
Deconstructing Transactional Semantics:
The Subtleties of Atomicity

Colin Blundell E Christopher Lewis Milo M. K. Martin
Department of Computer and Information Science

University of Pennsylvania
Philadelphia, Pennsylvania USA

{blundell,lewis,milom}@cis.upenn.edu

Abstract
Researchers have recently proposed software and hardware
support for transactions as a replacement for the traditional
lock-based synchronization most common in multithreaded
programs. Transactions allow the programmer to specify a
region of the program that should appear to execute atomi-
cally, while the hardware and runtime system optimistically
execute the transactions concurrently to obtain high perfor-
mance. The transactional abstraction is thus a promising
approach for creating both faster and simpler multithreaded
programs.

Although transactions have great potential for simplify-
ing multithreaded programming due to their strong atomic-
ity guarantees, this work shows that these same guarantees
can have unexpected and potentially serious negative effects
on programs that were written assuming weaker synchro-
nization primitives. We make three contributions: (1) we
show that a direct translation (statically or dynamically) of
lock-based critical sections into transactions can introduce
deadlocks into otherwise correct programs, (2) we define
an atomicity model for transactions, in which we introduce
the terms strong and weak atomicity, and (3) we show that
the decision to enforce strong atomicity as opposed to weak
atomicity can also result in deadlock. These results invali-
date the intuitive idea that transactions are strictly safer than
lock-based critical sections and strong atomicity is strictly
safer than weak atomicity. We assert that the research com-
munity must confront these subtle issues of transactional
semantics by exploring the design space and deciding upon
the most appropriate semantics for future transactional sys-
tems.

1 Introduction
Synchronization has a first-order impact on the correctness
and performance of multithreaded programs, and locks are
currently the prevailing synchronization mechanism. Locks
guard regions of code called critical sections, preventing
concurrent access to shared data structures. Unfortunately,
effective programming with lock-based synchronization is a
delicate balancing act between achieving high performance

and maintaining correctness. Coarse-grained locking (e.g.,
one lock for an entire binary tree data structure) gives rise
to simple programming paradigms. However, the result-
ing lock contention can significantly limit scalability and
performance. Fine-grained locking (e.g., a lock per node
in a binary tree) can reduce lock contention but adds pro-
gramming complexity, increasing the potential for deadlock
and subtle data-race bugs. Furthermore, fine-grained locks
may actually increase overhead due to more frequent ac-
quire and release operations, which are slow on modern
processors. To further complicate matters, programmers
must often choose between various lock implementations
(e.g., simple spin locks for uncontended locks, contention-
robust queue-based locks, per-thread reentrant locks, and
reader/writer locks).

In response to the performance and complexity chal-
lenges of locks, researchers have proposed hardware sup-
port for synchronization viatransactions[2, 6, 7, 10, 12,
14, 15]: segments of code that are atomic with respect
to each other. Like lock-based critical sections, transac-
tions are a mechanism for mutual exclusion, but transac-
tions are simpler (specifying atomicity without naming a
lock) and more efficiently implemented (optimistically ex-
ecuting concurrently, rolling back on dynamically detected
inter-transaction conflicts). This combination of intuitive
interface and efficient implementation has the potential to
solve many lock-related problems. Returning to our binary
tree example, encapsulating an entire binary tree operation
in a transaction has (1) the simplicity of an implementa-
tion that uses coarse-grained locking, (2) the scalable per-
formance of an implementation that uses fine-grained lock-
ing, and (3) the efficiency of avoiding fine-grained locking
overheads. In addition, efficient implementations of trans-
actions have the potential to replace all the various types
of locks (e.g., spin locks, queue-based locks, reader/write
locks) with a single powerful primitive. Finally, transac-
tions can provide a simpler approach for creating wait-free
and non-blocking data structures [10]. We elaborate on the
various transactional proposals in Section 2.

