
2004 Workshop on Duplicating, Deconstructing and Debunking
June 20, 2004

Munich, Germany
Organized by:

Bryan Black, Intel Labs, bryan.black@intel.com
Mikko Lipasti, University of Wisconsin, mikko@engr.wisc.edu

Final Program
Session 1: Simulation Methodology

Deconstructing and Improving Statistical Simulation in HLS.......2
Robert H. Bell Jr., Lieven Eeckhout, Lizy K. John, and Koen De Bosschere

University of Texas at Austin and Ghent University

An Evaluation of Stratified Sampling of Microarchitecture Simulations.......13
Roland E. Wunderlich, Thomas F. Wenisch, Babak Falsafi, and James C. Hoe

Carnegie Mellon University

MicroLib: A Case for the Quantitative Comparison of Micro-Architecture Mechanisms.......19
Daniel Gracia Pérez, Gilles Mouchard, and Olivier Temam

LRI, Paris Sud/11 University and INRIA Futurs, France

Session 2: Multiple Threads and Processors

The Case of Chaotic Routing Revisited.......32
Cruz Izu, Ramon Beivide and Jose Angel Gregorio

University of Adelaide and University of Cantabria

Debunking then Duplicating Ultracomputer Performance Claims by Debugging the Combining
Switches.......42

Eric Freudenthal and Allan Gottlieb
New York University

Multiprogramming Performance of the Pentium 4 with Hyper-Threading......53
James R. Bulpin and Ian A. Pratt

University of Cambridge

Deconstructing and Improving Statistical Simulation in HLS

Robert H. Bell Jr.† Lieven Eeckhout ‡ Lizy K. John † Koen De Bosschere ‡

†Department of Electrical and Computer Engineering ‡Department of ELIS
The University of Texas at Austin Ghent University, Belgium

{belljr, ljohn}@ece.utexas.edu leeckhou@elis.ugent.be

Abstract

Statistical simulation systems can provide an
accurate and efficient way to carry out early de-
sign studies for processors. One such system,
HLS, has a rapid simulation capability, but our
experiments demonstrate that several modeling
improvements are possible. The front-end graph
structure in HLS is hampered by workload model-
ing at the instruction level that reduces the accu-
racy of program simulation. The workload and
processor models require significant changes to
provide accurate results for a variety of bench-
marks. We improve HLS by modeling the work-
load at the granularity of the basic block and by
changing the processor model to more closely
reflect components in modern microprocessors.
The specific techniques improve HLS accuracy by
a factor of 3.78 at the cost of increased storage
and runtime requirements.

Our examination of HLS points to a pitfall
for simulator developers: reliance on a single
small set of benchmarks to qualify a simulation
system. A simple regression model shows that the
SPECint95 benchmarks, the original benchmarks
used to calibrate HLS, have characteristics that
yield to very simple modeling.

1. Introduction
To address the extremely long simulation

times of modern processor designs, researchers
have developed statistical simulation systems [2-
5, 7, 8]. Statistical simulation uses workload sta-
tistics from specialized functional or trace-driven
simulation to create a synthetic trace that is ap-
plied to a fast and flexible execution engine. In
HLS [8], statistics are used to create a static con-
trol flow graph of a small number of statistically
generated instructions. The graph is then walked
and the instructions are simulated in a processor

model. Since the number of instructions is small
and their workload characteristics have been de-
termined by a statistical distribution, the simula-
tion converges to a result much faster than cycle-
accurate simulations.

The workload statistics include microarchi-
tecture-independent characteristics such as in-
struction mix and inter-instruction dependency
frequencies. They also include microarchitecture-
dependent statistics such as branch prediction ac-
curacy and cache miss rates for specific branch
predictor and cache configurations. These are
used to model locality structures dynamically as
the simulation proceeds.

Statistical simulation systems that correlate
well with execution-driven simulators have been
shown to exhibit good relative accuracy as mi-
croarchitecture changes are applied in design
studies [3]. Studies have achieved average errors
smaller than 5% on specific benchmark suites [4,
8]. In this study, we quantify the correlation of
HLS over a range of benchmarks, from general-
purpose applications to technical and scientific
benchmarks, and streaming kernels. In addition to
the SPEC95 benchmarks [12], we study single-
precision versions of the STREAM and
STREAM2 benchmarks [13]. On these bench-
mark suites, we find that HLS has an average er-
ror of 15.5%.

The purpose of this study is to investigate
exactly why HLS is not more accurate. Simulta-
neously we work to improve HLS. We enhance
the workload model by collecting information at
the basic block level instead of at the instruction
level, and we add more detail to the processor
model. We find that the overall error decreases
from 15.5% to 4.1%, a factor of 3.78. We use the
same basic block simulation techniques as in [4],
so the error is similar. However, in this study, we
start with the HLS framework as a base and in-

2

crementally add modeling detail to uncover the
additional complexity necessary to improve HLS.
We quantify the cost of the improvements in
terms of additional storage requirements.

A simple regression model indicates that CPI
results for the SPECint95, the benchmarks origi-
nally used to calibrate HLS, can yield to very
simple modeling. Our analysis points to a larger
problem for simulator developers: using a small
set of benchmarks, datasets and simulated instruc-
tions to calibrate a simulation system.

In the next section, we describe HLS. In Sec-
tion 3, we describe various modeling problems
that we found in HLS. In Section 4, we investi-
gate improvements to the system. We quantify the
costs of the improvements in Section 5, followed
by conclusions and references.

2. HLS Overview
In the HLS system [8], machine-independent

characteristics are analyzed using a modified ver-
sion of the sim-fast functional simulator from the
SimpleScalar release 2.0 toolset [1]. An instruc-
tion mix frequency distribution is generated that
consists of the percentages of integer, float, load,
store and branch instructions. The mean basic
block size and standard deviation are also com-
puted.

Also generated is the frequency distribution
of the dependency distances between instructions
for each input of the five instruction types. The
benchmarks are executed for one billion cycles in
sim-outorder [1]. Sim-outorder provides the IPC
used to compare against the IPC obtained in HLS
statistical simulation. It also computes the L1 I-
cache and D-cache miss rates, the unified L2
cache rate, and the branch predictability. After the
workload is characterized, HLS generates one
hundred basic blocks using a normal random
variable over the mean block size and standard
deviation. A uniform random variable over the
instruction mix distribution fills in the instructions
of each basic block.

For each randomly generated instruction, a
uniform random variable over the dependency
distance distribution generates a dependency for
each instruction input. An effort is made to make
an instruction independent of a store within the
current basic block, but if the dependency
stretches beyond the limits of the current basic
block, no change is made because the dynamic

predecessor is not known.
The basic blocks are connected into a graph

structure. Each branch has both a taken pointer
and a not-taken pointer to other basic blocks. The
percentage of backward branches, set statically to
15% in the code, determines whether the taken
pointer is a backward branch or a forward branch.
For backward or forward branches, a normal ran-
dom variable over either the mean backward or
forward jump distances (set statically to ten and
three in the code, respectively) determines the
taken target. Later, during simulation, normal
random variables over the branch predictability
obtained from the sim-outorder run determine
dynamically if the branch is actually taken or not,
and the corresponding branch target pointer is
followed.

After the machine statistics are processed
and the basic blocks are configured, the instruc-
tion graph is walked. As each instruction is en-
countered, it is simulated on a generalized super-
scalar execution model for ten thousand cycles.
The IPC is averaged over twenty simulations. The
generalized model contains fetch, dispatch, execu-
tion, completion, and writeback stages. Fetches
are buffered up to the fetch width of the machine.
Instructions are dispatched to issue queues in
front of the execution units and executed as their
dependencies are satisfied. Neither an issue width
nor a commit width is specified in the processor
model. In HLS, the procedure is to first calibrate
the generalized processor model using a test
workload; then a reference workload is executed
on the model.

For loads, stores, and branches, the locality
statistics determine the necessary delay before
issue of dependent instructions. To provide com-
parison with the SimpleScalar lsq, loads and
stores are serviced by a single queue. Parallel
cache miss operations are provided through the
two memory ports available to the load-store exe-
cution unit. As in SimpleScalar, stores execute in
zero-time when they reach the tail of their issue
queue and the execution unit is available.

3. Issues in HLS
In this section, we first describe the experi-

mental setup and benchmarks used in our experi-
ments, followed by our examination of HLS, in-
cluding descriptions of several workload and
processor modeling issues.

3

3.1. Experimental Setup and Benchmarks
For our experiments we follow the procedure

in [8] using the software available at [9]. Sim-
pleScalar and the statistical simulation software
were compiled to target big-endian PISA binaries
on an IBM Power3 p270. Using the default pa-
rameters in [8], sim-outorder was executed on the
SPECint95 binaries found at [11] for up to one
billion instructions of one reference input dataset,
as in [8]. The modified sim-fast was executed on
the input dataset for fifty billion instructions, to
approximate complete program simulation.

In these experiments we use the SPEC CPU
95 integer benchmarks [12] for direct comparison
with the original HLS results. We add the SPEC
CPU 95 floating point benchmarks [12] and sin-
gle-precision versions of the STREAM and
STREAM2 benchmarks [6, 13]. We include this
last suite of benchmarks because they are particu-
larly challenging to statistical simulation systems.
In Section 2.5 we discuss the characteristics of the
STREAM benchmarks in more detail.

3.2. The HLS Graph Structure
We first examine the HLS front-end graph

structure. We vary the percentages of backward
branches, the backward branch jump distance, the
forward branch jump distance, and the graph con-
nections themselves.

Figure 1 shows the effect of varying the
front-end graph connectivity. Baseline is the base
HLS system running with the taken and not-taken
branches connected as described in Section 2.
Random not-taken is the base system with the not-
taken target randomly selected from the config-
ured basic blocks. Single loop is the base system
with the taken and not-taken targets of each basic
block both pointing to the next basic block in the

sequence of basic blocks, with the last basic block
pointing back to the first. The maximum error
versus the base system is 3.6% for perl using the
random not-taken strategy. This is well below the
average HLS correlation error versus the Sim-
pleScalar.

Figure 2 shows the IPC for gcc as the frac-
tion of backward jumps changes. The hard-coded
HLS default is 15% backward jumps. The maxi-
mum error versus that default is 2.8%. Figure 3
shows IPC as the backward and forward jump
distances are changed from a default of ten and
three, respectively. The maximum error versus
either of those is 2.0%.

From these figures, it is apparent that the
graph connectivity in HLS has no impact on
simulation performance. Intuitively, HLS models
the workload at the granularity of the instruction.
All instructions in all basic blocks in the graph are
generated identically. The instruction type and
dependencies assigned to any slot in any basic
block in the graph is randomly selected from the
global instruction mix distribution, so the instruc-
tion found at any slot on a jump is just as likely to
be found at any other slot.

0

0.2

0.4

0.6

0.8

1

1.2

0
.0

5

0
.1

0
.1

5

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

Figure 2: IPC vs. Changes in
Fraction of Backward Jumps (gcc)

IP
C

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10

Figure 3: IPC vs. Changes in
Backward/Forward Jump Distance (gcc)

IP
C

backward jump distance forward jump distance

0

0.4

0.8

1.2

1.6

2

g
c
c

p
e

rl

m
8

8
k
s
im

ijp
e

g

v
o

rt
e

x

c
o

m
p

re
s
s

g
o li

Figure 1: Effect of Graph Connectivity Changes

IP
C

baseline
random not-taken
single loop

4

There is also a small probability that the ran-
dom graph connectivity causes skewed results
because the randomly selected taken targets can
form a small loop of basic blocks, effectively
pruning other parts of the graph from the simula-
tion. This is not a major problem for HLS, in
which all blocks are essentially the same, but it
has implications for our improvements to HLS
described below, so the single loop strategy is
employed for the remainder of this paper.

3.3. The HLS Processor Model
In the HLS generalized execution model,

there is no issue-width concept. The issue of in-
structions to the issue queues is instead limited by
the queue size and dispatch window and, ulti-
mately, by the fetch window. There is also no
specific completion width in HLS, so the instruc-
tion completion rate is also front-end limited.
These omissions are conducive to obtaining quick
convergence to an average result for well-behaved
benchmarks, but they make it difficult to correlate
the system to SimpleScalar for a variety of
benchmarks.

3.4. Modeling Workload Characteristics
Figures 4 and 5 show the IPC prediction er-

ror [4] over all benchmarks as workload model-
ing issues are incrementally addressed. The
baseline run gives the HLS results out-of-the-
box. While SPECint95 does well as in [8] with
only 5.8% error, SPECfp95 has twice the corre-
lation error. The STREAM loop error is more
than four times worse at 27%. We were unable
to achieve accurate results on all the benchmarks
by recalibrating the generalized HLS processor

model.
Recall that, in standard HLS, measuring mi-

croarchitecture-independent characteristics is car-
ried out on the complete benchmark using sim-
fast, whereas microarchitecture-dependent local-
ity metrics are obtained only for the first one bil-
lion instructions using sim-outorder. It stands to
reason that workload information and locality
information should be collected over the same
cycle ranges. The 1B Instructions run gives re-
sults with sim-fast executing the same one billion
instructions as sim-outorder. Not all benchmarks
improve, but the error in SPECfp95 drops by half
from 13.6% to 6.8%. Overall error decreases from
15.5% to 13.1%.

The modified sim-fast makes no distinction
between memory instructions that carry out auto-
increment or auto-decrement on the address regis-
ter after memory access and those that do not. The
HLS sim-fast code always assumes the modes are
active. This causes the code to assume register
dependencies that do not actually exist between
memory access instructions, and it makes codes
with significant numbers of load and store address

0
5

10
15
20
25
30

A
ll

S
P

E
C

in
t

S
P

E
C

fp

S
T

R
E

A
M

Figure 5: Overall HLS Error as Modeling Improves

IP
C

 P
re

d
ic

tio
n

 E
rr

o
r

(%
)

baseline 1B Instructions dependency fix

0

10

20

30

40

50

g
cc

p
e

rl

m
8

8
ks

im

ijp
e

g

vo
rt

e
x

co
m

p
re

ss g
o li

to
m

ca
tv

su
2

co
r

h
yd

ro
2

d

m
g

ri
d

a
p

p
lu

tu
rb

3
d

a
p

si

w
a

ve
5

fp
p

p
p

sw
im

sa
xp

y

sd
o

t

sf
ill

sc
o

p
y

ss
u

m
2

ss
ca

le

st
ri

a
d

ss
u

m
1

Figure 4: HLS Error as Modeling Changes

IP
C

 P
re

d
ic

tio
n

 E
rr

o
r

(%
)

baseline 1B Instructions dependency fix

5

register dependencies, including the STREAM
loops, appear to run slower. The sim-fast code
was modified to check the instruction operand for
the condition and mark dependencies accordingly,
and the dependency fix bars in the figures give the
results. The STREAM loops are improved, but
the SPECint95 error increases from 4.8% to 9.3%.
This is most likely due to the original calibration
of the generalized HLS processor model in the
presence of the modeling error.

 Table 1 shows a simple regression analysis
over the locality features taken from sim-outorder
runs: branch mispredictability, L1 I-cache and D-
cache miss rates, and L2 miss rate. The targeted
CPI is the particular CPI targeted in the analysis,
either SimpleScalar or the HLS result. The
squared correlation coefficient, R2, is a measure of
the variability in the CPI that is predictable from
the four features. The SPECint95 benchmarks
always achieve high correlation, while the analy-
sis over all benchmarks or even over SPECint95
together with SPECfp95 achieve lower correla-
tion. This is an indication that a very simple proc-
essor model can potentially represent the CPI of
the SPECint95 by emphasizing the performance
of the locality features; but it can not as easily do
the same over all three suites.

3.5. Loop Challenges
Table 2 shows single-precision versions of

the STREAM benchmarks, including the loop
equation and the number of instructions in the
kernel loop when compiled with gcc using -O.
The STREAM loops are strongly phased, and in
fact have only a single phase.

 Loops consist of one or a small number of
tight iterations containing specific instruction se-
quences that are difficult for statistical simulation
systems to model. Figure 6 shows one iteration of
the saxpy loop (in the PISA language [1]). If the
mul.s and add.s were switched in the random in-
struction generation process leaving the depend-
ency relationships the same, the extra latency of
the multi-cycle mul.s instruction is no longer hid-
den by the latency of the second l.s, leading to a
generally longer execution time for the loop. A
similar effect can be caused by changes in de-
pendency relationships as the dependencies are
statistically generated from a distribution.

Shorter runs can also occur. The mul.s has a
dependency on the previous l.s. If the l.s is
switched with the one-cycle add.s, keeping de-
pendencies the same, the mul.s can dispatch much
faster. While higher-order ILP distributions might
work well for some loops, the results have been
mixed and can actually lead to decreased accuracy
for general-purpose programs [3].

4. Improving HLS
In this section, we focus on improving the

processor and workload models to give more ac-
curate simulation results.

4.1. Processor Model
 It is difficult to correlate the generalized

HLS processor model to SimpleScalar for all
benchmarks. For this reason, we augmented HLS
with a register-update-unit (RUU), an issue width

Table 2: The STREAM Loops

Benchmark Equation Loop
Instructions

saxpy z[k] = z[k] + q * x[k] 10

sdot q = q + z[k] * x[k] 9

sfill z[k] = q 5

scopy z[k] = x[k] 7

ssum2 q = q + x[k] 6

sscale z[k] = q * x[k] 8

striad z[k] = y[k] + q * x[k] 11

ssum1 z[k] = y[k] + x[k] 10

Table 1: CPI Regression Analysis over 1B Instructions

Benchmarks Targeted CPI R2

HLS 0.988SPECint
SimpleScalar 0.970

HLS 0.972SPECint and SPECfp
SimpleScalar 0.895

HLS 0.757SPECint, SPECfp and STREAM
SimpleScalar 0.811

start: addu $2, $3, $6
l.s $f2, 0($2)
mul.s $f2, $f4, $f2
l.s $f0, 0($3)
add.s $f2, $f2, $f0
addiu $4, $4, 1
slt $2, $5, $4
s.s $f2, 0($3)
addiu $3, $3, 4
beq $2, $0, start

Figure 6: Disassembled SAXPY Loop

6

and a completion width. We also rewrote the re-
current completion function to be non-recurrent
and callable prior to execution, and we rewrote
the execution unit to issue new instructions only
after prior executing instructions have been ser-
viced in the current cycle. We added code to dif-
ferentiate long and short running integer and
floating point instructions. To maintain effi-
ciency, the locality structures are still modeled
using the statistical parameters taken from sim-
outorder runs.

We first run the benchmarks on the improved
processor model using the same workload charac-
teristics modeled in HLS, except that we generate
one thousand basic blocks instead of one hundred,
and we simulate for twenty thousand cycles in
stead of ten thousand; so simulation time is about
twice that in HLS. (The same changes in HLS do
not decrease error.) The execution engine flow,
delays and parameters are all chosen to match
those in the SimpleScalar default configuration.
The baseline system was validated by comparing
sim-outorder traces, obtained from sections of the
STREAM loops, to traces taken from the im-
proved HLS assuming perfect caches and perfect
branch predictability. The validation was simpli-
fied by the fact that the loops are comprised of
only one phase.

Figure 7 gives the results for the individual
benchmarks, and Figure 8 shows the average re-
sults per benchmark suite. The baseline run gives
the improved system results using the default
SimpleScalar parameters and using the global
instruction mix, dependency information, and

load and store miss rates. There are errors greater
than 25% for particular benchmarks, such as
ijpeg, compress and apsi. The overall error of
14.4% compares well with the 15.5% baseline
error in HLS, but it is higher than the 13.1% error
in shown in Figure 5 for HLS with improved
workload modeling.

4.2. Workload Model
We also enhanced the workload model to re-

duce correlation errors. The analysis of the graph
structure showed that modeling at the granularity
of the instruction in HLS did not contribute to
accuracy. In [7], the basic block size is the gran-
ule of simulation. However, this raises the possi-
bility of basic block size aliasing, in which many
blocks of the same size but very different instruc-
tion sequences and dependency relationships are
combined.

0

5

10

15

20

A
ll

S
P

E
C

in
t

S
P

E
C

fp

S
T

R
E

A
M

Figure 8: Improved HLS Average Error as Modeling
Changes

IP
C

 P
re

d
ic

tio
n

 E
rr

o
r

(%
)

baseline sequences dependencies

miss rates bpred stream info

0
5

10
15
20
25
30
35
40
45

g
cc

p
e

rl

m
8

8
ks

im

ijp
e

g

vo
rt

e
x

co
m

p
re

s

g
o li

to
m

ca
tv

su
2

co
r

h
yd

ro
2

d

m
g

ri
d

a
p

p
lu

tu
rb

3
d

a
p

si

w
a

ve
5

fp
p

p
p

sw
im

sa
xp

y

sd
o

t

sf
ill

sc
o

p
y

ss
u

m
2

ss
ca

le

st
ri

a
d

ss
u

m
1

Figure 7: Improved HLS Error as Modeling Changes

IP
C

 P
re

d
ic

tio
n

 E
rr

o
r

(%
)

baseline sequences dependencies miss rates bpred stream info

7

4.2.1. Basic Block Modeling Granularity
Instead of risking reduced accuracy with

block size aliasing, we model at the granularity of
the basic block itself. The dynamic frequencies of
all basic blocks are used as a probability distribu-
tion function for building the sequence of basic
blocks in the graph. This is the same as the k=0
modeling in the SMART-HLS system [4]. To
capture cache and branch predictor statistics for
the basic blocks, we use sim-cache augmented
with the sim-bpred code.

In the sequences bars of Figures 7 and 8, the
basic block instruction sequences are used, but the
dependencies and locality statistics for each
instruction in each basic block are still taken from
the global statistics found for the entire
benchmark. The overall correlation errors are
reduced dramatically for the three classes of
benchmarks. However, some benchmarks such as
compress and hydro2d, and the STREAM loops,
still show high correlation errors.

In the dependencies run, we include the use
of dependency information for each basic block.
In order to reduce the amount of information
stored, we merge the dependencies into the small-
est dependency relationship found in any basic
block with the same instruction sequence, as in
[4]. The average error is reduced significantly
from 8.9% to 6.3%.

On investigation, it was found that the global
miss rate calculations do not correspond to the
miss rates from the viewpoint of the memory op-
erations in a basic block. In the cache statistics,
HLS pulls in the overall cache miss rate number
from SimpleScalar, which includes writebacks to
the L2. But for individual memory operations in a
basic block, the part of the L2 miss rate due to
writebacks should not be included in the miss
rate. This is because the writebacks generally oc-
cur in parallel with the servicing of the miss so
they do not contribute to the latency of the opera-
tion. This argues for either a global L2 miss rate
calculation that does not include writebacks or the
maintenance of miss rate information for each
basic block. In addition, examination of the
STREAM loops reveals that the miss rates for
loads and stores are quite different. In saxpy, for
example, both loads miss to the L1, but the store
always hits. Because of these considerations, the
L1 and L2 probabilistic miss rates for both loads

and stores should be maintained local to each ba-
sic block.

The miss rates run includes this information.
All benchmarks improve, but a few of the
STREAM loops still have errors greater than
10%. The problem is that the STREAM loops
need information concerning how the load and
store misses, or delayed hits, overlap. In most
cases load misses overlap, but the random cache
miss variables often cause them not to overlap,
leading to an underestimation of performance.
Note that this is the reverse of the usual situation
for statistical simulation in which critical paths
are randomized to less critical paths, and per-
formance is overestimated. An additional run,
bpred, includes branch predictability local to each
basic block. This helps a few benchmarks like
ijpeg and hydro2d, but, as expected, the
STREAM loops are unaffected.

One solution is to keep overlap statistics.
This solves the delayed hits problem, but does not
provide for the modeling of additional memory
operation features. Instead, when the workload is
characterized, we track one hundred L1 and L2
hit/miss indicators (i.e. if the memory operation
was an L1 hit or miss or an L2 hit or miss) for the
sequence of loads and stores in each basic block
near the end of the one billion instruction simula-
tion. Later, during statistical simulation, we use
the stream indicators in order (but without pairing
them to particular memory operations) to deter-
mine the miss characteristics of the stream as the
loads and stores are encountered. This is a sim-
plistic way to operate, since the stream hit/miss
indicators are simply collected at the end of the
run and are therefore not necessarily representa-
tive of the entire run. However, the technique may
be applicable given the trend to identify and simu-
late program phases [10] in which stream infor-
mation may change little. Still, simulating one
billion instructions without regard to phase behav-
ior, we expect the technique to help only the
STREAM loops, and to negatively affect the oth-
ers.

The stream info bars in Figure 7 show the re-
sults. As expected, the STREAM loops improve
significantly. However, only a small amount of
accuracy is lost for the others. This indicates that
there is only one or a small number of phases in
the first one billion instructions for most bench-

8

marks, at least with respect to the load and store
stream behavior.

4.2.2. Basic Block Maps
In the previous simulations, the basic blocks

were not associated with each other in any way
since a random variable over the frequency distri-
bution of the blocks is used to pick the next basic
block to be simulated. At branch execution time, a
random variable based on the global branch pre-
dictability is used simply to indicate that a branch
misprediction occurred when the branch was dis-
patched, causing additional delay penalty before
the next instruction can be fetched, but that is not
related to the successor block decision. This tech-
nique treats all blocks together as if no phases
exist in which one area of the graph is favored
over another at different times.

By associating particular basic blocks with
each other in specific time intervals, for example
during a program phase, it is expected that better
simulation accuracy can be obtained for multi-
phase programs. One way to do that is to specify
the phases, the basic blocks executing in those
phases, and the relative frequencies of the basic
block executions during those phases. These three
things together constitute a basic block map.

The phase identification requires knowledge
of when the relative frequencies of the basic
blocks change. The identification of phases at a
coarse granularity can be carried out using a
phase identification program such as SimPoint
[10]. It can also be developed dynamically during
simulation by walking a representation of the con-

trol flow graph of the program. A system to do
that for the SPEC2000 benchmarks is presented in
[4]. Since the phase identification is carried out
continuously during simulation, the possibility
exists of not only detecting the coarse-grained
phases, but also the micro-phases, or small shifts
in relative block frequencies, that must be identi-
fied in order to achieve good accuracy using sta-
tistical simulation.

Following [4], we annotate each basic block
with a list of pointers to its successor blocks along
with the probabilities of accessing each successor.
By walking the basic blocks as in the previous
section, but using a random variable over the suc-
cessor probabilities to pick the successor, the pro-
gram phase behavior is uncovered. We simulate
all strategies as before.

