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Abstract 
 

Statistical simulation systems can provide an 
accurate and efficient way to carry out early de-
sign studies for processors. One such system, 
HLS, has a rapid simulation capability, but our 
experiments demonstrate that several modeling 
improvements are possible.  The front-end graph 
structure in HLS is hampered by workload model-
ing at the instruction level that reduces the accu-
racy of program simulation. The workload and 
processor models require significant changes to 
provide accurate results for a variety of bench-
marks. We improve HLS by modeling the work-
load at the granularity of the basic block and by 
changing the processor model to more closely 
reflect components in modern microprocessors. 
The specific techniques improve HLS accuracy by 
a factor of 3.78 at the cost of increased storage 
and runtime requirements. 

Our examination of HLS points to a pitfall 
for simulator developers: reliance on a single 
small set of benchmarks to qualify a simulation 
system. A simple regression model shows that the 
SPECint95 benchmarks, the original benchmarks 
used to calibrate HLS, have characteristics that 
yield to very simple modeling. 

1. Introduction 
To address the extremely long simulation 

times of modern processor designs, researchers 
have developed statistical simulation systems [2-
5, 7, 8]. Statistical simulation uses workload sta-
tistics from specialized functional or trace-driven 
simulation to create a synthetic trace that is ap-
plied to a fast and flexible execution engine. In 
HLS [8], statistics are used to create a static con-
trol flow graph of a small number of statistically 
generated instructions. The graph is then walked 
and the instructions are simulated in a processor 

model. Since the number of instructions is small 
and their workload characteristics have been de-
termined by a statistical distribution, the simula-
tion converges to a result much faster than cycle-
accurate simulations.  

The workload statistics include microarchi-
tecture-independent characteristics such as in-
struction mix and inter-instruction dependency 
frequencies. They also include microarchitecture-
dependent statistics such as branch prediction ac-
curacy and cache miss rates for specific branch 
predictor and cache configurations. These are 
used to model locality structures dynamically as 
the simulation proceeds. 

Statistical simulation systems that correlate 
well with execution-driven simulators have been 
shown to exhibit good relative accuracy as mi-
croarchitecture changes are applied in design 
studies [3]. Studies have achieved average errors 
smaller than 5% on specific benchmark suites [4, 
8]. In this study, we quantify the correlation of 
HLS over a range of benchmarks, from general-
purpose applications to technical and scientific 
benchmarks, and streaming kernels. In addition to 
the SPEC95 benchmarks [12], we study single-
precision versions of the STREAM and 
STREAM2 benchmarks [13]. On these bench-
mark suites, we find that HLS has an average er-
ror of 15.5%.  

The purpose of this study is to investigate 
exactly why HLS is not more accurate. Simulta-
neously we work to improve HLS. We enhance 
the workload model by collecting information at 
the basic block level instead of at the instruction 
level, and we add more detail to the processor 
model. We find that the overall error decreases 
from 15.5% to 4.1%, a factor of 3.78. We use the 
same basic block simulation techniques as in [4], 
so the error is similar. However, in this study, we 
start with the HLS framework as a base and in-



  

crementally add modeling detail to uncover the 
additional complexity necessary to improve HLS. 
We quantify the cost of the improvements in 
terms of additional storage requirements.  

A simple regression model indicates that CPI 
results for the SPECint95, the benchmarks origi-
nally used to calibrate HLS, can yield to very 
simple modeling. Our analysis points to a larger 
problem for simulator developers: using a small 
set of benchmarks, datasets and simulated instruc-
tions to calibrate a simulation system. 

In the next section, we describe HLS. In Sec-
tion 3, we describe various modeling problems 
that we found in HLS. In Section 4, we investi-
gate improvements to the system. We quantify the 
costs of the improvements in Section 5, followed 
by conclusions and references. 

2. HLS Overview 
In the HLS system [8], machine-independent 

characteristics are analyzed using a modified ver-
sion of the sim-fast functional simulator from the 
SimpleScalar release 2.0 toolset [1]. An instruc-
tion mix frequency distribution is generated that 
consists of the percentages of integer, float, load, 
store and branch instructions. The mean basic 
block size and standard deviation are also com-
puted. 

