
Debunking then Duplicating Ultracomputer
Performance Claims by Debugging the Combining

Switches

Eric Freudenthal and Allan Gottlieb
Department of Computer Science

Courant Institute of Mathematical Sciences
New York University

{freudenthal, gottlieb}@nyu.edu

Abstract

Memory system congestion due to serialization of hot spot
accesses can adversely affect the performance of interprocess
coordination algorithms. Hardware and software techniques
have been proposed to reduce this congestion and thereby
provide superior system performance. The combining networks
of Gottlieb et al. automatically parallelize concurrent hot spot
memory accesses, improving the performance of algorithms
that poll a small number of shared variables.

We begin by debunking one of the performance claims made

for the NYU Ultracomputer. Specifically, a gap in its simula-

tion coverage hid a design flaw in the combining switches

that seriously impacts the performance of busy wait polling in

centralized coordination algorithms. We then debug the system

by correcting the design and closing the simulation gap, after

which we are able to duplicate the original claims of excellent

performance on busy wait polling. Specifically our simulations

show that, with the revised design, the Ultracomputer readers-

writers and barrier algorithms achieve performance compa-

rable to the highly regarded MCS algorithms.

1. Introduction

It is well known that the scalability of inter-
process coordination can limit the performance of
shared-memory computers. Since the latency re-
quired for coordination algorithms such as barri-
ers or readers-writersincreaseswith the available
parallelism, their impact is especially important for
large-scale systems. A common software technique
used to minimize this effect isdistributed local-
spinningin which processors repeatedly access vari-
ables stored locally (in so-called NUMA systems,

the shared memory is physically distributed among
the processors).

An less common technique is to utilize special
purpose coordination hardware such as the barrier
network of [1], the CM5 Control Network [2], or
the NYU “combining network” [8] and have the
processors reference centralized memory. The idea
behind the combining network is that when refer-
ences to the same memory location meet at a net-
work switch, they are combined into one reference
that proceeds to memory. When the response to the
combined messages reaches the switch, data held
in the “wait buffer” is used to generate the needed
second response. Other approaches to combining
have been pursued as well, see for example [23]
and [13].

The early work at NYU on combining networks
showed their great advantage for certain classes of
memory traffic, especially those with a significant
portion of hot-spot accesses (a disproportionately
large percentage of the references to one or a few
locations). It is perhaps surprising that this work
did not simulate the traffic generated when all the
processors engage in busy-wait polling, i.e., 100%
hot-spot accesses (but see the comments on [14]
in Section 3). When completing studies begun a
number of years ago of what we expected to be very
fast centralized algorithms for barriers and readers-
writers, we were particularly surprised to find that
the combining network performed poorly in this
situation. While it did not exhibit the disastrous
serialization characteristic of accesses to a single

location without combining, the improvement was
much less than expected and our algorithms were
not nearly competitive with the MCS algorithms
based on distributed local-spinning [17], [19]. Fur-
ther investigation showed that our results were cor-
rect and the previous NYU claims were invalid for
this important case.

The present paper briefly reviews combining net-
works and presents the debunking data just men-
tioned. We then debug the system by offering two
fairly simple changes to the combining switches that
fix the problem with busy wait polling. The first
change is simply to increase the wait-buffer size.
The second change is more subtle: The network is
output-buffered and a trade-off exists involving the
size of the output queues. Large queues are well
known to improve performance for random traffic.
However, we found that large queues cause poor
polling performance. We therefore adapt the queue
size to the traffic encountered: as more combined
messages are present, the queue capacity is reduced.
Together, these two simple changes have a dramatic
effect on polling, and our centralized barrier and
readers-writers algorithms become competitive with
the commonly used MCS local-spin algorithms of
Mellor-Crummey and Scott (some of which also
benefit from the availability of combining), thereby
duplicating the results claimed in the early NYU
work.

There is an interesting explanation for the sur-
prising observation thatcrippledhardware (reducing
queue length)improvesperformance (of polling).
The network switches can not combine three or
more requests into one, and thus for many requests
to be combined into a single request, it is nec-
essary for combining to occur at many switches.
The smaller queues increase “backpressure” and
result in queuing at more switches and hence more
combining. Modern techniques for caches (MSHRs)
in a sense combine more than two requests. We
explain in Section 2.2 why the corresponding idea
is problematic for combining networks.

2. Background

Large-scale, shared-memory computation re-
quires memory systems with bandwidth that scales
with the number of processors. Multi-stage inter-
connection fabrics and interleaving of memory ad-

dresses among multiple memory units can provide
scalable memory bandwidth for memory reference
patterns whose addresses are uniformly distributed.
Many variants of this architecture have been im-
plemented in commercial and other research sys-
tems [12], [20], [22]. However, the serialization
of memory transactions at each memory unit is
problematic for reference patterns whose mapping
to memory units is unevenly distributed. An im-
portant cause of non-uniform memory access pat-
terns is hot-spot memory accesses generated by
centralized busy-waiting coordination algorithms.
The Ultracomputer architecture includes network
switches [24] with logic to reduce this congestion
by combininginto a single request multiple memory
transactions (e.g. loads, stores, fetch-and-adds) that
reference the same memory address.1

The Ultracomputer combining switch design uti-
lizes a variant of cut-through routing [10] that
imposes a latency of one clock cycle when there is
no contention for an outgoing network link. When
there is contention, messages are buffered on queues
associated with each output port. Investigations by
Dias and Jump [4], Dickey [5], Liu [15], and oth-
ers indicate that these queues significantly increase
network bandwidth for large systems with uniformly
distributed memory access patterns.