Figures 9 and 10 show the basic block map
results. The overall error using all techniques is
improved only a little from 4.35% to 4.11%, a

0

5

10

15

20

A
ll

S
P

E
C

in
t

S
P

E
C

fp

S
T

R
E

A
M

Figure 10: Improved HLS Average Error as
Modeling Changes Using Basic Block Maps

IP
C

 P
re

d
ic

tio
n

 E
rr

o
r

(%
)

baseline sequences dependencies

miss rates bpred stream info

0
5

10
15
20
25
30
35
40
45

g
cc

p
e

rl

m
8

8
ks

im

ijp
e

g

vo
rt

e
x

co
m

p
re

s

g
o li

to
m

ca
tv

su
2

co
r

h
yd

ro
2

d

m
g

ri
d

a
p

p
lu

tu
rb

3
d

a
p

si

w
a

ve
5

fp
p

p
p

sw
im

sa
xp

y

sd
o

t

sf
ill

sc
o

p
y

ss
u

m
2

ss
ca

le

st
ri

a
d

ss
u

m
1

Figure 9: Improved HLS Error as Modeling Changes
Using Basic Block Maps

IP
C

 P
re

d
ic

tio
n

 E
rr

o
r

(%
)

baseline sequences dependencies miss rates bpred stream info

9

5.5% decrease. SPECint95 is improved from
6.9% to 4.3%, or 38% on average. The STREAM
loops are unchanged since they consist of a single
phase, and there is no advantage in using basic
block maps in that case. The SPECfp95 show an
increase in error from 3.3% to 4.7%. Part of this
is due to the negative effects of using stream in-
formation, which cause a jump up from 3.6% er-
ror for SPECfp95. The low overall improvement
agrees with the results found in the last subsec-
tion, in which stream information, which should
be phase dependent, causes little adverse reaction.
Coupled with increased variance by simulating
only twenty thousand cycles, the result is not sur-
prising. Improvements are also limited by errors
in the graph structure, including the merge of de-
pendencies explained earlier.

Basic block maps demonstrate improvement
on programs with a number of strong phases. To
demonstrate the effectiveness of the technique,
several benchmarks are created using combina-

tions of the STREAM loops. Figure 11 shows, for
example, that a simple code created from the con-
catenation of sdot and ssum1 has correlation er-
rors of 39.4% and 14.8% in HLS and the im-
proved HLS without basic block maps, respec-
tively. In the improved HLS without basic block
maps, given that 50% of the blocks are equivalent
to sdot blocks, and 50% are equivalent to ssum1
blocks, the resulting sequence of basic blocks is a
jumble of both. The behavior of the resulting
simulations tends to be pessimistic with long-
latency L2 cache misses forming a critical chain
in the dispatch window. When the basic block
map technique is applied, the error shrinks to
0.4% because the sequence of simulated basic
blocks is more accurate.

Figure 12 and 13 compare HLS to HLS with
basic block maps running with all optimizations.
The improvements show a 4.1% average error,
which is 3.78 times more accurate than the origi-
nal HLS at 15.5% error.

0

10

20

30

40

sdot_ssum1

sdot_sfill

sscale_ssum2

ssum2_sfill

scopy_sdot

ssum2_sdot

avg

Figure 11: HLS and Improved HLS on Two-Phase
Benchmarks

IP
C

 P
re

d
ic

tio
n

 E
rr

o
r

(%
)

HLS Improved HLS Improved HLS (bbmaps)

0
5

10
15
20
25
30

A
ll

S
P

E
C

in
t

S
P

E
C

fp

S
T

R
E

A
M

Figure 12: HLS vs. Improved HLS with Basic
Block Maps

IP
C

 P
re

d
ic

tio
n

 E
rr

o
r

(%
)

HLS Improved HLS

0

10

20

30

40

50

g
cc

p
e

rl

m
8

8
ks

im

ijp
e

g

vo
rt

e
x

co
m

p
re

s

g
o li

to
m

ca
tv

su
2

co
r

h
yd

ro
2

d

m
g

ri
d

a
p

p
lu

tu
rb

3
d

a
p

si

w
a

ve
5

fp
p

p
p

sw
im

sa
xp

y

sd
o

t

sf
ill

sc
o

p
y

ss
u

m
2

ss
ca

le

st
ri

a
d

ss
u

m
1

Figure 13: HLS vs. Improved HLS with Basic Block Maps

IP
C

 P
re

d
ic

tio
n

 E
rr

o
r

(%
)

HLS Improved HLS

10

5. Implementation Costs
Table 3 shows the cost of the improvements

in bytes as a function of the number of basic
blocks (NBB), the average length of the basic
blocks (LBB), the average number of loads and
stores in the basic block (NLS), the average num-
ber of successors in the basic blocks (SBB), and
the amount of stream data used (NSD). NSD is
NLS x 100 = 4.71 x 100 = 471 in our runs. Table
4 shows the error reduction as the average reduc-
tion in correlation error as each technique aug-
ments the previous technique.

 There are only five instruction types, so
we use four bits to represent each. There are two
dependencies per instruction, each of which is
limited to within 255; so two bytes of storage per
instruction are needed. We maintain both load and
store miss rates for the L1 and L2 caches; so four
floats are needed. For basic block maps, the suc-
cessor pointer and frequency are maintained in in
a 32-bit address and a float.

Clearly, including detailed stream data is in-
efficient on average compared to using the other
techniques, but future work, including phase iden-
tification techniques, can seek to reduce the
amount of data being collected.

6. Conclusions
Statistical simulation can provide an accurate

and efficient simulation capability. In the HLS
system, we identified several issues related to
workload and processor modeling that affect
simulation accuracy negatively.

One workload modeling issue is that the
front-end graph structure of HLS operates at the

Table 4: Implementation Costs

Technique Cost Formula (Bytes)
Avg. Cost Per
Benchmark

(Bytes)

Percent
Error

Reduction

Cost Per
Percent Error

Reduction
(Bytes)

~Storage per
Block

Cumulative
Frequencies

NBB x 4 2098 1 Float

Sequences NBB x LBB x ½ 2806
42.7% 115

6 Bytes

Dependencies NBB x LBB x 2 x 1 11222 25.4% 442 22 Bytes

Miss Rates NBB x 4 x 4 4195 6.5% 645 4 Floats

Branch Pre-
dictability

NBB x 4 2098 2.3% 912 1 Float

Stream Info NBB x NSD x ¼ 61701 25.0% 2468 118 Bytes

Basic Block
Maps

NBB x SBB x 2 x 4 7929 5.3% 1496 4 Floats

 Overall 92049 73.5% 1252 186 Bytes

Table 3: Benchmark Information

Name
Number
of basic
blocks

Average
Block

Length

Average
Ld St per

Block

Average
Number of

Successors
gcc 2714 12.74 6.07 2.19

perl 575 9.39 4.93 1.82

m88ksim 398 10.90 4.7 1.86

ijpeg 661 13.09 6.03 1.76

vortex 1134 14.38 8.53 1.64

compress 151 8.30 3.4 1.94

go 1732 15.17 5.01 2.26

li 318 8.74 4.42 1.96

tomcatv 258 8.91 3.9 1.9

su2cor 406 9.58 3.84 1.76

hydro2d 646 11.91 3.99 1.81

mgrid 450 12.41 4.74 2.02

applu 552 25.24 8.21 1.87

turb3d 496 12.57 4.92 1.77

apsi 1010 17.94 8.45 1.65

wave5 507 9.89 3.96 1.86

fpppp 452 18.94 8.59 1.77

swim 419 12.44 4.66 1.91

saxpy 177 9.01 3.55 2.12

sdot 109 8.58 3.92 2.3

sfill 177 8.94 3.53 2.12

scopy 177 8.97 3.54 2.12

ssum2 109 8.50 3.89 2.3

sscale 177 8.98 3.54 2.12

striad 177 9.03 3.55 2.12

ssum1 177 9.02 3.55 2.12

Average 524.4 10.7 4.71 1.89

11

granularity of the instruction and contributes little
to the performance of the system. The HLS proc-
essor model does not implement a specific issue
width or a commit width, making calibration to a
detailed processor simulator such as SimpleScalar
difficult.

To meet these challenges, we model the
workload at the granularity of the basic block and
recode the processor model to decrease error. We
find that IPC prediction error can be reduced from
15.5% to 4.1%. We quantify the cost of the im-
provements in terms of increased storage re-
quirements and find that less than 100K bytes on
average are needed per benchmark to achieve the
maximum error reduction. Runtime is approxi-
mately twice that of HLS.

A simple regression analysis shows that the
SPECint95 workload is susceptible to very simple
processor models. Our results point to a major
pitfall for simulator developers: reliance on a
small set of benchmarks, datasets and simulated
instructions to qualify a simulation system.

Aknowledgements
The authors would like to thank the anony-

mous reviewers for their feedback. Rob Bell is
supported by the IBM Graduate Work Study pro-
gram and the Server and Technology Division of
IBM. Lieven Eeckhout is a Postdoctoral Fellow
of the Fund for Scientific Research – Flanders
(Belgium) (F.W.O. Vlaanderen). This research is
also partially supported by the Institute for the
Promotion of Innovation by Science and Tech-
nology in Flanders (IWT), by Ghent University,
by the United States National Science Foundation
under grant number 0113105, and by IBM, Intel
and AMD corporations.

References
[1] D. C. Burger and T. M. Austin, “The Sim-
pleScalar Toolset,” Computer Architecture News,
1997.

[2] R. Carl and J. E. Smith, "Modeling Supersca-
lar Processors Via Statistical Simulation,” Work-
shop on Performance Analysis and Its Impact on
Design, June 1998.

[3] L. Eeckhout, S. Nussbaum, J. E. Smith and K.
De Bosschere, “Statistical Simulation: Adding
Efficiency to the Computer Designer’s Toolbox,”

IEEE Micro, Vol. 23 No. 5, Sept/Oct 2003, pp.
26-38.

[4] L. Eeckhout, R. H. Bell Jr., B. Stougie, K. De
Bosschere and L. K. John, “Improved Control
Flow in Statistical Simulation for Accurate and
Efficient Processor Design Studies,” Proceedings
of the International Symposium on Computer Ar-
chitecture, June 2004, to appear.

[5] C. P. Joshi, A. Kumar and M. Balakrishnan,
"A New Performance Evaluation Approach for
System Level Design Space Exploration," IEEE
International Symposium on System Synthesis,
October 2002, pp. 180-185.

[6] J. D. McCalpin, “Memory Bandwidth and
Machine Balance in Current High Performance
Computers,” IEEE Technical Committee on
Computer Architecture Newsletter, December
1995.

[7] S. Nussbaum and J. E. Smith, "Modeling Su-
perscalar Processors Via Statistical Simulation,"
Proceedings of the International Conference on
Parallel Architectures and Compilation Tech-
niques, September 2001, pp. 15-24.

[8] M. Oskin, F.T.Chong and M. Farrens, "HLS:
Combining Statistical and Symbolic Simulation to
Guide Microprocessor Design," Proceedings of
the 27th Annual International Symposium on
Computer Architecture, June 2000, pp. 71-82.

[9]http://www.cs.washington.edu/homes/okskin/t
ools.html

[10] T. Sherwood, E. Perelman, G. Hamerly and
B. Calder, “Automatically Characterizing Large
Scale Program Behavior,” Proceedings of the In-
ternational Conference on Architected Support for
Programming Languages and Operating Systems,
October 2002, pp. 45-57.

[11]http://www.cs.wisc.edu/~mscalar/simplescala
r.html

[12]http://www.spec.org

[13]http://www.cs.virginia.edu/stream/ref.html

12

An Evaluation of Stratified Sampling of Microarchitecture Simulations

Roland E. Wunderlich Thomas F. Wenisch Babak Falsafi James C. Hoe
Computer Architecture Laboratory (CALCM)

Carnegie Mellon University, Pittsburgh, PA 15213-3890
{rolandw, twenisch, babak, jhoe}@ece.cmu.edu

http://www.ece.cmu.edu/~simflex

Abstract
Recent research advocates applying sampling to

accelerate microarchitecture simulation. Simple random
sampling offers accurate performance estimates (with a
high quantifiable confidence) by taking a large number
(e.g., 10,000) of short performance measurements over the
full length of a benchmark. Simple random sampling does
not exploit the often repetitive behaviors of benchmarks,
collecting many redundant measurements. By identifying
repetitive behaviors, we can apply stratified random
sampling to achieve the same confidence as simple
random sampling with far fewer measurements. Our
oracle limit study of optimal stratified sampling of
SPEC CPU2000 benchmarks demonstrates an opportunity
to reduce required measurement by 43x over simple
random sampling.

Using our oracle results as a basis for comparison,
we evaluate two practical approaches for selecting strata,
program phase detection and IPC profiling. Program
phase detection is attractive because it is microarchitec-
ture independent, while IPC profiling directly minimizes
stratum variance, therefore minimizing sample size.
Unfortunately, our results indicate that: (1) program
phase stratification falls far short of optimal opportunity,
(2) IPC profiling requires expensive microarchitecture-
specific analysis, and (3) both methods require large
sampling unit sizes to make strata selection feasible,
offsetting their reductions of sample size. We conclude
that, without better stratification approaches, stratified
sampling does not provide a clear advantage over simple
random sampling.

1. Introduction
One of the primary design tools in microarchitecture

research is software simulation of benchmark applications.
Timing-accurate simulation’s flexibility and accuracy
makes it indispensable to microarchitecture research.
However, the applications we wish study continue to
increase in length—hundreds of billions of instructions for
SPEC CPU2000 (SPEC2K). At the same time, the speed
gap between simulators and the simulated hardware is

growing—with as much as five orders of magnitude slow-
down currently. Thus, researchers have begun looking for
ways to accelerate simulation without sacrificing the accu-
racy and reliability of results [1,5,6,7].

One of the most promising approaches to accelerate
simulation is to evaluate only a tiny sample of each work-
load. Previous research has demonstrated highly accurate
results while reducing simulation run time from weeks to
hours [6,7]. These sampling proposals pursue two
different approaches to sample selection: (1) statistical
uniform sampling of a benchmark’s instruction stream,
and (2) targeted sampling of non-repetitive benchmark
behaviors. Uniform sampling, such as the SMARTS frame-
work [7], has the advantage that it requires no
foreknowledge or analysis of benchmark applications, and
it provides a statistical measure of the reliability of each
experimental result. However, this approach ignores the
vast amount of repetition within most benchmark’s
instruction streams, taking many redundant measurements.
Targeted sampling instead categorizes program behaviors
to select fewer measurements, reducing redundant
measurements. The SimPoint approach [6] identifies
repetitive behaviors by summarizing fixed-size regions of
the dynamic instruction stream as basic block vectors
(BBV), building clusters of regions with similar vectors,
and taking one measurement within each cluster.

The benefits of both sampling approaches can be
achieved by placing the phase identification techniques of
targeted sampling in a statistical framework that provides
a confidence estimate with each experiment. Stratified
random sampling is this statistical framework. Stratified
sampling breaks a population into strata, analogous to
targeted sampling, and then randomly samples within each
stratum, as in uniform sampling. By separating the distinct
behaviors of a benchmark into different strata, each
behavior can be characterized by a small number of
measurements. Each of these characterizations is then
weighted by the size of the stratum to compute an overall
estimate. The aggregate number of measurements can be
lower than the number required by uniform sampling.

The effectiveness of stratified sampling can be evalu-
ated along two dimensions. First, it might reduce the total

13

quantity of measurements required. For simulators where
a large number of measurements implies significant cost—
for example, the storage of large architectural state check-
points to launch each measurement—a reduction of
measurements would imply cost savings.

More commonly, however, the total number of
instructions measured has the larger impact on simulation
cost. To improve total measurement, a stratification
approach must reduce the quantity of required measure-
ments while maintaining the small measurement sizes
achievable with simple random sampling.

In this study, we evaluate the practical merit of
combining sample targeting with statistical sampling in
the form of stratified random sampling. We perform an
oracle limit study to establish bounds on improvement
from stratification and evaluate two practical stratification
approaches: program phase detection and IPC profiling.
We evaluate both approaches quantitatively in terms of
sample size (measurement quantity) and sampling unit size
(measurement size), and qualitatively in terms of the up-
front cost of creating a stratification. We demonstrate:

• Limited gains in sample size: We show that stratifying
via program phase detection achieves only a small
reduction in sample size over uniform sampling, 2.2x, in
comparison to the oracle opportunity of 43x. Phase
detection assures that each stratum has a homogenous
instruction footprint. Unfortunately, data effects and
other sources of performance variation remain. The
reduction in CPI variability achieved by stratifying on
instruction footprint is not sufficient to approach the full
opportunity of stratification.

• Expensive analysis and limited applicability: We
show that IPC profiling requires an expensive analysis
that is microarchitecture specific, and its gains do not
justify this cost.

• No improvement in total measurement: We show that
neither stratification approach improves over simple
random sampling in terms of total instructions mea-
sured. Because of the computational complexity of clus-
tering, neither stratification approach can be applied at
the lowest sampling unit sizes achievable with random
sampling. This increase in sampling unit size offsets
reductions in sample size for stratified sampling.

The remainder of this paper is organized as follows.
Section 2 presents stratified random sampling theory and
details how to correctly achieve confidence in results from
a stratified population. Section 3 discusses our optimal
stratification study, while Section 4 covers our evaluations
of two practical stratification techniques. In Sections 3 and
4, we explicitly cover the improvements to sample size
and total measured instructions as compared to simple
random sampling for each technique. We conclude in
Section 5.

2. Stratified random sampling
The confidence in results of a simple random sample

is directly proportional to the sample size and the variance
of the property being measured. The sample size is the
number of measurements taken to make up a sample, and
variance is the square of standard deviation. Significant
reductions in sample size can often be achieved when a
population can be split into segments of lower variance
than the whole.

Stratified random sampling of a population is
performed by taking simple random samples of strata,
mutually exclusive segments of the population, and aggre-
gating the resulting estimates to produce estimates
applicable to the entire population. Strata do not need to
consist of contiguous segments of the population, rather
every population member is independently assigned to a
stratum by some selection criteria. If stratifying the popu-
lation results in strata with relatively low variance, a small
sample can measure each stratum to a desired confidence.
By combining the measurements of individual strata, we
can compute an overall estimate and confidence. With low
variance strata, the aggregate size of a stratified sample
can be much smaller than a simple random sample with
equivalent confidence. A population whose distinct behav-
iors are assigned to separate strata will see the largest
decreases in sample size when using stratified sampling.

The process of stratified random sampling is illus-
trated in Figure 1. The first of three steps is to stratify the
population into K strata. We discuss various techniques for
stratifying populations in the context of microarchitecture
simulation in Sections 3 and 4. Second, we collect a
simple random sample of each stratum. We represent the
variable of interest as x, and strata-specific variables with
the subscript h, where h ranges from 1 to K. Therefore, Nh

Benchmark
profile

Stratify
instruction

stream
Strata

membership
Random

sampling of
individual strata

Aggregate
estimates &

calc. confidence

Benchmark
estimates

We examined optimal,
program phase detection,
and IPC profiling stratification.

Optimal sample sizes
determined by (3)

(1,2)

Strata-specific
estimates

Step 1 Step 2 Step 3

Figure 1. The stratified random sampling process. We focus on the relative effectiveness of two practical
stratification approaches for Step 1 in this work. The referenced equations for Steps 2 & 3 are in Section 2.

14

is the population size of stratum h, nh is the sample size for
stratum h, while is that stratum’s standard deviation
of x. The final step is to aggregate the individual stratum
estimates to produce estimates of the entire population. A
simple weighted mean is used to produce a population
mean estimate:

where the summation is over all strata of the population
(h = 1 to K); thus, , and . Note, we
assume Nh » nh» 1 to simplify the stratified sampling
expressions. The confidence interval of a mean estimate
from a stratified random sample is determined by:

where z is the percentile of the standard
normal distribution (z = 2.0 for 95% and z = 3.0 for 99.7%
confidence). Note that a sampling estimate of a stratum’s
standard deviation is marked with a hat as .

The required sample size for each stratum, nh, which
produces a desired overall confidence interval with
minimum total sample size n can be calculated if the stan-
dard deviation of each stratum is known or can be
estimated. The procedure for calculating the optimal strati-
fied sample is known as optimal sample allocation [2]. To
determine an optimally-allocated stratified sample for a
desired confidence interval we first calculate the total
stratified sample size:

The sample size of each stratum is the fraction of
the total stratified sample size n; individual stratum sample
sizes are .

3. Optimal stratification
In order to evaluate practical stratification approaches

for the experimental procedure presented in Section 2, we
first quantify the upper bound reduction in sample size
achievable with an optimal stratification. As in previous
studies of simulation sampling [7, 6], we focus on CPI as
the target metric for our estimation, and use the same 8-
way and 16-way out-of-order superscalar processor
configurations, SPEC2K benchmarks, and simulator code-
base as [7].

Determining an optimal stratification for CPI requires
knowledge of the CPI distribution for the full length of an
application—knowledge which obviates the need to esti-
mate CPI via sampling. To perform this study, we have
recorded complete traces of the per-unit IPC (not CPI, for
reasons explained later) of every benchmark on both
configurations. While not a practically applicable tech-
nique, this study establishes the bounds within which all
practical stratification methods will fall. At worst, an arbi-
trary stratification approach will match simple random
sampling, as random assignment of sampling units to
strata is equivalent to simple random sampling. At best,
any approach will match the bound established here.

Optimal stratified sampling. To minimize total
sample size, we need to determine an optimal number of
strata, and minimize their respective variances. Then, we
calculate the correct sample size for a desired confidence
using the optimal stratified sample allocation equation (3).
This equation provides the best sample size for each
stratum, given their variances and relative sizes. Larger
and higher variance strata receive proportionally larger
samples. We constrain sample size for each stratum to a
minimum of 30 (or the entire stratum, if it contains fewer
than 30 elements) to ensure that the central limit theorem
holds, and that our confidence calculations are valid [2].

The optimal number of strata, K, cannot be deter-
mined in closed form. Intuitively, more strata allows finer
classification of application behavior, reducing variance
within each stratum, and therefore reducing sample size.
However, at some critical K, the floor of 30 measurements

hx

x
Nh N xh

K
------------------------------- (1)=

Nh N= nh n=

X z
Nh
N

ˆ
hx
2

nh
--------- (2)

100 1 2–

ˆ
hx

hx

n

z2

N2

Nh
2

hx
2

hX2

z2

N2

Nh hx
2

X2
----------------+

-- where h

Nh hx

Nh hx

---------------------- (3)=

h

nh h n=

Stratum 1

Stratum 2

Stratum 3

1. Collect benchmark IPC profile 2. Stratify by clustering IPC histogram

Stratum 1 Stratum 3 Stratum 2

3. Sample each stratum individually, aggregate estimates

• Optimal number of strata, , determined
by incrementing until

K
K

For each , strata are partitioned using
k-means clustering

inimum strata sample size of 30
is best for reliable confidence estimates
due to central limit theorem

K

total stratified
sample size is minimized

•

• M

Stratum 3

Figure 2. Determining the optimal stratification for a particular benchmark and microarchitecture.
Collecting the IPC profile requires performance simulation of the full length of the target benchmark.

15

per stratum dominates and increasing K increases sample
size. For each combination of benchmark, microarchitec-
ture, and sampling unit size, U, we determine the total
stratified sample size for each value of K up to the optimal
value, by starting with K = 1 and stopping when total
sample size decreases to a minimum.

For each value of K, we determine the optimal assign-
ment of sampling units to strata such that the CPI variance
of each stratum is minimized. We employ the k-means
clustering algorithm, using the implementation described
in [3] that utilizes kd-trees and blacklisting optimizations.
The k-means algorithm is one of the fastest clustering
algorithms, and the implementation in [3] is optimized for
clustering large data sets, up to approximately 1 million
elements. (Beyond 1 million elements, the memory and
computation requirements render the approach infeasible.)
Each k-means clustering was performed with 50 random
seeds to ensure an optimal clustering result. To stratify the
large populations of SPEC2K benchmarks at small U (on
average 174 million sampling units per benchmark at
U = 1000 instructions), we must reduce the data set before
clustering. Figure 2 illustrates how we reduce the data set
without impacting clustering results. We assign sampling
units to bins of size 0.001 IPC, and then cluster the bins
using their center and membership count. We bin based on
IPC rather than CPI as IPC varies over a finite range for a
particular microarchitecture (i.e., 0 to 8 for our 8-way
configuration, thus, 8000 bins). As long as the number of
bins is much larger than K, and the variance within a bin is
negligible relative to overall variance, binning does not
adversely affect the results of the clustering algorithm.

After each clustering, we calculate the variance of the
resulting strata and determine an optimal sample size as
previously described. We iterate until the critical value for
K is encountered. The optimal K lies between one and ten
clusters for all benchmarks and configurations that we
studied, and tends to decrease slightly with increasing U.
Note that the optimal K is independent of the target confi-
dence interval.

Impact on sample size. Figure 3 illustrates the
impact of stratification on sample size, n, for the 8-way
configuration. The top line in the figure represents the
average sample size required for a simple random sample
to achieve 99.7% confidence of ±3% error across all
benchmarks. The bottom line depicts the average sample
size with optimal stratification. Stratification can provide a
43x improvement in sample size for U = 1000 instructions,
reducing average sample size from ~8000 to 185 measure-
ments per benchmark. This result demonstrates that
random sampling takes many redundant measurements,
and that there is significant opportunity for improvement
with an effective stratification technique.

Impact on total measured instructions. Figure 4
illustrates the impact of stratification on total measured
instructions, n · U. The dashed line illustrates the total
instructions required for the SMARTS technique, which
performs systematic sampling at U = 1000 instructions.
The graph shows that any practical stratification approach
must be applied at a unit size of 10,000 instructions or
smaller in order to have a possibility of outperforming
existing sampling methodology.

4. Practical stratification approaches
The optimal stratification study presented in Section 3

establishes upper and lower bounds by which we can
measure the effectiveness of any stratification approach.
However, creating the optimal stratification requires
knowledge of the CPI distribution for the full length of an
application, and is optimal only for that specific microar-
chitecture configuration. In order for stratification to be
useful, we must balance the cost of producing a stratifica-
tion with the time saved relative to simple random
sampling over the set of experiments which can use the
stratification. Thus, we desire stratifications that can be
computed cheaply and can be applied across a wide range
of microarchitecture configurations. In the following
subsections, we analyze two promising stratification

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

1.E+10

1K 10K 100K 1M 10M 100M

U Sampling Unit Size (Instructions)

SMARTS
Optimal Stratif ication

n
·U

 In
st

ru
ct

io
n

s
M

ea
su

re
d

10

100

1,000

10,000

1K 10K 100K 1M 10M 100M
U Sampling Unit Size (Instructions)

n
 S

am
p

le
 S

iz
e

Simple Random Sampling
Optimal Stratif ication

Figure 3. Optimal stratification’s average sample size
per benchmark vs. simple random sampling for

SPEC2K with the 8-way processor configuration.

Figure 4. Total measured instructions per benchmark
with optimal stratification.

16

approaches. However, we find that both approaches obtain
insufficient execution time improvements over simple
random sampling to justify their large costs.

4.1. Program phase detection
SimPoint [6] presents program phase detection as a

promising approach for identifying and exploiting repeti-
tive behavior in benchmarks to enable acceleration of
microarchitecture simulation. SimPoint identifies program
phases based upon a basic-block vector profile. SimPoint
clusters measurement units based on the similarity of
portions of the BBV profiles.

Statistically Valid SimPoint [4] presents a method for
evaluating the statistical confidence of SimPoint simula-
tions where only a single unit is measured from each
cluster. However, the proposed use of parametric boot-
strapping only provides confidence interval estimates for
the specific microarchitecture where the bootstrap is
performed, and does not account for individual experi-
ment’s variations in performance. In addition, this analysis
requires CPI data for many points within each cluster.