Also generated is the frequency distribution 
of the dependency distances between instructions 
for each input of the five instruction types. The 
benchmarks are executed for one billion cycles in 
sim-outorder [1]. Sim-outorder provides the IPC 
used to compare against the IPC obtained in HLS 
statistical simulation.  It also computes the L1 I-
cache and D-cache miss rates, the unified L2 
cache rate, and the branch predictability. After the 
workload is characterized, HLS generates one 
hundred basic blocks using a normal random 
variable over the mean block size and standard 
deviation. A uniform random variable over the 
instruction mix distribution fills in the instructions 
of each basic block. 

For each randomly generated instruction, a 
uniform random variable over the dependency 
distance distribution generates a dependency for 
each instruction input. An effort is made to make 
an instruction independent of a store within the 
current basic block, but if the dependency 
stretches beyond the limits of the current basic 
block, no change is made because the dynamic 

predecessor is not known. 
The basic blocks are connected into a graph 

structure. Each branch has both a taken pointer 
and a not-taken pointer to other basic blocks. The 
percentage of backward branches, set statically to 
15% in the code, determines whether the taken 
pointer is a backward branch or a forward branch. 
For backward or forward branches, a normal ran-
dom variable over either the mean backward or 
forward jump distances (set statically to ten and 
three in the code, respectively) determines the 
taken target. Later, during simulation, normal 
random variables over the branch predictability 
obtained from the sim-outorder run determine 
dynamically if the branch is actually taken or not, 
and the corresponding branch target pointer is 
followed.  

After the machine statistics are processed 
and the basic blocks are configured, the instruc-
tion graph is walked. As each instruction is en-
countered, it is simulated on a generalized super-
scalar execution model for ten thousand cycles. 
The IPC is averaged over twenty simulations. The 
generalized model contains fetch, dispatch, execu-
tion, completion, and writeback stages. Fetches 
are buffered up to the fetch width of the machine. 
Instructions are dispatched to issue queues in 
front of the execution units and executed as their 
dependencies are satisfied. Neither an issue width 
nor a commit width is specified in the processor 
model. In HLS, the procedure is to first calibrate 
the generalized processor model using a test 
workload; then a reference workload is executed 
on the model. 

For loads, stores, and branches, the locality 
statistics determine the necessary delay before 
issue of dependent instructions. To provide com-
parison with the SimpleScalar lsq, loads and 
stores are serviced by a single queue. Parallel 
cache miss operations are provided through the 
two memory ports available to the load-store exe-
cution unit. As in SimpleScalar, stores execute in 
zero-time when they reach the tail of their issue 
queue and the execution unit is available. 

3. Issues in HLS 
In this section, we first describe the experi-

mental setup and benchmarks used in our experi-
ments, followed by our examination of HLS, in-
cluding descriptions of several workload and 
processor modeling issues. 



  

3.1. Experimental Setup and Benchmarks 
For our experiments we follow the procedure 

in [8] using the software available at [9]. Sim-
pleScalar and the statistical simulation software 
were compiled to target big-endian PISA binaries 
on an IBM Power3 p270. Using the default pa-
rameters in [8], sim-outorder was executed on the 
SPECint95 binaries found at [11] for up to one 
billion instructions of one reference input dataset, 
as in [8]. The modified sim-fast was executed on 
the input dataset for fifty billion instructions, to 
approximate complete program simulation.  

In these experiments we use the SPEC CPU 
95 integer benchmarks [12] for direct comparison 
with the original HLS results. We add the SPEC 
CPU 95 floating point benchmarks [12] and sin-
gle-precision versions of the STREAM and 
STREAM2 benchmarks [6, 13]. We include this 
last suite of benchmarks because they are particu-
larly challenging to statistical simulation systems. 
In Section 2.5 we discuss the characteristics of the 
STREAM benchmarks in more detail. 

3.2. The HLS Graph Structure 
We first examine the HLS front-end graph 

structure. We vary the percentages of backward 
branches, the backward branch jump distance, the 
forward branch jump distance, and the graph con-
nections themselves. 

Figure 1 shows the effect of varying the 
front-end graph connectivity. Baseline is the base 
HLS system running with the taken and not-taken 
branches connected as described in Section 2. 
Random not-taken is the base system with the not-
taken target randomly selected from the config-
ured basic blocks. Single loop is the base system 
with the taken and not-taken targets of each basic 
block both pointing to the next basic block in the 

sequence of basic blocks, with the last basic block 
pointing back to the first. The maximum error 
versus the base system is 3.6% for perl using the 
random not-taken strategy. This is well below the 
average HLS correlation error versus the Sim-
pleScalar. 