Systems with high degrees of parallelism can be
constructed using these switches: Figure 1 illus-
trates an eight-processor system with three stages
of routing switches interconnected by a shuffle-
exchange [25] routing pattern. References toMM3

are communicated via components drawn inbold.
Our simulation parameters are set to agree with

the earlier NYU simulations (and the small-scale
prototype built).2 Specifically, our memory modules
(MMs) can accept one request every 4 network
cycles, whereas the switches can accept one request
every 2 cycles on each input and can transmit one
request every 2 cycles on each output. When the rate
of requests to one MM exceeds its bandwidth, the

1Combining occurs only for messages that are buffered when the
arrival rate exceeds the acceptance rate of the downstream queue. In
particular, messages arenot delayed solely to enable combining. Also
note that a message can combine with any (not necessarily adjacent)
enqueued message. Finally, the combining logic does not rely on
associative search (however, de-combining does). [7]

2We briefly discuss parameter values more appropriate to current
technology in Section 3.4.

PE7

PE6

PE5

PE4

PE3

PE2

PE1

PE0

SW

SW

SW

SW

SW

SW

SW

SW

SW

SW

SW

SW

MM7

MM6

MM5

MM4

MM3

MM2

MM1

MM0

Fig. 1. Eight PE System with Hot-Spot Congestion to MM 3.

switch queues feeding it will fill. Since a switch can-
not accept messages when its output buffers are full,
a funnel-of-congestion will spread to the network
stages that feed the overloaded MM and interfere
with transactions destined for other MMs as well.3

Thus unbalanced memory access patterns, such as
hot spot polling of a coordination variable, can
generate network congestion. Figure 1 illustrates
contention among references toMM3.

Ultracomputer switches combine pairs of memory
requests accessing the same location into a single re-
quest to reduce the congestion generated by hot spot
memory traffic. When the memory response subse-
quently arrives at this switch, it isde-combinedinto
a pair of responses that are routed to the requesting
PEs. To enable this de-combination, the switch uses
an internalwait buffer to hold information found in
the request until it is needed to generate the second
response. Since combined messages can themselves
be combined, this technique has the potential to
reduce hot spot contention by a factor of two at
each network stage.

a) Combining of Fetch-and-add:Our fetch-and-
add based centralized coordination algorithms poll
a small number (typically one) of “hot spot” shared
variables whose values are modified using fetch-
and-add.4 Thus, as indicated above, it is crucial,
when these algorithms are executed on large num-
bers of processors, not to serialize this activity.
The solution employed is to include adders in the
MMs (thus guaranteeing atomicity) and to combine
concurrent fetch-and-add operations at the switches.

When two fetch-and-add operations referencing

3Pfister and Norton [21] called this funneltree saturationand
observed that access patterns containing only 5% hot spot traffic
substantially increase memory latency.

4Recall that FAA(X,e) is defined to return the old value of X and
atomically increment X by the value e.

1 12

4

F&A(X,1)
X:12

F&A(X,2)
X:13

F&A(X,4)
X:0

F&A(X,8)
X:4

F&A(X,3)
X:12

F&A(X,15)
X:0

F&A(X,12)
X:0

Start: X=0
End: X=15

Addend for decombine
in wait buffer.

MM

e

F&A(X,e)
X:t

F&A(X,f)
X:t+e

F&A(X,e+f)
t

Fig. 2. Combining of Fetch-And-Adds at a single switch (above)
and at multiple switches (below).

the same shared variable, sayFAA(X, e) and
FAA(X, f), meet at switch the combined request
FAA(X,e+f) is transmitted and the valuee is stored
in the wait buffer. Load are transmitted as fetch-
and-adds whose addends are zero and thus are also
combinable.

Upon receivingFAA(X, e+f), the MM updates
X (to X + e + f) and responds withX. When the
response arrives at the combining switch the latter
transmitsX to satisfy the requestFAA(X, e) and
transmitsX + e to satisfy the requestFAA(X, f),
thus achieving the same effect as ifFAA(X, e) was
followed immediately byFAA(X, f). This process
is illustrated in the upper portion of Figure 2. The
cascaded combining of 4 requests at two network
stages is illustrated in the lower portion of the same
figure.

Figure 3 illustrates an Ultracomputer combining
switch. Each switch contains

• Two Dual-input forward-path combining
queues: Entries are inserted and deleted in
a FIFO manner and matching entries are
combined, which necessitates an ALU to
compute the sume + f .

• Two Dual-input reverse path queues:Entries
are inserted and deleted in a FIFO manner.

• Two Wait Buffers:Entries are inserted and as-
sociative searches are performed with matched
entries removed. An included ALU computes
X + e.

