

Abstract—Multiple port instruction and data caches are
required in order to achieve high performance on wide-issue
superscalar microprocessors. However, the area and speed
impact of implementing a full blown multiport cache is
substantial. The highly predictable nature of the instruction
stream has enabled trace caches to effectively fetch instructions
from more than one cache block in each cycle. Our analysis
shows that the data accesses stream also consists of recurring
traces, hinting that a Data Trace Cache that exploits these
recurring accesses is feasible. In this paper we show our attempt
to design a data trace cache, and explain why its results are
inferior to previous simple methods that aim at creating virtual
multiport data caches.

Index Terms—Cache memories, Data Trace Cache, Memory
architecture.

I. INTRODUCTION

ODERN microprocessors achieve high Instruction Per
Cycle (IPC) rates by utilizing multiple execution

engines in parallel [1]. In order to supply enough instructions
for execution in parallel, concurrent access to different cache
blocks is required. A multiport cache could be used, but it is
an expensive solution in terms of power and area. Instead,
instruction trace caches pack instructions from different cache
blocks in their dynamic execution order into a single trace
cache line [6]. Therefore, a single port instruction trace cache
achieves similar performance while avoiding the cost of a
multiport instruction cache.

A similar need exists for data supply. Multiple data load
instructions should be executed in parallel, since load
instructions represent close to a quarter of the dynamic
instructions [2]. Fig. 1 shows the IPC improvement as a
function of the number of cache memory ports of a very wide
machine that can issue and commit up to 32 instructions per
cycle. These results for the SPEC2000 GCC benchmark
confirm that lack of sufficient cache ports indeed limits
microprocessor performance.

In order to avoid the cost of a true multiported data cache
 [3], we pursue ways to implement a virtual multiport cache.
As in instruction trace cache, we could conceive a data trace
cache which packs together data from diverse addresses that
are required for concurrent access during program execution.

Our analysis of benchmark programs reveals that there are
recurring data traces in the data access stream. In the
remainder of this paper we explain how our analysis was
conducted, and present an architecture for a data trace cache.

We evaluate and compare the data trace cache with simpler
methods that rely on data access properties of typical
computer programs. The evaluation reveals that the simpler
methods achieve better performance than the data trace cache.

0.0%

16.8%

21.9%
23.8% 24.7% 25.2% 25.5% 25.6%

0%

5%

10%

15%

20%

25%

30%

1 2 3 4 5 6 7 8
Number of data cache ports

IP
C

 Im
pr

ov
em

en
t

IPC Improvement

Fig. 1. IPC improvement for SPEC GCC on a 32-wide issue and commit
machine as a function of the number of data cache ports. A single port cache is
used as a baseline.

Attempts to exploit data traces have been shown in [4] and
 [5]. Our concept of the data trace cache aims to be a general-
purpose cache that does not require recompilation, and is
based on similar concepts as the instruction trace cache [6].

Various methods that aim to build a virtual multiport data
cache have been researched. Load All Wide (LAW) [7] is a
simple method that exploits the spatial locality of the
concurrent data accesses, which are usually targeted to the
same cache block. Line Buffer (LB) [7] is a mechanism that
exploits the temporal locality of concurrent data accesses by
caching the last accessed blocks into a small multiport cache.

II. ANALYSIS
In order to characterize the multiple data access behavior of

computer programs, a data access trace was searched for
recurring access patterns. We define a burst as all the loads
that were concurrently issued on a specific cycle. For
example, consider data access trace in Fig. 2, taken from the
SPEC GCC benchmark simulated on a 32-wide issue and
commit machine. In this example, we recognize two different
bursts, each recurring twice. We define the cover of a set of
bursts as the number of dynamic loads that reside in all the
recurrences of the set of bursts, divided by the total number of
dynamic loads. In our example, the cover is 10/12. If such
recurring bursts can be found in a data access stream, then
storing them in a data trace cache will increase the effective
number of memory ports.

Why Not Data Trace Cache
Tomer Y. Morad

Department of Electrical Engineering
Technion, Haifa, Israel 32000

 tomerm@tx.technion.ac.il

Uri C. Weiser
 Intel Corporation, Haifa, Israel

 uri.weiser@intel.com

Avinoam Kolodny
 Department of Electrical Engineering

Technion, Haifa, Israel 32000
kolodny@ee.technion.ac.il

M

Cycle Port 1 Port 2 Port 3 Port 4

10100 0x7FFF7698 0x7FFF769C 0x7FFF76A0 0x7FFF76A4
10101 0x101A0240
10102 0x7FFF7698 0x7FFF769C 0x7FFF76A0 0x7FFF76A4
10103 0x101A0242 0x101E2990
10104 0x101A0240
Fig. 2. An example data access trace with recurring bursts taken from the
GCC benchmark. The values shown are the addresses fetched by an ideal 4-
port machine in each cycle.

