
 Deconstructing and Improving Statistical Simulation in HLS

 Robert H. Bell Jr.† Lieven Eeckhout ‡ Lizy K. John † Koen De Bosschere ‡

 †Department of Electrical and Computer Engineering ‡Department of ELIS

 The University of Texas at Austin Ghent University, Belgium
 {belljr, ljohn}@ece.utexas.edu leeckhou@elis.ugent.be

Abstract

Statistical simulation systems can provide an
accurate and efficient way to carry out early de-
sign studies for processors. One such system,
HLS, has a rapid simulation capability, but our
experiments demonstrate that several modeling
improvements are possible. The front-end graph
structure in HLS is hampered by workload model-
ing at the instruction level that reduces the accu-
racy of program simulation. The workload and
processor models require significant changes to
provide accurate results for a variety of bench-
marks. We improve HLS by modeling the work-
load at the granularity of the basic block and by
changing the processor model to more closely
reflect components in modern microprocessors.
The specific techniques improve HLS accuracy by
a factor of 3.78 at the cost of increased storage
and runtime requirements.

Our examination of HLS points to a pitfall
for simulator developers: reliance on a single
small set of benchmarks to qualify a simulation
system. A simple regression model shows that the
SPECint95 benchmarks, the original benchmarks
used to calibrate HLS, have characteristics that
yield to very simple modeling.

1. Introduction
To address the extremely long simulation

times of modern processor designs, researchers
have developed statistical simulation systems [2-
5, 7, 8]. Statistical simulation uses workload sta-
tistics from specialized functional or trace-driven
simulation to create a synthetic trace that is ap-
plied to a fast and flexible execution engine. In
HLS [8], statistics are used to create a static con-
trol flow graph of a small number of statistically
generated instructions. The graph is then walked
and the instructions are simulated in a processor

model. Since the number of instructions is small
and their workload characteristics have been de-
termined by a statistical distribution, the simula-
tion converges to a result much faster than cycle-
accurate simulations.

The workload statistics include microarchi-
tecture-independent characteristics such as in-
struction mix and inter-instruction dependency
frequencies. They also include microarchitecture-
dependent statistics such as branch prediction ac-
curacy and cache miss rates for specific branch
predictor and cache configurations. These are
used to model locality structures dynamically as
the simulation proceeds.

Statistical simulation systems that correlate
well with execution-driven simulators have been
shown to exhibit good relative accuracy as mi-
croarchitecture changes are applied in design
studies [3]. Studies have achieved average errors
smaller than 5% on specific benchmark suites [4,
8]. In this study, we quantify the correlation of
HLS over a range of benchmarks, from general-
purpose applications to technical and scientific
benchmarks, and streaming kernels. In addition to
the SPEC95 benchmarks [12], we study single-
precision versions of the STREAM and
STREAM2 benchmarks [13]. On these bench-
mark suites, we find that HLS has an average er-
ror of 15.5%.

The purpose of this study is to investigate
exactly why HLS is not more accurate. Simulta-
neously we work to improve HLS. We enhance
the workload model by collecting information at
the basic block level instead of at the instruction
level, and we add more detail to the processor
model. We find that the overall error decreases
from 15.5% to 4.1%, a factor of 3.78. We use the
same basic block simulation techniques as in [4],
so the error is similar. However, in this study, we
start with the HLS framework as a base and in-

crementally add modeling detail to uncover the
additional complexity necessary to improve HLS.
We quantify the cost of the improvements in
terms of additional storage requirements.

A simple regression model indicates that CPI
results for the SPECint95, the benchmarks origi-
nally used to calibrate HLS, can yield to very
simple modeling. Our analysis points to a larger
problem for simulator developers: using a small
set of benchmarks, datasets and simulated instruc-
tions to calibrate a simulation system.

In the next section, we describe HLS. In Sec-
tion 3, we describe various modeling problems
that we found in HLS. In Section 4, we investi-
gate improvements to the system. We quantify the
costs of the improvements in Section 5, followed
by conclusions and references.

2. HLS Overview
In the HLS system [8], machine-independent

characteristics are analyzed using a modified ver-
sion of the sim-fast functional simulator from the
SimpleScalar release 2.0 toolset [1]. An instruc-
tion mix frequency distribution is generated that
consists of the percentages of integer, float, load,
store and branch instructions. The mean basic
block size and standard deviation are also com-
puted.

Also generated is the frequency distribution
of the dependency distances between instructions
for each input of the five instruction types. The
benchmarks are executed for one billion cycles in
sim-outorder [1]. Sim-outorder provides the IPC
used to compare against the IPC obtained in HLS
statistical simulation. It also computes the L1 I-
cache and D-cache miss rates, the unified L2
cache rate, and the branch predictability. After the
workload is characterized, HLS generates one
hundred basic blocks using a normal random
variable over the mean block size and standard
deviation. A uniform random variable over the
instruction mix distribution fills in the instructions
of each basic block.