Figure 2 shows the IPC for gcc as the frac-
tion of backward jumps changes. The hard-coded 
HLS default is 15% backward jumps. The maxi-
mum error versus that default is 2.8%. Figure 3 
shows IPC as the backward and forward jump 
distances are changed from a default of ten and 
three, respectively. The maximum error versus 
either of those is 2.0%.  

From these figures, it is apparent that the 
graph connectivity in HLS has no impact on 
simulation performance. Intuitively, HLS models 
the workload at the granularity of the instruction. 
All instructions in all basic blocks in the graph are 
generated identically. The instruction type and 
dependencies assigned to any slot in any basic 
block in the graph is randomly selected from the 
global instruction mix distribution, so the instruc-
tion found at any slot on a jump is just as likely to 
be found at any other slot. 
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There is also a small probability that the ran-
dom graph connectivity causes skewed results 
because the randomly selected taken targets can 
form a small loop of basic blocks, effectively 
pruning other parts of the graph from the simula-
tion. This is not a major problem for HLS, in 
which all blocks are essentially the same, but it 
has implications for our improvements to HLS 
described below, so the single loop strategy is 
employed for the remainder of this paper. 

3.3. The HLS Processor Model 
In the HLS generalized execution model, 

there is no issue-width concept. The issue of in-
structions to the issue queues is instead limited by 
the queue size and dispatch window and, ulti-
mately, by the fetch window. There is also no 
specific completion width in HLS, so the instruc-
tion completion rate is also front-end limited. 
These omissions are conducive to obtaining quick 
convergence to an average result for well-behaved 
benchmarks, but they make it difficult to correlate 
the system to SimpleScalar for a variety of 
benchmarks.  

3.4. Modeling Workload Characteristics 
Figures 4 and 5 show the IPC prediction er-

ror [4] over all benchmarks as workload model-
ing issues are incrementally addressed. The 
baseline run gives the HLS results out-of-the-
box. While SPECint95 does well as in [8] with 
only 5.8% error, SPECfp95 has twice the corre-
lation error. The STREAM loop error is more 
than four times worse at 27%. We were unable 
to achieve accurate results on all the benchmarks 
by recalibrating the generalized HLS processor 

model. 
Recall that, in standard HLS, measuring mi-

croarchitecture-independent characteristics is car-
ried out on the complete benchmark using sim-
fast, whereas microarchitecture-dependent local-
ity metrics are obtained only for the first one bil-
lion instructions using sim-outorder. It stands to 
reason that workload information and locality 
information should be collected over the same 
cycle ranges. The 1B Instructions run gives re-
sults with sim-fast executing the same one billion 
instructions as sim-outorder. Not all benchmarks 
improve, but the error in SPECfp95 drops by half 
from 13.6% to 6.8%. Overall error decreases from 
15.5% to 13.1%.  

The modified sim-fast makes no distinction 
between memory instructions that carry out auto-
increment or auto-decrement on the address regis-
ter after memory access and those that do not. The 
HLS sim-fast code always assumes the modes are 
active. This causes the code to assume register 
dependencies that do not actually exist between 
memory access instructions, and it makes codes 
with significant numbers of load and store address 
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register dependencies, including the STREAM 
loops, appear to run slower. The sim-fast code 
was modified to check the instruction operand for 
the condition and mark dependencies accordingly, 
and the dependency fix bars in the figures give the 
results.  The STREAM loops are improved, but 
the SPECint95 error increases from 4.8% to 9.3%. 
This is most likely due to the original calibration 
of the generalized HLS processor model in the 
presence of the modeling error.  

 Table 1 shows a simple regression analysis 
over the locality features taken from sim-outorder 
runs: branch mispredictability, L1 I-cache and D-
cache miss rates, and L2 miss rate. The targeted 
CPI is the particular CPI targeted in the analysis, 
either SimpleScalar or the HLS result. The 
squared correlation coefficient, R2, is a measure of 
the variability in the CPI that is predictable from 
the four features.  The SPECint95 benchmarks 
always achieve high correlation, while the analy-
sis over all benchmarks or even over SPECint95 
together with SPECfp95 achieve lower correla-
tion. This is an indication that a very simple proc-
essor model can potentially represent the CPI of 
the SPECint95 by emphasizing the performance 
of the locality features; but it can not as easily do 
the same over all three suites.  