Best burst coverage analysis was conducted on the data
access stream of a number of programs, which were simulated
on a 32-wide machine with four memory ports. The results of
are shown in Fig. 3, where the best 8192 bursts containing two
to four addresses were chosen. The average size of the best
1000 bursts was measured as 3.2 addresses.

0%

10%

20%

30%

40%

50%

0 2000 4000 6000 8000
Number of bursts

A
cc

um
ul

at
iv

e
C

ov
er

% Cover

Fig. 3. Percentage of the data access stream covered by the most frequently
recurring bursts, for 200 million instructions of the GCC benchmark simulated
on a 32-wide machine.

The results clearly show that storing a limited number of
bursts can cover a large part of the data access trace. For
example, storing 1000 of the best bursts covers a third of the
program’s data access trace.

III. DATA TRACE CACHE
We consider a new memory system that includes a data

trace cache (DTC), a level-1 data cache and a cache controller.
The new memory system is shown in Fig. 4.

The cache controller in Fig. 4 has four virtual read ports
and a write port. If the CPU requires only one read port at a
given cycle, the cache controller requests the data directly
from the level-1 data cache, which has only a single read port.
In case the CPU requires data from more than one address, the
cache controller requests all the data from the entire set of
addresses from the DTC. Although the DTC has only one read
port, each DTC block contains data from more than one cache
block. In parallel to the DTC access, data from a single
address is fetched from the level-1 cache. In case of a hit in
the DTC, the entire burst of data is returned. In case there was
a miss in the DTC, only a single access is serviced by the
level-1 data cache.

Fig. 4. A memory system with four virtual read ports available to the
processor. On a DTC hit, the cache controller can supply up to four different
data elements from one DTC block. On a miss, the cache controller supplies
only one data element from the level-1 data cache.

DTC blocks contain data from multiple level-1 cache
blocks. We have chosen to use the XOR value of the
addresses in the burst in order to locate the burst in the data
trace cache. The XOR value is divided into block bits, set bits
and tag bits, as in conventional caches. Functions other than
XOR may also be used.

A Data Trace Cache can be organized as a table, illustrated
in Fig. 5. Besides the tag value, each DTC cache block
contains n entries of addresses, values and valid bits. Since
there are no restrictions on the origins of the data that reside in
a data trace cache block, each data element must be
accompanied by its address in memory.

Data trace cache blocks are gathered dynamically as the
program executes. When there is a data trace cache miss, a
DTC block is allocated. The DTC block is filled by snooping
the level-1 data cache for its required data. When the required
data arrives, the DTC sets its valid bit.

Tag Addr1 Data1 V1 … Addrn Datan Vn

Fig. 5. A DTC capable of storing bursts with up to n entries per line. Each
entry can originate from a different cache level-1 block.

Store instructions present a major difficulty to the data trace
cache. The first problem is locating specific addresses inside
the DTC. Since the index function is the XOR value of the
addresses, we must keep a lookup table to be able to locate
single addresses for store operations. Once locating all the
trace cache lines that contain the value that needs to be
updated, all these lines must be updated. Updating several
blocks require many lookups, resulting in long store latencies.

IV. SIMULATIONS AND RESULTS
All experiments in this paper were conducted with the

SimpleScalar toolset [9] with our modifications. The
benchmarks used were the SPEC2000 benchmarks with the

Level-2 Cache

DTC Level-1 Data
Cache

CPU

Cache Controller

internal instruction set of the tool. Only a subset of the
SPEC2000 was used due to technical issues. The benchmarks
were simulated on 32-wide issue and commit machines. The
level-1 data and instruction caches were 64kb, 32 byte blocks,
4-way associative, 1-cycle latency; the level-2 was a united
cache of 256kb, 4-way associative, 6-cycle latency. All
benchmarks were fast-forwarded by 500 million instructions,
and simulated for 500 million instructions. The DTC was 4-
way associative with 128 sets for a total of 512 bursts. Each
burst contained up to four different addresses with 8 bytes of
data. The size of the data in the DTC totals 16kb. The hit
latency of the DTC and the level-1 caches was 1 cycle,
whereas the miss penalty was 6 cycles.

In order to evaluate the potential benefits of using a data
trace cache, we ignore at first the long store latencies caused
by the duplication of data across multiple data trace blocks.
Fig. 6 shows the IPC improvement of the data trace cache.
Without the store latencies, the data trace cache promises to
deliver a high IPC improvement of 21% over a single data
port machine on average.

