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Abstract
Recent research advocates applying sampling to

accelerate microarchitecture simulation. Simple random
sampling offers accurate performance estimates (with a
high quantifiable confidence) by taking a large number
(e.g., 10,000) of short performance measurements over the
full length of a benchmark. Simple random sampling does
not exploit the often repetitive behaviors of benchmarks,
collecting many redundant measurements. By identifying
repetitive behaviors, we can apply stratified random
sampling to achieve the same confidence as simple
random sampling with far fewer measurements. Our
oracle limit study of optimal stratified sampling of
SPEC CPU2000 benchmarks demonstrates an opportunity
to reduce required measurement by 43x over simple
random sampling.

Using our oracle results as a basis for comparison,
we evaluate two practical approaches for selecting strata,
program phase detection and IPC profiling. Program
phase detection is attractive because it is microarchitec-
ture independent, while IPC profiling directly minimizes
stratum variance, therefore minimizing sample size.
Unfortunately, our results indicate that: (1) program
phase stratification falls far short of optimal opportunity,
(2) IPC profiling requires expensive microarchitecture-
specific analysis, and (3) both methods require large
sampling unit sizes to make strata selection feasible,
offsetting their reductions of sample size. We conclude
that, without better stratification approaches, stratified
sampling does not provide a clear advantage over simple
random sampling.

1. Introduction
One of the primary design tools in microarchitecture

research is software simulation of benchmark applications.
Timing-accurate simulation’s flexibility and accuracy
makes it indispensable to microarchitecture research.
However, the applications we wish study continue to
increase in length—hundreds of billions of instructions for
SPEC CPU2000 (SPEC2K). At the same time, the speed
gap between simulators and the simulated hardware is

growing—with as much as five orders of magnitude slow-
down currently. Thus, researchers have begun looking for
ways to accelerate simulation without sacrificing the accu-
racy and reliability of results [1,5,6,7].

One of the most promising approaches to accelerate
simulation is to evaluate only a tiny sample of each work-
load. Previous research has demonstrated highly accurate
results while reducing simulation run time from weeks to
hours [6,7]. These sampling proposals pursue two
different approaches to sample selection: (1) statistical
uniform sampling of a benchmark’s instruction stream,
and (2) targeted sampling of non-repetitive benchmark
behaviors. Uniform sampling, such as the SMARTS frame-
work [7], has the advantage that it requires no
foreknowledge or analysis of benchmark applications, and
it provides a statistical measure of the reliability of each
experimental result. However, this approach ignores the
vast amount of repetition within most benchmark’s
instruction streams, taking many redundant measurements.
Targeted sampling instead categorizes program behaviors
to select fewer measurements, reducing redundant
measurements. The SimPoint approach [6] identifies
repetitive behaviors by summarizing fixed-size regions of
the dynamic instruction stream as basic block vectors
(BBV), building clusters of regions with similar vectors,
and taking one measurement within each cluster.

The benefits of both sampling approaches can be
achieved by placing the phase identification techniques of
targeted sampling in a statistical framework that provides
a confidence estimate with each experiment. Stratified
random sampling is this statistical framework. Stratified
sampling breaks a population into strata, analogous to
targeted sampling, and then randomly samples within each
stratum, as in uniform sampling. By separating the distinct
behaviors of a benchmark into different strata, each
behavior can be characterized by a small number of
measurements. Each of these characterizations is then
weighted by the size of the stratum to compute an overall
estimate. The aggregate number of measurements can be
lower than the number required by uniform sampling.

The effectiveness of stratified sampling can be evalu-
ated along two dimensions. First, it might reduce the total



quantity of measurements required. For simulators where
a large number of measurements implies significant cost—
for example, the storage of large architectural state check-
points to launch each measurement—a reduction of
measurements would imply cost savings.

More commonly, however, the total number of
instructions measured has the larger impact on simulation
cost. To improve total measurement, a stratification
approach must reduce the quantity of required measure-
ments while maintaining the small measurement sizes
achievable with simple random sampling.

