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Abstract

While most research papers on computer architectures include
some performance measurements, these performance numbers
tend to be distrusted. Up to the point that, after so many re-
search articles on data cache architectures, for instance, few
researchers have a clear view of what are the best data cache
mechanisms. To illustrate the usefulness of a fair quantitative
comparison, we have picked a target architecture component for
which lots of optimizations have been proposed (data caches),
and we have implemented most of the hardware data cache op-
timizations of the past 4 years in top conferences. Then we have
ranked the different mechanisms, or more precisely, we have ex-
amined the impact of benchmark selection, process model preci-
sion,. . . on ranking, and obtained some surprising results. This
study is part of a broader effort, called MicroLib, aimed at pro-
moting the disclosure and sharing of simulator models.

1 Introduction

Simulators are used in most processor architecture re-
search works, and, while most research papers include
some performance measurements (often IPC and more
specific metrics), these numbers tend to be distrusted be-
cause the simulator associated with the newly proposed
mechanism is rarely publicly available, or at least not in
a standard and reusable form, and as a result, it is not
possible or easy to check for design and implementation
hypotheses, potential simplifications or errors. However,
since the goal of most processor architecture research
works is to improve performance, i.e., do better than pre-
vious research works, it is rather frustrating not to be able
to clearly quantify the benefit of a new architecture mech-
anism with respect to previously proposed mechanisms.
Many researchers wonder, at some point, how their mech-
anism fares with respect to previously proposed ones and

what is the best mechanism, at least for a given processor
architecture and benchmark suite (or even a single bench-
mark); but many consider, with reason, that it is exces-
sively time-consuming to implement a significant array of
past mechanisms based on the articles only.

The purpose of this article is threefold: (1) to argue that,
provided a few groups start populating a common library
of modular simulator components, a broad and system-
atic quantitative comparison of architecture ideas may not
be that unrealistic, at least for certain research topics and
ideas; we introduce a library of modular simulator compo-
nents aiming at that goal, (2) to illustrate this quantitative
comparison using data cache research (and at the same
time, we start populating the library), (3) to investigate
the following set of methodology issues (in the context of
data cache research) that researchers often wonder about
but do not have the tools or resources to address:

• Which hardware mechanism is the best with respect
to performance, power or cost?

• Are we making significant progress over the years?

• What is the impact of benchmark selection on rank-
ing?

• What is the impact of the architecture model preci-
sion, especially the memory model in this case, on
ranking?

• When programming a mechanism based on the ar-
ticle, does it often happen that we have to second-
guess the authors’ choices and what is the impact on
mechanism performance and ranking?

• What is the impact of trace selection on ranking?

Comparing an idea with previously published ones
means addressing two major issues: (1) how do we imple-
ment them? (2) how do we validate the implementations?



(1) The biggest obstacle to comparison is the necessity
to implement again all the previously proposed and rele-
vant mechanisms. Even if it usually means fewer than five
mechanisms, we all know that implementing even a single
mechanism can mean a few weeks of simulator develop-
ment and debugging. And that is assuming we have all
the necessary information for implementing it. Reverse-
engineering all the implementation details of a mecha-
nism from a 10-page research article can be challenging.
An extended abstract is not really meant (or at least not
usually written so as) to enable the reader to implement
the hardware mechanism, it is meant to pass the idea, give
the rationale and motivation, and convince the reader that
it can be implemented; so some details are omitted be-
cause of paper space constraints or for fear they would
bore the reader.

(2) Assuming we have implemented the idea presented
in an article, then how do we validate the implemen-
tation, i.e., how do we know we have properly imple-
mented it? First, we must be able to reconstruct ex-
actly the same experimental framework as in the origi-
nal articles. Thanks to widely used simulators like Sim-
pleScalar [2], this has become easier, but only partially
so. Many mechanisms require multiple minor control and
data path modifications of the processor which are not al-
ways properly documented in the articles. Then, we need
to have the same benchmarks, which is again facilitated
by the Spec benchmarks [26], but they must be compiled
with exactly the same compiler (e.g., the same gcc ver-
sion) on the same platform. Third, we need to parame-
terize the base processor identically, and few of us spec-
ify all the SimpleScalar parameters in an article? Fortu-
nately (from a reverse-engineering point of view) or un-
fortunately (from an architecture research point of view),
many of us use many of the same default SimpleScalar pa-
rameters. Fourth, to validate an implementation, we need
to compare the simulation results against the article num-
bers, which often means approximately reading numbers
on a bar graph. . . And finally, since the first runs usually
don’t match, we have to do a combination of performance
debugging and reverse-engineering of the mechanisms,
based on second-guessing the authors’ choices. By adding
a dose of common sense, one can usually pull it off, but
even then, there always remains some doubt, on apart of
the reader of such a comparison, as to how accurately the
researcher has implemented other mechanisms.