For each randomly generated instruction, a
uniform random variable over the dependency
distance distribution generates a dependency for
each instruction input. An effort is made to make
an instruction independent of a store within the
current basic block, but if the dependency
stretches beyond the limits of the current basic
block, no change is made because the dynamic

predecessor is not known.
The basic blocks are connected into a graph

structure. Each branch has both a taken pointer
and a not-taken pointer to other basic blocks. The
percentage of backward branches, set statically to
15% in the code, determines whether the taken
pointer is a backward branch or a forward branch.
For backward or forward branches, a normal ran-
dom variable over either the mean backward or
forward jump distances (set statically to ten and
three in the code, respectively) determines the
taken target. Later, during simulation, normal
random variables over the branch predictability
obtained from the sim-outorder run determine
dynamically if the branch is actually taken or not,
and the corresponding branch target pointer is
followed.

After the machine statistics are processed
and the basic blocks are configured, the instruc-
tion graph is walked. As each instruction is en-
countered, it is simulated on a generalized super-
scalar execution model for ten thousand cycles.
The IPC is averaged over twenty simulations. The
generalized model contains fetch, dispatch, execu-
tion, completion, and writeback stages. Fetches
are buffered up to the fetch width of the machine.
Instructions are dispatched to issue queues in
front of the execution units and executed as their
dependencies are satisfied. Neither an issue width
nor a commit width is specified in the processor
model. In HLS, the procedure is to first calibrate
the generalized processor model using a test
workload; then a reference workload is executed
on the model.

For loads, stores, and branches, the locality
statistics determine the necessary delay before
issue of dependent instructions. To provide com-
parison with the SimpleScalar lsq, loads and
stores are serviced by a single queue. Parallel
cache miss operations are provided through the
two memory ports available to the load-store exe-
cution unit. As in SimpleScalar, stores execute in
zero-time when they reach the tail of their issue
queue and the execution unit is available.

3. Issues in HLS
In this section, we first describe the experi-

mental setup and benchmarks used in our experi-
ments, followed by our examination of HLS, in-
cluding descriptions of several workload and
processor modeling issues.

3.1. Experimental Setup and Benchmarks
For our experiments we follow the procedure

in [8] using the software available at [9]. Sim-
pleScalar and the statistical simulation software
were compiled to target big-endian PISA binaries
on an IBM Power3 p270. Using the default pa-
rameters in [8], sim-outorder was executed on the
SPECint95 binaries found at [11] for up to one
billion instructions of one reference input dataset,
as in [8]. The modified sim-fast was executed on
the input dataset for fifty billion instructions, to
approximate complete program simulation.

In these experiments we use the SPEC CPU
95 integer benchmarks [12] for direct comparison
with the original HLS results. We add the SPEC
CPU 95 floating point benchmarks [12] and sin-
gle-precision versions of the STREAM and
STREAM2 benchmarks [6, 13]. We include this
last suite of benchmarks because they are particu-
larly challenging to statistical simulation systems.
In Section 2.5 we discuss the characteristics of the
STREAM benchmarks in more detail.

3.2. The HLS Graph Structure
We first examine the HLS front-end graph

structure. We vary the percentages of backward
branches, the backward branch jump distance, the
forward branch jump distance, and the graph con-
nections themselves.

Figure 1 shows the effect of varying the
front-end graph connectivity. Baseline is the base
HLS system running with the taken and not-taken
branches connected as described in Section 2.
Random not-taken is the base system with the not-
taken target randomly selected from the config-
ured basic blocks. Single loop is the base system
with the taken and not-taken targets of each basic
block both pointing to the next basic block in the

sequence of basic blocks, with the last basic block
pointing back to the first. The maximum error
versus the base system is 3.6% for perl using the
random not-taken strategy. This is well below the
average HLS correlation error versus the Sim-
pleScalar.

Figure 2 shows the IPC for gcc as the frac-
tion of backward jumps changes. The hard-coded
HLS default is 15% backward jumps. The maxi-
mum error versus that default is 2.8%. Figure 3
shows IPC as the backward and forward jump
distances are changed from a default of ten and
three, respectively. The maximum error versus
either of those is 2.0%.

From these figures, it is apparent that the
graph connectivity in HLS has no impact on
simulation performance. Intuitively, HLS models
the workload at the granularity of the instruction.
All instructions in all basic blocks in the graph are
generated identically. The instruction type and
dependencies assigned to any slot in any basic
block in the graph is randomly selected from the
global instruction mix distribution, so the instruc-
tion found at any slot on a jump is just as likely to
be found at any other slot.

0

0.2

0.4

0.6

0.8

1

1.2

0
.0

5

0
.1

0
.1

5

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

Figure 2: IPC vs. Changes in
Fraction of Backward Jumps (gcc)

IP
C

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10

Figure 3: IPC vs. Changes in
Backward/Forward Jump Distance (gcc)

IP
C

backward jump distance forward jump distance

0

0.4

0.8

1.2

1.6

2

g
cc

p
e
rl

m
8
8
ks

im

ijp
e
g

vo
rt

e
x

co
m

p
re

ss

g
o li

Figure 1: Effect of Graph Connectivity Changes

IP
C

baseline
random not-taken
single loop

There is also a small probability that the ran-
dom graph connectivity causes skewed results
because the randomly selected taken targets can
form a small loop of basic blocks, effectively
pruning other parts of the graph from the simula-
tion. This is not a major problem for HLS, in
which all blocks are essentially the same, but it
has implications for our improvements to HLS
described below, so the single loop strategy is
employed for the remainder of this paper.