Although transactions have great potential, this work un-

covers subtle issues and common misconceptions about
their semantics. In particular, we investigate the implica-
tions of different forms of atomicity. We show that in sev-
eral circumstances, correct programs created assuming one
form of atomicity (e.g., that of lock-based critical sections)
can deadlock when run on a system supporting a stronger
form of atomicity (e.g., that of transactions). We make three
main contributions:

• We show that a direct translation (statically or dy-
namically) of lock-based critical sections into trans-
actions can introduce deadlock into an otherwise
correct program. That is, it is unsafe to simply begin
a transaction at lock acquisition and end it at lock re-
lease. At least one proposal advocates this direct con-
version of lock-based programs to transaction-based
programs. In Section 3 we use an example to show
that such a transformation is not safe in general.

• We define two atomicity models for transactional
systems. Researchers have implemented differing
policies for handling interactions between transac-
tional and non-transactional code; however, current
definitions of transactional semantics do not always
explicitly express these differences. We define strong
atomicity as a transactional semantics that guarantees
atomicity between transactions and non-transactional
code, and we define weak atomicity as a transactional
semantics that guarantees atomicity only among trans-
actions. We assert that a transactional system should
specify its atomicity model explicitly, much as a shared
memory multiprocessor specifies a memory consis-
tency model to define memory ordering [1]. In Sec-
tion 4 we further discuss these atomicity models.

• We show that a program that is correct under
the weak atomicity model may deadlock under the
strong atomicity model. The intuitive view that a
stronger atomicity model will correctly execute a su-
perset of the code that is correct under a weaker atom-
icity model is false. In Section 5 we show by exam-
ple that strong atomicity can negatively affect program
correctness.

This work invalidates the intuitive and commonly-held
view that transactions are strictly safer than lock-based crit-
ical sections and that strong atomicity is strictly safer than
weak atomicity. Stronger atomicity restricts the set of legal
program interleavings, which would seem to only help the
programmer by removing (potentially) buggy interleavings.
However, programmers may intentionally or unintention-
ally exploit the non-atomicity of critical sections guarded
by different locks or the non-atomicity between transactions
and non-transactional statements, producing programs that
requireconcurrent execution of these regions to avoid dead-
lock.

2 Background on Transactions
Transactions have been used both as an efficient synchro-
nization primitive and as an approach for optimistic execu-
tion of lock-based critical sections.

2.1 Synchronization Primitives
Researchers have proposed both hardware and software
support for transactions and transaction-like synchroniza-
tion primitives. These proposals are distinguished by sev-
eral aspects: their policy for mediating conflicts between
transactions and non-transactional code, whether they have
at-most-once or exactly-once execution semantics, the max-
imum size of a transaction, and whether the programmer
must access memory differently within a transaction than
outside one. Below, we survey hardware and software trans-
actional systems, focusing on the above aspects.

Supporting Transactions in Hardware. Herlihy and
Moss [10] propose transactional memory as a means of
supporting lock-free data structures. Inspired by database
transactions, they define a transaction as a sequence of
instructions that are atomic and serializable with respect
to other transactions (i.e., transactions see each other’s
changes atomically and there is some serial commit order
observed by all processors). In their system, transactions
execute speculatively and roll back upon detecting a con-
flict (i.e., an inter-transaction data race). Speculative trans-
actional state is buffered in caches, and conflict detection
is implemented as an extension to standard multiprocessor
cache coherence protocols. This general implementation
strategy has been followed by most subsequent hardware
proposals. Herlihy and Moss do not prescribe a seman-
tics to conflicts between a transaction and non-transactional
code. Another notable aspect of their programmatic inter-
face is that transactions have at-most-once semantics: al-
though the system causes transactions to abort on conflicts,
the programmer is responsible for detecting the abort and
retrying the transaction. The maximum size of a transac-
tion is implementation specific, because fixed-size hardware
caches buffer speculative memory updates until transactions
are committed.

A major limitation of Herlihy and Moss’ original pro-
posal is that transactional state is buffered in caches, so
programmers must be aware of cache size and applica-
tion cache behavior when constructing transactions. Re-
sent work has addressed this limitation. Ananian et al.’s
Unbounded Transactional Memory (UTM) [2] supports
transactions that can be as large as virtual memory and
persist through interrupts; this system, however, requires
substantial changes to the processor and memory system.
Therefore, they also propose Large Transactional Mem-
ory (LTM), which supports transactions that can be as
large as physical memory but cannot survive interrupts;

LTM requires only minor changes to existing cache de-
signs and coherence protocols. Interestingly, UTM allows
transactions to interleave arbitrarily with non-transactional
code, while LTM forces a transaction to abort on a conflict
with non-transactional code. Virtual Transactional Mem-
ory (VTM) [15] and Thread-level Transactional Memory
(TTM) [12] go a step further and locate memory resident
speculative-state buffers in the application’s virtual address
space, thus tying transactions to threads/applications in-
stead of processors. The hardware and operating system
requirements for these systems are far from modest.