Reverse Path
PE MM

To
PE

Po
rts

ToM
M

Ports

PE
or SW

PE
or SW

MM
or SW

MM
or SW

RQ1

RQ1

FCQ1

FCQ0

Forward Path
PE MM

Decombine info

Decombine info

WB1

WB0

Decombine

Fig. 3. Block Diagram of Combining 2-by-2 SwitchNotation: RQ:
Reverse (ToPE) Queue, WB: Wait Buffer, FCQ: Forward (ToMM)
Combining Queue

2.1. When Combining Can Occur

Network latency is proportional to switch cycle
times and grows with queuing delays. VLSI simu-
lations showed that the critical path in a proposed
Ultracomputer switch included the adder to form
e + f and the output drivers. To reduce cycle time,
at the cost of restricting the circumstances in which
combining could occur, the chosen design did not
combine requests that were at the head of the output
queue (and hence might be transmitted the same
cycle as combined). This modification reduced the
critical path timing to the max of the adder and
driver rather than their sum. We call the modified
design “decoupled” because the adder and driver are
in a sense decoupled, and call the original design
“coupled”.

Since the head entry cannot be combined, we
note that a decoupled queue requires at least three
requests for combining to occur. We shall see that
this trivial observation is important.

To enable the dual input queues to accept items on
each input in one cycle, the queue was constructed
from two independentsingle-input queues whose
outputs are multiplexed. To achieve the maximum
combining rate, we therefore require at least three
requests in each of the single-input combining
queues, which implies at least six in each dual-
input combining queues. A more complicated dual-
input decoupled combining queue, dubbedtype Ain
Dickey [5] requires only three messages to achieve
the maximum combining rate rather than six in the
“type B” design we are assuming.

2.2. Combining Multiple Requests

Kroft [11] introduced Miss Status/Handler Reg-
isters (MSHRs) to implement lockup-free caches.

These registers are also used to merge multiple re-
quests for the same memory line. Similar techniques
could be employed for combining switches and,
were the degree of combining (i.e., the number of
requests that could be merge) large, one might ex-
pect that good polling behavior would result. Indeed
the early NYU work did consider greater-than-two
way combining and sketched a VLSI design for one
modest extension. However, this idea cannot be used
to solve the polling problem. As observed by [14],
if a large number of requests are combined into one,
the decombiningthat results degrades performance
due to serialization in the response (memory-to-
processor) network.

There are several differences between MSHRs
and network switches that might explain why the
[14] observation does not apply to the former. Recall
that MSHRs are located in the (multi-)processor
node; whereas, combining switches are located
in the network itself. Hence serialization in the
MSHRs encountered by a memory response directly
affects only one node. As observed by [21], how-
ever, delays in network switches (encountered either
by requests or responses) can seriously degrade per-
formance of many nodes, even those not referencing
the hot-spot memory. The different locations of
MSHRs and combining switches has another effect:
A single path from a memory module to a processor
node passes through multiple switches and thus a
memory response might be subjected to multiple
serialization delays when passing through a series
of switches that must decombine requests.

3. Improving the Performance of Busy-Wait Polling

Figure 4 plots memory latency for two simulated
systems of four to 2048 PEs with memory traffic
containing 10% and 100% hot spot references.
The latter typifies the traffic when processors are
engaged in busy-wait polling and the local caches
filter out instruction and private data references.

The first simulated system closely models the
original Ultracomputer and is referred to as the
baseline system. Observe that for 10% hot spot
references, round-trip latency is only slightly greater
than the minimum network transit time (one cycle
per stage per direction) plus the simulated memory
latency of two cycles.

 4

 8

 16

 32

 64

 128

 256

 512

 2 3 4 5 6 7 8 9 10 11

R
ou

nd
tri

p
La

te
nc

y

log(# processors)

Baseline, 100% hotspot
Waitbuf100, 100% hotspot

Baseline, 10% hotspot
Waitbuf100, 10% hotspot

Fig. 4. Memory Latency for Ultraswitches with Wait Buffer
Capacities of 8 and 100 messages for 10% and 100% Hotspot Traffic,
1 Outstanding Request/PE.

On larger systems, memory latency is substan-
tially greater for the 100% hot spot load and can
exceed 10 times the minimum. Since the combining
switches simulated were expected to perform well
for this traffic, the results were surprising, especially
to the senior author who was heavily involved with
the Ultracomputer project throughout its duration.
High-performance centralized coordination cannot
be achieved using these simulated switches.

The cause of the less than expected performance
is two (previously unnoticed) design flaws in the
combining switch design. The first is that the wait
buffers were too small, the second is that, in a sense
to be explained below, the combining queues were
too large.

3.1. Increasing the Wait Buffer Capacity

The second system shown in Figure 4 contains
switches with 100-entry wait buffers (feasible with
today’s technology). These larger switches reduce
the latency for a 2048PE system from 306 to
168 cycles, an improvement of 45%. While this
increased capacity helps, the latency of hot spot
polling traffic is still seven times the latency of
uniformly distributed reference patterns (24 cycles).

3.2. Adaptive Combining Queues

In order to supply high bandwidth for typical
uniformly distributed traffic (i.e., 0% hot spot), it
is important for the switch queues to be large.
However, as observed in [14], busy wait polling
(100% hot spot) is poorly served by these large
queues, as we now describe.

For busy-wait polling, each processor always has
one outstanding request directed at the same loca-
tion.5 The expectation was that, withN processors
and hencelogN stages of switches, pairs would
combine at each stage resulting in just one request
(or perhaps more realistically, a few requests) reach-
ing memory.