Instead, by applying BBV phase detection in the
context of stratified random sampling, we can obtain a
confidence estimate with every experiment. By measuring
at least 30 units from each stratum (BBV cluster), we
satisfy the conditions of the central limit theorem and
obtain a confidence estimate with each simulation experi-
ment. The number of strata was optimally selected using
the same technique as our optimal stratification study in
Section 3. SimPoint seems a promising approach for strat-
ification, as it achieves both of the goals outlined earlier.
First, basic block vector analysis is relatively low cost, as
it can be accomplished using a BBV trace obtained by
functional simulation or direct execution of instrumented
binaries (if experimenting with an implemented ISA).
Second, basic block vectors are independent of microar-
chitecture, and thus, the resulting stratification can be
applied across many experiments.

Practical costs. The primary costs of program phase
stratification are the collection of a benchmark’s raw BBV
data and the clustering analysis time. Collection of BBV
data can be done with direct execution for existing instruc-
tion set architectures, otherwise functional simulation is
required. For the unit sizes advocated in [4] and [6] of 1
million to 100 million instructions, analysis time for clus-
tering is a few hours at most. However, clustering quickly
becomes intractable as we reduce U further. It is infeasible
to compute a k-means clustering for U < 100,000, since,
for most SPEC2K benchmarks, this results in more than 1
million sampling units. The high dimensionality (15
dimensions after random linear projection) of BBV data
prevents the binning optimization done for the optimal
stratification study in Section 3 due to the sparseness of
the vector space.

Impact on sample size. Program phase detection
does provide a modest improvement in sample size over
simple random sampling. However, phase detection falls
short of optimal stratification since it seeks to ensure the
homogeneity of the instruction footprint of each stratum.
This does not necessarily lead to minimal CPI variance
within each stratum. On average, program phase clustering
improves sample size by only 2.2x over simple random
sampling as shown in Figure 5. The average sample size at
U = 1 million instructions was 3590 for simple random
sampling and 1615 for BBV stratified random sampling,
as compared to 125 for optimal stratified sampling.

Impact on total measured instructions. Because the
BBV clustering analysis cannot be performed for U below
100,000, stratification based on program phase cannot
match the total measured instructions achievable with
simple random sampling. With U = 1 million, BBV strati-
fication results in an average of 1.6 billion instructions
measured per benchmark, while a simple random sample
with U = 1000 requires only 8 million instructions per
benchmark to be measured.

4.2. IPC profiling
The optimal stratification study in Section 3 achieves

large gains with stratification by stratifying directly on the
target metric, in this case CPI. Optimal stratification can
not be done for each experiment in practice because it
requires the very same detailed simulation that we are
trying to accelerate. However, if it were possible to
perform this expensive stratification once per benchmark
on a test microarchitecture, and then apply this stratifica-
tion to many other microarchitecture configurations over
many experiments, the long term savings might justify the
one time cost. The key question is whether strata with
minimal variance on one microarchitecture also have low
variance on another microarchitecture. We evaluate the
promise of this approach by computing a stratification
using an IPC profile of our 8-way processor configuration

10

100

1,000

10,000

1M 10M
U Sampling Unit Size (Instructions)

n
 S

am
p

le
 S

iz
e

Simple Random Sampling
BBV Stratif ication
Optimal Stratif ication

Figure 5. BBV program phase stratification
average sample size with the 8-way microarchitecture.

BBV stratification reduces average sample size by 2.2x
over simple random sampling, but it requires U > 100,000.

17

and evaluating this stratification when applied to the 16-
way configuration. The two microarchitectures differ in
their fetch, issue and commit widths, functional units,
memory ports, branch predictor and cache configurations,
and cache latency (details in [7]).

Practical costs. This approach needs a trace of the
IPC of every block of U instructions, requiring a detailed
simulation of the entirety of every benchmark. The longest
SPEC2K benchmarks require up to a month to simulate in
detail. We have successfully clustered sampling units for
U = 10,000, but storage requirements and processing time
prevent clustering at U = 1000 instructions. Unlike the
optimal stratification experiment of Section 3, practical
use of IPC profile stratification requires storing the strata
assignment of every sampling unit to disk (to allow strata
selection for a second experiment), and the storage needs
becomes prohibitive at U = 1000.

Impact on sample size. Two measurements units
which have identical performance on one microarchitec-
ture, and are thus members of the same stratum, may be
affected differently by microarchitectural changes,
increasing variance in the stratum. Thus, a larger sample is
required to accurately assess the stratum. Figure 6
compares the sample size obtained with an 8-way IPC
profile stratification to the optimum stratification and
simple random sampling for the 16-way configuration.
The 8-way stratification improves over purely random
sampling by a factor of 15x, as compared to an opportunity
of 48x for the 16-way microarchitecture. An IPC profile
stratification will provide large returns only for microar-
chitectures very similar to the test microarchitecture that
generated the profile.

Impact on total measured instructions. As Figure 7
shows, IPC profile stratification at U = 10,000 roughly
breaks even with SMARTS in terms of total measured
instructions. This performance does not justify the signifi-
cant one time cost of creating the stratification. Even if a
method were developed which could stratify at U = 1000,
the limited microarchitecture portability of the stratifica-

tion renders it unlikely that the high cost of generating an
IPC profile will be worthwhile.

5. Conclusion
While our opportunity study of stratified sampling

shows promise for reducing sample size, our analysis of
practical stratification techniques indicates little advantage
over simple random sampling. Program phase detection
stratification achieves only a small fraction of the avail-
able opportunity, since the discovered homogenous
instruction footprints do not translate to homogenous
performance. IPC profiling requires expensive and poten-
tially non-portable stratification that is not justified by
improvements in sample size. Neither approach improves
in total measurement over simple random sampling
because stratification cannot be performed at small
sampling unit sizes. Thus, we conclude that stratified
sampling provides no benefit for the majority of sampling
simulators where the primary interest is in reducing total
instructions measured.

6. References
[1] V. Krishnan and J. Torrellas. A direct-execution framework for fast and

accurate simulation of superscalar processors. In Proceedings of the
International Conference on Parallel Architectures and Compilation
Techniques, Oct. 1998.

[2] P. S. Levy and S. Lemeshow. Sampling of Populations: Methods and
Applications. John Wiley & Sons, Inc., 1999.

[3] D. Pelleg and A. Moore. Accelerating exact k-means algorithms with
geometric reasoning. In S. Chaudhuri and D. Madigan, editors,
Proceedings of the Fifth International Conference on Knowledge
Discovery in Databases, pages 277–281. AAAI Press, Aug. 1999.

[4] E. Perelman, G. Hamerly, and B. Calder. Picking statistically valid and
early simulation points. In Proceedings of the International Conference
on Parallel Architectures and Compilation Techniques, Sep 2003.

[5] E. Schnarr and J. Larus. Fast out-of-order processor simulation using
memoization. In Proceedings of the International Conference on
Architectural Support for Programming Languages and Operating
Systems, Oct. 1998.

[6] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Automatically
characterizing large scale program behavior. In Proceedings of the
Tenth International Conference on Architectural Support for Program-
ming Languages and Operating Systems, Oct. 2002.

[7] R. E. Wunderlich, T. F. Wenisch, B. Falsafi, and J. C. Hoe. SMARTS:
Accelerating microarchitecture simulation via rigorous statistical
sampling. In Proceedings of the International Symposium on Computer
Architecture, June 2003.

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

1.E+10

1K 10K 100K

U Sampling Unit Size (Instructions)

SMARTS 16-Way
CPI Trace 8->16-w ay
Optimal 16-Way

n
·U

 In
st

ru
ct

io
n

s
M

ea
su

re
d

10

100

1,000

10,000

10K 100K
U Sampling Unit Size (Instructions)

n
 S

am
p

le
 S

iz
e

Simple Random 16-Way
IPC Profile 8->16-w ay
Optimal 16-Way

Figure 6. Average sample size per benchmark for
IPC profile stratification with an 8-way profile applied

to the 16-way microarchitecture configuration.

Figure 7. Total measured instructions per benchmark
with IPC profile stratification.

18

MicroLib: A Case for the Quantitative Comparison of
Micro-Architecture Mechanisms

Daniel Gracia P´erez Gilles Mouchard
Olivier Temam

LRI, Paris Sud/11 University INRIA Futurs, France

Abstract

While most research papers on computer architectures include
some performance measurements, these performance numbers
tend to be distrusted. Up to the point that, after so many re-
search articles on data cache architectures, for instance, few
researchers have a clear view of what are the best data cache
mechanisms. To illustrate the usefulness of a fair quantitative
comparison, we have picked a target architecture component for
which lots of optimizations have been proposed (data caches),
and we have implemented most of the hardware data cache op-
timizations of the past 4 years in top conferences. Then we have
ranked the different mechanisms, or more precisely, we have ex-
amined the impact of benchmark selection, process model preci-
sion,. . . on ranking, and obtained some surprising results. This
study is part of a broader effort, called MicroLib, aimed at pro-
moting the disclosure and sharing of simulator models.

1 Introduction

Simulators are used in most processor architecture re-
search works, and, while most research papers include
some performance measurements (often IPC and more
specific metrics), these numbers tend to be distrusted be-
cause the simulator associated with the newly proposed
mechanism is rarely publicly available, or at least not in
a standard and reusable form, and as a result, it is not
possible or easy to check for design and implementation
hypotheses, potential simplifications or errors. However,
since the goal of most processor architecture research
works is toimprove performance, i.e., do better than pre-
vious research works, it is rather frustrating not to be able
to clearly quantify the benefit of a new architecture mech-
anism with respect to previously proposed mechanisms.
Many researchers wonder, at some point, how their mech-
anism fares with respect to previously proposed ones and

what is the best mechanism, at least for a given processor
architecture and benchmark suite (or even a single bench-
mark); but many consider, with reason, that it is exces-
sively time-consuming to implement a significant array of
past mechanisms based on the articles only.

The purpose of this article is threefold: (1) to argue that,
provided a few groups start populating a common library
of modular simulator components, a broad and system-
atic quantitative comparison of architecture ideas may not
be that unrealistic, at least for certain research topics and
ideas; we introduce a library of modular simulator compo-
nents aiming at that goal, (2) to illustrate this quantitative
comparison using data cache research (and at the same
time, we start populating the library), (3) to investigate
the following set of methodology issues (in the context of
data cache research) that researchers often wonder about
but do not have the tools or resources to address:

• Which hardware mechanism is the best with respect
to performance, power or cost?

• Are we making significant progress over the years?

• What is the impact of benchmark selection on rank-
ing?

• What is the impact of the architecture model preci-
sion, especially the memory model in this case, on
ranking?

• When programming a mechanism based on the ar-
ticle, does it often happen that we have to second-
guess the authors’ choices and what is the impact on
mechanism performance and ranking?

• What is the impact of trace selection on ranking?

Comparing an idea with previously published ones
means addressing two major issues: (1) how do we imple-
ment them? (2) how do we validate the implementations?

19

(1) The biggest obstacle to comparison is the necessity
to implement again all the previously proposed and rele-
vant mechanisms. Even if it usually means fewer than five
mechanisms, we all know that implementing even a single
mechanism can mean a few weeks of simulator develop-
ment and debugging. And that is assuming we have all
the necessary information for implementing it. Reverse-
engineering all the implementation details of a mecha-
nism from a 10-page research article can be challenging.
An extended abstract is not really meant (or at least not
usually written so as) to enable the reader to implement
the hardware mechanism, it is meant to pass the idea, give
the rationale and motivation, and convince the reader that
it can be implemented; so some details are omitted be-
cause of paper space constraints or for fear they would
bore the reader.

(2) Assuming we have implemented the idea presented
in an article, then how do we validate the implemen-
tation, i.e., how do we know we have properly imple-
mented it? First, we must be able to reconstruct ex-
actly the same experimental framework as in the origi-
nal articles. Thanks to widely used simulators like Sim-
pleScalar [2], this has become easier, but only partially
so. Many mechanisms require multiple minor control and
data path modifications of the processor which are not al-
ways properly documented in the articles. Then, we need
to have the same benchmarks, which is again facilitated
by the Spec benchmarks [26], but they must be compiled
with exactly the same compiler (e.g., the samegcc ver-
sion) on the same platform. Third, we need to parame-
terize the base processor identically, and few of us spec-
ify all the SimpleScalar parameters in an article? Fortu-
nately (from a reverse-engineering point of view) or un-
fortunately (from an architecture research point of view),
many of us use many of the same default SimpleScalar pa-
rameters. Fourth, to validate an implementation, we need
to compare the simulation results against the article num-
bers, which often means approximately reading numbers
on a bar graph. . . And finally, since the first runs usually
don’t match, we have to do a combination of performance
debugging and reverse-engineering of the mechanisms,
based on second-guessing the authors’ choices. By adding
a dose of common sense, one can usually pull it off, but
even then, there always remains some doubt, on apart of
the reader of such a comparison, as to how accurately the
researcher has implemented other mechanisms.

In this article, we illustrate these different points
through data cache research. We have collected the
research articles on performance improvement of data
caches from the past four editions of the main confer-
ences (ISCA, MICRO, ASPLOS, HPCA). We have im-

plemented most of the mechanisms corresponding to pure
hardware optimizations (we have not tried to reverse-
engineer software optimizations). We have also imple-
mented older but widely referenced mechanisms (Victim
Cache, Tag Prefetching andStride Prefetching). We have
collected a total of 15 articles, and we have implemented
only 10 mechanisms either because of some redundan-
cies among articles (one article presenting an improved
version of a previous one), implementation or scope is-
sues. Examples of implementation issues are thedata
compression prefetcher technique [30] which uses data
values (and not only addresses) which are not available
in the base SimpleScalar version,eager writeback [16]
which is designed for and tested on memory-bandwidth
bound programs which were not available; an example of
scope issue is thenon-vital loads technique [20] which re-
quires modifications of the register file, while we decided
to focus our implementation and validation efforts on data
caches only.

It is quite possible that our own implementation of
these different mechanisms has some flaws, because we
have used the same error-prone process described in pre-
vious paragraphs; so the results given in this article, es-
pecially the conclusion as to which are the best mecha-
nisms, should be considered with caution. On the other
hand, all our models are available on the MicroLib library
web site [7], as well as the ranking, so authors or other
researchers can check our implementation, and in case of
inaccuracies or errors, we will be able to update the online
ranking and the disseminated model.

Naturally, comparing several hardware mechanisms
means more than just ranking them using various met-
rics. But the current situation is the opposite: researchers
do analyze and compare ideas qualitatively, but they have
no simple means for performing the quantitative compar-
isons.

This study is part of a broader effort calledMicroLib
which aims at facilitating the comparison and exchange
of simulator models among processor architecture re-
searchers. In Section 2 we present theMicroLib project,
in Section 3 we describe our experimental framework, and
in Section 4, we attempt to answer the questions listed
above.

2 MicroLib

MicroLib. A major goal of MicroLib is to build an
open library of processor simulator components which re-
searchers can easily download either for directly plugging
them in their own simulators, or at least for having full ac-
cess to the source code, and thus to a detailed description

20

of the implementation. There already exists libraries of
open simulator components, such as OpenCores [1], but
these simulators are rather IP blocks for SoC (System-on-
Chip), i.e., an IP block is usually a small processor or a
dedicated circuit, while MicroLib aims at becoming a li-
brary of (complex) processor subcomponents (we will say
processorcomponents in the remainder of the article), and
especially of variousresearch propositions for these pro-
cessor components.

Our goal is to ultimately provide researchers with a suf-
ficiently large and appealing collection of simulator mod-
els that researchers actually start using them for perfor-
mance comparisons, and more importantly, that they later
on start contributing their own models to the library. As
long as we have enough manpower, we want to maintain
an up-to-date comparison (ranking) of hardware mech-
anisms, for various processor components, on the Mi-
croLib web site. That would enable authors to demon-
strate improvements to theirmechanisms, to fix mistakes a
posteriori, and especially, to provide the community with
a clearer and fair comparison of hardware solutions for
at least some specific processor components or research
issues.

MicroLib and existing simulation environments.
MicroLib modules can be either plugged into MicroLib
processor models (a superscalar model called OoOSysC
and a 15% accurate PowerPC750 model are already avail-
able [17]) which were developed in the initial stages of
the project, or they can be plugged into existing proces-
sor simulators. Indeed, to facilitate the widespread use
of MicroLib, we intend to develop a set ofwrappers for
interconnecting our modules with existing processor sim-
ulator models such as SimpleScalar, and recent environ-
ments such as Liberty [27]. We have already developed a
SimpleScalar wrapper and all the experiments presented
in this article actually correspond to MicroLib data cache
hardware simulators plugged into SimpleScalar through a
wrapper, rather than to our superscalar model. Next, we
want to investigate a Liberty wrapper because some of the
goals of Liberty fit well with the goals of MicroLib, es-
pecially the modularity of simulators and the planned de-
velopment of a library of simulator modules. Rather than
competing with modular simulation environment frame-
works like Liberty (which aim at providing a full envi-
ronment, and not only a library), we want MicroLib to be
viewed as an open and, possibly federating, project that
will try to build the largest possible library through ex-
tensive wrapper development. There are also many mod-
ular environments in the industry, such as ASIM [5] by
Compaq (and now Intel), and though they are not publicly
available, they may benefit from the library, provided a

wrapper can be developed for them. The current MicroLib
modules are based onSystemC [19], a modular simulation
framework supported by more than 50 companies from
the embedded domain, which is quickly becoming ade
facto standard in the embedded world for cycle-level or
more abstract simulation. All the mechanisms presented
in this article were implemented usingSystemC.

MicroLib modules and design guidelines for Sys-
temC. SystemC bears many similarities with Liberty
again as it provides a software support for building mod-
ules, links between modules and an event engine. On
the other hand, it is a bare environment as it specifies no
guideline for implementing modules and communication
protocols between modules. The reason for such free-
dom is the very large range of applications of SystemC.
This environment can be used either for Transaction-Level
Modeling (TLM), where only the module functions are
described with very rough performance estimates, for
cycle-level simulation, and VHDL/Verilog modules can
even be wrapped within SystemC modules and combined
with other more abstract components models. To im-
plement these possibilities, SystemC offers a rather large
range of communication methods: the most simple is the
Signal which is similar to a physical link (either a bit or
a set of bits), and there are alsoChannels for more elab-
orate link behavior, and evenEvents where physical links
disappear. Because we target cycle-level simulation, we
only useSignals for communications among modules.

Modular simulator design may not significantly speed
up the development of a new simulator, but it consider-
ably speeds up the modifications and updates of an ex-
isting simulator (and that is the most frequent task in
a research group), because most modifications are local
to one or a few modules, and a clean representation of
communications among modules (through links) provides
an instant and intuitive representation of the relationships
among modules (processor components). However mod-
ular simulators are significantly slower than monolithic
simulators, typically a factor of 10 to 15; for instance, our
OoOSysC superscalar model executes 25000 instructions
per cycle on an Athlon XP 1800+, while SimpleScalar ex-
ecutes 300000 instructions per cycle. However our experi-
ence is that we spend much more time in simulator devel-
opment than in simulation runs within a research project.
And recent sampling techniques like SimPoint [22] and
SMARTS [28] have shown that it is possible to reduce
simulation time by several orders of magnitude.

In fact, striking the right balance between modularity,
efficiency and speed is a delicate task. A too fine-grain
granularity and the simulator is close to the architecture,
but the code is excessively large and slow; a too coarse-

21

grain granularity and the benefits of modular simulation
are lost. Our initial OoOSysC implementation had 29
modules, and we have progressively decreased it to 25
modules (at this level, one pipeline stage roughly corre-
sponds to one or a few modules), both for software engi-
neering and performance reasons.

� � � � � � � �

� � � � � � � � � � � �

� 	 � � � � � � �

� �
 � � �

� � � � � � � �

� � � � � �� 	 � � � � �

� 	 �
 � � �

� 	 � � � � � � �

� � � � � � � � � � � � � �

 � � �

� � � � � �
� � � �

� �

� � � 	 � � � � � � � � � � � � � �

� � � � � � � � � 	 � � � � � �

� 	 � � 	 � � � � � �� � � � �

Figure 1:Modular structures of MicroLib.

The performance price is due to two factors: the com-
munication overhead and processes wake-ups. The com-
munication overhead comes from the fact that exchang-
ing an information between two hardware components
in a monolithic simulator just means reading a variable,
while in a module simulator it means writing to an out-
put port, waking up a link, writing to an input port, wak-
ing up a module, reading the input port. The number of
times a module is waken up is the second performance
factor. Consider a 2-input module for instance, and as-
sume the module receives the two inputs from two differ-
ent sources within the same cycle; then, the module will
be waken up upon arrival of each input, but it is only af-
ter the second wake-up that it can produce the result; in
fact the first wake-up is useless. For that purpose, we
have defined communication protocols, on top of Sys-
temC, that minimize the number of wake-ups in order to
ensure reasonable performance. In Liberty for instance,
the communication protocols are embedded in the envi-
ronment, while in SystemC, they have to be explicited;
but the development overhead is fairly small. Figure 1
shows the relationships and links between two modules.
The main guideline is to split modules into two parts: one
that will be waken up every clock cycle (called sequen-
tial processes), and one that will be waken up if incoming
signals change (called combinational processes). Combi-
national processes can be the costliest because they can
be waken up several times per cycle, so they are limited in
numbers and their actions as far as possible.

3 Experimental Framework

Parameter Value
Processor core

Processor Frequency 2 GHz
Instruction Windows 128-RUU, 128-LSQ
Fetch, Decode, Issue width 8 instructions per cycle
Functional units 8 IntALU, 3 IntMult/Div,

6 FPALU, 2 FPMult/Div,
4 Load/Store Units

Commit width up to 8 instructions per cycle
Memory Hierarchy

L1 Data Cache 32 KB/direct-mapped
L1 Data Write Policy Writeback
L1 Data Allocation Policy Allocate on Write
L1 Data Line Size 32 Bytes
L1 Data Ports 4
L1 Data MSHRs 8
L1 Data Reads per MSHR 4
L1 Data Latency 1 cycle
L1 Instruction Cache 32 KB/4-way associative/LRU
L1 Instruction Latency 1 cycle
L2 Unifi ed Cache 1 MB/4-way associative/LRU
L2 Cache Write Policy Writeback
L2 Cache Allocation Policy Allocate on Write
L2 Line Size 64 Bytes
L2 Ports 1
L2 MSHRs 8
L2 Reads per MSHR 4
L2 Latency 12 cycles
L1/L2 Bus 32-byte wide, 2 Ghz

Bus
Bus Frequency 400 MHz
Bus Width 64 bytes (512 bits)

SDRAM
Capacity 2 GB
Banks 4
Rows 8192
Columns 1024
RAS To RAS Delay 10 cpu cycles
RAS Active Time 80 cpu cycles
RAS to CAS Delay 15 cpu cycles
CAS Latency 10 cpu cycles
RAS Precharge Time 15 cpu cycles
RAS Cycle Time 55 cpu cycles
Refresh Avoided
Controler Queue 32 Entries

Table 1:Baseline configuration.

22

3.1 SystemC and SimpleScalar

As mentioned before, for all the experiments of this ar-
ticle, our MicroLib data cache modules are plugged into
SimpleScalar. Two reasons motivated this choice. First,
all the mechanisms, except forFrequent Value Cache [31],
Markov Prefetching [12] and Content-Directed Data
Prefetching [3] , were implemented using SimpleScalar,
and it is easier to validate the implementation if we use
the same processor simulator. Second, we wanted to
show that MicroLib modules developed in SystemC can
be plugged into existing simulators through a wrapper (ex-
actly an interface in this case). For that purpose, we have
stripped SimpleScalar of its cache and memory models,
and replaced them with MicroLib models. In addition to
the various data cache models, we have developed and
used an SDRAM model for most experiments. Note that
more detailed memory models have been recently made
available for SimpleScalar [2].

We have used SimpleScalar 3.0d [2] and the parame-
ters in Table 1 which we found in many of the target ar-
ticles [15, 10, 9]; they correspond to a scaled up super-
scalar implementation (note the bus width is rather large,
for instance); the other parameters are set to their default
values.

We have compared the mechanisms using the SPEC
CPU2000 benchmark suite [26]. The benchmarks were
compiled for the Alpha instruction set usingcc DEC C
V5.9-008 on Digital UNIX V4.0 (Rev. 1229),cxx Com-
paq C++ V6.2-024 for Digital UNIX V4.0F (Rev. 1229),
f90Compaq Fortran V5.3-915 andf77Compaq Fortran
V5.3-915 compilers with SPEC peak settings. For each
program, we fastforwarded 1 billion instructions, and then
simulated 2 billion instructions with the reference input
set.

3.2 Validating the Implementation

Validating a hybrid SimpleScalar+MicroLib model.
Because we plugged our own cache simulator into
SimpleScalar, we wanted to validate the hybrid Sim-
pleScalar+MicroLib model against the original Sim-
pleScalar model, in order to show that the hybridation in-
troduces minimal noise. Our cache architecture choices
are different, and we believe more realistic, than in Sim-
pleScalar. For the validation, we have altered the Sim-
pleScalar model so that it ressembles ours and vali-
dated this altered SimpleScalar model against the Sim-
pleScalar+MicroLib model; in order to validate specifi-
cally the cache, we have used the SimpleScalar memory
model in both simulators. In Section 4.3, we analyze the
impact of the memory model accuracy.

Initially, before altering the SimpleScalar cache model,
we found a 6.8% IPC difference in average between the
hybrid implementation and the original SimpleScalar im-
plementation. We then progressively modified the Sim-
pleScalar cache model to get closer to our MicroLib
model and found that most of the performance variation
is due to the following implementation differences:

• The SimpleScalar MSHR (miss address file [14, 24])
has unlimited capacity; in our cache model its capac-
ity parameters are defined in Table 1.

• In SimpleScalar, the cache pipeline is insufficiently
detailed. As a result, a cache request can never delay
next requests, while in a pipelined implementation,
such delays can occur. Several events can delay a re-
quest: two misses on the same cache line but for dif-
ferent addresses can stall the cache, upon receiving a
request the MSHR is not available for one cycle. . .

• The processor Load/Store Queue (LSQ) can always
send requests to the cache in SimpleScalar, while the
abovementioned cache stalls (plus MSHR full) can
temporarily stall the LSQ.

• In SimpleScalar, a dirty line is evicted while in the
same cycle, the miss request is sent to the lower
level; the litterature suggests both actions usually
take place in separate cycles [8].

• In SimpleScalar the refill requests (incoming mem-
ory request) seem to use additional cache ports. For
instance, when the cache has two ports, it is possible
to have two fetch requests and a refill request at the
same time. We strictly enforce the number of ports,
and upon a refill request, only one normal cache re-
quest can occur with two ports.

Figure 2:MicroLib cache model validation.

23

After altering the SimpleScalar model so it behaves like
our MicroLib model, we found that the average IPC dif-
ference between the two models was down to 2%, see Fig-
ure 2. Note that, in the remainder of the article, wedo not
use the SimpleScalar model, we use our original and un-
modified MicroLib model.