In Stanford’s Transactional Coherence & Consistency
(TCC) [6, 7], the transaction is the basic unit of paral-
lel work, communication, memory coherence, and mem-
ory reference consistency. Unlike the above systems, all
code must reside in some transaction. Furthermore, rather
than leverage the cache coherence protocol, TCC defines
a transaction-grained coherence and synchronization proto-
col. TCC supports transactions of unbounded size not by
spilling overflowed hardware buffers to memory, but instead
an overflowing transaction acquires permission to commit
before it has actually completed; once it has this permission,
it no longer needs to buffer. The same technique allows I/O
to appear in transactions. A unique aspect of TCC’s pro-
gramming model is that it allows the programmer to explic-
itly specify an ordering among transactions, supporting a
form of thread-level-speculative-style parallelization.
Supporting Transactions in Software. Researchers ini-
tially investigated transactional support in software for the
purpose of building lock-free and non-blocking data struc-
tures. For this purpose, Shavit and Touitou [16] pro-
pose Software Transactional Memory (STM). STM sup-
ports only transactions whose data sets are statically known.
Herlihy et al. [9] propose Dynamic Software Transactional
Memory (DSTM), which supports transactions that access
dynamic sets of memory locations. In DSTM, however,
the programmer must access any object in a transaction
by explicitly “opening” a transactional version of that ob-
ject. In contrast to these proposals, Harris and Fraser [8]
propose an STM to support a general-purpose atomic con-
struct, similar in spirit to transactions. A programmer can
make ordinary memory references within an atomic region,
which has exactly-once semantics. Unfortunately, the per-
formance overheads appear to be high when compared to
hardware proposals. In a complementary line of research,
Flanagan et al. [3, 4, 5] propose type systems that can stati-
cally verify atomicity of lock-based critical sections. These
type systems could potentially reduce the work that a trans-
actional memory system must do to dynamically guarantee
atomicity.

2.2 Optimistic Execution of Critical Sections
Transactions may also be used as a basis for improving the
implementation of lock-based critical sections. Transac-

tional Lock Removal (TLR) [14] is a system that increases
performance by dynamically converting lock-based critical
sections to transactions. TLR is an extension of Specula-
tive Lock Elision [13], which dynamically elides lock ac-
quires by executing critical sections speculatively (buffer-
ing the results in hardware) and acquiring locks on con-
flicts. The goal of TLR is to avoid lock acquisition even on
conflicts. To this end, TLR uses timestamps to provide an
ordering that is used to resolve conflicts without acquiring
locks. TLR has no explicit policy for mediating conflicts
between transactions and non-transactional code, but the
designers suggest extensions that make transactions atomic
with respect to non-transactional code. Although TLR tries
to avoid acquiring the lock, it must revert to acquiring the
lock when buffer resources are exhausted or a transaction
exceeds a scheduling quantum.

In a similar spirit, Welc et al. [17] define transactional
monitors for Java. However, the name is somewhat of a
misnomer, because transactional monitors have the same se-
mantics as ordinary Java monitors, with the difference be-
ing that they execute speculatively (buffered in software)
and roll back on conflicts between critical sections guarded
by the same monitor. This per-monitor conflict detection
behavior is an important difference between the two pro-
posals, as TLR converts critical sections into transactions
that are atomic with respect to all other transactions.

3 Critical Sections 6= Transactions
As transactions are a promising replacement for lock-based
critical sections, some transactional proposals [2, 12, 14]
have extended the benefits of transactional systems to
legacy lock-based programs by directly converting lock-
based critical sections to transactions (replacing lock ac-
quires and releases with transaction begin and end opera-
tions, respectively). This conversion changes the program’s
semantics: a critical section that was previously atomic only
with respect to other critical sections guarded by the same
lock is now atomic with respect toall other critical sections.
In this section, we show that this semantic change can cause
some correct lock-based programs to deadlock. As a result,
such direct conversations may be acceptable for architec-
tural studies, but a system that indiscriminately applies this
direct conversion will not be backward-compatible for all
legacy programs.