In this article, we illustrate these different points
through data cache research. We have collected the
research articles on performance improvement of data
caches from the past four editions of the main confer-
ences (ISCA, MICRO, ASPLOS, HPCA). We have im-

plemented most of the mechanisms corresponding to pure
hardware optimizations (we have not tried to reverse-
engineer software optimizations). We have also imple-
mented older but widely referenced mechanisms (Victim
Cache, Tag Prefetching and Stride Prefetching). We have
collected a total of 15 articles, and we have implemented
only 10 mechanisms either because of some redundan-
cies among articles (one article presenting an improved
version of a previous one), implementation or scope is-
sues. Examples of implementation issues are the data
compression prefetcher technique [30] which uses data
values (and not only addresses) which are not available
in the base SimpleScalar version, eager writeback [16]
which is designed for and tested on memory-bandwidth
bound programs which were not available; an example of
scope issue is the non-vital loads technique [20] which re-
quires modifications of the register file, while we decided
to focus our implementation and validation efforts on data
caches only.

It is quite possible that our own implementation of
these different mechanisms has some flaws, because we
have used the same error-prone process described in pre-
vious paragraphs; so the results given in this article, es-
pecially the conclusion as to which are the best mecha-
nisms, should be considered with caution. On the other
hand, all our models are available on the MicroLib library
web site [7], as well as the ranking, so authors or other
researchers can check our implementation, and in case of
inaccuracies or errors, we will be able to update the online
ranking and the disseminated model.

Naturally, comparing several hardware mechanisms
means more than just ranking them using various met-
rics. But the current situation is the opposite: researchers
do analyze and compare ideas qualitatively, but they have
no simple means for performing the quantitative compar-
isons.

This study is part of a broader effort called MicroLib
which aims at facilitating the comparison and exchange
of simulator models among processor architecture re-
searchers. In Section 2 we present the MicroLib project,
in Section 3 we describe our experimental framework, and
in Section 4, we attempt to answer the questions listed
above.

2 MicroLib

MicroLib. A major goal of MicroLib is to build an
open library of processor simulator components which re-
searchers can easily download either for directly plugging
them in their own simulators, or at least for having full ac-
cess to the source code, and thus to a detailed description



of the implementation. There already exists libraries of
open simulator components, such as OpenCores [1], but
these simulators are rather IP blocks for SoC (System-on-
Chip), i.e., an IP block is usually a small processor or a
dedicated circuit, while MicroLib aims at becoming a li-
brary of (complex) processor subcomponents (we will say
processor components in the remainder of the article), and
especially of various research propositions for these pro-
cessor components.

Our goal is to ultimately provide researchers with a suf-
ficiently large and appealing collection of simulator mod-
els that researchers actually start using them for perfor-
mance comparisons, and more importantly, that they later
on start contributing their own models to the library. As
long as we have enough manpower, we want to maintain
an up-to-date comparison (ranking) of hardware mech-
anisms, for various processor components, on the Mi-
croLib web site. That would enable authors to demon-
strate improvements to their mechanisms, to fix mistakes a
posteriori, and especially, to provide the community with
a clearer and fair comparison of hardware solutions for
at least some specific processor components or research
issues.

MicroLib and existing simulation environments.
MicroLib modules can be either plugged into MicroLib
processor models (a superscalar model called OoOSysC
and a 15% accurate PowerPC750 model are already avail-
able [17]) which were developed in the initial stages of
the project, or they can be plugged into existing proces-
sor simulators. Indeed, to facilitate the widespread use
of MicroLib, we intend to develop a set of wrappers for
interconnecting our modules with existing processor sim-
ulator models such as SimpleScalar, and recent environ-
ments such as Liberty [27]. We have already developed a
SimpleScalar wrapper and all the experiments presented
in this article actually correspond to MicroLib data cache
hardware simulators plugged into SimpleScalar through a
wrapper, rather than to our superscalar model. Next, we
want to investigate a Liberty wrapper because some of the
goals of Liberty fit well with the goals of MicroLib, es-
pecially the modularity of simulators and the planned de-
velopment of a library of simulator modules. Rather than
competing with modular simulation environment frame-
works like Liberty (which aim at providing a full envi-
ronment, and not only a library), we want MicroLib to be
viewed as an open and, possibly federating, project that
will try to build the largest possible library through ex-
tensive wrapper development. There are also many mod-
ular environments in the industry, such as ASIM [5] by
Compaq (and now Intel), and though they are not publicly
available, they may benefit from the library, provided a

wrapper can be developed for them. The current MicroLib
modules are based on SystemC [19], a modular simulation
framework supported by more than 50 companies from
the embedded domain, which is quickly becoming a de
facto standard in the embedded world for cycle-level or
more abstract simulation. All the mechanisms presented
in this article were implemented using SystemC.