Besides this performance validation, we have done ad-
ditional correction validations using the OoOSysC super-
scalar processor. We plugged our different models in
OoOSysC which has the additional advantage of actu-
ally performing all computations. As a result, the cache
not only contains the addresses but theactual values of
the data, i.e., it really executes the program, unlike Sim-
pleScalar. Comparing the value in the emulator and the
simulator for every memory request is a simple but pow-
erful debugging tool.1 For instance, in one of the imple-
mented models, we forgot to properly set the dirty bit in
some cases; as a result, the corresponding line was not
systematically written back to memory, and at the next re-
quest at that address, the values differed.

Validating the implementation of data cache mech-
anisms. The most time-consuming part of this research
work was naturally reverse-engineering the different hard-
ware mechanisms from the research articles. The differ-
ent mechanisms, a short description and the correspond-
ing reference are listed in Table 2, and the mechanism-
specific parameters are listed in Table 3.

For several mechanisms, there was no easy way to do
an IPC validation. The metric used inFVC andMarkov
is miss ratio, so only a miss ratio-based validation was
possible. VC, Tag and SP have been proposed several
years ago, so the benchmarks and the processor model dif-
fered significantly.CDP andCDPSP used an internal In-
tel simulator and their own benchmarks. For all the above
mechanisms, the validation consisted in ensuring that ab-
solute performance values were in the same range, and
that tendencies were often similar (relative performance
difference of architecture parameters, among benchmarks,
etc. . .).

For TK, TKVC, TCP and DBCP, we used the IPC
graphs provided in the articles for the validation; the
benchmarks used in each article are indicated in Table 4.
Figure 3 shows the percentage speedup difference be-
tween the graph numbers and our simulations (some ar-
ticles do not provide IPC, but only speedups with respect
to the base SimpleScalar cache configuration). The av-
erage error is 5%, but the difference can be very signifi-
cant for certain benchmarks, especiallyammp. We were
not able to bridge this performance difference even though

1Besides debugging purposes, this feature is also particularly useful
for testing value prediction mechanisms.

Parameter Value
Victim Cache

Size/Associativity 512 Bytes / Fully assoc.
Frequent Value Cache

Number of lines 1024 lines
Number of frequent values 7 + unknow value

Timekeeping Cache
Size/Associativity 512 Bytes/Fully assoc.
TK refresh 512 cpu cycles
TK threshold 1023 cycles

Markov Prefetcher
Prediction Table Size 1 MB
Predictions per entry 4 predictions
Request Queue Size 16 entries
Prefetch Buffer Size 128 lines (1 KB)

Tag Prefetching
Request Queue Size 16

Stride Prefetching
PC entries 512
Request Queue Size 1

Content-Directed Data Prefetching
Prefetch Depth Threshold 3
Request Queue Size 128

CDP + SP
SP PC entries 512
CDP Prefetch Depth 3
Threshold
Request Queue 1/128
Size (SP/CDP)

Timekeeping Prefetcher
Address Correlation 8KB, 8-way assoc.
Request Queue Size 128 entries

Tag Correlating Prefetching
THT size 1024 sets, direct-mapped,

stores 2 previous tags
PHT size 8KB, 256 set, 8 way assoc.
Request Queue Size 128 entries

Dead-Block Correlating Prefetcher
DBCP history 1K entries
DBCP size 2M 8-way
Request Queue Size 128 entries

Global History Buffer
IT entries 256
GHB entries 256
Request Queue Size 4

Table 3:Configuration of data cache optimizations.

we tested many values of the unspecified (undocumented)
parameters. In general, tendencies are preserved, but not
always, i.e., a speedup or a slowdown in an article can
become a slowdown or a speedup in our experiments, as
for gcc (for TK and DBCP) and gzip (for TK) respec-

24

Acronym Mechanism Description
VC Victim Cache [13] A small fully associative cache associated for storing evicted

lines; particularly useful for limiting the impact of conflict
misses without resorting to associativity.

FVC Frequent Value Cache [31] A small additional cache that behaves like a victim cache, ex-
cept that it is just used for storing frequently used values in a
compressed form. The technique has also been applied in other
studies [30, 29] to prefetching and energy reduction.

TK Timekeeping [9] Prefetch mechanism that time statistics to estimate when a
cache line is about to be replaced and prefetches the new ad-
dress for that line.

TKVC Timekeeping Victim Cache [9] Same as TK but uses a victim cache instead of prefetching.
Markov Markov Prefetcher [12] Uses Markov chains to determine prefetch addresses.
TP Tag Prefetching [25] A very simple prefetching technique that prefetches on a miss,

or on a hit on a prefetched line.
SP Stride Prefetching [13] An extension of tag prefetching that detects the access stride of

load instructions and prefetches accordingly.
CDP Content-Directed Data Prefetching [3] A prefetch mechanism for pointer-based data structures that at-

tempts to determine if a fetched line is actually an address, and
if so, prefetches it immediately.

CDPSP CDP + SP A combination of CDP and SP as proposed in [3].
TCP Tag Correlating Prefetching [10] Prefetcher that correlates cache misses to generate prefetches.
DBCP Dead-Block Correlating Prefetcher [15] A prefetcher that, like TK, predicts when a line will be replaced

and by which address. It detects a line that is about to be evicted
by the addresses of load/store instructions accessing it.

GHB Global History Buffer [18] We implemented only one of the possible variations which de-
termines a stride for prefetching, like SP, except that the stride
is computed based on a history of misses.

Table 2:Target data cache optimizations.

Mechanism am
m

p
ap

pl
u

ap
si

ar
t

eq
ua

ke
fa

ce
re

c
fm

a3
d

ga
lg

el
lu

ca
s

m
es

a
m

gr
id

si
xt

ra
ck

sw
im

w
up

w
is

e
bz

ip
2

cr
af

ty
eo

n
ga

p
gc

c
gz

ip
m

cf
pa

rs
er

tw
ol

f
vo

rte
x

vp
r

DBCP
√ √ √ √ √

TK/TKVC/TCP/DBCPTK
√ √

GHB
√ √ √ √ √ √ √ √ √ √ √ √

Table 4:Benchmarks used in validated mechanisms.

tively. Note that, surprisingly enough, all four mecha-
nisms use exactly the same SimpleScalar parameters of
Table 1, even though the first mechanism was pulished in
2000 and the last one in 2003. Only the SimpleScalar pa-
rameters ofGHB (not included in the graph of Figure 3),
proposed at HPCA 2004, are different (130 cycles mem-
ory latency).

Finally, note that the accuracy ofDBCP is rather poor,
while it is much higher forDBCPTK; the DBCPTK val-
ues have been extracted from the article which proposed
TK [9] and which comparedTK againstDBCP. Interest-
ingly, their own reverse-engineering effort brought almost
the same results as ours, but both are fairly different from
the original article, outlining the difficulty of an accurate

reverse-engineering process.

4 A Quantitative Comparison of
Hardware Data Cache Optimiza-
tions

The different subsections correspond to the questions
listed in Section 1. Except for Section 4.1, all the com-
parisons relate to the IPC metric and are usually averaged
over all the benchmarks listed in Section 3.1, except for
Section 4.2.

25

Figure 3:Validation of TK, TCP, DBCP and TKVC.

4.1 Which hardware mechanism is the
best with respect to performance, power
and/or cost? Are we making any
progress?

Figure 4:Speedup.

Performance.Figure 4 shows the average IPC speedup
over the 26 benchmarks for the different mechanisms

with respect to the base cache parameters defined in Sec-
tion 3.1.2 We find that the best mechanism isGHB, a
recent evolution (HPCA 2004) ofSP, an idea originally
published in 1990, and which is the second best perform-
ing mechanism, then followed byTK, proposed in 2002.
A very simple (and old) hardware mechanism likeTP per-
forms also quite well. Comparably, more recent ideas like
TCP or DBCP exhibit rather disappointing performance,
and FVC, which was evaluated using miss ratios in the
article, seems to provide little IPC improvements. Over-
all, it is striking to observe how irregularly performance
has evolved from 1990 to 2004, when all mechanisms are
considered within the same processor.

Note that the speedup for some of the mechanisms
in Figure 4 is fairly close to the reverse-engineering er-
ror shown in Figure 3, meaning that the validity of the
comparison itself may be jeopardized by the necessity to
reverse-engineer mechanisms.

Cost. We evaluated the relative cost (chips area) of
each mechanisms using CACTI 3.2 [23], and Figure 5

2The IPC graphs per benchmark are available online at
http://www.microlib.org.

26

Figure 5:Power and Cost Ratios.

provides the area ratio (relative cost of mechanism with
respect to base cache). Not suprisingly,Markov and
DBCP have very high cost due to large tables, while other
lightweight mechanisms likeTP, or evenSP and GHB
(small tables) incur almost no additional cost. What is
more interesting is the correlation between performance
and cost:GHB andSP remain clear winners, andTP is
more attractive in that perspective. On the other hand,
DBCP, which performs slightly better thanTP, does not
compare favorably.

Power. We evaluated power using XCACTI [11]; Fig-
ure 5 shows the relative power increase of each mecha-
nism. Naturally, power is determined by cache area and
activity, and not surprisingly,Markov and DBCP have
strong power requirements. In theory, a costly mech-
anism can compensate the additional cache power con-
sumption with more efficient, and thus reduced cache ac-
tivity, though we found no clear example along that line.
Conversely a cheap mechanism with significant activity
overhead can be power greedy. It is apparently the case
for GHB: even though the additional table is small, each
miss can induce up to 4 requests, and a table is scanned
repeatedly, hence the high power consumption. InSP, on
the other hand, each miss request induces a single request,
and thusSP is very efficient, just likeTP.

Best overall tradeoff (performance, cost, power).
When power and cost are factored in,SP seems like a clear
winner,TK andTP performing also very well.TP is the
oldest mechanism,SP has been proposed in 1990 andTK
has been very recently proposed in 2002. While which
mechanism is the best very much depends on industrial
applications (e.g., cost and power in embedded proces-
sors, versus performance and power in general-purpose
processors), it is probably fair to say that the progress of
data cache research over the past 15 years has been all but

regular.
In the remaining sections, ranking is focused on per-

formance due to paper space constraints, but naturally, it
would be necessary to come up with similar conclusions
for power, cost, or all three parameters combined.

DBCP vs. Markov
TKVC vs. VC
TK vs. DBCP

CDP/CDPSP vs. SP
TCP vs. DBCP

GHB vs. SP

Table 5:Previous comparisons.

Did the authors compare their ideas?Table 5 shows
which mechanism has been compared to which previous
mechanisms (listed in chronological order). Most of the
articles have few if no quantitative comparison with pre-
vious mechanisms, except when comparisons are almost
compulsory, likeGHB which compares againstSP be-
cause it is based onSP. Sometimes, comparisons are per-
formed against the most recent mechanism, maybe with
the expectation it is the current best one, likeTCP andTK
which are compared againstDBCP, while in this case, a
comparison withSP might have been more appropriate.

4.2 What is the impact of benchmark selec-
tion on ranking?

Yes, cherry-picking is wrong. We have ranked the dif-
ferent mechanisms for every possible benchmark combi-
nation. First, we have observed that for any number of
benchmarks less or equal than 23, i.e., the average IPC
is computed over 23 benchmarks or less, there is always
more than one winner, i.e., it is always possible to find
two benchmark selections with different winners. In Fig-
ure 6, we have indicated how often a mechanism can be a
winner for any number of benchmarks up to 26. For in-
stance, mechanisms that perform poorly on average, like
CDP, can win for selections of up to 2 benchmarks; note
thatCDP is a prefetcher for pointer-based data structures,
so that it is likely to perform well for benchmarks with
many misses in such data structures; for the same reason,
CDPSP (a combination ofSP andCDP) can be appropri-
ate for a larger range of benchmarks, as the authors point
out. Another astonishing result isMarkov which can per-
form very well for up to 6-benchmark selections.

Are there “representative” benchmarks? We could
not find a single benchmark for which the ranking is the
same as when computed over the full 26 benchmarks. The

27

B
as

e
V

C
TP S

P
M

ar
ko

v
FV

C
D

B
C

P
TK

V
C

TK C
D

P
C

D
P

S
P

TC
P

G
H

B

1
√ √ √ √ √ √ √ √ √ √ √

2
√ √ √ √ √ √ √ √ √ √ √

3
√ √ √ √ √ √ √ √ √ √

4
√ √ √ √ √ √ √ √ √ √

5
√ √ √ √ √ √ √ √ √ √

6
√ √ √ √ √ √ √ √ √

7
√ √ √ √ √ √ √ √ √

8
√ √ √ √ √ √ √ √ √

9
√ √ √ √ √ √ √ √ √

10
√ √ √ √ √ √ √ √

11
√ √ √ √ √ √ √ √

12
√ √ √ √ √ √ √ √

13
√ √ √ √ √ √ √

14
√ √ √ √ √ √ √

15
√ √ √ √ √ √ √

16
√ √ √ √ √ √ √

17
√ √ √ √ √ √

18
√ √ √ √ √ √

19
√ √ √ √ √ √

20
√ √ √ √

21
√ √ √ √

22
√ √ √ √

23
√ √

24
√

25
√

26
√

Table 6: Which mechanism can be winner with x bench-
marks?

size of the smallest “representative” benchmark selection
we found is 6. There are several such 6-benchmark rep-
resentative selections; an example is the setammp, applu,
apsi, art, mesa, crafty.

4.3 What is the impact of the architecture
model precision on ranking?

Figure 6:Impact of the memory model accuracy.

Is it necessary to have a more detailed memory
model?We have implemented a detailed SDRAM model,

as Cuppu et al. [4] did for SimpleScalar (though their
model is not yet distributed), and we have evaluated the
influence of the memory model on ranking. The origi-
nal SimpleScalar memory model is rather raw with a con-
stant memory latency. Our model uses a bank interleav-
ing scheme [21, 32] which allows the DRAM controller
to hide the access latency by pipelining page opening
and closing operations. We implemented several sched-
ule schemes proposed by Green et al. [6] and retained
one that significantly reduces conflicts in row buffers.
For the sake of the comparison with the 70-cycle Sim-
pleScalar memory, we have scaled down the parameters
of our PC133 SDRAM, see Figure 1, to reach anav-
erage 70 cycles over all benchmarks. Figure 6 com-
pares this memory model with a SimpleScalar-like mem-
ory model. The memory model does affect significantly,
if not considerably, the absolute performance as well as
the ranking of the different mechanisms. The most dra-
matic reduction occurs forGHB which drops from a 1.19
speedup with a SimpleScalar-like memory to less than
1.11 with an SDRAM memory; the performance advan-
tage ofGHB overSP is considerably smaller with a more
realistic memory becauseGHB increases considerably the
memory preassure. The memory model also affects rank-
ing: for instance,CDPSP outperformsSP with a simpli-
fied memory model and no longer with an SDRAM; the
same is true ofVC andDBCP. . .

Figure 7:Impact of the cache model accuracy.

Influence of cache model inaccuracies.Similarly, we
have investigated the influence of other hierarchy model
components. For instance, we have explained in Sec-
tion 3.2, that the SimpleScalar cache uses an infinite miss
address file (MSHR), so we have compared the impact
of just varying the miss address file (i.e., infinite versus
the baseline value defined in Table 1). Figure 7 shows
that for many mechanisms, the MSHR has limited impact

28

on performance and ranking, except forCDP, because it
strongly increases MSHR blocking situations in this case;
with an infinite MSHR,CDP is the eleventh mechanism,
close toMarkov, then drops to the last rank with a finite
MSHR.

4.4 What is the impact of second-guessing
the authors’ choices?

Figure 8:Impact of second-guessing the authors’ choices.

For several of the mechanisms, some of the implemen-
tation details were missing in the article, or the interaction
between the mechanisms and other components were not
sufficiently described, so we had to second-guess them.
While we cannot list all such omissions, we want to il-
lustrate their potential impact on performance and rank-
ing, and that they can significantly complicate the task of
reverse-engineering a mechanism.

One such case isTCP; the article properly describes
the mechanism, how addresses are predicted, but it gives
few details on how and when prefetch requests are sent to
memory. Among the many different possibilities, prefetch
requests can be buffered in a queue until the bus is idle and
a request can be sent. Assuming this buffer effectively ex-
ists, a new parameter is the buffer size; it can be either 1
or a large number (we ended up using a 128-entry buffer),
and the buffer size is a tradeoff, since a too short buffer
size will result in the loss of many prefetch requests, and
a too large one may excessively delay some prefetch re-
quests. Figure 8 shows the performance difference and
ranking for a 128-entry and a 1-entry buffer. All possi-
ble cases are found: for some benchmarks likemgrid and
swim, the performance difference is tiny, while it is dra-
matic forart, lucas andgalgel.

We ended up selecting 128 because it matched best the
average performance presented in the article, though it
is quite possible the authors did not actually use such a

buffer (and used another unguessed variation). This is just
one example among the many difficulties which were part
of the reverse-engineering process.

4.5 What is the impact of trace selection on
ranking?

Figure 9:Impact of trace selection.

Most researchers tend to skip an arbitrary (usually
large) number of instructions in a trace, then simulate the
largest possible program chunk (usually of the order of a
few hundred million to a few billion instructions), as we
have done ourselves in the present article. Sampling has
received increased attention in the past few years, with
the prospect of finding a robust and practical technique
for speeding up simulation while ensuring the representa-
tivity of the sampled trace. The most notable and practical
contribution is SimPoint [22] which showed that a small
trace can highly accurately describe a whole program be-
havior.

We used the SimPoint tools to generate the basic block
vectors (BBV) for a 500-million trace for each program.
Then, we compared the impact of trace size selection: our
“skip 1 billion, simulate 2 billion” trace versus SimPoint
trace. Figure 9 shows the average performance achieved
with each method, and they differ significantly. For in-
stanceDBCP performance decreases significantly and it
is now the worse mechanism instead ofCDP, and over-
all most mechanisms perform worse, with the notable ex-
ception ofTP. Not surprisingly, trace selection can have
a considerable impact onresearch decisions like select-
ing the most appropriate mechanism, and obviously, even
large 2-billion traces do not constitute a sufficient precau-
tion.

29

5 Conclusions and Future Work

In this article we have illustrated with data caches the Mi-
croLib approach for enabling the quantitative comparison
of hardware optimizations. We have implemented several
recent hardware data cache optimizations and we have
shown that many methodology variations or flaws can re-
sult in an incorrect assessment of what is the best or most
appropriate mechanism for a given architecture. Our goal
is now to populate the library, to encourage the quantita-
tive comparison of mechanisms, and to maintain a regu-
larly updated comparison(ranking) for various hardware
components.

References
[1] OPENCORES. http://www.opencores.org, 2001-2004.

[2] D. Burger and T. Austin. The simplescalar tool set, ver-
sion 2.0. Technical Report CS-TR-97-1342, Department of
Computer Sciences, University of Wisconsin, June 1997.

[3] Robert Cooksey, Stephan Jourdan, and Dirk Grunwald. A
stateless, content-directed data prefetching mechanism. In
Proceedings of the 10th international conference on archi-
tectural support for programming languages and operat-
ing systems (ASPLOS-X), pages 279–290, San Jose, Cali-
fornia, October 2002.

[4] Vinodh Cuppu, Bruce Jacob, Brian Davis, and Trevor
Mudge. A performance comparison of contemporary dram
architectures. InProceedings of the 26th annual interna-
tional symposium on Computer architecture (ISCA), pages
222–233, Atlanta, Georgia, United States, June 1999.

[5] Joel Emer, Pritpal Ahuja, Eric Borch, Artur Klauser, Chi-
Keung Luk, Srilatha Manne, Shubbendu S. Mukkerjee,
Harish Patil, Steven Wallace, Nathan Binkert, and Toni
Juan. ASIM: A performance model framework. InIEEE
Computer, Vol. 35, No. 2, February 2002.

[6] Christian Green. Analyzing and implementing SDRAM
and SGRAM controllers. InEDN (www.edn.com), Febru-
ary 1998.

[7] Alchemy Research Group. MicroLib.
http://www.microlib.org, 2001-2004.

[8] Jim Handy. The Cache Memory Book. Academic Press,
1993. HAN j 98:1 1.Ex.

[9] Zhigang Hu, Stefanos Kaxiras, and Margaret Martonosi.
Timekeeping in the memory system: predicting and op-
timizing memory behavior. InProceedings of the 29th
annual international symposium on Computer architecture
(ISCA), pages 209–220, Anchorage, Alaska, May 2002.

[10] Zhigang Hu, Margaret Martonosi, and Stefanos Kaxiras.
TCP: Tag correlating prefetchers. InProceedings of the
9th International Symposium on High Performance Com-
puter Architecture (HPCA), Anaheim, California, Febru-
ary 2003.

[11] M. Huang, J. Renau, S. M. Yoo, and J. Torrellas. L1 data
cache decomposition for energy effi ciency. InInterna-
tional Symposium on Low Power Electronics and Design
(ISLPED 01), Huntington Beach, California, August 2001.

[12] Doug Joseph and Dirk Grunwald. Prefetching using
markov predictors. InProceedings of the 24th annual in-
ternational symposium on Computer architecture (ISCA),
pages 252–263, Denver, Colorado, United States, June
1997.

[13] Norman P. Jouppi. Improving direct-mapped cache perfor-
mance by the addition of a small fully-associative cache
and prefetch buffers. Technical report, Digital, Western
Research Laboratory, Palo Alto, March 1990.

[14] D. Kroft. Lockup-free instruction fetch/prefetch cache or-
ganization. InProceedings of the 18th International Sym-
posium on Computer Architecture, Toronto, Canada, May
1981.

[15] An-Chow Lai, Cem Fide, and Babak Falsafi . Dead-block
prediction & dead-block correlating prefetchers. InPro-
ceedings of the 28th annual international symposium on
Computer architecture (ISCA), pages 144–154, Gteborg,
Sweden, June 2001.

[16] Hsien-Hsin S. Lee, Gary S. Tyson, and Matthew K. Far-
rens. Eager writeback - a technique for improving band-
width utilization. In Proceedings of the 33rd annual
ACM/IEEE international symposium on Microarchitec-
ture, pages 11–21. ACM Press, 2000.

[17] G. Mouchard. PowerPC G3 simulator.
http://www.microlib.org/G3/PowerPC750.php, 2002.

[18] Kyle J. Nesbit and James E. Smith. Data cache prefetching
using a global history buffer. InProceedings of the 10th
International Symposium on High Performance Computer
Architecture (HPCA), page 96, Madrid, Spain, February
2004.

[19] OSCI. SystemC. http://www.systemc.org, 2000-2004.

[20] Ryan Rakvic, Bryan Black, Deepak Limaye, and John P.
Shen. Non-vital loads. InProceedings of the Eighth Inter-
national Symposium on High-Performance Computer Ar-
chitecture. ACM Press, 2002.

[21] Tomas Rockicki. Indexing memory banks to maximize
page mode hit percentage and minimize memory latency.
Technical report, HP Laboratories Palo Alto, June 1996.

[22] Timothy Sherwood, Erez Perelman, Greg Hamerly, and
Brad Calder. Automatically characterizing large scale pro-
gram behavior. InTenth international conference on ar-
chitectural support for programming languages and op-
erating systems on Proceedings of the 10th international
conference on architectural support for programming lan-
guages and operating systems (ASPLOS-X), pages 45–57.
ACM Press, 2002.

[23] Premkishore Shivakumar and Norman P. Jouppi. CACTI
3.0: An integrated cache timing, power and area model.
Technical report, HP Laboratories Palo Alto, August 2001.

30

[24] James Edwards Sicolo.A Multiported Nonblocking Cache
For a Superscalar Uniprocessor. Phd. thesis, B.S., State
University of New York, Buffalo, 1989.

[25] Alan J. Smith. Cache memories.Computing Surveys,
14(3):473–530, September 1982.

[26] SPEC. SPEC2000. http://www.spec.org.

[27] Manish Vachharajani, Neil Vachharajani, David A. Penry,
Jason A. Blome, and David I. August. Microarchitectural
exploration with Liberty. InProceedings of the 35th In-
ternational Symposium on Microarchitecture (MICRO), Is-
tanbul, Turkey, November 2002.

[28] Roland E. Wunderlich, Thomas F. Wenisch, Babak Falsafi ,
and James C. Hoe. Smarts: accelerating microarchitecture
simulation via rigorous statistical sampling. InProceed-
ings of the 30th annual international symposium on Com-
puter architecture, pages 84–97. ACM Press, 2003.

[29] Jun Yang and Rajiv Gupta. Energy effi cient frequent value
data cache design. InProceedings of the 35th interna-
tional symposium on Microarchitecture (MICRO), pages
197–207, Istanbul, Turkey, November 2002.

[30] Youtao Zhang and Rajiv Gupta. Enabling partial cache
line prefetching through data compression. InInterna-
tional Conference on Parallel Processing (ICPP), Kaoh-
siung, Taiwan, October 2003.

[31] Youtao Zhang, Jun Yang, and Rajiv Gupta. Frequent value
locality and value-centric data cache design. InProceed-
ings of the 9th international conference on Architectural
support for programming languages and operating systems
(ASPLOS-IX), pages 150–159, Cambridge, Massachusetts,
United States, November 2000.

[32] Zhao Zhang, Zhlichun Zhu, and Xiaodong Zhang. A
permutation-based page interleaving scheme to reduce
row-buffer conflicts and exploit data locality. InProceed-
ings of the 33rd international symposium on Microarchi-
tecture (MICRO), Monterey, California, December 2000.

31

The Case of Chaotic Routing Revisited

Cruz Izu
1
, Ramon Beivide

2
 and Jose Angel Gregorio

2

1
Computer Science Department

2
Computer Architecture Group

University of Adelaide, Australia University of Cantabria, Spain

cruz@cs.adelaide.edu.au {mon, jagm}@atc.unican.es

Abstract.

This paper presents a new evaluation of the Chaos

router, a cut-through non-minimal adaptive router,

which was reported to reach 95% of its theoretical

throughput limit, at the time where most router

proposals only reached 60 to 80%. We will revisit the

Chaos router design, provide a new vision of its

strengths and relate them to the state-of-the-art in

adaptive router design.

In particular, our analysis has identified a parameter

of the router design that was not emphasized in the

network evaluation presented by their authors, but that

is the key to its outstanding performance. This

parameter is the channel operation mode. By using the

links in half-duplex mode, it allows adjacent network

nodes to allocate their bandwidth to one or the other

direction in response to the traffic needs. This channel

operation mode reduces base latency and increases

network throughput compared to full duplex mode for

most synthetic traffic patterns.

1. Introduction

The performance of the interconnection network of a
parallel computer has a great impact in the system’s
performance as a whole. K-ary n-cubes are the most common
direct network topologies encompassing rings, meshes, and
tori. A central element of this kind of network is the router
that injects packets from (and delivers packets to) the
computer node to which it is connected, and also routes
incoming packets from neighbouring routers towards their
destinations.

The information transmitted in a network cycle by the
channel connecting two adjacent routers is denoted as a phit.

In wormhole routers, the flow control unit (flit) is one or a
few phits, thus requiring limited buffer space in the next node
in order to advance. Routers using virtual cut-through (VCT)
control the flow on a packet basis, thus increasing the buffer
demands to at least an entire packet. Longer messages are
broken into packets, sent independently and then reassembled
at the destination’s interface with the overhead this entails
[14]. Due to its lower buffer requirement, wormhole was the
choice on earlier designs [22] and consequently there is a
large body of work on wormhole routers. Many systems have
used wormhole but provided buffers with capacity for

hundreds of phits. For example, each adaptive virtual channel
in the Cray T3E [24] had a 110-phit input buffer.

