
 

  

Abstract—Multiple port instruction and data caches are 
required in order to achieve high performance on wide-issue 
superscalar microprocessors. However, the area and speed 
impact of implementing a full blown multiport cache is 
substantial.  The highly predictable nature of the instruction 
stream has enabled trace caches to effectively fetch instructions 
from more than one cache block in each cycle. Our analysis 
shows that the data accesses stream also consists of recurring 
traces, hinting that a Data Trace Cache that exploits these 
recurring accesses is feasible. In this paper we show our attempt 
to design a data trace cache, and explain why its results are 
inferior to previous simple methods that aim at creating virtual 
multiport data caches. 
 

Index Terms—Cache memories, Data Trace Cache, Memory 
architecture. 

I. INTRODUCTION 

ODERN microprocessors achieve high Instruction Per 
Cycle (IPC) rates by utilizing multiple execution 

engines in parallel  [1]. In order to supply enough instructions 
for execution in parallel, concurrent access to different cache 
blocks is required. A multiport cache could be used, but it is 
an expensive solution in terms of power and area. Instead, 
instruction trace caches pack instructions from different cache 
blocks in their dynamic execution order into a single trace 
cache line  [6]. Therefore, a single port instruction trace cache 
achieves similar performance while avoiding the cost of a 
multiport instruction cache. 

A similar need exists for data supply. Multiple data load 
instructions should be executed in parallel, since load 
instructions represent close to a quarter of the dynamic 
instructions  [2]. Fig. 1 shows the IPC improvement as a 
function of the number of cache memory ports of a very wide 
machine that can issue and commit up to 32 instructions per 
cycle. These results for the SPEC2000 GCC benchmark 
confirm that lack of sufficient cache ports indeed limits 
microprocessor performance. 

In order to avoid the cost of a true multiported data cache 
 [3], we pursue ways to implement a virtual multiport cache. 
As in instruction trace cache, we could conceive a data trace 
cache which packs together data from diverse addresses that 
are required for concurrent access during program execution. 

Our analysis of benchmark programs reveals that there are 
recurring data traces in the data access stream. In the 
remainder of this paper we explain how our analysis was 
conducted, and present an architecture for a data trace cache. 

 
 

We evaluate and compare the data trace cache with simpler 
methods that rely on data access properties of typical 
computer programs. The evaluation reveals that the simpler 
methods achieve better performance than the data trace cache. 
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Fig. 1.  IPC improvement for SPEC GCC on a 32-wide issue and commit 
machine as a function of the number of data cache ports. A single port cache is 
used as a baseline. 
 

Attempts to exploit data traces have been shown in  [4] and 
 [5]. Our concept of the data trace cache aims to be a general-
purpose cache that does not require recompilation, and is 
based on similar concepts as the instruction trace cache  [6].  

Various methods that aim to build a virtual multiport data 
cache have been researched. Load All Wide (LAW)  [7] is a 
simple method that exploits the spatial locality of the 
concurrent data accesses, which are usually targeted to the 
same cache block. Line Buffer (LB)  [7] is a mechanism that 
exploits the temporal locality of concurrent data accesses by 
caching the last accessed blocks into a small multiport cache. 

II. ANALYSIS 
In order to characterize the multiple data access behavior of 

computer programs, a data access trace was searched for 
recurring access patterns. We define a burst as all the loads 
that were concurrently issued on a specific cycle. For 
example, consider data access trace in Fig. 2, taken from the 
SPEC GCC benchmark simulated on a 32-wide issue and 
commit machine. In this example, we recognize two different 
bursts, each recurring twice. We define the cover of a set of 
bursts as the number of dynamic loads that reside in all the 
recurrences of the set of bursts, divided by the total number of 
dynamic loads.  In our example, the cover is 10/12. If such 
recurring bursts can be found in a data access stream, then 
storing them in a data trace cache will increase the effective 
number of memory ports. 
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Cycle Port 1 Port 2 Port 3 Port 4 

10100 0x7FFF7698 0x7FFF769C 0x7FFF76A0 0x7FFF76A4 
10101 0x101A0240    
10102 0x7FFF7698 0x7FFF769C 0x7FFF76A0 0x7FFF76A4 
10103 0x101A0242 0x101E2990   
10104 0x101A0240    
Fig. 2.  An example data access trace with recurring bursts taken from the 
GCC benchmark. The values shown are the addresses fetched by an ideal 4-
port machine in each cycle. 
 

Best burst coverage analysis was conducted on the data 
access stream of a number of programs, which were simulated 
on a 32-wide machine with four memory ports. The results of 
are shown in Fig. 3, where the best 8192 bursts containing two 
to four addresses were chosen. The average size of the best 
1000 bursts was measured as 3.2 addresses. 

 

0%

10%

20%

30%

40%

50%

0 2000 4000 6000 8000
Number of bursts

A
cc

um
ul

at
iv

e 
C

ov
er

% Cover

 
Fig. 3.  Percentage of the data access stream covered by the most frequently 
recurring bursts, for 200 million instructions of the GCC benchmark simulated 
on a 32-wide machine. 
 