3.5.  Loop Challenges 
Table 2 shows single-precision versions of 

the STREAM benchmarks, including the loop 
equation and the number of instructions in the 
kernel loop when compiled with gcc using -O. 
The STREAM loops are strongly phased, and in 
fact have only a single phase. 

 Loops consist of one or a small number of 
tight iterations containing specific instruction se-
quences that are difficult for statistical simulation 
systems to model. Figure 6 shows one iteration of 
the saxpy loop (in the PISA language [1]). If the 
mul.s and add.s were switched in the random in-
struction generation process leaving the depend-
ency relationships the same, the extra latency of 
the multi-cycle mul.s instruction is no longer hid-
den by the latency of the second l.s, leading to a 
generally longer execution time for the loop. A 
similar effect can be caused by changes in de-
pendency relationships as the dependencies are 
statistically generated from a distribution.  

Shorter runs can also occur. The mul.s has a 
dependency on the previous l.s. If the l.s is 
switched with the one-cycle add.s, keeping de-
pendencies the same, the mul.s can dispatch much 
faster. While higher-order ILP distributions might 
work well for some loops, the results have been 
mixed and can actually lead to decreased accuracy 
for general-purpose programs [3]. 

4. Improving HLS 
In this section, we focus on improving the 

processor and workload models to give more ac-
curate simulation results. 

4.1. Processor Model 
 It is difficult to correlate the generalized 

HLS processor model to SimpleScalar for all 
benchmarks. For this reason, we augmented HLS 
with a register-update-unit (RUU), an issue width 

Table 2: The STREAM Loops 

Benchmark Equation Loop 
Instructions 

saxpy z[k] = z[k] + q * x[k] 10 

sdot q = q + z[k] * x[k] 9 

sfill z[k] = q 5 

scopy z[k] = x[k] 7 

ssum2 q = q + x[k] 6 

sscale z[k] = q * x[k] 8 

striad z[k] = y[k] + q * x[k] 11 

ssum1 z[k] = y[k] + x[k] 10 

Table 1: CPI Regression Analysis over 1B Instructions 

Benchmarks Targeted CPI R2 

HLS 0.988 SPECint 
SimpleScalar 0.970 

HLS 0.972 SPECint and SPECfp 
SimpleScalar 0.895 

HLS 0.757 SPECint, SPECfp and STREAM 
SimpleScalar 0.811 

start:       addu $2, $3, $6 
l.s $f2, 0($2) 
mul.s $f2, $f4, $f2 
l.s $f0, 0($3) 
add.s $f2, $f2, $f0 
addiu $4, $4, 1 
slt $2, $5, $4 
s.s $f2, 0($3) 
addiu $3, $3, 4 
beq $2, $0, start 

 
Figure 6: Disassembled SAXPY Loop 



  

and a completion width. We also rewrote the re-
current completion function to be non-recurrent 
and callable prior to execution, and we rewrote 
the execution unit to issue new instructions only 
after prior executing instructions have been ser-
viced in the current cycle. We added code to dif-
ferentiate long and short running integer and 
floating point instructions. To maintain effi-
ciency, the locality structures are still modeled 
using the statistical parameters taken from sim-
outorder runs.  

We first run the benchmarks on the improved 
processor model using the same workload charac-
teristics modeled in HLS, except that we generate 
one thousand basic blocks instead of one hundred, 
and we simulate for twenty thousand cycles in 
stead of ten thousand; so simulation time is about 
twice that in HLS. (The same changes in HLS do 
not decrease error.) The execution engine flow, 
delays and parameters are all chosen to match 
those in the SimpleScalar default configuration. 
The baseline system was validated by comparing 
sim-outorder traces, obtained from sections of the 
STREAM loops, to traces taken from the im-
proved HLS assuming perfect caches and perfect 
branch predictability. The validation was simpli-
fied by the fact that the loops are comprised of 
only one phase. 

 Figure 7 gives the results for the individual 
benchmarks, and Figure 8 shows the average re-
sults per benchmark suite. The baseline run gives 
the improved system results using the default 
SimpleScalar parameters and using the global 
instruction mix, dependency information, and 

load and store miss rates. There are errors greater 
than 25% for particular benchmarks, such as 
ijpeg, compress and apsi. The overall error of 
14.4% compares well with the 15.5% baseline 
error in HLS, but it is higher than the 13.1% error 
in shown in Figure 5 for HLS with improved 
workload modeling.  