The more recent BlueGene/L supercomputer uses VCT
with variable packet size, ranging from 32 bytes to 256 bytes
with a granularity of 32 bytes [2]. Note the choice of flow
control not only defines the minimum buffer requirements
but it also impacts on buffer management, deadlock
avoidance and channel arbitration; in other words, it impacts
on the entire router’s organization. VCT is generally simpler
to implement: as stalled packets are stored in a single node,
we can view the network as a store-and-forward one when
dealing with deadlock.

In respect to their routing algorithm, deterministic routers
are simple to implement but they perform poorly under non-
uniform traffic. As many parallel applications present
specific non-uniform patterns, adaptive routing is preferable
because it spreads the packets more evenly by exploiting the
redundant paths provided by the network. However, this
increases the risk of deadlock [9] and requires more resources
such as complex arbitration and virtual lanes [3]. Although
many adaptive routing mechanisms proved good on paper
[19], only a few of them provided a good cost/performance
ratio [8][21]. The implementation of an adaptive router
should try to match the cycle time of an oblivious router, with
a limited increase in its node latency. This is normally
achieved through careful design and extensive pipelining
[17][21][18].

Most adaptive routers choose minimal paths by selecting
any of the output channels in the direction of travel, (i.e. +X,
-Y) although non-minimal adaptive routers have been
proposed to increase fault tolerance [6][12]. The Chaos router
also uses non-minimal paths for two purposes: to allow
packets that are close to their destinations to manoeuvre
around congestion and to simplify the router organization as
explained later.

The insights given in this paper are a by-product of using
the Chaos simulator [7] to analyse the design of an oblivious
VCT router that supported hybrid length traffic [13]. The
simulator was interesting because it emulated a VCT router at
the register level, down to their pipeline organization, at a
time when most router evaluations did not take into account
the routing complexity or its impact in node latency and
clock cycle. By using the simulator we were able to learn
about the Chaos router’s low level design and its simulation
environment to a level of detail not available from a journal
paper. We reproduced its outstanding results and firstly
attributed them to the carefully crafted pipelined
implementation of the router that included most mechanisms

32

known to improve throughput such as adaptive routing,
output and central buffering and congestion control. Thus, it
took us a while to identify one of the key parameters that
contributes to such high performance: the channel operation
mode. As we will see in this work, the gains achieved by
using channels in half-duplex mode are applicable not only to
the Chaos design but to other VCT routers.
The rest of the paper is organized as follows: Section 2
describes and discusses the Chaos router implementation.
Section 3 describes the simulation environment and provides
a re-evaluation of the Chaos performance under full-duplex
mode. Section 4 evaluates the impact that channel operation
mode has on network performance for two VCT routers and
section 5 summarizes the findings of this work.

2. The Chaos router

For completeness we will include a description of the router
(with quotes from [4] in italic) and then discuss in detail the
approach taken for each design issue: buffer organization,
arbitration, congestion control and channel operation mode.

2.1 Chaos router description

Chaotic routing belongs to a queuing class of non-minimal

adaptive routers. Therefore, the Chaos router has a central
queue, which holds packets waiting for their outgoing links.

If a packet wants to enter the central queue and the queue is
full, then a packet from the queue has to be derouted to the
next free output (this forces packets to use non-minimal
paths).

As Figure 1 shows, both the input and output ports have
attached buffers with capacity for a single packet. The packet
size is fixed to 20 phits. In normal operation packets enter
into an input frame of the node, wait for an output frame of a
profitable direction to become available, and move to that
output frame in a VCT fashion. The chaotic router minimises

the queue overhead by eliminating it from the critical path of

the routing decision. Thus the core of a Chaos router looks
like a minimal adaptive router without the need for multiple
classes of queues to prevent deadlock.

At the output frame, packets wait for the bi-directionally

shared channel to become available and advance to the next

input frame when it becomes free. By bi-directionally shared

channel they meant the two communication channels
between adjacent routers are implemented on a single
physical link, shared on a packet basis. As full duplex links
are often described as bi-directional channels, and this is the
only reference to the channel operation mode in [4], most
readers would not have picked up they were using half-
duplex links.

• • •

• • •

• • •

• • •

• • •

• • •

• • •

• • •

• • •

• • •

• • •

Queue

Input

Xbar

Main

Xbar

• • •

• • •

• • •

• • •

Input Frame +X

Input Frame -X

Input Frame +Y

Input Frame -Y
Queue Slot 1

Injection Frame

Output Frame +X

Output Frame -X

Output Frame +Y

Output Frame -Y

Delivery FrameQueue Slot 2

Queue Slot 5

 Figure 1. Two dimensional Chaos router diagram.

33

Output Frame

Input Frame

Channel

Stalled packet must move
to central queue

Message sent to output
channel

Output Frame

Input Frame

Node (i,j) Node (i+1,j)

Figure 2. A message forced into the central queue to satisfy packet-exchange protocol.

To guarantee freedom from deadlock, every packet that
arrives at an input frame must be serviced by the node in a
bounded amount of time: if it cannot be routed towards its
destination, it will either be stored in the central queue or
derouted to the next available output.
Therefore, a packet is moved from its input buffer into the
central queue in two cases:

1. The packet has stalled: both its head and tail are
buffered in the same input frame, and there is room
in the queue.

2. The routers on either side of the shared channel
have packets to send to each other. The packet
exchange protocol mandates both packets to be
sent, regardless of input frame status. In the case
there is a stalled packet in the input frame1, it is
moved to the central queue as illustrated in figure
2.

The central queue has capacity for 5 packets. Since packets
only enter the central queue when there is congestion in the
router, most packets bypass the queue altogether, reducing
the queue management overhead.
Whenever an output frame becomes available (it does not
contain a packet header), the router selects a packet to
advance to that output frame as follows:

1. If the queue is full, a randomly selected packet is
routed to the output frame (most likely to be
misrouted). Note that the randomised choice is the
key to avoid starvation with minimal cost.

2. If the queue is not full, it will select a packet that is
requesting that channel (if any).

3. If no packets in the queue are to be sent to this
output, but a packet in the input frame can be
profitably routed out, it is sent to the output frame.

The Chaos pipeline has four primary stages: receive the
header across the network channel into the input frame,
decode the header and identify profitable output channels,
select a single output frame to route the packet to, and move
the header across the crossbar to the output frame where the
header is updated.

1 Packets from the injection frame do not enter the queue due
to deadlock prevention constrains

2.2 Buffer organization

Earlier work on buffer organization has been focused on
the input versus output buffering dilemma for FIFO queues
[15]. The former provides a simple implementation but
introduces head-of-line blocking (HLB). The latter eliminates
this problem but requires multi-port output queues to
accommodate the simultaneous arrival of packets from
different inputs that may select the same output channel.
Since then, a considerable body of work has gone into finding
alternatives such as [16],[26],[25] to combine the benefits of
each approach.

The Chaos router did simply that by providing a single
packet queue both at the input and output ports. Therefore,
output queues didn't need to be multi-ported since when
many packets arrived for the same output, they could be
buffered at their input queues while one of them moved in
VCT fashion to the selected output. As most packets are
queued at the output frames, or moved into the central queue
if the output is full, HLB is practically eliminated. Besides, as
the central queue is not in the critical path, the only downside
of having the central queue is the additional silicon area
required.

2.3 Arbitration

Arbitration in any adaptive router is normally the critical
stage of the router pipeline. Each input packet may request
more than one output so that the allocation of outputs to
inputs cannot be done in parallel as in the oblivious
counterpart.

In order to reduce this complexity in the Chaos router, only
one new crossbar connection may be set up per cycle. In
addition, the Chaos router uses an output driven design [11].
Each cycle, a single arbitration occurs to select the packet
(from input or queue) to move into the next free output
frame. This greatly simplifies the arbitration phase, allowing
for a reasonable pipeline design.

The simultaneous arrival of multiple packets will result in
a serialized allocation of inputs to outputs. This has a
negligible impact on network performance when the packet
length is large enough in relation to the network degree. In
other words, a d-degree router will receive d phits per cycle
and provided packets are larger that d phits, it will be able to

34

keep all outputs busy. The longer the packet and the lower
the network load, the less likely for two headers to arrive in
the same cycle and delay one another. At heavy loads, the
arbitration delay will range from 1 to d-1 cycles, which is low
compared to the blocking delay due to network contention.

2.4 Congestion control

As described in subsection 2.1, the injection frame is
treated as an input frame, except that packets are never
moved into the central queue. As packets in the central queue
have priority over input frame packets, packet injection is
throttled by the cental queue’s population. This reduces
throughput degradation at saturated loads by preventing the
nodes from overflowing the central and output buffers. This
strategy though, may lead to starvation as a node can be
prevented from injecting a packet indefinitely if the incoming
traffic from its neighbours does not by-pass the central queue
and thus is given higher priority to progress.

Note that as stalled packets are moved into the central
queue and the channel is shared on a packet basis, a packet
will be derouted when the congestion is high or the packet is
involved in a deadlock. As the occurrence of deadlock in a
fully adaptive network is low [20], the majority of misrouting
actions will be caused by network congestion.

In short, although most routers benefit from some kind of
congestion control at high loads, this mechanism is critical
for the Chaos router to limit misrouting and make a better use
of the channel bandwidth.

2.5 Channel operation mode

The router default configuration has bi-directionally

shared channels; in other words, the two network channels
that link adjacent nodes are implemented using a half-duplex
link. The link is multiplexed amongst the two network
channels at each side on a packet basis. In [4] there was no
explanation for this design choice or its impact on network
performance. In their chip implementation though, they
indicate the decision to use half-duplex was based on pin
limitation [5], and their final implementation required a dead

cycle to reverse the channel direction. Thus, for a 20 phit
packet the effective channel utilization is limited to 95%.
However, their network evaluation did not take into account
this arbitration cost.

To the best of our knowledge, all other routers are
designed using full duplex links [2,12,18,21,23,24,25,26],
and there is no study for direct networks that consider the
impact that channel operation mode has on router
performance. Thus, a fair evaluation of the Chaos router
should cover this point.

3. Chaos Router re-evaluation

This section provides a re-evaluation of the Chaos router
under full-duplex configuration and compares the results with

those provided in [4]. We have used the Chaos simulator as
provided by their authors [7] and only alter the channel
operation mode so that the router description and pipelined
organization remains unchanged. Hence, packets are 20 phits
long, and the buffer capacity is of one packet per input or
output frame, plus 5 packets in the central queue, as in the
original evaluation.
Although the Chaos architecture specifies half-duplex
channels, the Chaos simulator can also be configured to have
full duplex links - which is the standard for all other network
evaluations. Appendix A shows the configuration file for a
256-node 2D torus under these two scenarios.

For a fixed phit size, the half-duplex configuration will
obviously have half the bisection bandwidth of its full-duplex
counterpart, and its theoretical maximum throughput [1] for a
16x16 torus will be 64 phits/cycle compared to 128
phits/cycle for the full-duplex case. Comparing these two
networks with a fixed phit size is not fair but we are doing it
in order to reflect the fact that the original paper provides one
set of network responses that corresponded to the half-duplex
case but that were compared by the research community to
other works, which correspond to full-duplex network
configurations.

Figure 3 shows throughput and latency for random uniform
and hot spot traffic patterns. In the latter, the traffic sent to
10 nodes (randomly selected) is four times that sent to the
other nodes; this models cases in which references to
program data such as synchronization locks, bias packets
destinations toward a few nodes. Figure 4 shows the network
response under well-known traffic permutations such as bit
reversal, bit complement and transpose. It is clear from both
figures that network performance depends heavily on the
channel configuration chosen. When traffic in both directions
is balanced, such as in random traffic, the differences are
limited, as both channels are used most of the time anyway.
When the traffic is unbalanced, the half-duplex configuration
makes a better use of the network links. This is significant for
most traffic permutations such as bit reversal and bit
complement.

Remember the dashed lines correspond to the results
reported in [4] while the continuous lines are those obtained
under the standard full-duplex mode. The clear gap between
them explains why the initial Chaos results did not match the
reader’s intuition when seen as a full duplex adaptive
network.

Figure 5 shows network latency as a function of the
offered load expressed in bits/cycle/node. (in the chaos
router, a phit was equal to 16 bits). This figure exemplifies
the limitations of using normalized loads to estimate network
performance, and it also reminds us that in this section we are
comparing two networks with different bisection bandwidths.
We can only do that in terms of how well each network
configuration uses their network links, as discussed above.

35

0

10

20

30

40

50

60

70

80

90

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

% Offered load

T
h

ro
u

g
h

p
u

t
(%

)

Chaos-rand

ChaosFull-rand

Chaos-hot

ChaosFull-hot

0

200

400

600

800

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

% Offered load

L
a

te
n

cy
 (

cy
cl

es
)

Chaos-rand

ChaosFull-rand

Chaos-hot

ChaosFull-hot

Figure 3. Normalized throughput and latency for a 256-node torus under random and hot spot traffic.

0

15

30

45

60

75

90

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

% Offered load

T
h

ro
u

g
h

p
u

t
(%

)

Chaos-br

ChaosFull-br

Chaos-trans

ChaosFull-trans

Chaos-comp

ChaosFull-comp

0

100

200

300

400

500

600

700

800

-0.05 0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85

% Offered load

L
a

te
n

cy
 (

cy
cl

es
)

Chaos-br

ChaosFull-br

Chaos-trans

ChaosFull-trans

Chaos-comp

ChaosFull-comp

Figure 4. Normalized throughput and latency for a 256-node torus under bit reversal, transpose and complement
permutations.

0

200

400

600

800

0 0.8 1.6 2.4 3.2 4 4.8 5.6 6.4 7.2 8

Offered load (bits/node/cycle)

L
a

te
n

cy
 (

cy
cl

es
)

Chaos-rand

ChaosFull-rand

Chaos-hot

ChaosFull-hot

0

100

200

300

400

500

600

700

800

0 0.8 1.6 2.4 3.2 4 4.8 5.6 6.4 7.2 8

Offered load (bits/node/cycle)

L
a
te

n
cy

 (
cy

cl
es

)

Chaos-br

ChaosFull-br

Chaos-trans

ChaosFull-trans

Chaos-comp

ChaosFull-comp

Figure 5. Network latency versus offered load for a 256-node torus under a range of traffic patterns.

Traffic Average number deroutes Max number deroutes

Pattern Full-duplex Half-duplex Full-duplex Half-duplex

Random 0.038 0.028 3 3

Hot Spot 2.089 0.386 160 49

Bit reversal 0.585 0.344 11 9

Transpose 0.009 0.012 4 3

Complement 0.377 0.358 11 10

Table 1. Level of misrouting for the full-duplex and half-duplex chaos networks at full load.

.

36

Table 1 shows the level of misrouting at saturation for each
traffic pattern under the two network configurations. Note
that each time a packet is derouted, its path increases by 2
hops. As half-duplex reduces congestion, it results in a lower
number of misroutes under any traffic pattern.

The hot-spot pattern performance is interesting because
congestion builds much faster around the hot spots,
particularly if they are not evenly distributed. We can see that
the hot-spot pattern exhibits the highest level of misrouting,
increasing each packet average path by 5 and 1.2 hops for
full-duplex and half-duplex respectively. The maximum
number of deroutes per packet is significant, 160 and 49
respectively. This is not surprising, as the chaos router deals
with congestion by misrouting packets. It also means that for
this pattern, the local throttle of packet injection is not
enough to keep network congestion at a reasonable level.

The half-duplex configuration helps to reduce congestion
by allocating more bandwidth to the hot-spot direction. Its
links reached 95% utilization of which 15% corresponded to
misrouted packets. The full duplex networks reached 77%
link utilization but 31 % was used to misroute packets. We
may speculate that the Chaos router is able to handle a
considerable level of network congestion, after which
misrouting becomes ineffective as the use of the output
channels by the misrouted packets triggers more misrouting
actions. We should note misrouting decreased to more
reasonable levels (12% of a total 89% link utilization) when
the packet length increased to 40 phits. The full duplex
network under hot spot traffic reaches congestion levels close
to that threshold, hence its variable performance.

4. Impact of the channel operation mode in

VCT routers

The results from the previous section indicate a half-
duplex implementation can make better use of the network
bandwidth for non-uniform loads.

Thus, it is of interest to compare the two channel
configurations under fairer conditions by assuming constant
node bandwidth and taking into account the added cost of
reversing direction in the half-duplex case. Given that the
full duplex channels are “w” bits wide, their half-duplex
counterparts will be “2w” bits wide. Consequently, their
view of a packet having 40w bits will be a 40-phit and a 20-
phit packet respectively. In both cases the input and output
frames have capacity for a single packet2. As both networks
have the same bisection bandwidth, their normalized loads
are comparable. Their maximum load will be 128*w bits per
cycle (or 0.5*w bits/node/cycle).

To account for the cost of reversing direction, we have
modified the simulator to include a dead cycle when the
channel direction is reversed. Its impact in latency is
negligible as half-duplex mode reduces base latency by 10

2 Note the buffer capacity in bits is still the same for both
routers

cycles, but it will reduce effective channel utilization when
both directions are heavily used.

4.1 Chaos Router : Full duplex vs Half-duplex

Figures 6 and 7 show the network performance under a
range of traffic patterns. As a packet in a nearly empty
network will halve its transmission time, all patterns exhibit
lower latencies for the half-duplex case.

Half-duplex achieves a higher throughput for all traffic
patterns but random. The channel arbitration uses 2 to 4% of
the link capacity, so that throughput is slightly reduced when
compared with the results from section 3.

Again, the more unbalanced the use of the network links,
the higher the gains exhibited by the half-duplex
configuration. This is not surprising, as this model reflects
the bi-directional highway lane model, which exploits the
unbalance in commuters’ traffic by allocating more lanes to
the most popular direction at each time of the day.

As we mentioned before, the performance for hot-spot
traffic in the full duplex case is significantly better that in the
previous experiment, packet length being the only change. In
extensive tests under hot-spot traffic, most loads (which
differ in the location of the 10 hot-spot nodes) reached
similar peak throughput, around 75-80%. One of them,
though, exhibited high levels of misrouting for both channel
modes, reaching 27% and 42% for half-duplex and full-
duplex respectively. This load also exhibited the highest
network population, another indicator of network congestion.
This seems to confirm our theory that misrouting may be
ineffective when congestion levels reach a high threshold. On
the other hand, misrouting combine with throttled injection
deals successfully with most types of network loads as seen
under typical permutation traffic patterns.

Finally, we have also considered the impact of using half-
duplex in a chaos router with pipelined channels [22], The
cost of reversing direction will increase from 1 to p+1 cycles
being p the number of phits on the fly. Table 2 summarizes
the results obtained when considering pipelined channels
with p being 2 or 3, As expected, the half-duplex
configuration exhibited lower performance for random traffic
for which peak throughput decreased by 6% and 10%
respectively in relation to its full-duplex counterpart. On the
other hand, the benefits of half-duplex configuration out-
weigh its cost for all other non-random patterns.

Remember that the half-duplex configuration provides
lower network latency for all patterns at low and medium
loads. Thus, half-duplex mode remains a better choice for the
Chaos router, regardless of the physical link’s length or
delay.

37

Chaos router

50

55

60

65

70

75

80

85

90

95

100

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Offered load

T
hr

ou
gh

pu
t (

%
)

half-rand

full-rand

half-hot

full-hot

Chaos router

50

100

150

200

250

300

350

400

450

500

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Offered load

L
at

en
cy

 (
cy

cl
es

)

half-rand

full-rand

half-hot

full-hot

Figure 6. Normalized throughput and latency for a 256-node torus under random and hot spot traffic.

Chaos router

0

15

30

45

60

75

90

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Offered load

T
h

ro
u

g
h

p
u

t
(%

)

half-bitr

full-bitr

half-trans

full-trans

half-compl

full-compl

Chaos router

50

150

250

350

450

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Offered load

L
at

en
cy

 (
cy

cl
es

)

half-bitr

full-bitr

half-trans

full-trans

half-compl

full-compl

Figure 7. Normalized throughput and latency for a 256-node torus under bit reversal, transpose and bit complement permutations.

Bubble DOR router

0

10

20

30

40

50

60

70

80

90

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Offered load

T
hr

ou
gh

pu
t

(%
)

half-rand

full-rand

half-hot

full-hot

Bubble DOR router

50

100

150

200

250

300

350

400

450

500

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 Offered load

L
a

te
n

cy
 (

cy
cl

es
)

half-rand

full-rand

half-hot

full-hot

Figure 8. Normalized throughput and latency for a 256-node static network under random and hot spot traffic.

Bubble DOR router

0

10

20

30

40

50

60

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Offered load

T
h

ro
u

g
h

p
u

t
(%

)

half-bitr

full-bitr

half-trans

full-trans

half-comp

full-comp

Bubble DOR router

50

100

150

200

250

300

350

400

450

500

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Offered load

L
at

en
cy

 (
cy

cl
es

)

half-bitr

full-bitr

half-trans

full-trans

half-comp

full-comp

Figure 9. Normalized throughput and latency for a 256-node static network under bit reversal, transpose and bit complement
permutations.

38

2 phits 3 phits
Traffic Pattern

Full Half Full Half

Random 94.7 88.7 94.7 84.9
Hot Spot 82.1 83.9 81.1 81.7
Bit reversal 59.4 70.1 58.9 67.7
Tranpose 30.9 43.2 31.3 43.1
Complement 33.1 44.9 34.2 43

Table 2. Network throughput at full load for a 256 torus
network with pipelined channels (2 or 3 phits on the
fly) for various synthetic traffic patterns.

4.2 DOR router: Half-duplex vs Full duplex

To complete this study, we have used the Chaos simulator
to evaluate the impact that the channel configuration has in a
simpler VCT router based on bubble flow control [10]. This
will confirm that the findings from this work are applicable to
a wider range of designs.

The Bubble DOR router is similar to the Chaos one except
that there is no central queue and the output frame is selected
using dimensional order routing (DOR). Deadlock is avoided
by preventing any node from exhausting the buffer capacity
in the direction of travel as in [10], thus no virtual channels
are required. Again packets have 40w bits, being w and 2w

the width of the full duplex and half-duplex channels. In this
router evaluation the input and output frames have capacity
for two packets each.

DOR is known to exhibit low throughput for most
permutation patterns, due to its unbalanced use of network
channels. Thus, it is not surprising to see in Figures 8 and 9
that the gains achieved by the half-duplex configuration are
even greater that in the Chaos counterpart. In particular, for
the transpose permutation, its throughput increases from 25%
to 45%, matching that of the Chaos router. This is because
the traffic is very un-evenly distributed in each direction, the
best scenario for the half-duplex configuration.

5. Conclusions

This work has provided an insight into the performance of
the Chaos router as reported in [4]. We have identified that
the channel operation mode has a significant impact on
network performance. We should note that the half-duplex
mode is only applicable to VCT routers in which channel
allocation is done on a packet basis.

We measured the network response of the Chaos router for
both full-duplex and half-duplex modes. This re-evaluation
showed the half-duplex configuration increases link
utilization for all synthetic traffic patterns, more so when the
traffic load is unbalanced. This can be easily explained by the
fact that network bandwidth is allocated to each direction as
required by traffic needs.

A fairer comparison of the two channel operation modes
was presented under fixed node bandwidth and taking into
account the cost of reversing the channel direction, which in

the chaos implementation was of a dead cycle between the
transmission of two packets. The evaluation of two VCT
routers showed that half-duplex configuration improves
network latency by reducing the transmission time at low and
medium loads. It also increased their peak throughput for all
non-uniform traffic patterns by overlapping when possible
the idle cycles in each network direction.

Further study is required to assess the impact that channel
operation mode has on network performance under real
application loads and the cost of implementing half-duplex
channels on VCT routers under current technological
constrains.

Acknowledgments

This work has been partially supported by Ministerio de
Ciencia y Tecnologia, Spain, under grant TIC2001-0591-
C02-01.

We would like to thank the people involved in the Chaotic
Routing Project at the Department of Computer Science and
Engineering, University of Washington for providing public
access to their simulator source code.

References

[1] A. Agarwal, “Limits on Interconnection Network
Performance”, IEEE Trans. On Comp., Vol 2, nº4,
pp:398-412, October 1991

[2] NR Adiga, GS Almasi, Y Aridor, M Bae, Rajkishore
Barik, et al., “An Overview of the BlueGene/L
Supercomputer”, Proc. of SuperComputing 2002,
Baltimore, Nov. 16-22, 2002

[3] K. Aoyama, A. Chien: The Cost of Adaptivity and
Virtual Lanes”, Journal of VLSI Design, 2(4), 1995,
pp.315-333.

[4] K. Bolding, M. L. Fulgham, L. Snyder, “The Case for
Chaotic Adaptive Routing. IEEE Trans. Computers
46(12): 1281-1291 (1997)

[5] K. Bolding, S. Cheung, S. Choi, C. Ebeling, S. Hassoun,
T. Ngo, R. Wille. "The Chaos Router Chip: Design and
Implementation of an Adaptive Router", Proceedings of
IFIP Conf. on VLSI. Sept. 1993 pp. 311-320

[6] R. Boppana and S. Chalasani, "Fault-tolerant routing
with non-adaptive wormhole algorithms in mesh
networks, " Proc. of Supercomputing, pp. 693-702, 1994

[7] The Chaos simulator code is available at
http://www.cs.washington.edu/research/projects/lis/Cha
os/www/simulator.html

[8] J. Duato. “A Necessary and Sufficient Condition for
Deadlock-Free Adaptive Routing in Wormhole
Networks” IEEE Trans. On Parallel and Distributed
Systems, vol.6, no.10, pp.1055-1067, October 1995,

[9] W. J. Dally and C. L. Seitz, “Deadlock-Free Message
Routing in Multiprocessor Interconnection Networks”,
IEEE Trans. on Comp., Vol. C-36, 5, pp. 547-553, 1987.

[10] C. Carrion, R. Beivide, J.A. Gregorio, and F. Vallejo.
“A Flow Control Mechanism to Prevent Message

39

Deadlock in k-ary n-cube Networks” HiPC'97,
December, 1997.

[11] M. L Fulgham and L. Snyder,”A Comparison of Input
and Output Driven Routers”. Lectures Notes in
computer Science, vol. 1123 Proc EuroPar 1996, 195-
203

[12] P. T. Gaughan, S. Yalamanchili, “A Family of Fault-
Tolerant Routing Protocols for Direct Multiprocessor
Networks”. IEEE Trans. Parallel Distrib. Syst. 6(5):
482-497 (1995)

[13] C. Izu and A. Arruabarrena, “Applying Segment
Routing to k-ary n-cube networks”, Proc. Int.
Conference on Supercomputing, 1998, pp 409-416.

[14] V. Karamcheti and A. A. Chien, “Do Faster Routers
Imply Faster Comunication? Proc. Parallel Computer
Routing and Communications Wrokshop, PCRCW’94,
pp 1-15.