What actually happens is that the queues in
switches near memory fill to capacity and the
queues in the remainder of the switches are nearly
empty. Since combining requires multiple entries to
be present, it can only occur near memory. How-
ever, asingleswitch cannot combine an unbounded
number of requests into one. Those fabricated for
the Ultracomputer could combine only pairs so, if,
for example, eight requests are queued for the same
location, (at least) four requests will depart.6

Figure 5 illustrates this effect. Both plots are
for busy wait polling and use the large, 100 entry
wait buffers. The forward path combining queues in
the left plot are modeled after the Ultracompputer
design and contain four slots, each of which can
hold either a request received by the switch or one
formed by combining two received requests. The
plot on the right is for the same switches with
the queue capacity restricted so that if 2 combined
requests are present, the queue is declared full even
if empty slots remain. We call these queues adaptive
and denote switch with these adaptive queues and
large wait buffers asimproved.

We compare the graphs labeled 10 (representing a
system with 1024 PEs) in each plot. In the left plot,
we find that combines occur at the maximal rate
for the four (out of 10) stages closest to memory,
occur at nearly the maximal rate for the fifth stage,
and do not occur for the remaining five stages.
The improved switches (the right plot) do better,
combining at maximal rate for five stages and at
1/4 of the maximum for the sixth stage. In addition,
since the queues are effectively smaller, the queuing
delay is reduced.

5This is not quite correct: When the response arrives it takes a
few cycles before the next request is generated. Our simulations
accurately account for this delay.

6Alternate designs could combine more than two requests into one,
but, as observed by [14], when this “combining degree” increases,
congestion arises at the point where the single response is de-
combined into many (see Section 2.2).

 0

 50

 100

 150

 200

 250

 2 4 6 8 10

C
om

bi
ne

s
/ k

c

Distance to Memory

11
10

8
6
4
2

 0

 50

 100

 150

 200

 250

 2 4 6 8 10

C
om

bi
ne

s
/ k

c

Distance to Memory

11
10

8
6
4
2

Fig. 5. Combining rate, by stage for simulated polling on systems
of 22 to 211 PEs. Wait buffers have capacity 100 and combining
queues can hold 4 combined or uncombined messages. In the right
plot the combining queues are declared full if two combined requests
are present.

 4

 8

 16

 32

 64

 128

 256

 512

 2 3 4 5 6 7 8 9 10 11

R
ou

nd
tri

p
La

te
nc

y

log(# processors)

Baseline
Waitbuf100
Improved
Aggressive

Fig. 6. Memory latency for simulated hot spot polling traffic, 4-2048
PEs.

Note that for uniformly distributed traffic without
hot spots, combining will very rarely occur and the
artificial limit of 2 combined requests per queue will
not be invoked. We call this new combining queue
designadaptivesince the queues are full size for
uniformly distributed traffic and adapt to busy wait
polling by artificially reducing their size.

We see in Figure 6 that the increased combining
rate achieved by the improved switches dramatically
lowers the latency experienced during busy wait
polling. For a 2048 PE system the reduction is from
168 cycles for a system with large (100 entry) wait
buffers and the original queues to 118 cycles (five
times the latency of uniform traffic) with the same
wait buffers but adaptive combining queues. This is
a reduction of over 30% and gives a total reduction
of 61% when compared with the 306 cycles needed
by the baseline switches. The bottom plot is for a
more aggressive switch design described below. In
Section 4 we shall see that centralized coordination
algorithms executed on systems with adaptive com-
bining queues and large wait buffers are competitive
with the best distributed local-spinning alternatives.

Figure 7 compares the latency for 1024 PE sys-
tems with various switch designs and a range of
accepted loads (i.e., processors can have multiple
outstanding requests unlike the situation above for
busy wait polling). The figure shows results for
1%, 20%, and 100% hot spot traffic. Similar results
(not shown) were obtained for simulations with 0%,
40%, 60%, and 80% hot spot traffic. These results
confirm our assertion that adaptive queues have
very little effect for low hot spot rates and are a
considerable improvement for high rates. Thus the
Ultracomputer claims of good performance under a
variety of loads are substantiated for the improved
switches, but not for the original baseline design.

3.3. More Aggressive Combining Queues

Recall that we have been simulating decoupled
type B switches in which combining is disabled for
the head entry (to “decouple” the ALU and output
drivers) and the dual input combining queues are
composed of two independent single input com-
bining queues with multiplexed outputs. We started
with a “baseline design”, used in the Ultracomputer,
and produced what we refer to as the “improved
design” having a larger wait buffer and adaptive
combining queues. We also applied the same two
improvements to type A switches having coupled
ALUs and refer to the result as the “aggressive
design” or “aggressive switches” For example, the
lowest plot in Figure 6 is for aggressive switches.
Other experiments not presented here have shown
that aggressive switches permit significant rates of
combining to occur in network stages near the
processors. Also, as we will show in Section 4, the
centralized coordination algorithms perform excep-
tionally well on this architecture, Although aggres-
sive switches are the best performing, we caution
the reader that our measurements are given in units
of a switch cycle time and, without a more detailed
design study, we cannot estimate the degradation in
cycle time such aggressive switches might entail.

