-
tions, not memory synchronization. This work studies the
latter aspect in more detail than previous work under the
presumption of the recently revised Java memory model [14].

Beyond the work on static lock elimination [1, 3, 23, 17],
static analysis has also been tailored to the elimination of
memory fences [4, 2, 15]. This work reports an ideal upper
bound of memory fences that can be found to be redundant.
As static analysis is necessarily conservative, the reductions
reported in [2, 15, 4] are significantly lower than the findings
reported in this paper.

Microprocessors commonly hide the effects of memory access
re-ordering and optimize the execution of fence operations
using the data speculation capabilities of the OOO execution
pipeline [5, 7]. The effectiveness of these techniques depends
on the immediate dynamically surrounding instruction con-
text within which a fence executes, not the synchronization
structure in the application. Hardware support for specu-
lation, e.g., [7], allows to implement wait-free fences; this
technique can reduce the impact of unnecessary fences on
the execution time.

Memory synchronization is a performance critical aspect in
distributed share memory systems. The significant overhead
of eager release has been addressed in work on TreadMarks
and Lazy Release Consistency [13].

5. Concluding remarks
Efficient memory synchronization remains an important
topic for future multiprocessor systems. This work demon-
strates on the example of multi-threaded Java benchmarks
that most memory fences occurring in a program execution
are unnecessary according to the memory consistency de-
manded by the programming language: On average more
than 98% and a maximum of 99.9% of memory synchro-
nization operations are redundant in the program execu-
tions that we observed. Acquire operations are unnecessary
because previous synchronization in the same thread or pro-
cessor have accomplished a consistent memory view earlier.
Most release operations occur proactively, i.e., due to the
uncertainty if a subsequent acquire occurs on the same or
a different thread or processor. This usage model is a con-
sequence of the fence and memory synchronization imple-
mented in current multiprocessor architectures. We con-
clude that the model for memory synchronization offered
by current multiprocessor systems is not well-aligned with
the requirements of the widely used acquire-release software
synchronization protocol.

Acknowledgments
We thank Trey Cain, Calin Cascaval, Jong-Deok Choi, Man-
ish Gupta, Kristis Makris, and Kyung Ryu for discussions
and their detailed and insightful comments.

References
[1] J. Aldrich, C. Chambers, E. Sirer, and S. Eggers.

Static analyses for eliminating unnecessary
synchronization from Java programs. In Proc. of
Static Analysis Symposium (SAS ’99), pages 19–38,
Sept. 1999.

[2] A. Chien, U. Reddy, J. Plevyak, and J. Dolby.
ICC++: A C++ dialect for high performance parallel
computing. In Proceedings of the International
Symposium on Object Technologies for Advanced
Software (ISOTAS’96), pages 190–205, Mar. 1996.

[3] J. Choi, M. Gupta, M. Serrano, V. Sreedhar, and
S. Midkiff. Escape analysis for Java. In Proc.
Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA’99), pages 1–19. ACM
Press, Nov. 1999.

[4] X. Fang, J. Lee, and S. Midkiff. Automatic fence
insertion for shared memory multiprocessing. In
Proceedings of the International Conference on
Supercomputing (ICS’03), pages 285–294, June 2003.

[5] K. Gharachorloo, A. Gupta, and J. Hennessy. Two
techniques to enhance the performance of memory
consistency models. In Proceedings of the
Intlernational Conference on Parallel Processing
(ICPP’91), Aug. 1991.

[6] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons,
A. Gupta, and J. Hennessy. Memory consistency and
event ordering in scalable shared-memory
multiprocessors. In Proceedings of the International
Symposium on Computer Architecture (ISCA’90),
pages 15–26, June 1990.

[7] C. Gniady, B. Falsafi, and T. N. Vijaykumar. Is SC +
ILP=RC? In Proc. Int’l Symp. on Computer
Architecture (ISCA’99), pages 162–171, May 1999.

[8] J. Hennessy and D. Patterson. Computer Architecture:
A Quantitative Approach. Morgan Kaufmann
Publishers, Inc., 1996.

[9] Intel Corporation. Intel architecture software
developer’s manual, volume3: System programming
guide.
http://developer.intel.com/design/PentiumIII/manuals/,
Apr. 2002.

[10] JGF. Java Grande Forum multi-threaded benchmark
suite, 1999.

[11] K. Kawachiya, A. Koseki, and T. Onodera. Lock
reservation: Java locks can mostly do without atomic
operations. In Proceedings of the Conference on
Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA’02), pages 292–310, Nov.
2002.

[12] T. O. K. Kawachiya and A. Koseki. Lock reservation
for java reconsidered. In Proceedings of the European
Conference on Object-Oriented Programming
(ECOOP’04), pages 560–584, June 2004.

[13] P. Keleher, A. Cox, and W. Zwaenepoel. Lazy release
consistency for software distributed shared memory. In
Proceedings of the Annual International Symposium
on Computer Architecture (ISCA’92), pages 13–21,
May 1992.

[14] J. Manson, W. Pugh, and S. Adve. The java memory
model. In Proceedings of the Symposium on Principles
of Programming Languages (POPL’05), pages
378–391, 2005.

[15] S. Midkiff, J. Lee, and D. Padua. A compiler for
multiple memory models. In Rec. Workshop Compilers
for Parallel Computers (CPC’01), June 2001.

[16] T. Ogasawara, H. Komatsu, and T. Nakatani. To-lock:
Removing lock overhead using the owners’ temporal
locality. In Proceedings of the Conference on Parallel
Architectures and Compilation Techniques (PACT’04),
pages 255–266, Oct. 2004.

[17] E. Ruf. Effective synchronization removal for Java. In
Proceedings of the Conference on Programming
Language Design and Implementation (PLDI’00),
pages 208–218, June 2000.

[18] E. Silha, C. May, and B. Frey. PowerPC User
Instruction Set Architecture (Book I), 2003.

[19] SPEC. Standard Performance Evaluation Corporation
- SPECjvm98, 1998.

[20] SPEC. Standard Performance Evaluation Corporation
- SPECjbb2000, 2000.

[21] E. Stolte, C. von Praun, G. Alonso, and T. Gross.
Scientific data repositories – designing for a moving
target. In Proceedings on the International Conference
on Management of Data and Symposium on Principles
of Database Systems (SIGMOD/PODS’03), pages
349–360, June 2003.

[22] W3C. World wide web consortium: Jigsaw - w3c’s web
server. http://www.w3.org/Jigsaw, 2003.

[23] J. Whaley and M. Rinard. Compositional pointer and
escape analysis for Java programs. In Proc.
Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA’99), pages 187–206, Nov.
1999.