The assumption that lock-based critical section can be
transparently translated to transactions is a natural one; the
conversion simply disallows (previously legal) interleav-
ings that contain perceivably concurrent execution of criti-
cal sections guarded by different locks, and it does not intro-
duce any new interleavings. The disallowed interleavings
would seem to be those most unintuitive to the programmer.
For example, they may produce data races due to incorrect
locking, in which case the conversion could actually remove

bool flagA = false, flagB = false;
mutex m1, m2;

proc1() { proc2() {
acquire(m1); acquire(m2);
while(!flagA) {} flagA = true;
flagB = true; while(!flagB) {}
✪... ✪...
release(m1); release(m2);

} }

P = proc1() || proc2()

(a)

bool flagA = false, flagB = false;

proc1() { proc2() {
begin trans(); begin trans();
while(!flagA) {} flagA = true;
flagB = true; while(!flagB) {}
✪... ✪...
end trans(); end trans();

} }

P = proc1() || proc2()

(b)

Figure 1. A program with benign data races that executes correctly using locking (a) but deadlocks when directly converted
to transactions (b).

bugs. However, some correct program mightrequire one
of these disallowed interleavings to make progress. Such a
program would deadlock after the direct conversion, indi-
cating that this conversion is not always safe.

Figure 1(a) presents a short (admittedly contrived) pro-
gram that has this property. In this code, the program-
mer intends that neitherproc1 nor proc2 can reach the
lines marked by✪ until the other can also reach this line
(i.e., effecting a barrier); the locksm1 andm2 each guard
a (different) shared variable that is accessed in this line by
proc1 andproc2 , respectively. Unprotected references
to flagA andflagB give rise to benign data races, but one
may choose to protect these variables with locks as in Fig-
ure 2. In either case, these programs operate as intended be-
causeproc1 andproc2 are protected by different locks,
so their execution can be interleaved (assuming pre-emptive
thread scheduling). Suppose we directly convert these crit-
ical sections to transactions, as shown in Figure 1(b). Now
the transactions inproc1 andproc2 must execute atom-
ically with respect to each other, meaning that one trans-
action must appear to execute before the other. This re-
striction allows eitherproc1 to observeproc2 ’s update of
flagA or proc2 to observeproc1 ’s update offlagB ,
but not both. As a result, the program will deadlock be-
cause one or both of the transactions will be unable to make
progress beyond thewhile loop. This example shows that
the direct method of converting lock-based programs to use
transactions may result in deadlock in legal lock-based pro-
grams by disallowing an interleaving that is necessary for
progress.

This observation impacts some (but not all) previous pro-
posals. For example, Ananian et al. [2] propose a tool that
“simply replace[s] all locks with transactions,” and use this

tool to convert lock-based C programs for evaluation of
LTM; our example shows that their tool is unsound in gen-
eral. In contrast, TLR has a policy that the system reverts to
acquiring the lock when a transaction exceeds its scheduling
quantum. This fall-back case will result in correct execution
on this example (and, we believe, in general), because the
transactional deadlock will eventually cause the system to
revert to lock-based execution.

We emphasize that our intent is not to exhibit a real or
even necessarily realistic program on which the direct con-
version is unsafe, but rather to show that it is theoretically
possible for this conversion to cause deadlock. In practice,
such a conversion may almost always be safe. Nonetheless,
any system that translates lock-based critical sections into
transactions cannot assume that this translation is always
safe; it must either determine for which lock-based critical
regions such a conversion is safe or have a fallback method
(such as that of TLR). Determining when this direct trans-
lation can be safely applied is now an open research issue.
An interesting first question is whether the direct translation
of a correct program preserves partial correctness,i.e., the
translated program has the property that it will give a cor-
rect answer if it gives any answer. If this is true (as seems
likely), then researchers can focus on detecting and prevent-
ing deadlock and livelock situations.