[15] M. J. Karol, M. G. Hluchyj, S. P. Morgan, “Input
Versus Output Queuing on Space Division Packet
Switch”, IEEE Transactions On Communications, vol.
COM-35, no. 12, pp. 1347-1356, December 1987.

[16] M. Katevenis, P. Vatsolaki, A. Efthymiou, and M.
Stratakis “VC-level Flow Control and Shared Buffering
in the Telegraphos Switch”, IEEE Hot Interconnects III,
August 1995.

[17] S. Konstantinidou and L. Snyder: “The Chaos router: A
practical application of randomization in network
routing”. Proc. 2nd Ann. Symp. on Parallel Algorithms
and Architectures SPAA'90, pp. 21-30.

[18] S S Mukherjee, P. Bannon, S. Lang, A. Spink and D.
Webb “The Alpha 21364: Network architecture ”. IEEE
Micro, 22(1):26-35, January/February 2002

[19] L.M. Ni and P.K. McKinley, “A Survey of Wormhole
Routing Techniques in Direct Networks” IEEE
Computer Magazine, vol. 26, no.2, pp. 62-76, Feb.
1993.

[20] T.M. Pinkston and S. Warnakulasuriya: On Deadlocks
in Interconnection Networks. Proc. 24th International
Symposium on Computer Architecture ISCA 1997 pp.
38-49

[21] V. Puente, C. Izu, J.A. Gregorio, R. Beivide, and F.
Vallejo, ”The Adaptive Bubble router”, Journal on
Parallel and Distributed Computing, vol 61, no. 9,
pp.1180-1208 September 2001.

[22] C.L. Seitz, W-K Su, “A family of routing and
communication chips based on the Mosaic”. Proc. of the
1993 Symp, on Research on Integrated Systems, The
MIT Press, 1993, pp. 320-337.

[23] S. L. Scott and J.R. Goodman, “The Impact of
Pipelined Channels on k-ary n-cube Networks”, IEEE
Transaction on Parallel and Distributed Systems. vol. 5,
no 1 pp. 2-16 January 1994..

[24] S. L. Scott and G. Thorson, "The Cray T3E networks:
adaptive routing in a high performance 3D torus," in
Proc. of Hot Interconnects IV, Aug. 1996.

[25] R. Sivaram, C.B. Stunkel, and D.K. Panda, “HIPQS: a
High-Performance Switch Architecture Using Input
Queuing”, Proc. IPPS/SPDP’98, March 1998.

[26] Y. Tamir, and G.L. Frazier, “Dynamically-allocated
Multiqueue buffers for VLSI Communication
Switches”, IEEE Transactions on Computers, vol. 41,
no. 2, pp. 725-737, June 1992

40

Appendix A. Configuration files for Chaos

/*** Chaos routing algorithm ***/

#define CHAOS 1

#define CYGRA 0

#define OBLIVIOUS 0

#define WORMHOLE 0

/*** latency (in cycles) across a node ***/

#define NODE_LATENCY 4

/*** cycles to stall on a queue send ***/

#define Q_SEND_STALL 3

/*** Multiqueue size ***/

#define Q_CAP 2*D+1

/*** torus topology ***/

#define WRAP 1

#define OPEN 0

/*** 256 node network ***/

#define N 256

/*** 2 dimensions ***/

#define D 2

/*** 16 nodes per dimension ***/

#define K 16

/*** maximum distance between any two nodes ***/

#define MAX_DIST (((K-1)/2 + 1)*D + 1)

/*** uni-directional channels ***/

#define UNI 1

#define BI 0

#define XBAR_RATE 2

#define Q_BUS_RATE 2

/*** total number of channels ***/

#define NUM_CHAN (N*D*2)

/*** number of virtual channels per physical channel ***/

#define NUM_VC 1

/*** number of outframes which can own any channel

***/

#define CHAN_OWNERS NUM_VC

/*** message length distribution ***/

#define RANDOM_LENGTH 0

#define LONG_SHORT 0

#define LENGTH 20

#define AVE_LENGTH LENGTH

/*** number of cycles to route a message out of a fifo

***/

#define ROUTE_WINDOW 20

/*** minimum injection period ***/

#define MIN_INJ_PERIOD (((double) K)/8.0 * ((double)

AVE_LENGTH))

/*** maximum buffer size in flits ***/

#define FIFO_MAX_SIZE 20

/*** inframe buffers size in flits ***/

#define INF_FIFO_SIZE 20

/*** outframe buffers size in flits ***/

#define OUTF_FIFO_SIZE 20

/*** internal buffers size in flits ***/

#define Q_FIFO_SIZE 20

/*** Chaos routing algorithm ***/

#define CHAOS 1

#define CYGRA 0

#define OBLIVIOUS 0

#define WORMHOLE 0

/*** latency (in cycles) across a node ***/

#define NODE_LATENCY 4

/*** cycles to stall on a queue send ***/

#define Q_SEND_STALL 3

/*** Multiqueue size ***/

#define Q_CAP 2*D+1

/*** torus topology ***/

#define WRAP 1

#define OPEN 0

/*** 256 node network ***/

#define N 256

/*** 2 dimensions ***/

#define D 2

/*** 16 nodes per dimension ***/

#define K 16

/*** maximum distance between any two nodes ***/

#define MAX_DIST (((K-1)/2 + 1)*D + 1)

/*** bi-directional channels ***/

#define UNI 0

#define BI 1

#define XBAR_RATE 1

#define Q_BUS_RATE 1

/*** total number of channels ***/

#define NUM_CHAN (N*D)

/*** number of virtual channels per physical channel ***/

#define NUM_VC 1

/*** number of outframes which can own any channel

***/

#define CHAN_OWNERS (2*NUM_VC)

/*** message length distribution ***/

#define RANDOM_LENGTH 0

#define LONG_SHORT 0

#define LENGTH 20

#define AVE_LENGTH LENGTH

/*** number of cycles to route a message out of a fifo

***/

#define ROUTE_WINDOW 20

/*** minimum injection period ***/

#define MIN_INJ_PERIOD (((double) K)/4.0 * ((double)

AVE_LENGTH))

/*** maximum buffer size in flits ***/

#define FIFO_MAX_SIZE 20

/*** inframe buffers size in flits ***/

#define INF_FIFO_SIZE 20

/*** outframe buffers size in flits ***/

#define OUTF_FIFO_SIZE 20

/*** internal buffers size in flits ***/
#define Q_FIFO_SIZE 20

41

Debunking then Duplicating Ultracomputer
Performance Claims by Debugging the Combining

Switches

Eric Freudenthal and Allan Gottlieb
Department of Computer Science

Courant Institute of Mathematical Sciences
New York University

{freudenthal, gottlieb}@nyu.edu

Abstract

Memory system congestion due to serialization of hot spot
accesses can adversely affect the performance of interprocess
coordination algorithms. Hardware and software techniques
have been proposed to reduce this congestion and thereby
provide superior system performance. The combining networks
of Gottlieb et al. automatically parallelize concurrent hot spot
memory accesses, improving the performance of algorithms
that poll a small number of shared variables.

We begin by debunking one of the performance claims made

for the NYU Ultracomputer. Specifically, a gap in its simula-

tion coverage hid a design flaw in the combining switches

that seriously impacts the performance of busy wait polling in

centralized coordination algorithms. We then debug the system

by correcting the design and closing the simulation gap, after

which we are able to duplicate the original claims of excellent

performance on busy wait polling. Specifically our simulations

show that, with the revised design, the Ultracomputer readers-

writers and barrier algorithms achieve performance compa-

rable to the highly regarded MCS algorithms.

1. Introduction

It is well known that the scalability of inter-
process coordination can limit the performance of
shared-memory computers. Since the latency re-
quired for coordination algorithms such as barri-
ers or readers-writersincreases with the available
parallelism, their impact is especially important for
large-scale systems. A common software technique
used to minimize this effect isdistributed local-
spinning in which processors repeatedly access vari-
ables stored locally (in so-called NUMA systems,

the shared memory is physically distributed among
the processors).

An less common technique is to utilize special
purpose coordination hardware such as the barrier
network of [1], the CM5 Control Network [2], or
the NYU “combining network” [8] and have the
processors reference centralized memory. The idea
behind the combining network is that when refer-
ences to the same memory location meet at a net-
work switch, they are combined into one reference
that proceeds to memory. When the response to the
combined messages reaches the switch, data held
in the “wait buffer” is used to generate the needed
second response. Other approaches to combining
have been pursued as well, see for example [23]
and [13].

The early work at NYU on combining networks
showed their great advantage for certain classes of
memory traffic, especially those with a significant
portion of hot-spot accesses (a disproportionately
large percentage of the references to one or a few
locations). It is perhaps surprising that this work
did not simulate the traffic generated when all the
processors engage in busy-wait polling, i.e., 100%
hot-spot accesses (but see the comments on [14]
in Section 3). When completing studies begun a
number of years ago of what we expected to be very
fast centralized algorithms for barriers and readers-
writers, we were particularly surprised to find that
the combining network performed poorly in this
situation. While it did not exhibit the disastrous
serialization characteristic of accesses to a single

42

location without combining, the improvement was
much less than expected and our algorithms were
not nearly competitive with the MCS algorithms
based on distributed local-spinning [17], [19]. Fur-
ther investigation showed that our results were cor-
rect and the previous NYU claims were invalid for
this important case.

The present paper briefly reviews combining net-
works and presents the debunking data just men-
tioned. We then debug the system by offering two
fairly simple changes to the combining switches that
fix the problem with busy wait polling. The first
change is simply to increase the wait-buffer size.
The second change is more subtle: The network is
output-buffered and a trade-off exists involving the
size of the output queues. Large queues are well
known to improve performance for random traffic.
However, we found that large queues cause poor
polling performance. We therefore adapt the queue
size to the traffic encountered: as more combined
messages are present, the queue capacity is reduced.
Together, these two simple changes have a dramatic
effect on polling, and our centralized barrier and
readers-writers algorithms become competitive with
the commonly used MCS local-spin algorithms of
Mellor-Crummey and Scott (some of which also
benefit from the availability of combining), thereby
duplicating the results claimed in the early NYU
work.

There is an interesting explanation for the sur-
prising observation thatcrippled hardware (reducing
queue length)improves performance (of polling).
The network switches can not combine three or
more requests into one, and thus for many requests
to be combined into a single request, it is nec-
essary for combining to occur at many switches.
The smaller queues increase “backpressure” and
result in queuing at more switches and hence more
combining. Modern techniques for caches (MSHRs)
in a sense combine more than two requests. We
explain in Section 2.2 why the corresponding idea
is problematic for combining networks.

2. Background

Large-scale, shared-memory computation re-
quires memory systems with bandwidth that scales
with the number of processors. Multi-stage inter-
connection fabrics and interleaving of memory ad-

dresses among multiple memory units can provide
scalable memory bandwidth for memory reference
patterns whose addresses are uniformly distributed.
Many variants of this architecture have been im-
plemented in commercial and other research sys-
tems [12], [20], [22]. However, the serialization
of memory transactions at each memory unit is
problematic for reference patterns whose mapping
to memory units is unevenly distributed. An im-
portant cause of non-uniform memory access pat-
terns is hot-spot memory accesses generated by
centralized busy-waiting coordination algorithms.
The Ultracomputer architecture includes network
switches [24] with logic to reduce this congestion
by combining into a single request multiple memory
transactions (e.g. loads, stores, fetch-and-adds) that
reference the same memory address.1

The Ultracomputer combining switch design uti-
lizes a variant of cut-through routing [10] that
imposes a latency of one clock cycle when there is
no contention for an outgoing network link. When
there is contention, messages are buffered on queues
associated with each output port. Investigations by
Dias and Jump [4], Dickey [5], Liu [15], and oth-
ers indicate that these queues significantly increase
network bandwidth for large systems with uniformly
distributed memory access patterns.

Systems with high degrees of parallelism can be
constructed using these switches: Figure 1 illus-
trates an eight-processor system with three stages
of routing switches interconnected by a shuffle-
exchange [25] routing pattern. References toMM3

are communicated via components drawn inbold.
Our simulation parameters are set to agree with

the earlier NYU simulations (and the small-scale
prototype built).2 Specifically, our memory modules
(MMs) can accept one request every 4 network
cycles, whereas the switches can accept one request
every 2 cycles on each input and can transmit one
request every 2 cycles on each output. When the rate
of requests to one MM exceeds its bandwidth, the

1Combining occurs only for messages that are buffered when the
arrival rate exceeds the acceptance rate of the downstream queue. In
particular, messages arenot delayed solely to enable combining. Also
note that a message can combine with any (not necessarily adjacent)
enqueued message. Finally, the combining logic does not rely on
associative search (however, de-combining does). [7]

2We briefly discuss parameter values more appropriate to current
technology in Section 3.4.

43

PE7

PE6

PE5

PE4

PE3

PE2

PE1

PE0

SW

SW

SW

SW

SW

SW

SW

SW

SW

SW

SW

SW

MM7

MM6

MM5

MM4

MM3

MM2

MM1

MM0

Fig. 1. Eight PE System with Hot-Spot Congestion to MM 3.

switch queues feeding it will fill. Since a switch can-
not accept messages when its output buffers are full,
a funnel-of-congestion will spread to the network
stages that feed the overloaded MM and interfere
with transactions destined for other MMs as well.3

Thus unbalanced memory access patterns, such as
hot spot polling of a coordination variable, can
generate network congestion. Figure 1 illustrates
contention among references toMM3.

Ultracomputer switches combine pairs of memory
requests accessing the same location into a single re-
quest to reduce the congestion generated by hot spot
memory traffic. When the memory response subse-
quently arrives at this switch, it isde-combined into
a pair of responses that are routed to the requesting
PEs. To enable this de-combination, the switch uses
an internalwait buffer to hold information found in
the request until it is needed to generate the second
response. Since combined messages can themselves
be combined, this technique has the potential to
reduce hot spot contention by a factor of two at
each network stage.

a) Combining of Fetch-and-add: Our fetch-and-
add based centralized coordination algorithms poll
a small number (typically one) of “hot spot” shared
variables whose values are modified using fetch-
and-add.4 Thus, as indicated above, it is crucial,
when these algorithms are executed on large num-
bers of processors, not to serialize this activity.
The solution employed is to include adders in the
MMs (thus guaranteeing atomicity) and to combine
concurrent fetch-and-add operations at the switches.

When two fetch-and-add operations referencing

3Pfister and Norton [21] called this funneltree saturation and
observed that access patterns containing only 5% hot spot traffic
substantially increase memory latency.

4Recall that FAA(X,e) is defined to return the old value of X and
atomically increment X by the value e.

1
12

4

F&A(X,1)

X:12

F&A(X,2)

X:13

F&A(X,4)

X:0

F&A(X,8)

X:4

F&A(X,3)

X:12

F&A(X,15)

X:0

F&A(X,12)

X:0

Start: X=0

End: X=15

Addend for decombine

in wait buffer.

MM

e

F&A(X,e)

X:t

F&A(X,f)

X:t+e

F&A(X,e+f)

t

Fig. 2. Combining of Fetch-And-Adds at a single switch (above)
and at multiple switches (below).

the same shared variable, sayFAA(X, e) and
FAA(X, f), meet at switch the combined request
FAA(X,e+f) is transmitted and the valuee is stored
in the wait buffer. Load are transmitted as fetch-
and-adds whose addends are zero and thus are also
combinable.

Upon receivingFAA(X, e+f), the MM updates
X (to X + e + f) and responds withX. When the
response arrives at the combining switch the latter
transmitsX to satisfy the requestFAA(X, e) and
transmitsX + e to satisfy the requestFAA(X, f),
thus achieving the same effect as ifFAA(X, e) was
followed immediately byFAA(X, f). This process
is illustrated in the upper portion of Figure 2. The
cascaded combining of 4 requests at two network
stages is illustrated in the lower portion of the same
figure.

Figure 3 illustrates an Ultracomputer combining
switch. Each switch contains

• Two Dual-input forward-path combining
queues: Entries are inserted and deleted in
a FIFO manner and matching entries are
combined, which necessitates an ALU to
compute the sume + f .

• Two Dual-input reverse path queues: Entries
are inserted and deleted in a FIFO manner.

• Two Wait Buffers: Entries are inserted and as-
sociative searches are performed with matched
entries removed. An included ALU computes
X + e.

44

Reverse Path

PE MM

T
o

P
E

P
o

rt
s

T
o

M
M

P
o

rts

PE

or SW

PE

or SW

MM

or SW

MM

or SW

RQ1

RQ1

FCQ1

FCQ0

Forward Path

PE MM

Decombine info

Decombine info

WB1

WB0

Decombine

Fig. 3. Block Diagram of Combining 2-by-2 SwitchNotation: RQ:
Reverse (ToPE) Queue, WB: Wait Buffer, FCQ: Forward (ToMM)
Combining Queue

2.1. When Combining Can Occur

Network latency is proportional to switch cycle
times and grows with queuing delays. VLSI simu-
lations showed that the critical path in a proposed
Ultracomputer switch included the adder to form
e + f and the output drivers. To reduce cycle time,
at the cost of restricting the circumstances in which
combining could occur, the chosen design did not
combine requests that were at the head of the output
queue (and hence might be transmitted the same
cycle as combined). This modification reduced the
critical path timing to the max of the adder and
driver rather than their sum. We call the modified
design “decoupled” because the adder and driver are
in a sense decoupled, and call the original design
“coupled”.

Since the head entry cannot be combined, we
note that a decoupled queue requires at least three
requests for combining to occur. We shall see that
this trivial observation is important.

To enable the dual input queues to accept items on
each input in one cycle, the queue was constructed
from two independent single-input queues whose
outputs are multiplexed. To achieve the maximum
combining rate, we therefore require at least three
requests in each of the single-input combining
queues, which implies at least six in each dual-
input combining queues. A more complicated dual-
input decoupled combining queue, dubbedtype A in
Dickey [5] requires only three messages to achieve
the maximum combining rate rather than six in the
“type B” design we are assuming.

2.2. Combining Multiple Requests

Kroft [11] introduced Miss Status/Handler Reg-
isters (MSHRs) to implement lockup-free caches.

These registers are also used to merge multiple re-
quests for the same memory line. Similar techniques
could be employed for combining switches and,
were the degree of combining (i.e., the number of
requests that could be merge) large, one might ex-
pect that good polling behavior would result. Indeed
the early NYU work did consider greater-than-two
way combining and sketched a VLSI design for one
modest extension. However, this idea cannot be used
to solve the polling problem. As observed by [14],
if a large number of requests are combined into one,
the decombining that results degrades performance
due to serialization in the response (memory-to-
processor) network.

There are several differences between MSHRs
and network switches that might explain why the
[14] observation does not apply to the former. Recall
that MSHRs are located in the (multi-)processor
node; whereas, combining switches are located
in the network itself. Hence serialization in the
MSHRs encountered by a memory response directly
affects only one node. As observed by [21], how-
ever, delays in network switches (encountered either
by requests or responses) can seriously degrade per-
formance of many nodes, even those not referencing
the hot-spot memory. The different locations of
MSHRs and combining switches has another effect:
A single path from a memory module to a processor
node passes through multiple switches and thus a
memory response might be subjected to multiple
serialization delays when passing through a series
of switches that must decombine requests.

3. Improving the Performance of Busy-Wait Polling

Figure 4 plots memory latency for two simulated
systems of four to 2048 PEs with memory traffic
containing 10% and 100% hot spot references.
The latter typifies the traffic when processors are
engaged in busy-wait polling and the local caches
filter out instruction and private data references.

The first simulated system closely models the
original Ultracomputer and is referred to as the
baseline system. Observe that for 10% hot spot
references, round-trip latency is only slightly greater
than the minimum network transit time (one cycle
per stage per direction) plus the simulated memory
latency of two cycles.

45

 4

 8

 16

 32

 64

 128

 256

 512

 2 3 4 5 6 7 8 9 10 11

R
ou

nd
tri

p
La

te
nc

y

log(# processors)

Baseline, 100% hotspot
Waitbuf100, 100% hotspot

Baseline, 10% hotspot
Waitbuf100, 10% hotspot

Fig. 4. Memory Latency for Ultraswitches with Wait Buffer
Capacities of 8 and 100 messages for 10% and 100% Hotspot Traffic,
1 Outstanding Request/PE.

On larger systems, memory latency is substan-
tially greater for the 100% hot spot load and can
exceed 10 times the minimum. Since the combining
switches simulated were expected to perform well
for this traffic, the results were surprising, especially
to the senior author who was heavily involved with
the Ultracomputer project throughout its duration.
High-performance centralized coordination cannot
be achieved using these simulated switches.

The cause of the less than expected performance
is two (previously unnoticed) design flaws in the
combining switch design. The first is that the wait
buffers were too small, the second is that, in a sense
to be explained below, the combining queues were
too large.

3.1. Increasing the Wait Buffer Capacity

The second system shown in Figure 4 contains
switches with 100-entry wait buffers (feasible with
today’s technology). These larger switches reduce
the latency for a 2048PE system from 306 to
168 cycles, an improvement of 45%. While this
increased capacity helps, the latency of hot spot
polling traffic is still seven times the latency of
uniformly distributed reference patterns (24 cycles).

3.2. Adaptive Combining Queues

In order to supply high bandwidth for typical
uniformly distributed traffic (i.e., 0% hot spot), it
is important for the switch queues to be large.
However, as observed in [14], busy wait polling
(100% hot spot) is poorly served by these large
queues, as we now describe.

For busy-wait polling, each processor always has
one outstanding request directed at the same loca-
tion.5 The expectation was that, withN processors
and hencelogN stages of switches, pairs would
combine at each stage resulting in just one request
(or perhaps more realistically, a few requests) reach-
ing memory.

What actually happens is that the queues in
switches near memory fill to capacity and the
queues in the remainder of the switches are nearly
empty. Since combining requires multiple entries to
be present, it can only occur near memory. How-
ever, asingle switch cannot combine an unbounded
number of requests into one. Those fabricated for
the Ultracomputer could combine only pairs so, if,
for example, eight requests are queued for the same
location, (at least) four requests will depart.6

Figure 5 illustrates this effect. Both plots are
for busy wait polling and use the large, 100 entry
wait buffers. The forward path combining queues in
the left plot are modeled after the Ultracompputer
design and contain four slots, each of which can
hold either a request received by the switch or one
formed by combining two received requests. The
plot on the right is for the same switches with
the queue capacity restricted so that if 2 combined
requests are present, the queue is declared full even
if empty slots remain. We call these queues adaptive
and denote switch with these adaptive queues and
large wait buffers asimproved.

We compare the graphs labeled 10 (representing a
system with 1024 PEs) in each plot. In the left plot,
we find that combines occur at the maximal rate
for the four (out of 10) stages closest to memory,
occur at nearly the maximal rate for the fifth stage,
and do not occur for the remaining five stages.
The improved switches (the right plot) do better,
combining at maximal rate for five stages and at
1/4 of the maximum for the sixth stage. In addition,
since the queues are effectively smaller, the queuing
delay is reduced.

5This is not quite correct: When the response arrives it takes a
few cycles before the next request is generated. Our simulations
accurately account for this delay.

6Alternate designs could combine more than two requests into one,
but, as observed by [14], when this “combining degree” increases,
congestion arises at the point where the single response is de-
combined into many (see Section 2.2).

46

 0

 50

 100

 150

 200

 250

 2 4 6 8 10

C
om

bi
ne

s
/ k

c

Distance to Memory

11
10
8
6
4
2

 0

 50

 100

 150

 200

 250

 2 4 6 8 10

C
om

bi
ne

s
/ k

c

Distance to Memory

11
10

8
6
4
2

Fig. 5. Combining rate, by stage for simulated polling on systems
of 22 to 211 PEs. Wait buffers have capacity 100 and combining
queues can hold 4 combined or uncombined messages. In the right
plot the combining queues are declared full if two combined requests
are present.

 4

 8

 16

 32

 64

 128

 256

 512

 2 3 4 5 6 7 8 9 10 11

R
ou

nd
tri

p
La

te
nc

y

log(# processors)

Baseline
Waitbuf100
Improved
Aggressive

Fig. 6. Memory latency for simulated hot spot polling traffic, 4-2048
PEs.

Note that for uniformly distributed traffic without
hot spots, combining will very rarely occur and the
artificial limit of 2 combined requests per queue will
not be invoked. We call this new combining queue
designadaptive since the queues are full size for
uniformly distributed traffic and adapt to busy wait
polling by artificially reducing their size.

We see in Figure 6 that the increased combining
rate achieved by the improved switches dramatically
lowers the latency experienced during busy wait
polling. For a 2048 PE system the reduction is from
168 cycles for a system with large (100 entry) wait
buffers and the original queues to 118 cycles (five
times the latency of uniform traffic) with the same
wait buffers but adaptive combining queues. This is
a reduction of over 30% and gives a total reduction
of 61% when compared with the 306 cycles needed
by the baseline switches. The bottom plot is for a
more aggressive switch design described below. In
Section 4 we shall see that centralized coordination
algorithms executed on systems with adaptive com-
bining queues and large wait buffers are competitive
with the best distributed local-spinning alternatives.

Figure 7 compares the latency for 1024 PE sys-
tems with various switch designs and a range of
accepted loads (i.e., processors can have multiple
outstanding requests unlike the situation above for
busy wait polling). The figure shows results for
1%, 20%, and 100% hot spot traffic. Similar results
(not shown) were obtained for simulations with 0%,
40%, 60%, and 80% hot spot traffic. These results
confirm our assertion that adaptive queues have
very little effect for low hot spot rates and are a
considerable improvement for high rates. Thus the
Ultracomputer claims of good performance under a
variety of loads are substantiated for the improved
switches, but not for the original baseline design.

3.3. More Aggressive Combining Queues

Recall that we have been simulating decoupled
type B switches in which combining is disabled for
the head entry (to “decouple” the ALU and output
drivers) and the dual input combining queues are
composed of two independent single input com-
bining queues with multiplexed outputs. We started
with a “baseline design”, used in the Ultracomputer,
and produced what we refer to as the “improved
design” having a larger wait buffer and adaptive
combining queues. We also applied the same two
improvements to type A switches having coupled
ALUs and refer to the result as the “aggressive
design” or “aggressive switches” For example, the
lowest plot in Figure 6 is for aggressive switches.
Other experiments not presented here have shown
that aggressive switches permit significant rates of
combining to occur in network stages near the
processors. Also, as we will show in Section 4, the
centralized coordination algorithms perform excep-
tionally well on this architecture, Although aggres-
sive switches are the best performing, we caution
the reader that our measurements are given in units
of a switch cycle time and, without a more detailed
design study, we cannot estimate the degradation in
cycle time such aggressive switches might entail.