In this study, we evaluate the practical merit of
combining sample targeting with statistical sampling in
the form of stratified random sampling. We perform an
oracle limit study to establish bounds on improvement
from stratification and evaluate two practical stratification
approaches: program phase detection and IPC profiling.
We evaluate both approaches quantitatively in terms of
sample size (measurement quantity) and sampling unit size
(measurement size), and qualitatively in terms of the up-
front cost of creating a stratification. We demonstrate:

• Limited gains in sample size: We show that stratifying
via program phase detection achieves only a small
reduction in sample size over uniform sampling, 2.2x, in
comparison to the oracle opportunity of 43x. Phase
detection assures that each stratum has a homogenous
instruction footprint. Unfortunately, data effects and
other sources of performance variation remain. The
reduction in CPI variability achieved by stratifying on
instruction footprint is not sufficient to approach the full
opportunity of stratification.

• Expensive analysis and limited applicability: We
show that IPC profiling requires an expensive analysis
that is microarchitecture specific, and its gains do not
justify this cost.

• No improvement in total measurement: We show that
neither stratification approach improves over simple
random sampling in terms of total instructions mea-
sured. Because of the computational complexity of clus-
tering, neither stratification approach can be applied at
the lowest sampling unit sizes achievable with random
sampling. This increase in sampling unit size offsets
reductions in sample size for stratified sampling.

The remainder of this paper is organized as follows.
Section 2 presents stratified random sampling theory and
details how to correctly achieve confidence in results from
a stratified population. Section 3 discusses our optimal
stratification study, while Section 4 covers our evaluations
of two practical stratification techniques. In Sections 3 and
4, we explicitly cover the improvements to sample size
and total measured instructions as compared to simple
random sampling for each technique. We conclude in
Section 5.

2. Stratified random sampling
The confidence in results of a simple random sample

is directly proportional to the sample size and the variance
of the property being measured. The sample size is the
number of measurements taken to make up a sample, and
variance is the square of standard deviation. Significant
reductions in sample size can often be achieved when a
population can be split into segments of lower variance
than the whole.

Stratified random sampling of a population is
performed by taking simple random samples of strata,
mutually exclusive segments of the population, and aggre-
gating the resulting estimates to produce estimates
applicable to the entire population. Strata do not need to
consist of contiguous segments of the population, rather
every population member is independently assigned to a
stratum by some selection criteria. If stratifying the popu-
lation results in strata with relatively low variance, a small
sample can measure each stratum to a desired confidence.
By combining the measurements of individual strata, we
can compute an overall estimate and confidence. With low
variance strata, the aggregate size of a stratified sample
can be much smaller than a simple random sample with
equivalent confidence. A population whose distinct behav-
iors are assigned to separate strata will see the largest
decreases in sample size when using stratified sampling.

The process of stratified random sampling is illus-
trated in Figure 1. The first of three steps is to stratify the
population into K strata. We discuss various techniques for
stratifying populations in the context of microarchitecture
simulation in Sections 3 and 4. Second, we collect a
simple random sample of each stratum. We represent the
variable of interest as x, and strata-specific variables with
the subscript h, where h ranges from 1 to K. Therefore, Nh
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Figure 1. The stratified random sampling process. We focus on the relative effectiveness of two practical 
stratification approaches for Step 1 in this work. The referenced equations for Steps 2 & 3 are in Section 2.



is the population size of stratum h, nh is the sample size for
stratum h, while  is that stratum’s standard deviation
of x. The final step is to aggregate the individual stratum
estimates to produce estimates of the entire population. A
simple weighted mean is used to produce a population
mean estimate:

where the summation is over all strata of the population
(h = 1 to K); thus, , and . Note, we
assume Nh » nh» 1 to simplify the stratified sampling
expressions. The confidence interval of a mean estimate
from a stratified random sample is determined by:

where z is the  percentile of the standard
normal distribution (z = 2.0 for 95% and z = 3.0 for 99.7%
confidence). Note that a sampling estimate of a stratum’s
standard deviation is marked with a hat as .