The results clearly show that storing a limited number of 
bursts can cover a large part of the data access trace. For 
example, storing 1000 of the best bursts covers a third of the 
program’s data access trace. 

III. DATA TRACE CACHE 
We consider a new memory system that includes a data 

trace cache (DTC), a level-1 data cache and a cache controller. 
The new memory system is shown in Fig. 4. 

The cache controller in Fig. 4 has four virtual read ports 
and a write port. If the CPU requires only one read port at a 
given cycle, the cache controller requests the data directly 
from the level-1 data cache, which has only a single read port. 
In case the CPU requires data from more than one address, the 
cache controller requests all the data from the entire set of 
addresses from the DTC. Although the DTC has only one read 
port, each DTC block contains data from more than one cache 
block. In parallel to the DTC access, data from a single 
address is fetched from the level-1 cache. In case of a hit in 
the DTC, the entire burst of data is returned. In case there was 
a miss in the DTC, only a single access is serviced by the 
level-1 data cache. 

 

 
Fig. 4.  A memory system with four virtual read ports available to the 
processor. On a DTC hit, the cache controller can supply up to four different 
data elements from one DTC block. On a miss, the cache controller supplies 
only one data element from the level-1 data cache. 
 

DTC blocks contain data from multiple level-1 cache 
blocks. We have chosen to use the XOR value of the 
addresses in the burst in order to locate the burst in the data 
trace cache. The XOR value is divided into block bits, set bits 
and tag bits, as in conventional caches. Functions other than 
XOR may also be used. 

A Data Trace Cache can be organized as a table, illustrated 
in Fig. 5. Besides the tag value, each DTC cache block 
contains n entries of addresses, values and valid bits. Since 
there are no restrictions on the origins of the data that reside in 
a data trace cache block, each data element must be 
accompanied by its address in memory. 

Data trace cache blocks are gathered dynamically as the 
program executes. When there is a data trace cache miss, a 
DTC block is allocated. The DTC block is filled by snooping 
the level-1 data cache for its required data. When the required 
data arrives, the DTC sets its valid bit. 
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Fig. 5.  A DTC capable of storing bursts with up to n entries per line. Each 
entry can originate from a different cache level-1 block. 
 

Store instructions present a major difficulty to the data trace 
cache. The first problem is locating specific addresses inside 
the DTC. Since the index function is the XOR value of the 
addresses, we must keep a lookup table to be able to locate 
single addresses for store operations. Once locating all the 
trace cache lines that contain the value that needs to be 
updated, all these lines must be updated. Updating several 
blocks require many lookups, resulting in long store latencies. 

IV. SIMULATIONS AND RESULTS 
All experiments in this paper were conducted with the 

SimpleScalar toolset  [9] with our modifications. The 
benchmarks used were the SPEC2000 benchmarks with the 
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internal instruction set of the tool. Only a subset of the 
SPEC2000 was used due to technical issues. The benchmarks 
were simulated on 32-wide issue and commit machines. The 
level-1 data and instruction caches were 64kb, 32 byte blocks, 
4-way associative, 1-cycle latency; the level-2 was a united 
cache of 256kb, 4-way associative, 6-cycle latency. All 
benchmarks were fast-forwarded by 500 million instructions, 
and simulated for 500 million instructions. The DTC was 4-
way associative with 128 sets for a total of 512 bursts. Each 
burst contained up to four different addresses with 8 bytes of 
data. The size of the data in the DTC totals 16kb. The hit 
latency of the DTC and the level-1 caches was 1 cycle, 
whereas the miss penalty was 6 cycles. 

In order to evaluate the potential benefits of using a data 
trace cache, we ignore at first the long store latencies caused 
by the duplication of data across multiple data trace blocks. 
Fig. 6 shows the IPC improvement of the data trace cache. 
Without the store latencies, the data trace cache promises to 
deliver a high IPC improvement of 21% over a single data 
port machine on average. 

IPC of the Data Trace Cache Without Store Latency
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Fig. 6.  IPC improvement of the data trace cache without accounting for store 
latencies on the various SPEC2000 benchmarks, compared with a single data 
cache port machine. 
 

Fig. 7 shows the hit rate of the data trace cache. Consistent 
with the static burst coverage analysis in Fig. 3, the average 
hit rate of the data trace cache was 48%. In the case of GCC, 
the data trace cache architecture with 512 bursts achieved 
similar performance as can be achieved by using a static 
allocated data trace cache with 2000 bursts. The results 
indicate that there were indeed recurring bursts of data, but 
these recurring bursts were not prevalent enough for the data 
trace cache to exhibit a high hit-rate such as achieved by 
traditional level-1 data caches. 

V. COMPARISON WITH EXISTING METHODS 
Two notable methods that aim at achieving multiport data 

cache performance are Load All Wide (LAW) and Line 
Buffer (LB)  [7]. 