3.4. Applicability of Results to Modern Systems

The research described above investigates sys-
tems whose components have similar speeds, as was
typical when this project began. During the inter-
vening decade, however, logic and communication
rates have increased by more than two orders of

47

 20

 21

 22

 23

 24

 25

 0.06 0.07 0.08 0.09 0.1 0.11 0.12

R
ou

nd
tri

p
La

te
nc

y

Accepted Load

Aggressive
Baseline

Waitbuf100
Improved

 20

 30

 40

 50

 60

 70

 80

 90

 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13

R
ou

nd
tri

p
La

te
nc

y

Accepted Load

Baseline
Waitbuf100
Improved
Aggressive

 16

 32

 64

 128

 256

 512

 1024

 2048

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

R
ou

nd
tri

p
La

te
nc

y

Accepted Load

Baseline
Waitbuf100

Improved
Aggressive

Fig. 7. Simulated Round-trip Latency over a Range of Offered Loads for 1% (left), 20% (middle) and 100% (right) Hot Spot Traffic.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 4 5 6 7 8 9 10

R
ou

nd
tri

p
La

te
nc

y

log(# processors)

Waitbuf100MMWait40
ImprovedMMWait40
AggressiveMMWait40

Fig. 8. Memory latency for hot spot polling on systems with MMs
that can accept one message every 40 cycles.

magnitude while DRAM latency has improved by
less than a factor of two.

In order to better model the performance ob-
tainable with modern hardware, we increased the
memory latency from two to thirty-eight cycles, and
the interval between accepting requests from four
to forty cycles.7 These results are plotted in Figure
8 and indicate that the advantage achieved by the
adaptive switch design is even greater than before.

4. Performance Evaluation of Centralized and MCS
Coordination

A series of micro-benchmark experiments were
performed to compare the performance of central-
ized fetch-and-add based coordination with state of
the art MCS algorithms of Mellor-Crummey and
Scott. The simulated hardware includes combining
switches, which improves the performance of some
MCS algorithms and is crucial for the centralized
algorithms, as well as NUMA memory, which is im-
portant for MCS and not exploited by the centralized
algorithms. We present results for readers-writers

7Standard caching and sub-banking techniques can mitigate the
effect of slow memory.

and barrier coordination. These simulations plus
others appeared in the junior author’s dissertation
[6].

4.1. Barrier Synchronization

Barrier coordination is often used in algo-
rithms that require coarse-grain synchronization be-
tween asynchronoussupersteps [26]. Our micro-
benchmark study, presented in Figure 9 considers
three superstep bodies. Theintense experiment, in
which Superstep bodies are empty, measures the
latency of synchronization. To simulate programs
where processors execute roughly synchronously,
each processor executing ouruniform experiment
issues thirty shared memory references during each
Superstep. In contrast, half of the processors exe-
cuting ourmixed experiment issue thirty references
to shared variables during each Superstep, and the
other half issue only fifteen.

A best-of-breed centralized fetch-and-add based
algorithm was simulated on four architectures. The
one without combining is labeled NoComb in Figure
9. The three with combining use the original Ultra-
computer (Baseline) switches and theImproved and
Agressive switches described earlier. The MCSDis-
semination barrier [17], which does not generate hot
spot traffic and is intended for NUMA systems, is
simulated on a NUMA system without combining.

As expected, the availability of combining sub-
stantially decreases superstep latency for the cen-
tralized algorithms in all experiments. The improved
switches (but not the original design) match the
performance of MCS and the aggressive switches
exceed it (but may entail a longer cycle time).

4.2. Readers-Writers Coordination

Many algorithms for coordinating readers and
writers [3] have appeared. A centralized algorithm
is presented in [8] that, on systems capable of

48

 0

 100

 200

 300

 400

 500

 600

 2 3 4 5 6 7 8 9 10

S
up

er
st

ep
 L

at
en

cy
 (c

yc
le

s)

log(# processors)

Faa-Nocomb
Faa-Baseline
MCS-NocombNuma
Faa-Improved
Faa-Aggressive

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 2 3 4 5 6 7 8 9 10

S
up

er
st

ep
 L

at
en

cy
 (c

yc
le

s)

log(# processors)

Faa-Nocomb
Faa-Baseline
Faa-Improved
MCS-NocombNuma
Faa-Aggressive

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 2 3 4 5 6 7 8 9 10

S
up

er
st

ep
 L

at
en

cy
 (c

yc
le

s)

log(# processors)

Faa-Nocomb
Faa-Baseline
Faa-Improved
MCS-NocombNuma
Faa-Aggressive

Fig. 9. Superstep latency, in cycles, forintense (left), uniform (middle), andmixed (right) workloads. (lower latency is better)

combining fetch-and-add operations, does not seri-
alize readers in the absence of writers. However, no
commercial systems with this hardware capability
have been constructed, and in their absence, alter-
native “distributed local-spin” MCS algorithms have
been developed [18]. Although the MCS algorithms
do serialize readers, they minimize hot spot traffic
by having each processor busy-wait on a shared
variable stored in memory co-located with this pro-
cessor. This NUMA memory organization results in
local busy waiting that does not contribute to or
encounter network congestion.8

The most likely cause of unbounded waiting
in any reader-writer algorithm is that a continual
stream of readers can starve all writers. The standard
technique of giving writers priority eliminates this
possibility (but naturally permits writers starving
readers). In this section we present a performance
comparison of “best of breed” centralized and MCS
writer-priority reader-writer algorithms each exe-
cuted on a simulated system with the architectural
features it exploits.

The centralized reader-writer algorithm [6] issues
only a single shared-memory reference (a fetch-
and-add) when the lock is uncontested. The MCS
readers-writers algorithm [18] is commonly used on
large SMP systems. This algorithm is a hybrid of
centralized and distributed approaches. Central state
variables, manipulated with various synchronization
primitives, are used to count the number and type
of lock granted and to head the lists of waiting pro-
cessors. NUMA memory is used for busy waiting,
which eliminates network contention.

8Some authors use the term NUMA to simply mean that the
memory access time is non-uniform: certain locations are further
away than others. We use it to signify that (at least a portion of)
the shared memory is distributed among the processors, with each
processor having direct access to the portion stored locally.

4.3. Experimental Results

The algorithms are roughly comparable in per-
formance: The centralized algorithms are superior
except when only writers are present. Recall that
an ideal reader lock, in the absence of contention,
yields linear speedup; whereas an ideal writer ex-
hibits no slowdown as parallelism increases. When
there are large numbers of readers present, the
centralized algorithm, with its complete lack of
reader serialization, thus gains an advantage, which
is greater for the aggressive architecture.

The scalability of locking primitives is unim-
portant when they are executed infrequently with
low contention. Our experiments consider the more
interesting case of systems that frequently request
reader and writer locks. For all experiments each
process repeatedly:

• Stochastically chooses whether to obtain a
reader or writer lock.9

• IssuesWork non-combinable shared memory
references distributed among multiple MMs,

• Releases the lock.
• Waits Delay cycles.
For simplicity we assume one process per pro-

cessor. In order for every measurement shown on a
single plot to represent equivalent contention from
writers, we fix the value ofEW , the expected
number of writers, and thus the probability that each
process chooses to be a writer isEW divided by the
number of processes.

Each experiment measures the rate that locks are
granted over a range of system sizes (higher values
are superior). Two classes of experiments were
performed: Those classified “I” representintense
synchronization in which each process request and
release locks at the highest rate possible,Work =

9The simulated random number generator executes in a single
cycle.

49

 10

 100

 1000

 10000

 2 3 4 5 6 7 8 9 10

R
ea

de
rs

/K
C

yc
le

log(# processors)

Faa_Aggressive
Faa_Improved
Mcs_AggressiveNuma
Mcs_nocombNuma

 0.01

 0.1

 1

 10

 100

 2 3 4 5 6 7 8 9 10

W
rit

er
s/

K
C

yc
le

log(# processors)

Mcs_nocombNuma
Mcs_AggressiveNuma
Faa_Aggressive
Faa_Improved

Fig. 10. Experiment R, All Readers (left), All Writers (right)

 10

 100

 1000

 10000

 2 3 4 5 6 7 8 9 10

R
ea

de
rs

/K
C

yc
le

log(# processors)

Faa_Aggressive
Faa_Improved
Mcs_AggressiveNuma
Mcs_nocombNuma

 0.01

 0.1

 1

 10

 100

 2 3 4 5 6 7 8 9 10

W
rit

er
s/

K
C

yc
le

log(# processors)

Mcs_AggressiveNuma
Mcs_nocombNuma
Faa_Aggressive
Faa_Improved

Fig. 11. Experiment I, All Readers (left), All Writers (right)

Delay = 0. Those classified “R” are somewhat
more realistic, Work = 10 andDelay = 100.

a) All Reader Experiments, EW = 0: The left-
side charts in Figures 10 and 11 present results
from experiments where all processes are readers.
The centralized algorithm requires a single hot-spot
memory reference to grant a reader lock in the
absence of writers. In contrast, the MCS algorithm
generates accesses to centralized state variables and
linked lists of requesting readers. Not surprisingly,
the centralized algorithm has significantly superior
performance in this experiment, and MCS benefits
from combining.

b) All-Writer Experiments: The right-side charts
in Figures 10 and 11 present results from experi-
ments where all processes are writers, which must
serialize and therefore typically spend a substantial
period of time busy-waiting. The MCS algorithm
has superior performance in these experiments.

Since writers enforce mutual exclusion, no
speedup is possible as the system size increases.
Indeed one expects a slowdown due to the increased
average distance to memory, as described in [18].
The MCS algorithm issues very little hot spot traffic
when no readers are present and thus does not
benefit from combining in these experiments.

c) Mixed Reader and Writer Experiments: Fig-
ures 12 through 15 present results of experiments
with both readers and writers. In the first set,
EW = 1 (this lock will have substantial contention
from writers) and in the second setEW = 0.1 (a

 10

 100

 1000

 10000

 2 3 4 5 6 7 8 9 10

R
ea

de
rs

/K
C

yc
le

log(# processors)

Faa_Aggressive
Faa_Improved
Mcs_AggressiveNuma
Mcs_nocombNuma

 0.01

 0.1

 1

 10

 100

 2 3 4 5 6 7 8 9 10

W
rit

er
s/

K
C

yc
le

log(# processors)

Faa_Aggressive
Faa_Improved
Mcs_nocombNuma
Mcs_AggressiveNuma

Fig. 12. Experiment I,EW = 1

 10

 100

 1000

 10000

 2 3 4 5 6 7 8 9 10

R
ea

de
rs

/K
C

yc
le

log(# processors)

Faa_Aggressive
Faa_Improved
Mcs_nocombNuma
Mcs_AggressiveNuma

 0.01

 0.1

 1

 10

 100

 2 3 4 5 6 7 8 9 10

W
rit

er
s/

K
C

yc
le

log(# processors)

Faa_Aggressive
Faa_Improved
Mcs_AggressiveNuma
Mcs_nocombNuma

Fig. 13. Experiment R,EW = 1

somewhat less contended lock).
The rate at which the centralized algorithm grants

reader locks increases linearly with system size for
all these experiments and, as a result, significantly
exceeds the rate granted by MCS for all large system
experiments.

5. Open Questions

5.1. Extending the Adaptive Technique

Our adaptive technique sharply reduces queue
capacity when a crude detector of hot spot traffic is
triggered. While this technique reduces network la-
tency for hot spot polling, it might also be triggered
by mixed traffic patterns that would perform better

 10

 100

 1000

 10000

 2 3 4 5 6 7 8 9 10

R
ea

de
rs

/K
C

yc
le

log(# processors)

Faa_Aggressive
Faa_Improved
Mcs_AggressiveNuma
Mcs_nocombNuma

 0.01

 0.1

 1

 10

 100

 2 3 4 5 6 7 8 9 10

W
rit

er
s/

K
C

yc
le

log(# processors)

Faa_Aggressive
Faa_Improved
Mcs_nocombNuma
Mcs_AggressiveNuma

Fig. 14. Experiment I,EW = 0.1

 10

 100

 1000

 10000

 2 3 4 5 6 7 8 9 10

R
ea

de
rs

/K
C

yc
le

log(# processors)

Faa_Aggressive
Faa_Improved
Mcs_nocombNuma
Mcs_AggressiveNuma

 0.01

 0.1

 1

 10

 100

 2 3 4 5 6 7 8 9 10

W
rit

er
s/

K
C

yc
le

log(# processors)

Mcs_AggressiveNuma
Faa_Improved
Faa_Aggressive

Fig. 15. Experiment R,EW = 0.1

50

with longer queues. We have neither witnessed nor
investigated this effect, which might be mitigated by
more gradual adaptive designs that variably adjust
queue capacity as a function of a continuously
measured rate of combining.

5.2. Generalization of Combining to Internet Traffic

The tree saturation problem due to hot spot access
patterns is not unique to shared memory systems.
Congestion generated by flood attacks and flash
crowds [9] presents similar challenges for Internet
Service Providers. In [16] Mahajan et al. propose a
technique to limit the disruption generated by hot
spot congestion on network traffic with overlapping
communication routes. In their scheme, enhanced
servers and routers incorporate mechanisms to char-
acterize hot spot reference patterns. As with adap-
tive combining, upstream routers are instructed to
throttle the hot spot traffic in order to reduce down-
stream congestion.

Hot spot requests do not benefit from this ap-
proach, however combining may provide an alter-
native to throttling. For example, the detection of
hot spot congestion, could trigger deployment of
proxies near to network entry points, potentially re-
ducing downstream load and increasing the hot spot
performance. This type of combining is service-
type specific and therefore service-specific strategies
must be employed. Dynamic deployment of such
edge servers requires protocols for communicating
the characteristics of hot spot aggregates to servers,
and secure mechanisms to dynamically install and
activate upstream proxies.

5.3. Combining and Cache-Coherency

Cache coherence protocols typically manage
shared (read-only) and exclusive (read-write) copies
of shared variables. Despite the obvious correspon-
dence between cache coherence and the readers-
writers coordination problem, coherence protocols
typically serialize the transmission of line contents
to individual caches. The SCI cache coherence
protocol specifies a variant of combining fetch-
and-store to efficiently enqueue requests. However,
data distribution and line invalidation on network
connected systems is strictly serialized. Extensions
of combining may be able to parallelize cache fill

operations. Challenges for such schemes would in-
clude the development of an appropriate scalable di-
rectory structure that is amenable to (de)combinable
transactions.

6. Conclusions

An investigation of the surprisingly poor perfor-
mance attained by the Ultracomputer’s combining
network when presented with 100% hot spot traffic
has revealed in a gap in the previous simulations
that hid flaws in the combining switch design.
Closing the simulation gap debunks the old claims
of good performance on busy-waiting coordination.
Fortunately the switch design was not hard to debug.
The first improvement is to simply increase the size
of one of the buffers present. The more surprising
second improvement is to artificiallydecrease the
capacity of combining queues during periods of
heavy combining. These adaptive combining queues
better distribute the memory requests across the
stages of the network, thereby increasing the overall
combining rates and lowering the memory latency.

Using the debugged switches, we then compared
the performance of centralized algorithms for the
readers writers and barrier synchronization prob-
lems with those of the widely used MCS algorithms.
The latter algorithms reduce hot spots by polling
only variables stored in memory that is co-located
with the processor in question.

Our simulation studies of these algorithms have
yielded several results: First, the MCS and central-
ized barrier algorithms have roughly equal perfor-
mance. Second, the MCS readers-writers algorithm
benefits from combining. Third, when no readers
are present, the MCS algorithm outperforms the
centralized algorithm. Finally, when readers are
present, the results are reversed. In summary, MCS
and the centralized algorithms are roughly equal in
performance. That is, with debugged switches we
are able to duplicate the previous claims of good
performance for busy-wait coordination.

Switches capable of combining memory ref-
erences are more complex than non-combining
switches. An objective of the previous design efforts
was to permit a cycle time comparable to a similar
non-combining switch. In order to maximize switch
clock frequency, a (type B, uncoupled) design was
selected that can combine messages only if they

51

arrive on the same input port and is unable to
combine a request at the head of an output queue.
We also simulated an aggressive (type A, coupled)
design without these two restrictions. As expected
it performed very well, but we have not estimated
the cycle-time penalty that may occur.

References

[1] Carl J. Beckmann and Constantine D. Polychronopoulos. Fast
barrier synchronization hardware. InProc. 1990 Conference
on Supercomputing, pages 180–189. IEEE Computer Society
Press, 1990.

[2] Thinking Machines Corp. The Connection Machine CM-5
Technical Summary, 1991.

[3] P. Courtois, F. Heymans, and D. Parnas. Concurrent control with
readers and writers.Comm. ACM, 14(10):667–668, October
1971.

[4] Daniel M. Dias and J. Robert Jump. Analysis and simulation of
buffered delta networks.IEEE Trans. Comp., C-30(4):273–282,
April 1981.

[5] Susan R. Dickey. Systolic Combining Switch Designs. PhD
thesis, Courant Institute, New York Univeristy, New York, 1994.

[6] Eric Freudenthal.Comparing and Improving Centralized and
Distributed Techniques for Coordinating Massively Parallel
Shared-Memory Systems. PhD thesis, NYU, New York, June
2003.

[7] Allan Gottlieb, Ralph Grishman, Clyde P. Kruskal, Kevin P.
McAuliffe, Lawrence Rudolph, and Marc Snir. The NYU
Ultracomputer–Designing an MIMD Shared Memory Parallel
Computer.IEEE Trans. Comp., pages 175–189, February 1983.

[8] Allan Gottlieb, Boris Lubachevsky, and Larry Rudolph. Basic
Techniques for the Efficient Coordination of Very Large Num-
bers of Cooperating Sequential Processors .ACM TOPLAS,
pages 164–189, April 1983.

[9] J. Jung, B. Krishnamurthy, and M. Rabinovich. ”flash crowds
and denial of service attacks: Characterization and implications
for cdns and web sites”. InProc. International World Wide Web
Conference, pages 252–262. ”IEEE”, May ”2002”.

[10] P. Kermani and Leonard Kleinrock. Virtual Cut-through: A
new computer communication switching technique.Computer
Networks, 3:267–286, 1979.

[11] David Kroft. Lockup-free instruction fetch/prefetch cache orga-
nization. InProc. Int’l Symposium for Computer Architecture,
pages 81–87, 1981.

[12] James Laudon and Daniel Lenoski. The SGI Origin: a ccNUMA
highly scalable server.ACM SIGARCH Computer Architecture
News, 1997.

[13] Alvin R. Lebeck and Gurindar S. Sohi. Request combining in
multiprocessors with arbitrary interconnection networks.IEEE,
TPDS, November 1994.

[14] Gjyngho Lee, C. P. Kruskal, and D. J. Kuck. On the Effective-
ness of Combining in Resolving ‘Hot Spot’ Contention.Journal
of Parallel and Distributed Computing, 20(2), February 1985.

[15] Yue-Sheng Liu. Architecture and Performance of Processor-
Memory Interconnection Networks for MIMD Shared Memory
Parallel Processing Systems. PhD thesis, New York University,
1990.

[16] R. Mahajan, S. Bellovin, S. Floyd, J. Vern, and P. Scott.
Controlling high bandwidth aggregates in the network, 2001.

[17] John M. Mellor-Crummey and Michael L. Scott. Algorithms for
scalable synchronization on shared-memory multiprocessors.
ACM Transactions on Computer Systems, 9(1):21–65, 1991.

[18] John M. Mellor-Crummey and Michael L. Scott. Scalable
Reader-Writer Synchronization for Shared Memory Multipro-
cessors.ACM Trans. Comput. Systems, 9(1):21–65, 1991.

[19] John M. Mellor-Crummey and Michael L. Scott. Synchroniza-
tion without contention. InProc. ISCA IV, pages 269–278,
1991.

[20] Gregory F. Pfister, William C. Brantley, David A. George,
Steve L. Harvey, Wally J. Kleinfielder, Kevin P. McAuliffe,
Evelin S. Melton, V. Alan Norton, and Jodi Weiss. The ibm
research parallel processor prototype (rp3). InProc. ICPP,
pages 764–771, 1985.

[21] Gregory F. Pfister and V. Alan Norton. “Hot Spot” Contention
and Combining in Multistage Interconnection Networks.IEEE
Transactions on Computers, c-34(10), October 1985.

[22] Randall D. Rettberg, William R. Crowther, and Phillip P.
Carvey. The Monarch Parallel Processor Hardware Design.
IEEE Computer, pages 18–30, April 1990.

[23] Steven L. Scott and Gurindar S. Sohi. Using feedback to control
tree saturation in multistage interconnection networks. InProc.
Int’l Symposium for Computer Architecture, pages 167–176,
May 1989.

[24] Marc Snir and Jon A. Solworth. Ultracomputer Note 39, The
Ultraswitch - A VLSI Network Node for Parallel Processing.
Technical report, Courant Institute, New York University, 1984.

[25] Harold Stone. Parallel processing with the perfect shuffle.IEEE
Trans. Computing, C-25(20):55–65, 1971.

[26] Leslie G. Valiant. A bridging model for parallel computation.
CACM, 33(8):103–111, 1990.

52

Multiprogramming Performance of the Pentium 4 with

Hyper-Threading

James R. Bulpin∗and Ian A. Pratt

University of Cambridge Computer Laboratory
J J Thomson Avenue, Cambridge, UK, CB3 0FD.

Tel: +44 1223 331859.
james.bulpin@cl.cam.ac.uk

Abstract

Simultaneous multithreading (SMT) is a very fine
grained form of hardware multithreading that allows
simultaneous execution of more than one thread with-
out the notion of an internal context switch. The
fine grained sharing of processor resources means that
threads can impact each others’ performance.

Tuck and Tullsen first published measurements of the
performance of the SMT Pentium 4 processor with
Hyper-Threading [12]. Of particular interest is their
evaluation of the multiprogrammed performance of
the processor by concurrently running pairs of single-
threaded benchmarks. In this paper we present experi-
ments and results obtained independently that confirm
their observations. We extend the measurements to
consider the mutual fairness of simultaneously execut-
ing threads (an area hinted at but not covered in detail
by Tuck and Tullsen) and compare the multiprogram-
ming performance of pairs of benchmarks running on
the Hyper-Threaded SMT system and on a compara-
ble SMP system.

We show that there can be considerable bias in the
performance of simultaneously executing pairs and
investigate the reasons for this. We show that the
performance gap between SMP and Hyper-Threaded
SMT for multiprogrammed workloads is often lower
than might be expected, an interesting result given
the obvious economic and energy consumption advan-
tages of the latter.

∗James Bulpin is funded by a CASE award from Marconi
Corporation plc. and EPSRC

1 Introduction

Intel Corporation’s “Hyper-Threading” technol-
ogy [6] introduced into the Pentium 4 [3] line of pro-
cessors is the first commercial implementation of si-
multaneous multithreading (SMT). SMT is a form
of hardware multithreading building on dynamic is-
sue superscalar processor cores [15, 14, 1, 5]. The
main advantage of SMT is its ability to better utilise
processor resources and to hide memory hierarchy
latency by being able to provide more independent
work to keep the processor busy. Other architectures
for simultaneous multithreading and hardware mul-
tithreading in general are described elsewhere [16].

Hyper-Threading currently supports two heavy
weight threads (processes) per processor, presenting
the abstraction of two independent logical processors.
The physical processor contains a mixture of dupli-
cated (per-thread) resources such as the instruction
queue; shared resources tagged by thread number
such as the DTLB and trace cache; and dynamically
shared resources such as the execution units. The
resource partitioning is summarised in table 1. The
scheduling of instructions to execution units is pro-
cess independent although there are limits on how
many instructions each process can have queued to
try to maintain fairness.

Whilst the logical processors are functionally in-
dependent, contention for resources will affect the
progress of the processes. Compute-bound processes
will suffer contention for execution units while pro-
cesses making more use of memory will contend for
use of the cache with the possible result of increased
capacity and conflict misses. With cooperating pro-
cesses the sharing of the cache may be useful but for
two arbitrary processes the contention may have a

53

Duplicated Shared Tagged/Partitioned
Fetch ITLB Microcode ROM Trace cache

Streaming buffers
Branch Return stack buffer Global history array
prediction Branch history buffer
Decode State Logic uOp queue (partitioned)
Execute Register rename Instruction schedulers Retirement

Reorder buffer
(up to 50% use per thread)

Memory Caches DTLB

Table 1: Resource division on Hyper-Threaded P4 processors.

negative effect.

In general, multi-threaded processors are best ex-
ploited by running cooperating threads such as a true
multi-threaded program. In reality however many
workloads will be single threaded. With Intel now in-
corporating Hyper-Threading into the Pentium 4 line
of processors aimed at desktop PCs it is likely that
many common workloads will be single-threaded or
at least have a dominant main thread.

In this paper we present measurements of the perfor-
mance of a real SMT system. This is preferable to
simulation as using an actual system is the only way
to guarantee that all contributory factors are cap-
tured in the measurements. Of particular interest was
the effect of the operating system and the memory
hierarchy, features sometimes simplified or ignored
in simulation studies. Furthermore most simulation
studies are based on SMTSIM [13] which differs from
Intel’s Hyper-Threading in a number of major ways
including the number of threads available, the degree
of dynamic sharing and the instruction set architec-
ture.

A study of this nature is useful as an aide to un-
derstanding the benefits and limitations of Hyper-
Threading. This work is part of a larger study
of practical operating system support for Hyper-
Threading. The observations from the experiments
described here are helping to drive the design of a
Hyper-Threading-aware process scheduler.

It is of interest to compare the performance of pairs of
processes executing with different degrees of resource
sharing. The scenarios are:

• Shared-memory symmetric multiprocessing
(SMP) where the memory and its bus are the
main shared resources.

• SMT with its fine grain sharing of all resources.

• Round-robin context switching with the non-
simultaneous sharing of the caches.

The obvious result is that in general the per-thread
and aggregate performance will be the highest on the
SMP system. However at a practical level, particu-
larly for the mass desktop market, one must consider
the economic advantages of a single physical proces-
sor SMT system. It is therefore useful to know how
much better the SMP performance is.

2 Related Work

Much of the early simultaneous multithreading
(SMT) work studied the performance of various
benchmarks in order to demonstrate the effectiveness
of the architecture [15, 14, 5]. Necessarily these stud-
ies were simulation based and considered the applica-
tion code rather than the entire system including the
operating system effects. Whilst useful, the results
from these studies do not directly apply to current
hardware as the microarchitecture and implementa-
tion can drastically change the behaviour.

Snavely et al. use the term “symbiosis” to describe
how concurrently running threads can improve the
throughput of each other [8]. They demonstrated the
effect on the Tera MTA and a simulated SMT pro-
cessor.

Redstone et al. investigated the performance of work-
loads running on a simulated SMT system with a full
operating system [7]. They concluded that the time
spent executing in the kernel can have a large im-
pact on the speedup measurements compared to a
user-mode only study. They report that the inclu-
sion of OS effects on a SPECInt95 study has less im-
pact on SMT performance measurements that it does
on non-SMT superscalar results due to the better la-
tency hiding of SMT being able to mask the poorer

54

IPC of the kernel parts of the execution. This result
is important as it means that a comparison of SMT
to superscalar without taking the OS into account
would not do the SMT architecture justice.

In a study of database performance on SMT proces-
sors, Lo et al. noted that the large working set of
this type of workload can reduce the benefit of using
SMT unless page placement policy is used to keep the
important “critical” working set in the cache [4].