3.4. Applicability of Results to Modern Systems

The research described above investigates sys-
tems whose components have similar speeds, as was
typical when this project began. During the inter-
vening decade, however, logic and communication
rates have increased by more than two orders of

 20

 21

 22

 23

 24

 25

 0.06 0.07 0.08 0.09 0.1 0.11 0.12

R
ou

nd
tri

p
La

te
nc

y

Accepted Load

Aggressive
Baseline

Waitbuf100
Improved

 20

 30

 40

 50

 60

 70

 80

 90

 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13

R
ou

nd
tri

p
La

te
nc

y

Accepted Load

Baseline
Waitbuf100
Improved
Aggressive

 16

 32

 64

 128

 256

 512

 1024

 2048

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

R
ou

nd
tri

p
La

te
nc

y

Accepted Load

Baseline
Waitbuf100

Improved
Aggressive

Fig. 7. Simulated Round-trip Latency over a Range of Offered Loads for 1% (left), 20% (middle) and 100% (right) Hot Spot Traffic.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 4 5 6 7 8 9 10

R
ou

nd
tri

p
La

te
nc

y

log(# processors)

Waitbuf100MMWait40
ImprovedMMWait40
AggressiveMMWait40

Fig. 8. Memory latency for hot spot polling on systems with MMs
that can accept one message every 40 cycles.

magnitude while DRAM latency has improved by
less than a factor of two.

In order to better model the performance ob-
tainable with modern hardware, we increased the
memory latency from two to thirty-eight cycles, and
the interval between accepting requests from four
to forty cycles.7 These results are plotted in Figure
8 and indicate that the advantage achieved by the
adaptive switch design is even greater than before.

4. Performance Evaluation of Centralized and MCS
Coordination

A series of micro-benchmark experiments were
performed to compare the performance of central-
ized fetch-and-add based coordination with state of
the art MCS algorithms of Mellor-Crummey and
Scott. The simulated hardware includes combining
switches, which improves the performance of some
MCS algorithms and is crucial for the centralized
algorithms, as well as NUMA memory, which is im-
portant for MCS and not exploited by the centralized
algorithms. We present results for readers-writers

7Standard caching and sub-banking techniques can mitigate the
effect of slow memory.

and barrier coordination. These simulations plus
others appeared in the junior author’s dissertation
[6].

4.1. Barrier Synchronization

Barrier coordination is often used in algo-
rithms that require coarse-grain synchronization be-
tween asynchronoussupersteps[26]. Our micro-
benchmark study, presented in Figure 9 considers
three superstep bodies. Theintenseexperiment, in
which Superstep bodies are empty, measures the
latency of synchronization. To simulate programs
where processors execute roughly synchronously,
each processor executing ouruniform experiment
issues thirty shared memory references during each
Superstep. In contrast, half of the processors exe-
cuting ourmixedexperiment issue thirty references
to shared variables during each Superstep, and the
other half issue only fifteen.

A best-of-breed centralized fetch-and-add based
algorithm was simulated on four architectures. The
one without combining is labeled NoComb in Figure
9. The three with combining use the original Ultra-
computer (Baseline) switches and theImprovedand
Agressiveswitches described earlier. The MCSDis-
seminationbarrier [17], which does not generate hot
spot traffic and is intended for NUMA systems, is
simulated on a NUMA system without combining.

As expected, the availability of combining sub-
stantially decreases superstep latency for the cen-
tralized algorithms in all experiments. The improved
switches (but not the original design) match the
performance of MCS and the aggressive switches
exceed it (but may entail a longer cycle time).

4.2. Readers-Writers Coordination

Many algorithms for coordinating readers and
writers [3] have appeared. A centralized algorithm
is presented in [8] that, on systems capable of

 0

 100

 200

 300

 400

 500

 600

 2 3 4 5 6 7 8 9 10

S
up

er
st

ep
 L

at
en

cy
 (c

yc
le

s)

log(# processors)

Faa-Nocomb
Faa-Baseline
MCS-NocombNuma
Faa-Improved
Faa-Aggressive

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 2 3 4 5 6 7 8 9 10

S
up

er
st

ep
 L

at
en

cy
 (c

yc
le

s)

log(# processors)

Faa-Nocomb
Faa-Baseline
Faa-Improved
MCS-NocombNuma
Faa-Aggressive

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 2 3 4 5 6 7 8 9 10

S
up

er
st

ep
 L

at
en

cy
 (c

yc
le

s)

log(# processors)

Faa-Nocomb
Faa-Baseline
Faa-Improved
MCS-NocombNuma
Faa-Aggressive

Fig. 9. Superstep latency, in cycles, forintense(left), uniform (middle), andmixed(right) workloads. (lower latency is better)

combining fetch-and-add operations, does not seri-
alize readers in the absence of writers. However, no
commercial systems with this hardware capability
have been constructed, and in their absence, alter-
native “distributed local-spin” MCS algorithms have
been developed [18]. Although the MCS algorithms
do serialize readers, they minimize hot spot traffic
by having each processor busy-wait on a shared
variable stored in memory co-located with this pro-
cessor. This NUMA memory organization results in
local busy waiting that does not contribute to or
encounter network congestion.8

The most likely cause of unbounded waiting
in any reader-writer algorithm is that a continual
stream of readers can starve all writers. The standard
technique of giving writers priority eliminates this
possibility (but naturally permits writers starving
readers). In this section we present a performance
comparison of “best of breed” centralized and MCS
writer-priority reader-writer algorithms each exe-
cuted on a simulated system with the architectural
features it exploits.