MicroLib modules and design guidelines for Sys-
temC. SystemC bears many similarities with Liberty
again as it provides a software support for building mod-
ules, links between modules and an event engine. On
the other hand, it is a bare environment as it specifies no
guideline for implementing modules and communication
protocols between modules. The reason for such free-
dom is the very large range of applications of SystemC.
This environment can be used either for Transaction-Level
Modeling (TLM), where only the module functions are
described with very rough performance estimates, for
cycle-level simulation, and VHDL/Verilog modules can
even be wrapped within SystemC modules and combined
with other more abstract components models. To im-
plement these possibilities, SystemC offers a rather large
range of communication methods: the most simple is the
Signal which is similar to a physical link (either a bit or
a set of bits), and there are also Channels for more elab-
orate link behavior, and even Events where physical links
disappear. Because we target cycle-level simulation, we
only use Signals for communications among modules.

Modular simulator design may not significantly speed
up the development of a new simulator, but it consider-
ably speeds up the modifications and updates of an ex-
isting simulator (and that is the most frequent task in
a research group), because most modifications are local
to one or a few modules, and a clean representation of
communications among modules (through links) provides
an instant and intuitive representation of the relationships
among modules (processor components). However mod-
ular simulators are significantly slower than monolithic
simulators, typically a factor of 10 to 15; for instance, our
OoOSysC superscalar model executes 25000 instructions
per cycle on an Athlon XP 1800+, while SimpleScalar ex-
ecutes 300000 instructions per cycle. However our experi-
ence is that we spend much more time in simulator devel-
opment than in simulation runs within a research project.
And recent sampling techniques like SimPoint [22] and
SMARTS [28] have shown that it is possible to reduce
simulation time by several orders of magnitude.

In fact, striking the right balance between modularity,
efficiency and speed is a delicate task. A too fine-grain
granularity and the simulator is close to the architecture,
but the code is excessively large and slow; a too coarse-



grain granularity and the benefits of modular simulation
are lost. Our initial OoOSysC implementation had 29
modules, and we have progressively decreased it to 25
modules (at this level, one pipeline stage roughly corre-
sponds to one or a few modules), both for software engi-
neering and performance reasons.
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Figure 1: Modular structures of MicroLib.

The performance price is due to two factors: the com-
munication overhead and processes wake-ups. The com-
munication overhead comes from the fact that exchang-
ing an information between two hardware components
in a monolithic simulator just means reading a variable,
while in a module simulator it means writing to an out-
put port, waking up a link, writing to an input port, wak-
ing up a module, reading the input port. The number of
times a module is waken up is the second performance
factor. Consider a 2-input module for instance, and as-
sume the module receives the two inputs from two differ-
ent sources within the same cycle; then, the module will
be waken up upon arrival of each input, but it is only af-
ter the second wake-up that it can produce the result; in
fact the first wake-up is useless. For that purpose, we
have defined communication protocols, on top of Sys-
temC, that minimize the number of wake-ups in order to
ensure reasonable performance. In Liberty for instance,
the communication protocols are embedded in the envi-
ronment, while in SystemC, they have to be explicited;
but the development overhead is fairly small. Figure 1
shows the relationships and links between two modules.
The main guideline is to split modules into two parts: one
that will be waken up every clock cycle (called sequen-
tial processes), and one that will be waken up if incoming
signals change (called combinational processes). Combi-
national processes can be the costliest because they can
be waken up several times per cycle, so they are limited in
numbers and their actions as far as possible.