4 Strong versus Weak Atomicity
Transactions should clearly be atomic with respect to each
other, but their relationship to non-transactional code is less
clear. This ambiguity would at first appear to be merely an
implementation detail, because we would expect all refer-
ences to shared data to be contained within transactions.
However, legal programs may contain unprotected refer-

bool flagA = false, flagB = false;
mutex m1, m2, mA, mB;

proc1() { proc2() {
acquire(m1); acquire(m2);
while(true) { acquire(mA);

acquire(mA); flagA = true;
if (flagA) { release(mA);

release(mA); while(true) {
break; acquire(mB);

} if (flagB) {
release(mA); release(mB);

} break;
acquire(mB); }
flagB = true; release(mB);
release(mB); }
✪... ✪...
release(m1); release(m2);

} }

P = proc1() || proc2()

Figure 2. A race-free equivalent of the code in Figure 1.

ences to shared variables (i.e., outside transactions) with-
out creating malignant data races, so both transactional and
non-transactional code can refer to the same data. To ac-
count for these cases, we present twoatomicity models.
We definestrong atomicityto be a transaction semantics in
which transactions execute atomically with respect to both
other transactionsand non-transactional code, and we de-
fine weak atomicityto be a semantics in which transactions
are atomic only with respect to other transactions (i.e., their
execution may be interleaved with non-transactional code).

An atomicity model for a transactional system is analo-
gous to a memory consistency model for a traditional shared
memory multiprocessor. A memory consistency model de-
fines the observable orderings of memory operations be-
tween threads [1]. A strong memory consistency model,
which limits the observable reordering of memory opera-
tions, is easiest to reason about for programmers, but it
is difficult to implement efficiently [11]. In contrast, a
weak (or relaxed) memory consistency model, which al-
lows for counter-intuitive reordering of memory operations,
is more complex for programmers to reason about because
it requires them to explicitly insert memory barriers to en-
force ordering. However, weak ordering models are easier
to implement efficiently. Similarly, strong atomicity pro-
vides a simple and intuitive view of transactional atomicity,
which may be more difficult to implement efficiently (es-
pecially in software-based transactional systems). In con-
trast, weak atomicity provides a less intuitive model (as

transactions may not appear atomic when interleaved with
non-transactional code), but it may be easier to implement
efficiently. Interestingly, as transactional systems are also
shared memory systems, such systems must defineboth a
transactional atomicity model and a memory consistency
model, as well as any previously unconsidered interactions
between the two.

Just as early work in shared memory multiprocessors did
not explicitly address memory consistency issues, current
work in transactional memory often does not explicitly con-
sider the distinction between and implications of strong and
weak atomicity. One model or the other is specified seem-
ingly arbitrarily (e.g., based on the published description of
UTM/LTM [2], we believe that UTM provides weak atom-
icity, while LTM provides strong atomicity; TLR provides
strong atomicity although lock-based critical sections can
interleave arbitrarily with code not under a lock [14]) or
the form of atomicity is left unspecified (e.g., Herlihy and
Moss’ original definition of transactional memory seman-
tics [10] does not fully specify how it resolves interactions
between transactional and non-transactional code). TCC
avoids this issue altogether because all code is contained
within some transaction.

5 Code Assuming Weak Atomicity
Can Break under Strong Atomicity

Another common and implicit assumption is that any pro-
gram that executes correctly under weak atomicity will also
execute correctly under strong atomicity. However, this as-
sumption is not true; some programs that are correct un-
der weak atomicity will deadlock under strong atomicity.
A program executing under weak atomicity can interleave
non-transactional code arbitrarily with transactional code,
and such interleavings may be necessary for the program to
make progress. If the system actually provides strong atom-
icity, these interleavings are not allowed and the program
may deadlock as a result.