4.2. Workload Model 
We also enhanced the workload model to re-

duce correlation errors. The analysis of the graph 
structure showed that modeling at the granularity 
of the instruction in HLS did not contribute to 
accuracy. In [7], the basic block size is the gran-
ule of simulation. However, this raises the possi-
bility of basic block size aliasing, in which many 
blocks of the same size but very different instruc-
tion sequences and dependency relationships are 
combined.  
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4.2.1. Basic Block Modeling Granularity  
Instead of risking reduced accuracy with 

block size aliasing, we model at the granularity of 
the basic block itself. The dynamic frequencies of 
all basic blocks are used as a probability distribu-
tion function for building the sequence of basic 
blocks in the graph. This is the same as the k=0 
modeling in the SMART-HLS system [4]. To 
capture cache and branch predictor statistics for 
the basic blocks, we use sim-cache augmented 
with the sim-bpred code. 

In the sequences bars of Figures 7 and 8, the 
basic block instruction sequences are used, but the 
dependencies and locality statistics for each 
instruction in each basic block are still taken from 
the global statistics found for the entire 
benchmark. The overall correlation errors are 
reduced dramatically for the three classes of 
benchmarks. However, some benchmarks such as 
compress and hydro2d, and the STREAM loops, 
still show high correlation errors. 

In the dependencies run, we include the use 
of dependency information for each basic block. 
In order to reduce the amount of information 
stored, we merge the dependencies into the small-
est dependency relationship found in any basic 
block with the same instruction sequence, as in 
[4]. The average error is reduced significantly 
from 8.9% to 6.3%. 

On investigation, it was found that the global 
miss rate calculations do not correspond to the 
miss rates from the viewpoint of the memory op-
erations in a basic block. In the cache statistics, 
HLS pulls in the overall cache miss rate number 
from SimpleScalar, which includes writebacks to 
the L2. But for individual memory operations in a 
basic block, the part of the L2 miss rate due to 
writebacks should not be included in the miss 
rate. This is because the writebacks generally oc-
cur in parallel with the servicing of the miss so 
they do not contribute to the latency of the opera-
tion. This argues for either a global L2 miss rate 
calculation that does not include writebacks or the 
maintenance of miss rate information for each 
basic block. In addition, examination of the 
STREAM loops reveals that the miss rates for 
loads and stores are quite different. In saxpy, for 
example, both loads miss to the L1, but the store 
always hits. Because of these considerations, the 
L1 and L2 probabilistic miss rates for both loads 

and stores should be maintained local to each ba-
sic block. 

The miss rates run includes this information. 
All benchmarks improve, but a few of the 
STREAM loops still have errors greater than 
10%. The problem is that the STREAM loops 
need information concerning how the load and 
store misses, or delayed hits, overlap. In most 
cases load misses overlap, but the random cache 
miss variables often cause them not to overlap, 
leading to an underestimation of performance. 
Note that this is the reverse of the usual situation 
for statistical simulation in which critical paths 
are randomized to less critical paths, and per-
formance is overestimated. An additional run, 
bpred, includes branch predictability local to each 
basic block. This helps a few benchmarks like 
ijpeg and hydro2d, but, as expected, the 
STREAM loops are unaffected. 

One solution is to keep overlap statistics. 
This solves the delayed hits problem, but does not 
provide for the modeling of additional memory 
operation features. Instead, when the workload is 
characterized, we track one hundred L1 and L2 
hit/miss indicators (i.e. if the memory operation 
was an L1 hit or miss or an L2 hit or miss) for the 
sequence of loads and stores in each basic block 
near the end of the one billion instruction simula-
tion. Later, during statistical simulation, we use 
the stream indicators in order (but without pairing 
them to particular memory operations) to deter-
mine the miss characteristics of the stream as the 
loads and stores are encountered. This is a sim-
plistic way to operate, since the stream hit/miss 
indicators are simply collected at the end of the 
run and are therefore not necessarily representa-
tive of the entire run. However, the technique may 
be applicable given the trend to identify and simu-
late program phases [10] in which stream infor-
mation may change little. Still, simulating one 
billion instructions without regard to phase behav-
ior, we expect the technique to help only the 
STREAM loops, and to negatively affect the oth-
ers. 

The stream info bars in Figure 7 show the re-
sults. As expected, the STREAM loops improve 
significantly. However, only a small amount of 
accuracy is lost for the others. This indicates that 
there is only one or a small number of phases in 
the first one billion instructions for most bench-



  

marks, at least with respect to the load and store 
stream behavior. 