3 Experimental Framework

Parameter Value
Processor core

Processor Frequency 2 GHz
Instruction Windows 128-RUU, 128-LSQ
Fetch, Decode, Issue width 8 instructions per cycle
Functional units 8 IntALU, 3 IntMult/Div,

6 FPALU, 2 FPMult/Div,
4 Load/Store Units

Commit width up to 8 instructions per cycle
Memory Hierarchy

L1 Data Cache 32 KB/direct-mapped
L1 Data Write Policy Writeback
L1 Data Allocation Policy Allocate on Write
L1 Data Line Size 32 Bytes
L1 Data Ports 4
L1 Data MSHRs 8
L1 Data Reads per MSHR 4
L1 Data Latency 1 cycle
L1 Instruction Cache 32 KB/4-way associative/LRU
L1 Instruction Latency 1 cycle
L2 Unified Cache 1 MB/4-way associative/LRU
L2 Cache Write Policy Writeback
L2 Cache Allocation Policy Allocate on Write
L2 Line Size 64 Bytes
L2 Ports 1
L2 MSHRs 8
L2 Reads per MSHR 4
L2 Latency 12 cycles
L1/L2 Bus 32-byte wide, 2 Ghz

Bus
Bus Frequency 400 MHz
Bus Width 64 bytes (512 bits)

SDRAM
Capacity 2 GB
Banks 4
Rows 8192
Columns 1024
RAS To RAS Delay 10 cpu cycles
RAS Active Time 80 cpu cycles
RAS to CAS Delay 15 cpu cycles
CAS Latency 10 cpu cycles
RAS Precharge Time 15 cpu cycles
RAS Cycle Time 55 cpu cycles
Refresh Avoided
Controler Queue 32 Entries

Table 1: Baseline configuration.



3.1 SystemC and SimpleScalar

As mentioned before, for all the experiments of this ar-
ticle, our MicroLib data cache modules are plugged into
SimpleScalar. Two reasons motivated this choice. First,
all the mechanisms, except for Frequent Value Cache [31],
Markov Prefetching [12] and Content-Directed Data
Prefetching [3] , were implemented using SimpleScalar,
and it is easier to validate the implementation if we use
the same processor simulator. Second, we wanted to
show that MicroLib modules developed in SystemC can
be plugged into existing simulators through a wrapper (ex-
actly an interface in this case). For that purpose, we have
stripped SimpleScalar of its cache and memory models,
and replaced them with MicroLib models. In addition to
the various data cache models, we have developed and
used an SDRAM model for most experiments. Note that
more detailed memory models have been recently made
available for SimpleScalar [2].

We have used SimpleScalar 3.0d [2] and the parame-
ters in Table 1 which we found in many of the target ar-
ticles [15, 10, 9]; they correspond to a scaled up super-
scalar implementation (note the bus width is rather large,
for instance); the other parameters are set to their default
values.

We have compared the mechanisms using the SPEC
CPU2000 benchmark suite [26]. The benchmarks were
compiled for the Alpha instruction set using cc DEC C
V5.9-008 on Digital UNIX V4.0 (Rev. 1229), cxx Com-
paq C++ V6.2-024 for Digital UNIX V4.0F (Rev. 1229),
f90 Compaq Fortran V5.3-915 and f77 Compaq Fortran
V5.3-915 compilers with SPEC peak settings. For each
program, we fastforwarded 1 billion instructions, and then
simulated 2 billion instructions with the reference input
set.

3.2 Validating the Implementation

Validating a hybrid SimpleScalar+MicroLib model.
Because we plugged our own cache simulator into
SimpleScalar, we wanted to validate the hybrid Sim-
pleScalar+MicroLib model against the original Sim-
pleScalar model, in order to show that the hybridation in-
troduces minimal noise. Our cache architecture choices
are different, and we believe more realistic, than in Sim-
pleScalar. For the validation, we have altered the Sim-
pleScalar model so that it ressembles ours and vali-
dated this altered SimpleScalar model against the Sim-
pleScalar+MicroLib model; in order to validate specifi-
cally the cache, we have used the SimpleScalar memory
model in both simulators. In Section 4.3, we analyze the
impact of the memory model accuracy.

Initially, before altering the SimpleScalar cache model,
we found a 6.8% IPC difference in average between the
hybrid implementation and the original SimpleScalar im-
plementation. We then progressively modified the Sim-
pleScalar cache model to get closer to our MicroLib
model and found that most of the performance variation
is due to the following implementation differences:

• The SimpleScalar MSHR (miss address file [14, 24])
has unlimited capacity; in our cache model its capac-
ity parameters are defined in Table 1.

• In SimpleScalar, the cache pipeline is insufficiently
detailed. As a result, a cache request can never delay
next requests, while in a pipelined implementation,
such delays can occur. Several events can delay a re-
quest: two misses on the same cache line but for dif-
ferent addresses can stall the cache, upon receiving a
request the MSHR is not available for one cycle. . .

• The processor Load/Store Queue (LSQ) can always
send requests to the cache in SimpleScalar, while the
abovementioned cache stalls (plus MSHR full) can
temporarily stall the LSQ.