The centralized reader-writer algorithm [6] issues
only a single shared-memory reference (a fetch-
and-add) when the lock is uncontested. The MCS
readers-writers algorithm [18] is commonly used on
large SMP systems. This algorithm is a hybrid of
centralized and distributed approaches. Central state
variables, manipulated with various synchronization
primitives, are used to count the number and type
of lock granted and to head the lists of waiting pro-
cessors. NUMA memory is used for busy waiting,
which eliminates network contention.

8Some authors use the term NUMA to simply mean that the
memory access time is non-uniform: certain locations are further
away than others. We use it to signify that (at least a portion of)
the shared memory is distributed among the processors, with each
processor having direct access to the portion stored locally.

4.3. Experimental Results

The algorithms are roughly comparable in per-
formance: The centralized algorithms are superior
except when only writers are present. Recall that
an ideal reader lock, in the absence of contention,
yields linear speedup; whereas an ideal writer ex-
hibits no slowdownas parallelism increases. When
there are large numbers of readers present, the
centralized algorithm, with its complete lack of
reader serialization, thus gains an advantage, which
is greater for the aggressive architecture.

The scalability of locking primitives is unim-
portant when they are executed infrequently with
low contention. Our experiments consider the more
interesting case of systems that frequently request
reader and writer locks. For all experiments each
process repeatedly:

• Stochastically chooses whether to obtain a
reader or writer lock.9

• IssuesWork non-combinable shared memory
references distributed among multiple MMs,

• Releases the lock.
• Waits Delay cycles.
For simplicity we assume one process per pro-

cessor. In order for every measurement shown on a
single plot to represent equivalent contention from
writers, we fix the value ofEW , the expected
number of writers, and thus the probability that each
process chooses to be a writer isEW divided by the
number of processes.

Each experiment measures the rate that locks are
granted over a range of system sizes (higher values
are superior). Two classes of experiments were
performed: Those classified “I” representintense
synchronization in which each process request and
release locks at the highest rate possible,Work =

9The simulated random number generator executes in a single
cycle.

 10

 100

 1000

 10000

 2 3 4 5 6 7 8 9 10

R
ea

de
rs

/K
C

yc
le

log(# processors)

Faa_Aggressive
Faa_Improved
Mcs_AggressiveNuma
Mcs_nocombNuma

 0.01

 0.1

 1

 10

 100

 2 3 4 5 6 7 8 9 10

W
rit

er
s/

K
C

yc
le

log(# processors)

Mcs_nocombNuma
Mcs_AggressiveNuma
Faa_Aggressive
Faa_Improved

Fig. 10. Experiment R, All Readers (left), All Writers (right)

 10

 100

 1000

 10000

 2 3 4 5 6 7 8 9 10

R
ea

de
rs

/K
C

yc
le

log(# processors)

Faa_Aggressive
Faa_Improved
Mcs_AggressiveNuma
Mcs_nocombNuma

 0.01

 0.1

 1

 10

 100

 2 3 4 5 6 7 8 9 10

W
rit

er
s/

K
C

yc
le

log(# processors)

Mcs_AggressiveNuma
Mcs_nocombNuma
Faa_Aggressive
Faa_Improved

Fig. 11. Experiment I, All Readers (left), All Writers (right)

Delay = 0. Those classified “R” are somewhat
more realistic, Work = 10 andDelay = 100.

a) All Reader Experiments,EW = 0: The left-
side charts in Figures 10 and 11 present results
from experiments where all processes are readers.
The centralized algorithm requires a single hot-spot
memory reference to grant a reader lock in the
absence of writers. In contrast, the MCS algorithm
generates accesses to centralized state variables and
linked lists of requesting readers. Not surprisingly,
the centralized algorithm has significantly superior
performance in this experiment, and MCS benefits
from combining.

b) All-Writer Experiments:The right-side charts
in Figures 10 and 11 present results from experi-
ments where all processes are writers, which must
serialize and therefore typically spend a substantial
period of time busy-waiting. The MCS algorithm
has superior performance in these experiments.

Since writers enforce mutual exclusion, no
speedup is possible as the system size increases.
Indeed one expects a slowdown due to the increased
average distance to memory, as described in [18].
The MCS algorithm issues very little hot spot traffic
when no readers are present and thus does not
benefit from combining in these experiments.

c) Mixed Reader and Writer Experiments:Fig-
ures 12 through 15 present results of experiments
with both readers and writers. In the first set,
EW = 1 (this lock will have substantial contention
from writers) and in the second setEW = 0.1 (a

 10

 100

 1000

 10000

 2 3 4 5 6 7 8 9 10

R
ea

de
rs

/K
C

yc
le

log(# processors)

Faa_Aggressive
Faa_Improved
Mcs_AggressiveNuma
Mcs_nocombNuma

 0.01

 0.1

 1

 10

 100

 2 3 4 5 6 7 8 9 10

W
rit

er
s/

K
C

yc
le

log(# processors)

Faa_Aggressive
Faa_Improved
Mcs_nocombNuma
Mcs_AggressiveNuma

Fig. 12. Experiment I,EW = 1

 10

 100

 1000

 10000

 2 3 4 5 6 7 8 9 10

R
ea

de
rs

/K
C

yc
le

log(# processors)

Faa_Aggressive
Faa_Improved
Mcs_nocombNuma
Mcs_AggressiveNuma

 0.01

 0.1

 1

 10

 100

 2 3 4 5 6 7 8 9 10

W
rit

er
s/

K
C

yc
le

log(# processors)

Faa_Aggressive
Faa_Improved
Mcs_AggressiveNuma
Mcs_nocombNuma

Fig. 13. Experiment R,EW = 1

somewhat less contended lock).
The rate at which the centralized algorithm grants

reader locks increases linearly with system size for
all these experiments and, as a result, significantly
exceeds the rate granted by MCS for all large system
experiments.