The required sample size for each stratum, nh, which
produces a desired overall confidence interval with
minimum total sample size n can be calculated if the stan-
dard deviation of each stratum  is known or can be
estimated. The procedure for calculating the optimal strati-
fied sample is known as optimal sample allocation [2]. To
determine an optimally-allocated stratified sample for a
desired confidence interval we first calculate the total
stratified sample size:

The sample size of each stratum is the fraction  of
the total stratified sample size n; individual stratum sample
sizes are .

3. Optimal stratification
In order to evaluate practical stratification approaches

for the experimental procedure presented in Section 2, we
first quantify the upper bound reduction in sample size
achievable with an optimal stratification. As in previous
studies of simulation sampling [7, 6], we focus on CPI as
the target metric for our estimation, and use the same 8-
way and 16-way out-of-order superscalar processor
configurations, SPEC2K benchmarks, and simulator code-
base as [7].

Determining an optimal stratification for CPI requires
knowledge of the CPI distribution for the full length of an
application—knowledge which obviates the need to esti-
mate CPI via sampling. To perform this study, we have
recorded complete traces of the per-unit IPC (not CPI, for
reasons explained later) of every benchmark on both
configurations. While not a practically applicable tech-
nique, this study establishes the bounds within which all
practical stratification methods will fall. At worst, an arbi-
trary stratification approach will match simple random
sampling, as random assignment of sampling units to
strata is equivalent to simple random sampling. At best,
any approach will match the bound established here.

Optimal stratified sampling. To minimize total
sample size, we need to determine an optimal number of
strata, and minimize their respective variances. Then, we
calculate the correct sample size for a desired confidence
using the optimal stratified sample allocation equation (3).
This equation provides the best sample size for each
stratum, given their variances and relative sizes. Larger
and higher variance strata receive proportionally larger
samples. We constrain sample size for each stratum to a
minimum of 30 (or the entire stratum, if it contains fewer
than 30 elements) to ensure that the central limit theorem
holds, and that our confidence calculations are valid [2].

The optimal number of strata, K, cannot be deter-
mined in closed form. Intuitively, more strata allows finer
classification of application behavior, reducing variance
within each stratum, and therefore reducing sample size.
However, at some critical K, the floor of 30 measurements
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Figure 2. Determining the optimal stratification for a particular benchmark and microarchitecture. 
Collecting the IPC profile requires performance simulation of the full length of the target benchmark.



per stratum dominates and increasing K increases sample
size. For each combination of benchmark, microarchitec-
ture, and sampling unit size, U, we determine the total
stratified sample size for each value of K up to the optimal
value, by starting with K = 1 and stopping when total
sample size decreases to a minimum.

For each value of K, we determine the optimal assign-
ment of sampling units to strata such that the CPI variance
of each stratum is minimized. We employ the k-means
clustering algorithm, using the implementation described
in [3] that utilizes kd-trees and blacklisting optimizations.
The k-means algorithm is one of the fastest clustering
algorithms, and the implementation in [3] is optimized for
clustering large data sets, up to approximately 1 million
elements. (Beyond 1 million elements, the memory and
computation requirements render the approach infeasible.)
Each k-means clustering was performed with 50 random
seeds to ensure an optimal clustering result. To stratify the
large populations of SPEC2K benchmarks at small U (on
average 174 million sampling units per benchmark at
U = 1000 instructions), we must reduce the data set before
clustering. Figure 2 illustrates how we reduce the data set
without impacting clustering results. We assign sampling
units to bins of size 0.001 IPC, and then cluster the bins
using their center and membership count. We bin based on
IPC rather than CPI as IPC varies over a finite range for a
particular microarchitecture (i.e., 0 to 8 for our 8-way
configuration, thus, 8000 bins). As long as the number of
bins is much larger than K, and the variance within a bin is
negligible relative to overall variance, binning does not
adversely affect the results of the clustering algorithm.

After each clustering, we calculate the variance of the
resulting strata and determine an optimal sample size as
previously described. We iterate until the critical value for
K is encountered. The optimal K lies between one and ten
clusters for all benchmarks and configurations that we
studied, and tends to decrease slightly with increasing U.
Note that the optimal K is independent of the target confi-
dence interval.