• In SimpleScalar, a dirty line is evicted while in the
same cycle, the miss request is sent to the lower
level; the litterature suggests both actions usually
take place in separate cycles [8].

• In SimpleScalar the refill requests (incoming mem-
ory request) seem to use additional cache ports. For
instance, when the cache has two ports, it is possible
to have two fetch requests and a refill request at the
same time. We strictly enforce the number of ports,
and upon a refill request, only one normal cache re-
quest can occur with two ports.

Figure 2: MicroLib cache model validation.



After altering the SimpleScalar model so it behaves like
our MicroLib model, we found that the average IPC dif-
ference between the two models was down to 2%, see Fig-
ure 2. Note that, in the remainder of the article, we do not
use the SimpleScalar model, we use our original and un-
modified MicroLib model.

Besides this performance validation, we have done ad-
ditional correction validations using the OoOSysC super-
scalar processor. We plugged our different models in
OoOSysC which has the additional advantage of actu-
ally performing all computations. As a result, the cache
not only contains the addresses but the actual values of
the data, i.e., it really executes the program, unlike Sim-
pleScalar. Comparing the value in the emulator and the
simulator for every memory request is a simple but pow-
erful debugging tool.1 For instance, in one of the imple-
mented models, we forgot to properly set the dirty bit in
some cases; as a result, the corresponding line was not
systematically written back to memory, and at the next re-
quest at that address, the values differed.

Validating the implementation of data cache mech-
anisms. The most time-consuming part of this research
work was naturally reverse-engineering the different hard-
ware mechanisms from the research articles. The differ-
ent mechanisms, a short description and the correspond-
ing reference are listed in Table 2, and the mechanism-
specific parameters are listed in Table 3.

For several mechanisms, there was no easy way to do
an IPC validation. The metric used in FVC and Markov
is miss ratio, so only a miss ratio-based validation was
possible. VC, Tag and SP have been proposed several
years ago, so the benchmarks and the processor model dif-
fered significantly. CDP and CDPSP used an internal In-
tel simulator and their own benchmarks. For all the above
mechanisms, the validation consisted in ensuring that ab-
solute performance values were in the same range, and
that tendencies were often similar (relative performance
difference of architecture parameters, among benchmarks,
etc. . . ).

For TK, TKVC, TCP and DBCP, we used the IPC
graphs provided in the articles for the validation; the
benchmarks used in each article are indicated in Table 4.
Figure 3 shows the percentage speedup difference be-
tween the graph numbers and our simulations (some ar-
ticles do not provide IPC, but only speedups with respect
to the base SimpleScalar cache configuration). The av-
erage error is 5%, but the difference can be very signifi-
cant for certain benchmarks, especially ammp. We were
not able to bridge this performance difference even though

1Besides debugging purposes, this feature is also particularly useful
for testing value prediction mechanisms.

Parameter Value
Victim Cache

Size/Associativity 512 Bytes / Fully assoc.
Frequent Value Cache

Number of lines 1024 lines
Number of frequent values 7 + unknow value

Timekeeping Cache
Size/Associativity 512 Bytes/Fully assoc.
TK refresh 512 cpu cycles
TK threshold 1023 cycles

Markov Prefetcher
Prediction Table Size 1 MB
Predictions per entry 4 predictions
Request Queue Size 16 entries
Prefetch Buffer Size 128 lines (1 KB)

Tag Prefetching
Request Queue Size 16

Stride Prefetching
PC entries 512
Request Queue Size 1

Content-Directed Data Prefetching
Prefetch Depth Threshold 3
Request Queue Size 128

CDP + SP
SP PC entries 512
CDP Prefetch Depth 3
Threshold
Request Queue 1/128
Size (SP/CDP)

Timekeeping Prefetcher
Address Correlation 8KB, 8-way assoc.
Request Queue Size 128 entries

Tag Correlating Prefetching
THT size 1024 sets, direct-mapped,

stores 2 previous tags
PHT size 8KB, 256 set, 8 way assoc.
Request Queue Size 128 entries

Dead-Block Correlating Prefetcher
DBCP history 1K entries
DBCP size 2M 8-way
Request Queue Size 128 entries

Global History Buffer
IT entries 256
GHB entries 256
Request Queue Size 4

Table 3: Configuration of data cache optimizations.

we tested many values of the unspecified (undocumented)
parameters. In general, tendencies are preserved, but not
always, i.e., a speedup or a slowdown in an article can
become a slowdown or a speedup in our experiments, as
for gcc (for TK and DBCP) and gzip (for TK) respec-



Acronym Mechanism Description
VC Victim Cache [13] A small fully associative cache associated for storing evicted

lines; particularly useful for limiting the impact of conflict
misses without resorting to associativity.