5. Open Questions

5.1. Extending the Adaptive Technique

Our adaptive technique sharply reduces queue
capacity when a crude detector of hot spot traffic is
triggered. While this technique reduces network la-
tency for hot spot polling, it might also be triggered
by mixed traffic patterns that would perform better

 10

 100

 1000

 10000

 2 3 4 5 6 7 8 9 10

R
ea

de
rs

/K
C

yc
le

log(# processors)

Faa_Aggressive
Faa_Improved
Mcs_AggressiveNuma
Mcs_nocombNuma

 0.01

 0.1

 1

 10

 100

 2 3 4 5 6 7 8 9 10

W
rit

er
s/

K
C

yc
le

log(# processors)

Faa_Aggressive
Faa_Improved
Mcs_nocombNuma
Mcs_AggressiveNuma

Fig. 14. Experiment I,EW = 0.1

 10

 100

 1000

 10000

 2 3 4 5 6 7 8 9 10

R
ea

de
rs

/K
C

yc
le

log(# processors)

Faa_Aggressive
Faa_Improved
Mcs_nocombNuma
Mcs_AggressiveNuma

 0.01

 0.1

 1

 10

 100

 2 3 4 5 6 7 8 9 10

W
rit

er
s/

K
C

yc
le

log(# processors)

Mcs_AggressiveNuma
Faa_Improved
Faa_Aggressive

Fig. 15. Experiment R,EW = 0.1

with longer queues. We have neither witnessed nor
investigated this effect, which might be mitigated by
more gradual adaptive designs that variably adjust
queue capacity as a function of a continuously
measured rate of combining.

5.2. Generalization of Combining to Internet Traffic

The tree saturation problem due to hot spot access
patterns is not unique to shared memory systems.
Congestion generated by flood attacks and flash
crowds [9] presents similar challenges for Internet
Service Providers. In [16] Mahajan et al. propose a
technique to limit the disruption generated by hot
spot congestion on network traffic with overlapping
communication routes. In their scheme, enhanced
servers and routers incorporate mechanisms to char-
acterize hot spot reference patterns. As with adap-
tive combining, upstream routers are instructed to
throttle the hot spot traffic in order to reduce down-
stream congestion.

Hot spot requests do not benefit from this ap-
proach, however combining may provide an alter-
native to throttling. For example, the detection of
hot spot congestion, could trigger deployment of
proxies near to network entry points, potentially re-
ducing downstream load and increasing the hot spot
performance. This type of combining is service-
type specific and therefore service-specific strategies
must be employed. Dynamic deployment of such
edge servers requires protocols for communicating
the characteristics of hot spot aggregates to servers,
and secure mechanisms to dynamically install and
activate upstream proxies.

5.3. Combining and Cache-Coherency

Cache coherence protocols typically manage
shared (read-only) and exclusive (read-write) copies
of shared variables. Despite the obvious correspon-
dence between cache coherence and the readers-
writers coordination problem, coherence protocols
typically serialize the transmission of line contents
to individual caches. The SCI cache coherence
protocol specifies a variant of combining fetch-
and-store to efficiently enqueue requests. However,
data distribution and line invalidation on network
connected systems is strictly serialized. Extensions
of combining may be able to parallelize cache fill

operations. Challenges for such schemes would in-
clude the development of an appropriate scalable di-
rectory structure that is amenable to (de)combinable
transactions.

6. Conclusions

An investigation of the surprisingly poor perfor-
mance attained by the Ultracomputer’s combining
network when presented with 100% hot spot traffic
has revealed in a gap in the previous simulations
that hid flaws in the combining switch design.
Closing the simulation gap debunks the old claims
of good performance on busy-waiting coordination.
Fortunately the switch design was not hard to debug.
The first improvement is to simply increase the size
of one of the buffers present. The more surprising
second improvement is to artificiallydecreasethe
capacity of combining queues during periods of
heavy combining. These adaptive combining queues
better distribute the memory requests across the
stages of the network, thereby increasing the overall
combining rates and lowering the memory latency.

Using the debugged switches, we then compared
the performance of centralized algorithms for the
readers writers and barrier synchronization prob-
lems with those of the widely used MCS algorithms.
The latter algorithms reduce hot spots by polling
only variables stored in memory that is co-located
with the processor in question.

Our simulation studies of these algorithms have
yielded several results: First, the MCS and central-
ized barrier algorithms have roughly equal perfor-
mance. Second, the MCS readers-writers algorithm
benefits from combining. Third, when no readers
are present, the MCS algorithm outperforms the
centralized algorithm. Finally, when readers are
present, the results are reversed. In summary, MCS
and the centralized algorithms are roughly equal in
performance. That is, with debugged switches we
are able to duplicate the previous claims of good
performance for busy-wait coordination.