Impact on sample size. Figure 3 illustrates the
impact of stratification on sample size, n, for the 8-way
configuration. The top line in the figure represents the
average sample size required for a simple random sample
to achieve 99.7% confidence of ±3% error across all
benchmarks. The bottom line depicts the average sample
size with optimal stratification. Stratification can provide a
43x improvement in sample size for U = 1000 instructions,
reducing average sample size from ~8000 to 185 measure-
ments per benchmark. This result demonstrates that
random sampling takes many redundant measurements,
and that there is significant opportunity for improvement
with an effective stratification technique.

Impact on total measured instructions. Figure 4
illustrates the impact of stratification on total measured
instructions, n · U. The dashed line illustrates the total
instructions required for the SMARTS technique, which
performs systematic sampling at U = 1000 instructions.
The graph shows that any practical stratification approach
must be applied at a unit size of 10,000 instructions or
smaller in order to have a possibility of outperforming
existing sampling methodology.

4. Practical stratification approaches
The optimal stratification study presented in Section 3

establishes upper and lower bounds by which we can
measure the effectiveness of any stratification approach.
However, creating the optimal stratification requires
knowledge of the CPI distribution for the full length of an
application, and is optimal only for that specific microar-
chitecture configuration. In order for stratification to be
useful, we must balance the cost of producing a stratifica-
tion with the time saved relative to simple random
sampling over the set of experiments which can use the
stratification. Thus, we desire stratifications that can be
computed cheaply and can be applied across a wide range
of microarchitecture configurations. In the following
subsections, we analyze two promising stratification
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approaches. However, we find that both approaches obtain
insufficient execution time improvements over simple
random sampling to justify their large costs.

4.1. Program phase detection
SimPoint [6] presents program phase detection as a

promising approach for identifying and exploiting repeti-
tive behavior in benchmarks to enable acceleration of
microarchitecture simulation. SimPoint identifies program
phases based upon a basic-block vector profile. SimPoint
clusters measurement units based on the similarity of
portions of the BBV profiles.

Statistically Valid SimPoint [4] presents a method for
evaluating the statistical confidence of SimPoint simula-
tions where only a single unit is measured from each
cluster. However, the proposed use of parametric boot-
strapping only provides confidence interval estimates for
the specific microarchitecture where the bootstrap is
performed, and does not account for individual experi-
ment’s variations in performance. In addition, this analysis
requires CPI data for many points within each cluster.

Instead, by applying BBV phase detection in the
context of stratified random sampling, we can obtain a
confidence estimate with every experiment. By measuring
at least 30 units from each stratum (BBV cluster), we
satisfy the conditions of the central limit theorem and
obtain a confidence estimate with each simulation experi-
ment. The number of strata was optimally selected using
the same technique as our optimal stratification study in
Section 3. SimPoint seems a promising approach for strat-
ification, as it achieves both of the goals outlined earlier.
First, basic block vector analysis is relatively low cost, as
it can be accomplished using a BBV trace obtained by
functional simulation or direct execution of instrumented
binaries (if experimenting with an implemented ISA).
Second, basic block vectors are independent of microar-
chitecture, and thus, the resulting stratification can be
applied across many experiments.

Practical costs. The primary costs of program phase
stratification are the collection of a benchmark’s raw BBV
data and the clustering analysis time. Collection of BBV
data can be done with direct execution for existing instruc-
tion set architectures, otherwise functional simulation is
required. For the unit sizes advocated in [4] and [6] of 1
million to 100 million instructions, analysis time for clus-
tering is a few hours at most. However, clustering quickly
becomes intractable as we reduce U further. It is infeasible
to compute a k-means clustering for U < 100,000, since,
for most SPEC2K benchmarks, this results in more than 1
million sampling units. The high dimensionality (15
dimensions after random linear projection) of BBV data
prevents the binning optimization done for the optimal
stratification study in Section 3 due to the sparseness of
the vector space.