FVC Frequent Value Cache [31] A small additional cache that behaves like a victim cache, ex-
cept that it is just used for storing frequently used values in a
compressed form. The technique has also been applied in other
studies [30, 29] to prefetching and energy reduction.

TK Timekeeping [9] Prefetch mechanism that time statistics to estimate when a
cache line is about to be replaced and prefetches the new ad-
dress for that line.

TKVC Timekeeping Victim Cache [9] Same as TK but uses a victim cache instead of prefetching.
Markov Markov Prefetcher [12] Uses Markov chains to determine prefetch addresses.
TP Tag Prefetching [25] A very simple prefetching technique that prefetches on a miss,

or on a hit on a prefetched line.
SP Stride Prefetching [13] An extension of tag prefetching that detects the access stride of

load instructions and prefetches accordingly.
CDP Content-Directed Data Prefetching [3] A prefetch mechanism for pointer-based data structures that at-

tempts to determine if a fetched line is actually an address, and
if so, prefetches it immediately.

CDPSP CDP + SP A combination of CDP and SP as proposed in [3].
TCP Tag Correlating Prefetching [10] Prefetcher that correlates cache misses to generate prefetches.
DBCP Dead-Block Correlating Prefetcher [15] A prefetcher that, like TK, predicts when a line will be replaced

and by which address. It detects a line that is about to be evicted
by the addresses of load/store instructions accessing it.

GHB Global History Buffer [18] We implemented only one of the possible variations which de-
termines a stride for prefetching, like SP, except that the stride
is computed based on a history of misses.

Table 2: Target data cache optimizations.
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DBCP
√ √ √ √ √

TK/TKVC/TCP/DBCPTK
√ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

GHB
√ √ √ √ √ √ √ √ √ √ √ √

Table 4: Benchmarks used in validated mechanisms.

tively. Note that, surprisingly enough, all four mecha-
nisms use exactly the same SimpleScalar parameters of
Table 1, even though the first mechanism was pulished in
2000 and the last one in 2003. Only the SimpleScalar pa-
rameters of GHB (not included in the graph of Figure 3),
proposed at HPCA 2004, are different (130 cycles mem-
ory latency).

Finally, note that the accuracy of DBCP is rather poor,
while it is much higher for DBCPTK; the DBCPTK val-
ues have been extracted from the article which proposed
TK [9] and which compared TK against DBCP. Interest-
ingly, their own reverse-engineering effort brought almost
the same results as ours, but both are fairly different from
the original article, outlining the difficulty of an accurate

reverse-engineering process.

4 A Quantitative Comparison of
Hardware Data Cache Optimiza-
tions

The different subsections correspond to the questions
listed in Section 1. Except for Section 4.1, all the com-
parisons relate to the IPC metric and are usually averaged
over all the benchmarks listed in Section 3.1, except for
Section 4.2.



Figure 3: Validation of TK, TCP, DBCP and TKVC.

4.1 Which hardware mechanism is the
best with respect to performance, power
and/or cost? Are we making any
progress?

Figure 4: Speedup.

Performance. Figure 4 shows the average IPC speedup
over the 26 benchmarks for the different mechanisms

with respect to the base cache parameters defined in Sec-
tion 3.1.2 We find that the best mechanism is GHB, a
recent evolution (HPCA 2004) of SP, an idea originally
published in 1990, and which is the second best perform-
ing mechanism, then followed by TK, proposed in 2002.
A very simple (and old) hardware mechanism like TP per-
forms also quite well. Comparably, more recent ideas like
TCP or DBCP exhibit rather disappointing performance,
and FVC, which was evaluated using miss ratios in the
article, seems to provide little IPC improvements. Over-
all, it is striking to observe how irregularly performance
has evolved from 1990 to 2004, when all mechanisms are
considered within the same processor.

Note that the speedup for some of the mechanisms
in Figure 4 is fairly close to the reverse-engineering er-
ror shown in Figure 3, meaning that the validity of the
comparison itself may be jeopardized by the necessity to
reverse-engineer mechanisms.

Cost. We evaluated the relative cost (chips area) of
each mechanisms using CACTI 3.2 [23], and Figure 5

2The IPC graphs per benchmark are available online at
http://www.microlib.org.



Figure 5: Power and Cost Ratios.

provides the area ratio (relative cost of mechanism with
respect to base cache). Not suprisingly, Markov and
DBCP have very high cost due to large tables, while other
lightweight mechanisms like TP, or even SP and GHB
(small tables) incur almost no additional cost. What is
more interesting is the correlation between performance
and cost: GHB and SP remain clear winners, and TP is
more attractive in that perspective. On the other hand,
DBCP, which performs slightly better than TP, does not
compare favorably.