For example, consider the two concurrently executing
procedures in Figure 3. The programmer intends that the
two threads proceed in a coordinated way through the use
of the shared variablesflagA andflagB , effecting a bar-
rier. Under weak atomicity, the program will execute cor-
rectly: the two threads’ reads and writes can interleave arbi-
trarily, and the threads proceed as the programmer intended.
However, consider what occurs if the program is executing
under strong atomicity. The loop labeled❶ in proc1 will
terminate only after the transaction inproc2 propagates
its update offlagA when the transaction commits; how-
ever, the transaction inproc2 can commit only after the
update toflagB (labeled❷) executes (because of the loop
labeled❸). The resulting circular dependency causes this
program to deadlock under strong atomicity, despite cor-
rectly executing under weak atomicity.

bool flagA, flagB = false;

proc1() { proc2() {
... begin trans();

❶ while(!flagA) {} ...
... flagA = true;

❷ flagB = true; ...
... ❸ while(!flagB) {}

} ...
end trans();

}

P = proc1() || proc2()

Figure 3. A program that executes correctly under weak
atomicity but deadlocks under strong atomicity.

The above example illustrates the need for transac-
tional memory systems to specify whether they are strongly
atomic or only weakly atomic and then implement that se-
mantics precisely. For example, consider that this program
will deadlock on LTM but execute correctly on UTM, al-
though the designers claim that the systems have “similar
semantics.” (TLR’s fallback mechanism of reverting to lock
acquires when a transaction exceeds its scheduling quantum
will save it from deadlock on lock-based programs that are
similar to this example.) If a programmer believes that a
transactional system is strongly atomic and it is only weakly
atomic, the programmer may write a buggy program due to
race conditions between a transaction and non-transactional
code (e.g., a program that intermingles locks and transac-
tions). Conversely, if a program is written with the assump-
tion that a transactional system is weakly atomic and it in
fact implements strong atomicity, the program may dead-
lock because it relies on transactions being non-atomic with
respect to non-transactional code. As such, neither model
can serve as a safe “least common denominator” target for
programmers.

6 Conclusions and Open Questions
The main contribution of this paper is the counter-intuitive
observation that programs that execute correctly under cer-
tain guarantees of atomicity can break when executing un-
der stronger guarantees. Therefore, further work on transac-
tions should consider this observation when proposing any
transparent strengthening of atomicity policies. We have il-
lustrated this situation by showing two ways in which this
phenomenon can occur.

First, transactions do not strictly subsume lock-guarded
critical sections in the sense that any program that works
correctly with locks will work correctly when directly con-
verted to transactions. The stronger guarantees that trans-

actions provide result in different requirements for correct
execution: locks enforce atomicity only among segments
of code that are guarded by the same lock, while transac-
tions enforce atomicity among all concurrent transactions.
Hence, a program that depends on non-atomicity between
critical sections guarded by different locks may break when
converted to transactions.

Second, introducing atomicity between non-transactional
and transactional code can break a program that correctly
executes when non-transactional code can interleave with
transactions. Therefore, a system must specify its policy on
atomicity among transactions and non-transactional code as
part of its transactional semantics. We have introduced the
definitions of two transactional atomicity models. We de-
fine strong atomicity as a transactional semantics that gives
the guarantee of atomicity between transactions and non-
transactional code; weak atomicity is a transactional seman-
tics that makes no such guarantee. We assert that in the
future, designers of transactional memory systems should
state explicitly whether they are implementing strong atom-
icity or weak atomicity.

These subtleties of atomicity suggest two important im-
plications. First, users of transactions—programmers or au-
tomatic conversion tools—must be aware of the exact se-
mantics supported by the system they are using. Anything
less can lead to incorrect programs. Second, that there does
not yet exist a standard semantics for transactions threatens
their utility as a synchronization mechanism. If different
systems provide different transactional semantics, programs
will not be portable and programmers will resort to more
portable primitives (e.g., locks).

This paper raises several questions. We have given
theoretical program examples that give rise to the prob-
lems we describe, but how often (if ever) do these types
of codes arise in practice? Is it possible to build tools
that determine—either statically or dynamically—when it
is safe to convert a lock-based critical section into a transac-
tion? What are the benefits and drawbacks of strong atom-
icity and weak atomicity? Is a single transactional seman-
tics appropriate for all applications and implementations? If
not, how many different semantics are necessary? We hope
that this work spurs researchers to investigate these ques-
tions.

Although this work presents additional challenges for de-
signers of transactional systems, we continue to believe that
transactional systems are a promising approach for address-
ing many difficulties of programming tightly-coupled multi-
processor and multithreaded systems. We hope that this and
other critical treatments [18] of practical aspects of trans-
actions will contribute to their successful implementation,
evaluation, and use, and not their abandonment.