Impact on sample size. Program phase detection
does provide a modest improvement in sample size over
simple random sampling. However, phase detection falls
short of optimal stratification since it seeks to ensure the
homogeneity of the instruction footprint of each stratum.
This does not necessarily lead to minimal CPI variance
within each stratum. On average, program phase clustering
improves sample size by only 2.2x over simple random
sampling as shown in Figure 5. The average sample size at
U = 1 million instructions was 3590 for simple random
sampling and 1615 for BBV stratified random sampling,
as compared to 125 for optimal stratified sampling.

Impact on total measured instructions. Because the
BBV clustering analysis cannot be performed for U below
100,000, stratification based on program phase cannot
match the total measured instructions achievable with
simple random sampling. With U = 1 million, BBV strati-
fication results in an average of 1.6 billion instructions
measured per benchmark, while a simple random sample
with U = 1000 requires only 8 million instructions per
benchmark to be measured.

4.2. IPC profiling
The optimal stratification study in Section 3 achieves

large gains with stratification by stratifying directly on the
target metric, in this case CPI. Optimal stratification can
not be done for each experiment in practice because it
requires the very same detailed simulation that we are
trying to accelerate. However, if it were possible to
perform this expensive stratification once per benchmark
on a test microarchitecture, and then apply this stratifica-
tion to many other microarchitecture configurations over
many experiments, the long term savings might justify the
one time cost. The key question is whether strata with
minimal variance on one microarchitecture also have low
variance on another microarchitecture. We evaluate the
promise of this approach by computing a stratification
using an IPC profile of our 8-way processor configuration
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and evaluating this stratification when applied to the 16-
way configuration. The two microarchitectures differ in
their fetch, issue and commit widths, functional units,
memory ports, branch predictor and cache configurations,
and cache latency (details in [7]).

Practical costs. This approach needs a trace of the
IPC of every block of U instructions, requiring a detailed
simulation of the entirety of every benchmark. The longest
SPEC2K benchmarks require up to a month to simulate in
detail. We have successfully clustered sampling units for
U = 10,000, but storage requirements and processing time
prevent clustering at U = 1000 instructions. Unlike the
optimal stratification experiment of Section 3, practical
use of IPC profile stratification requires storing the strata
assignment of every sampling unit to disk (to allow strata
selection for a second experiment), and the storage needs
becomes prohibitive at U = 1000.

Impact on sample size. Two measurements units
which have identical performance on one microarchitec-
ture, and are thus members of the same stratum, may be
affected differently by microarchitectural changes,
increasing variance in the stratum. Thus, a larger sample is
required to accurately assess the stratum. Figure 6
compares the sample size obtained with an 8-way IPC
profile stratification to the optimum stratification and
simple random sampling for the 16-way configuration.
The 8-way stratification improves over purely random
sampling by a factor of 15x, as compared to an opportunity
of 48x for the 16-way microarchitecture. An IPC profile
stratification will provide large returns only for microar-
chitectures very similar to the test microarchitecture that
generated the profile.

Impact on total measured instructions. As Figure 7
shows, IPC profile stratification at U = 10,000 roughly
breaks even with SMARTS in terms of total measured
instructions. This performance does not justify the signifi-
cant one time cost of creating the stratification. Even if a
method were developed which could stratify at U = 1000,
the limited microarchitecture portability of the stratifica-

tion renders it unlikely that the high cost of generating an
IPC profile will be worthwhile.

5. Conclusion
While our opportunity study of stratified sampling

shows promise for reducing sample size, our analysis of
practical stratification techniques indicates little advantage
over simple random sampling. Program phase detection
stratification achieves only a small fraction of the avail-
able opportunity, since the discovered homogenous
instruction footprints do not translate to homogenous
performance. IPC profiling requires expensive and poten-
tially non-portable stratification that is not justified by
improvements in sample size. Neither approach improves
in total measurement over simple random sampling
because stratification cannot be performed at small
sampling unit sizes. Thus, we conclude that stratified
sampling provides no benefit for the majority of sampling
simulators where the primary interest is in reducing total
instructions measured.
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