IPC of the Data Trace Cache Without Store Latency

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

art bzip equ gzip mcf mesa par perl sgcc two vor vpr wup avg

Ideal DTC

4-Port

Fig. 6. IPC improvement of the data trace cache without accounting for store
latencies on the various SPEC2000 benchmarks, compared with a single data
cache port machine.

Fig. 7 shows the hit rate of the data trace cache. Consistent
with the static burst coverage analysis in Fig. 3, the average
hit rate of the data trace cache was 48%. In the case of GCC,
the data trace cache architecture with 512 bursts achieved
similar performance as can be achieved by using a static
allocated data trace cache with 2000 bursts. The results
indicate that there were indeed recurring bursts of data, but
these recurring bursts were not prevalent enough for the data
trace cache to exhibit a high hit-rate such as achieved by
traditional level-1 data caches.

V. COMPARISON WITH EXISTING METHODS
Two notable methods that aim at achieving multiport data

cache performance are Load All Wide (LAW) and Line
Buffer (LB) [7].

We have found that in the SPEC benchmarks, most of the
best 64 bursts that cover the data access trace contain
addresses from within the same data level-1 cache block. This
indicates that the data access trace has spatial locality. For
example, consider the stack accesses. At the end of functions,

the previous values of the registers are popped off the stack.
These accesses are to consecutive addresses in memory. Other
examples of accesses to consecutive addresses include text
manipulation, vector analysis, lossless compression, etc.
Therefore, instead of issuing loads to the same cache block on
different cycles, these loads can be combined and be issued on
a single cycle. Load All Wide is a method that does exactly
that.

Data Trace Cache Hit-Rate

9%

57%

81%

61%

2%

69%

33%

91%

38%

23%
18%

40%

100%

48%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

art bzip equ gzip mcf mesa par perl sgcc two vor vpr wup avg

H
it

R
at

e

Fig. 7. The hit rate of the data trace cache for the different benchmarks,
ranging from 2% to 100%. The results are consistent with the static burst
coverage analysis.

The data access trace also has temporal locality. An access
to a cache block will usually be shortly followed by another
access to the same block. Line Buffer [7] is a method that
sustains the last accessed blocks in a small multiported cache,
enabling multiport access to the most recently accessed cache
blocks.

Fig. 8 shows a comparison between the presented data trace
cache and the existing methods LAW and LB. The size of the
line buffer was 8 blocks, each containing 32 bytes for a total
of 256 bytes. The results show substantial IPC improvement
for LAW and LB, surpassing the ideal data trace cache on
average even when store latencies are not accounted for. For
similar performance, LB and LAW require considerably less
area than the ideal data trace, which also needs additional area
to keep the addresses of the different data in each data trace
cache block.

IPC Improvement Over Single Port

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

art bzip equ gzip mcf mesa par perl sgcc two vor vpr wup avg

IP
C

 Im
pr

ov
em

en
t Ideal DTC

LAW
LB8+LAW

Fig. 8. The IPC improvement of the data trace cache, load all wide and line
buffer with 8 blocks on the various SPEC2000 benchmarks, compared to a
single data cache port machine.

VI. ACCOUNTING FOR STORE INSTRUCTIONS
Since data may reside in multiple data trace cache blocks,

executing a store instruction requires multiple accesses to the
DTC. Each such write operation takes up one cycle to
complete. Thus, the store latency grows with the amount of
duplications inside the DTC. When such store latencies are
taken into account, the IPC degrades substantially, since the
flux of pending stores fills the write buffer. Therefore, in
order for the data trace cache to be effective, the negative
effect of stores must be minimized.

Limiting the number of recurrences of variables inside the
DTC sets an upper bound for the store latency, shortening the
average store latency. As a result, the size of the lookup table
that is used to locate data among the different cache blocks is
reduced as well. We have found that four recurrences are
enough for covering the useful data traces while not incurring
long store latencies.

Our simulations show that approximately 50% of the store
instructions target the stack, indicating that stack data are very
volatile. Since reducing the total number of stores to the data
trace cache lowers the total cycles in which the DTC executes
stores, we prevent stack data from entering the DTC. By
limiting the number of recurrences of variables inside the
DTC and by preventing stack data from entering, the overall
store latency is reduced significantly. However, most of the
potential of the DTC diminishes, as the average IPC
improvement shrinks to a mere 2.5%. As a result of the need
to update all of the copies of the same data inside the data
trace cache by the store instructions, most of the potential
promised by the data trace cache is eliminated.