Power. We evaluated power using XCACTI [11]; Fig-
ure 5 shows the relative power increase of each mecha-
nism. Naturally, power is determined by cache area and
activity, and not surprisingly, Markov and DBCP have
strong power requirements. In theory, a costly mech-
anism can compensate the additional cache power con-
sumption with more efficient, and thus reduced cache ac-
tivity, though we found no clear example along that line.
Conversely a cheap mechanism with significant activity
overhead can be power greedy. It is apparently the case
for GHB: even though the additional table is small, each
miss can induce up to 4 requests, and a table is scanned
repeatedly, hence the high power consumption. In SP, on
the other hand, each miss request induces a single request,
and thus SP is very efficient, just like TP.

Best overall tradeoff (performance, cost, power).
When power and cost are factored in, SP seems like a clear
winner, TK and TP performing also very well. TP is the
oldest mechanism, SP has been proposed in 1990 and TK
has been very recently proposed in 2002. While which
mechanism is the best very much depends on industrial
applications (e.g., cost and power in embedded proces-
sors, versus performance and power in general-purpose
processors), it is probably fair to say that the progress of
data cache research over the past 15 years has been all but

regular.
In the remaining sections, ranking is focused on per-

formance due to paper space constraints, but naturally, it
would be necessary to come up with similar conclusions
for power, cost, or all three parameters combined.

DBCP vs. Markov
TKVC vs. VC
TK vs. DBCP

CDP/CDPSP vs. SP
TCP vs. DBCP

GHB vs. SP

Table 5: Previous comparisons.

Did the authors compare their ideas? Table 5 shows
which mechanism has been compared to which previous
mechanisms (listed in chronological order). Most of the
articles have few if no quantitative comparison with pre-
vious mechanisms, except when comparisons are almost
compulsory, like GHB which compares against SP be-
cause it is based on SP. Sometimes, comparisons are per-
formed against the most recent mechanism, maybe with
the expectation it is the current best one, like TCP and TK
which are compared against DBCP, while in this case, a
comparison with SP might have been more appropriate.

4.2 What is the impact of benchmark selec-
tion on ranking?

Yes, cherry-picking is wrong. We have ranked the dif-
ferent mechanisms for every possible benchmark combi-
nation. First, we have observed that for any number of
benchmarks less or equal than 23, i.e., the average IPC
is computed over 23 benchmarks or less, there is always
more than one winner, i.e., it is always possible to find
two benchmark selections with different winners. In Fig-
ure 6, we have indicated how often a mechanism can be a
winner for any number of benchmarks up to 26. For in-
stance, mechanisms that perform poorly on average, like
CDP, can win for selections of up to 2 benchmarks; note
that CDP is a prefetcher for pointer-based data structures,
so that it is likely to perform well for benchmarks with
many misses in such data structures; for the same reason,
CDPSP (a combination of SP and CDP) can be appropri-
ate for a larger range of benchmarks, as the authors point
out. Another astonishing result is Markov which can per-
form very well for up to 6-benchmark selections.

Are there “representative” benchmarks? We could
not find a single benchmark for which the ranking is the
same as when computed over the full 26 benchmarks. The
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15
√ √ √ √ √ √ √
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21
√ √ √ √
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√ √ √ √

23
√ √

24
√

25
√

26
√

Table 6: Which mechanism can be winner with x bench-
marks?

size of the smallest “representative” benchmark selection
we found is 6. There are several such 6-benchmark rep-
resentative selections; an example is the set ammp, applu,
apsi, art, mesa, crafty.

4.3 What is the impact of the architecture
model precision on ranking?

Figure 6: Impact of the memory model accuracy.

Is it necessary to have a more detailed memory
model? We have implemented a detailed SDRAM model,