Grunwald and Ghiasi used synthetic workloads run-
ning on a Hyper-Threaded Pentium 4 to show that a
malicious thread can cause a huge performance im-
pact to a concurrently running thread through care-
ful targeting of shared resources [2]. Our work has a
few features in common with that of Grunwald and
Ghiasi but we are more interested in the mutual ef-
fects of non-malicious applications that may not have
been designed or compiled with Hyper-Threading in
mind. Some interesting results from this study were
the large impact of a trace-cache flush caused by self-
modifying code, and of a pipeline flush caused by
floating-point underflow.

Vianney assessed the performance of Linux under
Hyper-Threading using a number of microbench-
marks and compared the performance of some mul-
tithreaded workloads running on a single processor
with and without Hyper-Threading enabled [17]. The
result was that most microbenchmarks had the same
performance with Hyper-Threading both enabled and
disabled and that the multithreaded workloads ex-
hibited speedups of 20 to 50% with Hyper-Threading
enabled depending on the workload and kernel ver-
sion.

More recently Tuck and Tullsen [12] have made mea-
surements of thread interactions on the Intel Pen-
tium 4 with Hyper-Threading; these measurements
parallel our own upon which this work is based. All
of the studies show that the range of behaviour is
wide.

3 Experimental Method

The experiments were conducted on an Intel Pen-
tium 4 Xeon based system running the Linux 2.4.19
kernel. This version of the kernel contains support
for Hyper-Threading at a low level, including the de-
tection of the logical processors and the avoidance of
timing-loops. The kernel was modified with a vari-

ation of the cpus allowed patch1. This patch pro-
vides an interface to the Linux cpus allowed task
attribute and allows the specification of which pro-
cessor(s) a process can be executed on. This is par-
ticularly important as the scheduler in Linux 2.4.19
is not aware of Hyper-Threading. Use of this patch
prevented threads being migrated to another proces-
sor (logical or physical). A /proc file was added to
allow lightweight access to the processor performance
counters.

Details of the experimental machine are given in ta-
ble 2. The machine contained two physical proces-
sors each having two logical (Hyper-Threaded) pro-
cessors. Also included are details given by Tuck and
Tullsen for their experimental machine [12] to which
Intel gave them early access which would explain the
non-standard clock speed and L2 cache combination.

For each pair of processes studied the following proce-
dure was used. Both processes were given a staggered
start and each run continuously in a loop. The tim-
ings of runs were ignored until both processes had
completed at least one run. The experiment contin-
ued until both processes had accumulated 3 timed
runs. Note that the process with the shorter run-
time will have completed more than 3 runs. This
method guaranteed that there were always two ac-
tive processes and allowed the caches, including the
operating system buffer cache, to be warmed. Note
that successive runs of the one process would start at
different points within the other process’ execution
due to the differing run times for both.

The complete cross-product of benchmarks was run
on Hyper-Threading, SMP and single-processor con-
text switching configurations. The Hyper-Threading
experiments were conducted using the two logical
processors on the second physical processor and the
SMP experiments used the first logical processor on
each physical processor with the other processor idle
(equivalent to disabling Hyper-Threading). The con-
text switching experiments were run on the second
physical processor and used the round-robin feature
of the Linux scheduler with a modification to allow
the quantum to be specified. In all cases the ma-
chine was configured to minimise background system
activity.

A set of base run times and performance counter val-
ues were measured by running benchmarks alone on
a single physical processor. A dummy run of each
benchmark was completed before the timed runs to

1The cpus allowed/launch policy patch was posted to the
linux-kernel mailing list by Matthew Dobson in December 2001

55

Our machine Tuck and Tullsen
Model Intel SE7501 based
CPU 2 x P4 Xeon 2.4GHz HT 1 x P4 2.5GHz HT
L1 cache 8kB 4 way D, 12k-uops trace I
L2 cache 8 way 512kB 8 way 256kB
Memory 1GB DDR DRAM 512MB DRDRAM
OS RedHat 7.3 RedHat 7.3
Kernel Linux 2.4.19 Linux 2.4.18smp

Table 2: Experimental machine details.

warm the caches. A total of 9 timed runs were made
and the median run time was recorded. This proce-
dure was performed twice; once using a single logical
processor with the second logical processor idle (but
still with Hyper-Threading enabled), and once with
Hyper-Threading disabled. The run times for both
configurations were almost identical. This behaviour
is expected because the processor recombines parti-
tioned resources when one of the logical processors is
idle through using the HALT instruction [6].

The pairs of processes came from the SPEC CPU2000
benchmark suite [11]. The runs were complete and
used the reference data sets. The executables were
compiled with GCC 2.96 using a fairly benign set
of optimisation flags. The Fortran-90 benchmarks,
178.galgel, 187.facerec, 189.lucas and 191.fma3d were
not used due to GCC not supporting this language.

In order to ascertain the effect of the compiler on the
process’ interaction a subset of experiments was run
using GCC 3.3 with a more aggressive set of opti-
misation flags. While the newer compiler produced
executables with reduced run times, we observed no
significant difference in speedup. We hope to further
explore this area in the future using the Intel C Com-
piler.

4 Results

For the purposes of the analysis, one process was
considered to be the subject process and the other
the background. The experiments were symmetric
therefore only one experiment was required for each
pair but the data from each experiment was anal-
ysed twice with the two processes taking the roles
of subject and background in turn (except where a
benchmark competed against a copy of itself).

The performance of an individual benchmark run-
ning in a simultaneously executing pair is described

by its execution time when running alone divided by
its execution time when running in the pair. If a
non-SMT processor is being timeshared in a theo-
retic perfect (no context switch penalty) round-robin
fashion with no cache pollution then a performance
of 0.5 would be expected as the benchmark is get-
ting half of the CPU time. A perfect SMP system
with each processor running one of the pair of bench-
marks with no performance interactions would give
a performance of 1 for each benchmark. It would be
expected that benchmarks running under SMT would
fall somewhere between 0.5 and 1, anything less than
0.5 being a unfortunate loss.

The total system speedup for the pair of benchmarks is
the sum of the two performance values. This speedup
is compared to zero-cost context switching with a sin-
gle processor so a perfect SMP system should have
a system speedup of 2 while a single Intel Hyper-
Threaded processor should come in somewhere be-
tween 1 and 2. Intel suggest that Hyper-Threading
provides a 30% speedup which would correspond to
a system speedup of 1.3 in our analysis.

In the following sections we present a summary of
results from the Hyper-Threading and SMP experi-
ments. The single-processor context switching exper-
iments using a quantum of 10ms generally resulted in
a performance of no worse than 0.48 for each thread, a
4% drop from the theoretic zero-cost case. As well as
the explicit cost of performing the context switch the
cache pollution contributes to the slowdown. The rel-
atively long quantum means that the processes have
time to build up and benefit from cached informa-
tion. We do not present detailed results from these
experiments.

4.1 Hyper-Threading

In figure 1 we show our results for benchmark pairs
on the Hyper-Threaded Pentium 4 using the same
format as Tuck and Tullsen [12] to allow a direct

56

comparison2. For each subject benchmark a box and
whisker plot shows the range of system speedups ob-
tained when running the benchmark simultaneously
with each other benchmark. The box shows the in-
terquartile range (IQR) of these speedups with the
median speedup shown by a line within the box. The
whiskers extend to the most extreme speedup within
1.5 IQR of the 25th and 75th percentile (i.e. the edges
of the box) respectively. Individual speedups outside
of this range are shown as crosses. The gaps on the
horizontal axis are where the Fortan-90 benchmarks
would fit.

Our experimental conditions differ from Tuck and
Tullsen’s in a few ways, mainly the size of the L2
cache (our 512kB vs. 256kB), the speed of the mem-
ory (our 266MHz DDR vs. 800MHz RAMBUS) and
the compiler (our GCC 2.96 vs. the Intel Reference
Compiler). The similarities in the results given these
differences show that the effect of the processor mi-
croarchitecture is important and that the lessons that
can be learned can be applied to more than just the
particular configuration under test.

For the integer benchmarks our results match those
of Tuck and Tullsen almost exactly. However we do
see a slightly larger IQR with many of the integer
benchmarks which is one reason we see fewer outliers
than Tuck and Tullsen. Of the floating point results
we match closely on wupwise, mgrid, applu, art and
equake, and fairly closely on swim and apsi. We show
notable differences on mesa, our experiments having
greater speedups, and sixtrack, our experiments hav-
ing smaller speedups. The sixtrack difference is be-
lieved to be due to the different L2 cache sizes; this
is further described in the discussion below. We did
not use the Fortran-90 benchmarks.

We measure an average system speedup across all the
benchmarks of 1.20, the same figure as reported by
Tuck and Tullsen. We measure slightly less desirable
best and worst case speedups of 1.50 (mcf vs. mesa)
and 0.86 (swim vs. mgrid) compared to Tuck and
Tullsen’s 1.58 (swim vs. sixtrack) and 0.90 (swim vs.
art).

Figure 2 shows the individual performance of each
benchmark in a multiprogrammed pair. The figure
is organised such that a square describes the per-
formance of the row benchmark when sharing the
processor with the column benchmark. The perfor-
mance is considered bad when it is less than 0.5, i.e.
worse than perfect context switching, and good when
above 0.5. The colour of the square ranges from white

2the figure is physically sized to match Tuck and Tullsen’s

for bad to black for good with a range of shades in-
between. The first point to note is the lack of re-
flective symmetry about the top-left to bottom-right
diagonal. In other words, when two benchmarks are
simultaneously executing, the performance of each in-
dividual benchmark (compared to it running alone)
is different. This shows that the performance of pairs
of simultaneously executing SPEC2000 benchmarks
is not fairly shared. Inspection of the rows shows that
benchmarks such as mesa and apsi always seem to do
well regardless of what they simultaneously execute
with. Benchmarks such as mgrid and vortex suffer
when running against almost anything else. Looking
at the columns suggests that benchmarks such as six-
track and mesa rarely harm the benchmark they share
the processor with while swim, art and mcf usually
hurt the performance of the other benchmark.

The results show that a benchmark executing with
another copy of itself (using a staggered start) usu-
ally has a lower than average performance demon-
strating the processor’s preference for heterogeneous
workloads which is not overcome by benefits in shared
text segments.

The performance counter values recorded from the
base runs of each benchmarks allow an insight into
the observed behaviour:

mcf has a notably low IPC which can be attributed,
at least in part, to its high L2 and L1-D miss rates.
An explanation for why this benchmark rarely suf-
fers when simultaneously executing with other bench-
marks is that it is already performing so poorly that
it is difficult to do much further damage (except with
art and swim which have very high L2 miss rates).
It might be expected that a benchmark simultane-
ously executing with mcf would itself perform well
so long as it made relatively few cache accesses. eon
and mesa fall into this category and the latter does
perform well (28% speedup compared to sequential
execution) but the former has only a moderate per-
formance (12% speedup) probably due its very high
trace cache miss rate causing many accesses to the
(already busy) L2 cache.

gzip is one of the benchmarks that generally does not
detriment the performance of other benchmarks. It
makes a large number of cache accesses and has a
moderately high L1 D-cache miss rate of approxi-
mately 10%. It does however have a small L2 cache
and D-TLB miss rate due to its small memory foot-
print.

vortex suffers a reduced performance when running
with most other benchmarks. There is nothing of par-

57

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

M
ul

tip
ro

gr
am

m
ed

 s
pe

ed
up

gz
ip

vp
r

gc
c

m
cf

cr
af

ty
pa

rs
er

eo
n

pe
rlb

m
k

ga
p

vo
rt

ex
bz

ip
2

tw
ol

f
w

up
w

is
e

sw
im

m
gr

id
ap

pl
u

m
es

a

ar
t

eq
ua

ke

am
m

p

si
xt

ra
ck

ap
si

Figure 1: Multiprogrammed speedup of pairs of SPEC CPU2000 benchmarks running on a Hyper-Threaded
processor.

16
4.

gz
ip

17
5.

vp
r

17
6.

gc
c

18
1.

m
cf

18
6.

cr
af

ty
19

7.
pa

rs
er

25
2.

eo
n

25
3.

pe
rlb

m
k

25
4.

ga
p

25
5.

vo
rt

ex
25

6.
bz

ip
2

30
0.

tw
ol

f
16

8.
w

up
w

is
e

17
1.

sw
im

17
2.

m
gr

id
17

3.
ap

pl
u

17
7.

m
es

a
17

9.
ar

t
18

3.
eq

ua
ke

18
8.

am
m

p
20

0.
si

xt
ra

ck
30

1.
ap

si

164.gzip
175.vpr
176.gcc
181.mcf

186.crafty
197.parser

252.eon
253.perlbmk

254.gap
255.vortex
256.bzip2
300.twolf

168.wupwise
171.swim
172.mgrid
173.applu
177.mesa

179.art
183.equake
188.ammp

200.sixtrack
301.apsi

Speedup > 30%
Speedup 25 to 30%
Speedup 20 to 25%
Speedup 15 to 20%
Speedup 10 to 15%
Speedup 5 to 10%
Approx same
Slowdown 5 to 10%
Slowdown 10 to 15%
Slowdown 15 to 20%
Slowdown > 20%

Figure 2: Effect on each SPEC CPU2000 benchmark in a multiprogrammed pair running on a Hyper-
Threaded processor. A black square represents a good performance for the subject benchmark and a white
square denotes a bad performance.

58

ticular note in it performance counter metrics other
than a moderately high number of I-TLB misses and
a reasonable number of trace cache misses (although
both figures are well below the highest of each met-
ric).

mcf, swim and art have high L1-D and L2 miss rates
when running alone and have a low average IPC.
They tend to cause a detriment to the performance
of other benchmarks when simultaneously executing.
art and mcf generally only suffer a performance loss
themselves when the other benchmark also has a high
L2 miss rate, swim suffers most when sharing with
these benchmarks but is also more vulnerable to those
with moderate miss rates.

mgrid is the benchmark that suffers the most when
running under SMT whilst the simultaneously exe-
cuting benchmark generally takes only a small perfor-
mance hit. mgrid is notable in that it executes more
loads per unit time than any other SPEC CPU2000
benchmark and has the highest L1 D-cache miss rate
(per unit time). It has only a moderately high L2
miss rate and a low D-TLB miss rate. The only
benchmarks that do not cause a performance loss
to mgrid are those with low L2 miss rates (per unit
time). mgrid’s baseline performance is good (an IPC
of 1.44) given its high L1-D miss rate. The bench-
mark relies on a good L2 hit rate which makes it vul-
nerable to any simultaneously executing thread that
pollutes the L2 cache.

sixtrack has a high baseline IPC (with a large part of
that being floating point operations) and a low L1-D
miss rate but a fairly high rate of issue of loads. The
only benchmark it causes any significant performance
degradation to is another copy of itself; this is most
likely due to competition for floating point execution
units. It suffers a moderate performance degrada-
tion when simultaneously running with benchmarks
with moderate to high cache miss rates such as art
and swim. The competitor benchmark will increase
contention in the caches and harm sixtrack’s good
cache hit rate. Tuck and Tullsen report that sixtrack
suffers only minimal interference from swim and art.
We believe the reason for this difference is that our
larger L2 cache gives sixtrack a better baseline per-
formance which makes it more vulnerable to perfor-
mance degradation from benchmarks with high cache
miss rates giving it lower relative speedups.

The best pairing observed in terms of system
throughput was mcf vs. mesa (50% system speedup).
Although mcf gets the better share of the perfor-
mance gains, mesa does fairly well too. The perfor-

mance counter metrics shown qualitatively in table 3
for this pair show that heterogeneity is good.

Tuck and Tullsen note that swim appears in both the
best and worse pairs. The reason for this is mainly
down to the competitor. mgrid with its high L1-D
miss rate is bad; sixtrack and mesa are good as they
only have low L1-D miss rates so do little harm to
the other thread.

4.2 Hyper-Threading vs. SMP

Figure 3 shows the speedups for the benchmark pairs
running in a traditional SMP configuration. Also
shown for comparison is the Hyper-Threading data
as shown above. An interesting observation is that
benchmarks that have a large variation in perfor-
mance under Hyper-Threading also have a large vari-
ation under SMP. It might be imagined that the per-
formance of a given benchmark would be more stable
under SMP than under Hyper-Threading since there
is much less interaction between the two processes.
The correspondence in variation suggest that compe-
tition for off-chip resources such as the memory bus
are as important as on-chip interaction.

Unlike Hyper-Threading, SMP does not show any no-
table unfairness between the concurrently executing
threads. This is clearly due to the vast reduction in
resource sharing with the main remaining resource
being the memory and its bus and controller. This
means that the benchmarks that reduce the perfor-
mance of the other running benchmarks are also the
ones that suffer themselves. The benchmarks in this
category include mcf, swim, mgrid, art and equake, all
ones that exhibit a high L2 miss rate which further
identifies the memory bus as the point of contention.

The mean speedup for all pairs was 1.20 under Hyper-
Threading and 1.77 under SMP. This means that the
performance of an SMP system is 48% better than
a corresponding Hyper-Threading system for SPEC
CPU2000.

A full table of results is not shown here but some
interesting cases are described:

An example of expected behaviour is equake vs. mesa.
This pair exhibits a system performance of just under
1 for context switching on a single processor, just un-
der 2 for traditional SMP and a figure in the middle,
1.42, for Hyper-Threading. As mesa has a low cache
miss rate it does not make much use of the memory
bus so it not slowed by equake’s high L2 miss rate
when running under SMP. Similarly for round robin

59

Best HT system throughput (1.50) 181.mcf 177.mesa
Int/FP Int FP
L1-D/L2 miss rates high low
D-TLB miss rate high low
Trace cache miss rate low high
IPC very low moderate
Worst HT system throughput (0.86) 171.swim 172.mgrid
Int/FP FP FP
L1-D miss rate moderate moderate
L2 miss rate high low
D-TLB miss rate high low
Trace cache miss rate low low
IPC fairly low fairly high
Stereotypical SMP vs HT performance 183.equake 177.mesa
Int/FP FP FP (less FP than equake)
L1-D/L2 miss rate moderate high
Trace cache miss rate low high
IPC moderate moderate

Table 3: Performance counter metrics for some interesting benchmark pairs. Metrics are for the benchmark
running alone.

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 2

 2.1

M
ul

tip
ro

gr
am

m
ed

 s
pe

ed
up

gz
ip

vp
r

gc
c

m
cf

cr
af

ty
pa

rs
er

eo
n

pe
rlb

m
k

ga
p

vo
rt

ex
bz

ip
2

tw
ol

f
w

up
w

is
e

sw
im

m
gr

id
ap

pl
u

m
es

a

ar
t

eq
ua

ke

am
m

p

si
xt

ra
ck

ap
si

Figure 3: Multiprogrammed speedup of pairs of SPEC2000 benchmarks running on a Hyper-Threaded
processor and non-Hyper-Threaded SMP. The right of each pair of box and whiskers is Hyper-Threading
and the left is SMP.

60

context switching the small data footprint of mesa
does not cause any significant eviction of data be-
longing to equake. Under Hyper-Threading there is
little contention for the caches and the smaller frac-
tion of floating-point instructions in mesa means that
the workloads are heterogeneous and therefore can
better utilise the processor’s execution units.

art and mcf perform similarly under SMP, Hyper-
Threading and round robin context switching. This
is almost certainly due to the very high L1 and L2
cache miss rates and the corresponding low IPC they
both achieve.

When executing under Hyper-Threading, art does
better to the detriment of mgrid however under SMP
the roles are reversed. Both have a high L1 miss
rate but art’s is the highest of the pair. art has a
high, and mgrid a fairly low L2 miss rate. Under
Hyper-Threading art benefits most from the latency
hiding offered by Hyper-Threading and causes harm
to mgrid by polluting the L1-D cache. Under SMP
there is no L1 interference so the mgrid outperforms
art due to the lower L2 miss rate of the former.

When running against another copy of itself vor-
tex has virtually no speedup running under Hyper-
Threading compared to context switching. Under
SMP there is almost no penalty which is due to the
fairly low memory bus utilisation. As mentioned
above, there is nothing particularly special about this
benchmark’s performance counter metrics to explain
the low performance under Hyper-Threading.

vortex and mcf running under SMP take a notable
(20% and 15% respectively) performance hit com-
pared to running alone. This is due to a moderate
L2 miss rates causing increased bus utilisation. Per-
formance under Hyper-Threading shows vortex suf-
fering a large performance loss (20% lower than if it
only had half the CPU time) while mcf does partic-
ularly well. The latter has a low IPC due to its high
cache miss rates so benefits from latency hiding. vor-
tex has a fairly low L1-D miss rate which is harmed
by the competing thread.

gzip with its very low L2 and trace cache miss rates,
moderate L1-D miss rate and large number of mem-
ory accesses always does well under SMP due to the
lack of bus contention but has a moderate and mixed
performance under Hyper-Threading. gzip is vulner-
able under Hyper-Threading due to its high IPC and
low L2 miss rate meaning it is already making very
good use of the processor’s resources. Any other
thread will take away resource and slow gzip down.

5 Conclusions

We have measured the mutual effect of processes si-
multaneously executing on the Intel Pentium 4 pro-
cessor with Hyper-Threading. We have indepen-
dently confirmed similar measurements made by Tuck
and Tullsen [12] showing speedups for individual
benchmarks of up to 30 to 40% (with a high vari-
ance) compared to sequential execution. We have ex-
panded on these results to consider the bias between
the simultaneously executing processes and shown
that some pairings can exhibit a performance bias
of up to 70:30. Using performance counters we have
shown that many results can be explained by consid-
ering cache miss rates and resource requirement het-
erogeneity in general. Whilst the interactions are too
complex to be able to give a simple formula for pre-
dicting performance, a general rule of thumb is that
threads with high cache miss rates can have a detri-
mental effect on simultaneously executing threads.
Those with high L1 miss rates tend to benefit from
the latency hiding provided by Hyper-Threading.

We have compared the multiprogrammed perfor-
mance of Hyper-Threading with traditional symmet-
ric multiprocessing (SMP) and shown that although
the throughput is always higher with SMP as would
be expected, the performance gap between Hyper-
Threading and SMP is not as large as may be ex-
pected. This is important given the economic and
power consumption benefits of having a single physi-
cal processor package.

These measurements are part of a larger study of op-
erating system support for SMT processors. Of rel-
evance to this paper is the development of a process
scheduler that is able to best exploit the processor
while avoiding coscheduling poorly performing pairs
of processes. We are using data from processor per-
formance counters to influence the scheduling deci-
sions and avoiding the need to have a priori knowl-
edge of the process’ characteristics. We believe that
dynamic, feedback-directed scheduling is important
as it can deal with complex thread interactions which
may differ between microarchitecture versions. We
have goals similar to Snavely et al. [9, 10] but our
scheduler is designed to constantly adapt to chang-
ing workloads and phases of execution without having
to go through a sampling phase.

61

6 Acknowledgements

The authors would like to thank Tim Harris, Keir
Fraser, Steve Hand and Andrew Warfield of the Uni-
versity of Cambridge Computer Laboratory for help-
ful discussions and feedback on earlier drafts of this
paper. The authors would also like to thank the re-
viewers for their constructive and helpful comments.

References

[1] S. J. Eggers, J. S. Emer, H. M. Levy, J. L. Lo R. L.
Stamm, and D. M. Tullsen. Simultaneous multi-
threading: A platform for next-generation proces-
sors. IEEE Micro, 17(5):12–19, Oct. 1997.

[2] D. Grunwald and S. Ghiasi. Microarchitectural
denial of service: Insuring microarchitectural fair-
ness. In Proceedings of the 35th Annual Interna-
tional Symposium on Microarchitecture (MICRO-
35), pages 409–418. IEEE Computer Society, Nov.
2002.

[3] G. Hinton, D. Sager, M. Upton, D. Boggs
D. Carmean, A. Kyker, and P. Roussel. The microar-
chitecture of the Pentium 4 processor. Intel Technol-
ogy Journal, 5(1):1–13, Feb. 2001.

[4] J. L. Lo, L. A. Barroso, S. J. Eggers K. Ghara-
chorloo, H. M. Levy, and S. S. Parekh. An analysis
of database workload performance on simultaneous
multithreaded processors. In Proceedings of the 25th
International Symposium on Computer Architecture
(ISCA ’98), pages 39–50. ACM Press, June 1998.

[5] J. L. Lo, J. S. Emer, H. M. Levy, R. L. Stamm D. M.
Tullsen, and S. J. Eggers. Converting thread-level
parallelism to instruction-level parallelism via simul-
taneous multithreading. ACM Transactions on Com-
puter Systems, 15(3):322–354, Aug. 1997.

[6] D. T. Marr, F. Binns, D. L. Hill, G. Hinton D. A. Ko-
ufaty, J. A. Miller, and M. Upton. Hyper-Threading
technology architecture and microarchitecture. Intel
Technology Journal, 6(2):1–12, Feb. 2002.

[7] J. A. Redstone, S. J. Eggers, and H. M. Levy. An
analysis of operating system behaviour on a simul-
taneous multithreaded architecture. In Proceedings
of the 9th International Conference on Architectural
Support for Programming Langauages and Operating
Systems (ASPLOS ’00), pages 245–256. ACM Press,
Nov. 2000.

[8] A. Snavely, N. Mitchell, L. Carter, J. Ferrante and
D. M. Tullsen. Explorations in symbiosis on two
multithreaded architectures. In Workshop on Multi-
Threaded Execution, Architectures and Compilers,
Jan. 1999.

[9] A. Snavely and D. M. Tullsen. Symbiotic jobschedul-
ing for a simultaneous multithreading processor. In
Proceedings of the 9th International Conference on
Architectural Support for Programming Langauages
and Operating Systems (ASPLOS ’00), pages 234–
244. ACM Press, Nov. 2000.

[10] A. Snavely, D. M. Tullsen, and G. Voelker. Sym-
biotic jobscheduling with priorities for a simultane-
ous multithreading processor. In Proceedings of the
2002 International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS ’02),
pages 66–76. ACM Press, June 2002.

[11] The Standard Performance Evaluation Corporation,
http://www.spec.org/.

[12] N. Tuck and D. M. Tullsen. Initial observations of the
simultaneous multithreading Pentium 4 processor. In
Proceedings of the 12th International Conference on
Parallel Architectures and Compilation Techniques
(PACT ’2003), pages 26–34. IEEE Computer Soci-
ety, Sept. 2003.

[13] D. M. Tullsen. Simulation and modeling of a simul-
taneous multithreading processor. In 22nd Annual
Computer Measurement Group Conference, pages
819–828. Computer Measurement Group, Dec. 1996.

[14] D. M. Tullsen, S. J. Eggers, J. S. Emer, and H. M.
Levy. Exploiting choice: Instruction fetch and issue
on an implementable simultaneous multithreading
processor. In Proceedings of the 23th International
Symposium on Computer Architecture (ISCA ’96),
pages 191–202. ACM Press, May 1996.

[15] D. M. Tullsen, S. J. Eggers, and H. M. Levy. Simul-
taneous multithreading: Maximizing on-chip paral-
lelism. In Proceedings of the 22th International Sym-
posium on Computer Architecture (ISCA ’95), pages
392–403. ACM Press, June 1995.

[16] T. Ungerer, B. Robič, and J. Šilc. A survey of proces-
sors with explicit multithreading. ACM Computing
Surveys, 35(1):29–63, Mar. 2003.

[17] D. Vianney. Hyper-Threading speeds Linux. IBM
developerWorks, Jan. 2003.

62