4.2.2. Basic Block Maps 
In the previous simulations, the basic blocks 

were not associated with each other in any way 
since a random variable over the frequency distri-
bution of the blocks is used to pick the next basic 
block to be simulated. At branch execution time, a 
random variable based on the global branch pre-
dictability is used simply to indicate that a branch 
misprediction occurred when the branch was dis-
patched, causing additional delay penalty before 
the next instruction can be fetched, but that is not 
related to the successor block decision. This tech-
nique treats all blocks together as if no phases 
exist in which one area of the graph is favored 
over another at different times. 

By associating particular basic blocks with 
each other in specific time intervals, for example 
during a program phase, it is expected that better 
simulation accuracy can be obtained for multi-
phase programs. One way to do that is to specify 
the phases, the basic blocks executing in those 
phases, and the relative frequencies of the basic 
block executions during those phases. These three 
things together constitute a basic block map.  

The phase identification requires knowledge 
of when the relative frequencies of the basic 
blocks change. The identification of phases at a 
coarse granularity can be carried out using a 
phase identification program such as SimPoint 
[10]. It can also be developed dynamically during 
simulation by walking a representation of the con-

trol flow graph of the program. A system to do 
that for the SPEC2000 benchmarks is presented in 
[4]. Since the phase identification is carried out 
continuously during simulation, the possibility 
exists of not only detecting the coarse-grained 
phases, but also the micro-phases, or small shifts 
in relative block frequencies, that must be identi-
fied in order to achieve good accuracy using sta-
tistical simulation. 

Following [4], we annotate each basic block 
with a list of pointers to its successor blocks along 
with the probabilities of accessing each successor. 
By walking the basic blocks as in the previous 
section, but using a random variable over the suc-
cessor probabilities to pick the successor, the pro-
gram phase behavior is uncovered. We simulate 
all strategies as before. 

Figures 9 and 10 show the basic block map 
results. The overall error using all techniques is 
improved only a little from 4.35% to 4.11%, a 
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Figure 10: Improved HLS Average Error as 
Modeling Changes Using Basic Block Maps
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5.5% decrease. SPECint95 is improved from 
6.9% to 4.3%, or 38% on average.  The STREAM 
loops are unchanged since they consist of a single 
phase, and there is no advantage in using basic 
block maps in that case. The SPECfp95 show an 
increase in error from 3.3% to 4.7%. Part of this 
is due to the negative effects of using stream in-
formation, which cause a jump up from 3.6% er-
ror for SPECfp95. The low overall improvement 
agrees with the results found in the last subsec-
tion, in which stream information, which should 
be phase dependent, causes little adverse reaction. 
Coupled with increased variance by simulating 
only twenty thousand cycles, the result is not sur-
prising. Improvements are also limited by errors 
in the graph structure, including the merge of de-
pendencies explained earlier. 

Basic block maps demonstrate improvement 
on programs with a number of strong phases. To 
demonstrate the effectiveness of the technique, 
several benchmarks are created using combina-

tions of the STREAM loops. Figure 11 shows, for 
example, that a simple code created from the con-
catenation of sdot and ssum1 has correlation er-
rors of 39.4% and 14.8% in HLS and the im-
proved HLS without basic block maps, respec-
tively. In the improved HLS without basic block 
maps, given that 50% of the blocks are equivalent 
to sdot blocks, and 50% are equivalent to ssum1 
blocks, the resulting sequence of basic blocks is a 
jumble of both. The behavior of the resulting 
simulations tends to be pessimistic with long-
latency L2 cache misses forming a critical chain 
in the dispatch window. When the basic block 
map technique is applied, the error shrinks to 
0.4% because the sequence of simulated basic 
blocks is more accurate.  

Figure 12 and 13 compare HLS to HLS with 
basic block maps running with all optimizations. 
The improvements show a 4.1% average error, 
which is 3.78 times more accurate than the origi-
nal HLS at 15.5% error. 
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Figure 12: HLS vs. Improved HLS with Basic 
Block Maps
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Figure 13: HLS vs. Improved HLS with Basic Block Maps
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5. Implementation Costs 
Table 3 shows the cost of the improvements 

in bytes as a function of the number of basic 
blocks (NBB), the average length of the basic 
blocks (LBB), the average number of loads and 
stores in the basic block (NLS), the average num-
ber of successors in the basic blocks (SBB), and 
the amount of stream data used (NSD). NSD is 
NLS x 100 = 4.71 x 100 = 471 in our runs.  Table 
4 shows the error reduction as the average reduc-
tion in correlation error as each technique aug-
ments the previous technique. 