as Cuppu et al. [4] did for SimpleScalar (though their
model is not yet distributed), and we have evaluated the
influence of the memory model on ranking. The origi-
nal SimpleScalar memory model is rather raw with a con-
stant memory latency. Our model uses a bank interleav-
ing scheme [21, 32] which allows the DRAM controller
to hide the access latency by pipelining page opening
and closing operations. We implemented several sched-
ule schemes proposed by Green et al. [6] and retained
one that significantly reduces conflicts in row buffers.
For the sake of the comparison with the 70-cycle Sim-
pleScalar memory, we have scaled down the parameters
of our PC133 SDRAM, see Figure 1, to reach an av-
erage 70 cycles over all benchmarks. Figure 6 com-
pares this memory model with a SimpleScalar-like mem-
ory model. The memory model does affect significantly,
if not considerably, the absolute performance as well as
the ranking of the different mechanisms. The most dra-
matic reduction occurs for GHB which drops from a 1.19
speedup with a SimpleScalar-like memory to less than
1.11 with an SDRAM memory; the performance advan-
tage of GHB over SP is considerably smaller with a more
realistic memory because GHB increases considerably the
memory preassure. The memory model also affects rank-
ing: for instance, CDPSP outperforms SP with a simpli-
fied memory model and no longer with an SDRAM; the
same is true of VC and DBCP. . .

Figure 7: Impact of the cache model accuracy.

Influence of cache model inaccuracies. Similarly, we
have investigated the influence of other hierarchy model
components. For instance, we have explained in Sec-
tion 3.2, that the SimpleScalar cache uses an infinite miss
address file (MSHR), so we have compared the impact
of just varying the miss address file (i.e., infinite versus
the baseline value defined in Table 1). Figure 7 shows
that for many mechanisms, the MSHR has limited impact



on performance and ranking, except for CDP, because it
strongly increases MSHR blocking situations in this case;
with an infinite MSHR, CDP is the eleventh mechanism,
close to Markov, then drops to the last rank with a finite
MSHR.

4.4 What is the impact of second-guessing
the authors’ choices?

Figure 8: Impact of second-guessing the authors’ choices.

For several of the mechanisms, some of the implemen-
tation details were missing in the article, or the interaction
between the mechanisms and other components were not
sufficiently described, so we had to second-guess them.
While we cannot list all such omissions, we want to il-
lustrate their potential impact on performance and rank-
ing, and that they can significantly complicate the task of
reverse-engineering a mechanism.

One such case is TCP; the article properly describes
the mechanism, how addresses are predicted, but it gives
few details on how and when prefetch requests are sent to
memory. Among the many different possibilities, prefetch
requests can be buffered in a queue until the bus is idle and
a request can be sent. Assuming this buffer effectively ex-
ists, a new parameter is the buffer size; it can be either 1
or a large number (we ended up using a 128-entry buffer),
and the buffer size is a tradeoff, since a too short buffer
size will result in the loss of many prefetch requests, and
a too large one may excessively delay some prefetch re-
quests. Figure 8 shows the performance difference and
ranking for a 128-entry and a 1-entry buffer. All possi-
ble cases are found: for some benchmarks like mgrid and
swim, the performance difference is tiny, while it is dra-
matic for art, lucas and galgel.

We ended up selecting 128 because it matched best the
average performance presented in the article, though it
is quite possible the authors did not actually use such a

buffer (and used another unguessed variation). This is just
one example among the many difficulties which were part
of the reverse-engineering process.

4.5 What is the impact of trace selection on
ranking?

Figure 9: Impact of trace selection.

Most researchers tend to skip an arbitrary (usually
large) number of instructions in a trace, then simulate the
largest possible program chunk (usually of the order of a
few hundred million to a few billion instructions), as we
have done ourselves in the present article. Sampling has
received increased attention in the past few years, with
the prospect of finding a robust and practical technique
for speeding up simulation while ensuring the representa-
tivity of the sampled trace. The most notable and practical
contribution is SimPoint [22] which showed that a small
trace can highly accurately describe a whole program be-
havior.

We used the SimPoint tools to generate the basic block
vectors (BBV) for a 500-million trace for each program.
Then, we compared the impact of trace size selection: our
“skip 1 billion, simulate 2 billion” trace versus SimPoint
trace. Figure 9 shows the average performance achieved
with each method, and they differ significantly. For in-
stance DBCP performance decreases significantly and it
is now the worse mechanism instead of CDP, and over-
all most mechanisms perform worse, with the notable ex-
ception of TP. Not surprisingly, trace selection can have
a considerable impact on research decisions like select-
ing the most appropriate mechanism, and obviously, even
large 2-billion traces do not constitute a sufficient precau-
tion.



5 Conclusions and Future Work

In this article we have illustrated with data caches the Mi-
croLib approach for enabling the quantitative comparison
of hardware optimizations. We have implemented several
recent hardware data cache optimizations and we have
shown that many methodology variations or flaws can re-
sult in an incorrect assessment of what is the best or most
appropriate mechanism for a given architecture. Our goal
is now to populate the library, to encourage the quantita-
tive comparison of mechanisms, and to maintain a regu-
larly updated comparison (ranking) for various hardware
components.
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