Switches capable of combining memory ref-
erences are more complex than non-combining
switches. An objective of the previous design efforts
was to permit a cycle time comparable to a similar
non-combining switch. In order to maximize switch
clock frequency, a (type B, uncoupled) design was
selected that can combine messages only if they

arrive on the same input port and is unable to
combine a request at the head of an output queue.
We also simulated an aggressive (type A, coupled)
design without these two restrictions. As expected
it performed very well, but we have not estimated
the cycle-time penalty that may occur.

References

[1] Carl J. Beckmann and Constantine D. Polychronopoulos. Fast
barrier synchronization hardware. InProc. 1990 Conference
on Supercomputing, pages 180–189. IEEE Computer Society
Press, 1990.

[2] Thinking Machines Corp. The Connection Machine CM-5
Technical Summary, 1991.

[3] P. Courtois, F. Heymans, and D. Parnas. Concurrent control with
readers and writers.Comm. ACM, 14(10):667–668, October
1971.

[4] Daniel M. Dias and J. Robert Jump. Analysis and simulation of
buffered delta networks.IEEE Trans. Comp., C-30(4):273–282,
April 1981.

[5] Susan R. Dickey. Systolic Combining Switch Designs. PhD
thesis, Courant Institute, New York Univeristy, New York, 1994.

[6] Eric Freudenthal.Comparing and Improving Centralized and
Distributed Techniques for Coordinating Massively Parallel
Shared-Memory Systems. PhD thesis, NYU, New York, June
2003.

[7] Allan Gottlieb, Ralph Grishman, Clyde P. Kruskal, Kevin P.
McAuliffe, Lawrence Rudolph, and Marc Snir. The NYU
Ultracomputer–Designing an MIMD Shared Memory Parallel
Computer.IEEE Trans. Comp., pages 175–189, February 1983.

[8] Allan Gottlieb, Boris Lubachevsky, and Larry Rudolph. Basic
Techniques for the Efficient Coordination of Very Large Num-
bers of Cooperating Sequential Processors .ACM TOPLAS,
pages 164–189, April 1983.

[9] J. Jung, B. Krishnamurthy, and M. Rabinovich. ”flash crowds
and denial of service attacks: Characterization and implications
for cdns and web sites”. InProc. International World Wide Web
Conference, pages 252–262. ”IEEE”, May ”2002”.

[10] P. Kermani and Leonard Kleinrock. Virtual Cut-through: A
new computer communication switching technique.Computer
Networks, 3:267–286, 1979.

[11] David Kroft. Lockup-free instruction fetch/prefetch cache orga-
nization. InProc. Int’l Symposium for Computer Architecture,
pages 81–87, 1981.

[12] James Laudon and Daniel Lenoski. The SGI Origin: a ccNUMA
highly scalable server.ACM SIGARCH Computer Architecture
News, 1997.

[13] Alvin R. Lebeck and Gurindar S. Sohi. Request combining in
multiprocessors with arbitrary interconnection networks.IEEE,
TPDS, November 1994.

[14] Gjyngho Lee, C. P. Kruskal, and D. J. Kuck. On the Effective-
ness of Combining in Resolving ‘Hot Spot’ Contention.Journal
of Parallel and Distributed Computing, 20(2), February 1985.

[15] Yue-Sheng Liu. Architecture and Performance of Processor-
Memory Interconnection Networks for MIMD Shared Memory
Parallel Processing Systems. PhD thesis, New York University,
1990.

[16] R. Mahajan, S. Bellovin, S. Floyd, J. Vern, and P. Scott.
Controlling high bandwidth aggregates in the network, 2001.

[17] John M. Mellor-Crummey and Michael L. Scott. Algorithms for
scalable synchronization on shared-memory multiprocessors.
ACM Transactions on Computer Systems, 9(1):21–65, 1991.

[18] John M. Mellor-Crummey and Michael L. Scott. Scalable
Reader-Writer Synchronization for Shared Memory Multipro-
cessors.ACM Trans. Comput. Systems, 9(1):21–65, 1991.

[19] John M. Mellor-Crummey and Michael L. Scott. Synchroniza-
tion without contention. InProc. ISCA IV, pages 269–278,
1991.

[20] Gregory F. Pfister, William C. Brantley, David A. George,
Steve L. Harvey, Wally J. Kleinfielder, Kevin P. McAuliffe,
Evelin S. Melton, V. Alan Norton, and Jodi Weiss. The ibm
research parallel processor prototype (rp3). InProc. ICPP,
pages 764–771, 1985.

[21] Gregory F. Pfister and V. Alan Norton. “Hot Spot” Contention
and Combining in Multistage Interconnection Networks.IEEE
Transactions on Computers, c-34(10), October 1985.

[22] Randall D. Rettberg, William R. Crowther, and Phillip P.
Carvey. The Monarch Parallel Processor Hardware Design.
IEEE Computer, pages 18–30, April 1990.

[23] Steven L. Scott and Gurindar S. Sohi. Using feedback to control
tree saturation in multistage interconnection networks. InProc.
Int’l Symposium for Computer Architecture, pages 167–176,
May 1989.

[24] Marc Snir and Jon A. Solworth. Ultracomputer Note 39, The
Ultraswitch - A VLSI Network Node for Parallel Processing.
Technical report, Courant Institute, New York University, 1984.

[25] Harold Stone. Parallel processing with the perfect shuffle.IEEE
Trans. Computing, C-25(20):55–65, 1971.

[26] Leslie G. Valiant. A bridging model for parallel computation.
CACM, 33(8):103–111, 1990.