We have found that in the SPEC benchmarks, most of the 
best 64 bursts that cover the data access trace contain 
addresses from within the same data level-1 cache block. This 
indicates that the data access trace has spatial locality. For 
example, consider the stack accesses. At the end of functions, 

the previous values of the registers are popped off the stack. 
These accesses are to consecutive addresses in memory. Other 
examples of accesses to consecutive addresses include text 
manipulation, vector analysis, lossless compression, etc.  
Therefore, instead of issuing loads to the same cache block on 
different cycles, these loads can be combined and be issued on 
a single cycle. Load All Wide is a method that does exactly 
that. 
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Fig. 7.  The hit rate of the data trace cache for the different benchmarks, 
ranging from 2% to 100%. The results are consistent with the static burst 
coverage analysis. 
 

The data access trace also has temporal locality. An access 
to a cache block will usually be shortly followed by another 
access to the same block.  Line Buffer  [7] is a method that 
sustains the last accessed blocks in a small multiported cache, 
enabling multiport access to the most recently accessed cache 
blocks. 

Fig. 8 shows a comparison between the presented data trace 
cache and the existing methods LAW and LB. The size of the 
line buffer was 8 blocks, each containing 32 bytes for a total 
of 256 bytes. The results show substantial IPC improvement 
for LAW and LB, surpassing the ideal data trace cache on 
average even when store latencies are not accounted for. For 
similar performance, LB and LAW require considerably less 
area than the ideal data trace, which also needs additional area 
to keep the addresses of the different data in each data trace 
cache block. 
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Fig. 8.  The IPC improvement of the data trace cache, load all wide and line 
buffer with 8 blocks on the various SPEC2000 benchmarks, compared to a 
single data cache port machine. 
 



 

VI. ACCOUNTING FOR STORE INSTRUCTIONS 
Since data may reside in multiple data trace cache blocks, 

executing a store instruction requires multiple accesses to the 
DTC. Each such write operation takes up one cycle to 
complete. Thus, the store latency grows with the amount of 
duplications inside the DTC. When such store latencies are 
taken into account, the IPC degrades substantially, since the 
flux of pending stores fills the write buffer. Therefore, in 
order for the data trace cache to be effective, the negative 
effect of stores must be minimized. 

Limiting the number of recurrences of variables inside the 
DTC sets an upper bound for the store latency, shortening the 
average store latency. As a result, the size of the lookup table 
that is used to locate data among the different cache blocks is 
reduced as well. We have found that four recurrences are 
enough for covering the useful data traces while not incurring 
long store latencies. 

Our simulations show that approximately 50% of the store 
instructions target the stack, indicating that stack data are very 
volatile. Since reducing the total number of stores to the data 
trace cache lowers the total cycles in which the DTC executes 
stores, we prevent stack data from entering the DTC. By 
limiting the number of recurrences of variables inside the 
DTC and by preventing stack data from entering, the overall 
store latency is reduced significantly. However, most of the 
potential of the DTC diminishes, as the average IPC 
improvement shrinks to a mere 2.5%. As a result of the need 
to update all of the copies of the same data inside the data 
trace cache by the store instructions, most of the potential 
promised by the data trace cache is eliminated. 

VII. DISCUSSION 
In an effort to increase the data access bandwidth available 

to the processor, a data trace cache was proposed, in analogy 
to the instruction trace cache. However, simple methods were 
found to be more successful than the presented data trace 
cache.  

The typical data access trace exhibits high temporal and 
spatial locality. Due to these localities, most of the dynamic 
loads that can be issued concurrently by the data trace cache 
can also be issued by LAW and LB. Moreover, LAW and LB 
can issue bursts of loads concurrently even if the burst pattern 
has not been previously encountered, contrary to the data trace 
cache which needs first to encounter the bursts in order to 
later optimize them. Therefore, high performance can be 
achieved by these simple methods, without dealing with the 
complexity associated with the data trace cache. 

The rigid nature of the data bursts that were stored in the 
data trace cache contributed to its low performance. In 
instruction trace cache blocks, each basic block ends with a 
branch instruction, leaving only two options for the identity of 
the successive basic block. This is not the case in the data 
trace cache, since load instructions may access data from 
anywhere in memory. As a result, the data trace cache 
contains numerous redundancies, which consume space and 

lead to lower overall hit rate.  
A major drawback of the data trace cache is the complexity 

of handling store instructions. Since multiple copies of the 
same data may reside in the DTC, executing store instructions 
involves updating multiple blocks. Unlike instruction traces, 
data traces tend to be updated much more than code. While 
barring stack data from entering the data trace cache reduces 
the overall store latency, it keeps a large portion of the DTC 
potential unrealized. 

Another drawback of the data trace cache is its inability to 
effectively support partial hits, since all of the addresses are 
required in order to calculate the location of the correct data 
trace cache block. 

The implementation of the Data Trace Cache as presented 
in this paper is very simple and straightforward. Its 
performance could be improved by using heuristics and by 
adding sophistication. However, we do not believe that these 
potential improvements would have changed our conclusions. 

In conclusion, although there are recurring address patterns 
in the data access stream, we have found that the data trace 
cache is not cost effective compared with existing simple 
methods which exploit spatial and temporal locality. 
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