Acknowledgments. The authors thank Mark Hill, Chris-
tos Kozyrakis, Ravi Rajwar, Craig Zilles, and the anony-
mous reviews for their helpful comments on drafts of
this paper; in particular, Mark Hill raised the question of
whether the direct conversion from locks to transactions
maintains partial correctness. This work is funded in part
by NSF Award 0311199 and gifts from Intel Corporation.
E Lewis is supported by NSF Career Award 0347290.

References
[1] Sarita V. Adve and Kourosh Gharachorloo. Shared

memory consistency models: A tutorial.IEEE Com-
puter, 29(12):66–76, December 1996.

[2] C. Scott Ananian, Krste Asanovic, Bradley C. Kusz-
maul, Charles E. Leiserson, and Sean Lie. Unbounded
transactional memory. InInternational Symposium
on High-Performance Computer Architecture, pages
316–327, 2005.

[3] Cormac Flanagan, Stephen N. Freund, and Marina
Lifshin. Type inference for atomicity. InTypes in
Language Design and Implementation, pages 47–58,
2005.

[4] Cormac Flanagan and Shaz Qadeer. A type and ef-
fect system for atomicity. InProgramming Language
Design and Implementation, pages 338–349, 2003.

[5] Cormac Flanagan and Shaz Qadeer. Types for atomic-
ity. In Types in Language Design and Implementation,
pages 1–12, 2003.

[6] Lance Hammond, Brian D. Carlstrom, Vicky Wong,
Ben Hertzberg, Mike Chen, Christos Kozyrakis, and
Kunle Olukotun. Programming with transactional co-
herence and consistency (TCC). InInternational Con-
ference on Architectural Support for Programming
Languages and Operating Systems, pages 1–13, 2004.

[7] Lance Hammond, Vicky Wong, Mike Chen, Brian D.
Carlstrom, John D. Davis, Ben Hertzberg, Manohar K.
Prabhu, Honggo Wijaya, Christos Kozyrakis, and
Kunle Olukotun. Transactional memory coherence
and consistency. InInternational Symposium on Com-
puter Architecture, pages 102–113, 2004.

[8] Tim Harris and Keir Fraser. Language support for
lightweight transactions. InObject-Oriented Pro-

gramming, Systems, Languages, and Applications,
pages 388–402, 2003.

[9] Maurice Herlihy, Victor Luchangco, Mark Moir, and
William N. Scherer III. Software transactional mem-
ory for dynamic-sized data structures. InPrinciples of
Distributed Computing, pages 92–101, 2003.

[10] Maurice Herlihy and J. Eliot B. Moss. Transac-
tional memory: Architectural support for lock-free
data structures. InInternational Symposium on Com-
puter Architecture, pages 289–300, 1993.

[11] Mark D. Hill. Multiprocessors should support simple
memory consistency models.IEEE Computer, 31(8):
28–34, August 1998.

[12] Kevin E. Moore, Mark D. Hill, and David A. Wood.
Thread-level transactional memory. Technical Report
1524, Department of Computer Sciences, University
of Wisconsin, March 2005.

[13] Ravi Rajwar and James R. Goodman. Speculative lock
elision: enabling highly concurrent multithreaded ex-
ecution. InInternational Symposium on Microarchi-
tecture, pages 294–305, 2001.

[14] Ravi Rajwar and James R. Goodman. Transactional
lock-free execution of lock-based programs. InInter-
national Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, pages
5–17, 2002.

[15] Ravi Rajwar, Maurice Herlihy, and Konrad Lai. Vir-
tualizing transactional memory. InInternational Sym-
posium on Computer Architecture, 2005.

[16] Nir Shavit and Dan Touitou. Software transactional
memory. In Principles of Distributed Computing,
pages 204–213, 1995.

[17] Adam Welc, Suresh Jagannathan, and Antony L.
Hosking. Transactional monitors for concurrent ob-
jects. In European Conference on Object-Oriented
Programming, pages 519–542, 2004.

[18] Craig Zilles and David H. Flint. Challenges to provid-
ing performance isolation in transactional memories.
In Annual Workshop on Duplicating, Deconstructing,
and Debunking, June 2005.