     There are only five instruction types, so 
we use four bits to represent each. There are two 
dependencies per instruction, each of which is 
limited to within 255; so two bytes of storage per 
instruction are needed. We maintain both load and 
store miss rates for the L1 and L2 caches; so four 
floats are needed. For basic block maps, the suc-
cessor pointer and frequency are maintained in in 
a 32-bit address and a float. 

Clearly, including detailed stream data is in-
efficient on average compared to using the other 
techniques, but future work, including phase iden-
tification techniques, can seek to reduce the 
amount of data being collected. 

6. Conclusions 
Statistical simulation can provide an accurate 

and efficient simulation capability. In the HLS 
system, we identified several issues related to 
workload and processor modeling that affect 
simulation accuracy negatively. 

One workload modeling issue is that the 
front-end graph structure of HLS operates at the 

Table 4: Implementation Costs 

Technique Cost Formula (Bytes) 
Avg. Cost Per 
Benchmark 

(Bytes) 

Percent 
Error 

Reduction 

Cost Per 
Percent Error 

Reduction 
(Bytes) 

~Storage per 
Block 

Cumulative 
Frequencies NBB x 4 2098 1 Float 

Sequences NBB x LBB x ½ 2806 
42.7% 115 

6 Bytes 

Dependencies NBB x LBB x 2 x 1 11222 25.4% 442 22 Bytes 

Miss Rates NBB x 4 x 4 4195 6.5% 645 4 Floats 
Branch Pre-
dictability NBB x 4 2098 2.3% 912 1 Float 

Stream Info NBB x NSD x ¼ 61701 25.0% 2468 118 Bytes 
Basic Block 

Maps NBB x SBB x 2 x 4 7929 5.3% 1496 4 Floats 

           Overall 92049 73.5% 1252 186 Bytes 

Table 3: Benchmark Information 

Name 
Number 
of basic 
blocks 

Average 
Block 

Length 

Average 
Ld St per 

Block 

Average 
Number of 

Successors 
gcc 2714 12.74 6.07 2.19 
perl 575 9.39 4.93 1.82 

m88ksim 398 10.90 4.7 1.86 
ijpeg 661 13.09 6.03 1.76 
vortex 1134 14.38 8.53 1.64 

compress 151 8.30 3.4 1.94 
go 1732 15.17 5.01 2.26 
li 318 8.74 4.42 1.96 

tomcatv 258 8.91 3.9 1.9 
su2cor 406 9.58 3.84 1.76 
hydro2d 646 11.91 3.99 1.81 
mgrid 450 12.41 4.74 2.02 
applu 552 25.24 8.21 1.87 
turb3d 496 12.57 4.92 1.77 
apsi 1010 17.94 8.45 1.65 

wave5 507 9.89 3.96 1.86 
fpppp 452 18.94 8.59 1.77 
swim 419 12.44 4.66 1.91 
saxpy 177 9.01 3.55 2.12 
sdot 109 8.58 3.92 2.3 
sfill 177 8.94 3.53 2.12 

scopy 177 8.97 3.54 2.12 
ssum2 109 8.50 3.89 2.3 
sscale 177 8.98 3.54 2.12 
striad 177 9.03 3.55 2.12 
ssum1 177 9.02 3.55 2.12 

Average 524.4 10.7 4.71 1.89 



  

granularity of the instruction and contributes little 
to the performance of the system. The HLS proc-
essor model does not implement a specific issue 
width or a commit width, making calibration to a 
detailed processor simulator such as SimpleScalar 
difficult. 

To meet these challenges, we model the 
workload at the granularity of the basic block and 
recode the processor model to decrease error. We 
find that IPC prediction error can be reduced from 
15.5% to 4.1%. We quantify the cost of the im-
provements in terms of increased storage re-
quirements and find that less than 100K bytes on 
average are needed per benchmark to achieve the 
maximum error reduction. Runtime is approxi-
mately twice that of HLS. 

A simple regression analysis shows that the 
SPECint95 workload is susceptible to very simple 
processor models. Our results point to a major 
pitfall for simulator developers: reliance on a 
small set of benchmarks, datasets and simulated 
instructions to qualify a simulation system. 
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