VII. DISCUSSION
In an effort to increase the data access bandwidth available

to the processor, a data trace cache was proposed, in analogy
to the instruction trace cache. However, simple methods were
found to be more successful than the presented data trace
cache.

The typical data access trace exhibits high temporal and
spatial locality. Due to these localities, most of the dynamic
loads that can be issued concurrently by the data trace cache
can also be issued by LAW and LB. Moreover, LAW and LB
can issue bursts of loads concurrently even if the burst pattern
has not been previously encountered, contrary to the data trace
cache which needs first to encounter the bursts in order to
later optimize them. Therefore, high performance can be
achieved by these simple methods, without dealing with the
complexity associated with the data trace cache.

The rigid nature of the data bursts that were stored in the
data trace cache contributed to its low performance. In
instruction trace cache blocks, each basic block ends with a
branch instruction, leaving only two options for the identity of
the successive basic block. This is not the case in the data
trace cache, since load instructions may access data from
anywhere in memory. As a result, the data trace cache
contains numerous redundancies, which consume space and

lead to lower overall hit rate.
A major drawback of the data trace cache is the complexity

of handling store instructions. Since multiple copies of the
same data may reside in the DTC, executing store instructions
involves updating multiple blocks. Unlike instruction traces,
data traces tend to be updated much more than code. While
barring stack data from entering the data trace cache reduces
the overall store latency, it keeps a large portion of the DTC
potential unrealized.

Another drawback of the data trace cache is its inability to
effectively support partial hits, since all of the addresses are
required in order to calculate the location of the correct data
trace cache block.

The implementation of the Data Trace Cache as presented
in this paper is very simple and straightforward. Its
performance could be improved by using heuristics and by
adding sophistication. However, we do not believe that these
potential improvements would have changed our conclusions.

In conclusion, although there are recurring address patterns
in the data access stream, we have found that the data trace
cache is not cost effective compared with existing simple
methods which exploit spatial and temporal locality.

ACKNOWLEDGEMENTS
We thank Avi Mendelson, Nir Magen, Antonio González

and others from Intel Corporation who have helped us with
this research. We dedicate this work to the memory of Nir
Magen.

REFERENCES
[1] Y. N. Patt, S. J. Patel, M. Evers, D. H. Friendly, J. Stark, “One Billion

Transistors, One Uniprocessor, One Chip”, IEEE Computer, Vol. 30,
Issue 9, pages 51-57, Sep. 1997.

[2] B. Calder; G. Reinman, “A Comparative Survey of Load Speculation
Architectures”, Journal of Instruction Level Parallelism 1, pages 1-39,
2000.

[3] Tatsumi, Y.; Mattausch, H.J., “Fast quadratic increase of multiport-
storage-cell area with port number”, Electronics Letters , Volume: 35 ,
Issue: 25, Pages:2185 - 2187, 9 Dec. 1999

[4] F. Mueller, T. Mohan, B.R. de Supinski, S.A. McKee, and A. YooProc ,
“Partial Data Traces: Efficient Generation and Representation”, PACT
2001 Workshop on Binary Translation, September 2001.

[5] S.A. McKee, D.A.B. Weikle, K.L. Wright, C.W. Oliver, A.P. Voss,
M.H. Salinas, R.H. Klenke, T.C. Landon, Wm.A. Wulf, and J.H. Aylor,
“Evaluation of Dynamic Access Ordering Hardware”, UVa Technical
Report CS-95-50, October 1995.

[6] A. Peleg; U. Weiser, “Dynamic Flow Instruction Cache Memory
Organized Around Trace Segments Independent of Virtual Address
Line”, US Patent 5,381,533, March 30, 1994.

[7] K. M. Wilson, K. Olukotun, M. Rosenblum, “Increasing Cache Port
Efficiency for Dynamic Superscalar Microprocessors”, Proceedings of
ISCA-23, May 1996.

[8] Hinton, G.; Upton, M.; Sager, D.J.; Boggs, D.; Carmean, D.M.; Roussel,
P.; Chappell, T.I.; Fletcher, T.D.; Milshtein, M.S.; Sprague, M.; Samaan,
S.; Murray, R, “A 0.18-µm CMOS IA-32 processor with a 4-GHz integer
execution unit”, Solid-State Circuits, IEEE Journal of , Volume: 36
Issue: 11, Page(s): 1617 –1627 , Nov 2001.

[9] D. Burger and T. Austin, “The Simplescalar Tool Set, Version 2.0”,
Technical report CS-TR-97-1342, Univ. of Wisconsin, Madison, June
1997.