3.3. The HLS Processor Model
In the HLS generalized execution model,

there is no issue-width concept. The issue of in-
structions to the issue queues is instead limited by
the queue size and dispatch window and, ulti-
mately, by the fetch window. There is also no
specific completion width in HLS, so the instruc-
tion completion rate is also front-end limited.
These omissions are conducive to obtaining quick
convergence to an average result for well-behaved
benchmarks, but they make it difficult to correlate
the system to SimpleScalar for a variety of
benchmarks.

3.4. Modeling Workload Characteristics
Figures 4 and 5 show the IPC prediction er-

ror [4] over all benchmarks as workload model-
ing issues are incrementally addressed. The
baseline run gives the HLS results out-of-the-
box. While SPECint95 does well as in [8] with
only 5.8% error, SPECfp95 has twice the corre-
lation error. The STREAM loop error is more
than four times worse at 27%. We were unable
to achieve accurate results on all the benchmarks
by recalibrating the generalized HLS processor

model.
Recall that, in standard HLS, measuring mi-

croarchitecture-independent characteristics is car-
ried out on the complete benchmark using sim-
fast, whereas microarchitecture-dependent local-
ity metrics are obtained only for the first one bil-
lion instructions using sim-outorder. It stands to
reason that workload information and locality
information should be collected over the same
cycle ranges. The 1B Instructions run gives re-
sults with sim-fast executing the same one billion
instructions as sim-outorder. Not all benchmarks
improve, but the error in SPECfp95 drops by half
from 13.6% to 6.8%. Overall error decreases from
15.5% to 13.1%.

The modified sim-fast makes no distinction
between memory instructions that carry out auto-
increment or auto-decrement on the address regis-
ter after memory access and those that do not. The
HLS sim-fast code always assumes the modes are
active. This causes the code to assume register
dependencies that do not actually exist between
memory access instructions, and it makes codes
with significant numbers of load and store address

0
5

10
15
20
25
30

A
ll

S
P

E
C

in
t

S
P

E
C

fp

S
T

R
E

A
M

Figure 5: Overall HLS Error as Modeling Improves

IP
C

 P
re

di
ct

io
n

E
rr

or
 (%

)

baseline 1B Instructions dependency fix

0

10

20

30

40

50

gc
c

pe
rl

m
88

ks
im

ijp
eg

vo
rt

ex

co
m

pr
es

s

go

li

to
m

ca
tv

su
2c

or

hy
dr

o2
d

m
gr

id

ap
pl

u

tu
rb

3d

ap
si

w
av

e5

fp
pp

p

sw
im

sa
xp

y

sd
ot

sf
ill

sc
op

y

ss
um

2

ss
ca

le

st
ria

d

ss
um

1

Figure 4: HLS Error as Modeling Changes

IP
C

 P
re

di
ct

io
n

E
rr

or
 (%

)

baseline 1B Instructions dependency fix

register dependencies, including the STREAM
loops, appear to run slower. The sim-fast code
was modified to check the instruction operand for
the condition and mark dependencies accordingly,
and the dependency fix bars in the figures give the
results. The STREAM loops are improved, but
the SPECint95 error increases from 4.8% to 9.3%.
This is most likely due to the original calibration
of the generalized HLS processor model in the
presence of the modeling error.

 Table 1 shows a simple regression analysis
over the locality features taken from sim-outorder
runs: branch mispredictability, L1 I-cache and D-
cache miss rates, and L2 miss rate. The targeted
CPI is the particular CPI targeted in the analysis,
either SimpleScalar or the HLS result. The
squared correlation coefficient, R2, is a measure of
the variability in the CPI that is predictable from
the four features. The SPECint95 benchmarks
always achieve high correlation, while the analy-
sis over all benchmarks or even over SPECint95
together with SPECfp95 achieve lower correla-
tion. This is an indication that a very simple proc-
essor model can potentially represent the CPI of
the SPECint95 by emphasizing the performance
of the locality features; but it can not as easily do
the same over all three suites.

3.5. Loop Challenges
Table 2 shows single-precision versions of

the STREAM benchmarks, including the loop
equation and the number of instructions in the
kernel loop when compiled with gcc using -O.
The STREAM loops are strongly phased, and in
fact have only a single phase.

 Loops consist of one or a small number of
tight iterations containing specific instruction se-
quences that are difficult for statistical simulation
systems to model. Figure 6 shows one iteration of
the saxpy loop (in the PISA language [1]). If the
mul.s and add.s were switched in the random in-
struction generation process leaving the depend-
ency relationships the same, the extra latency of
the multi-cycle mul.s instruction is no longer hid-
den by the latency of the second l.s, leading to a
generally longer execution time for the loop. A
similar effect can be caused by changes in de-
pendency relationships as the dependencies are
statistically generated from a distribution.

Shorter runs can also occur. The mul.s has a
dependency on the previous l.s. If the l.s is
switched with the one-cycle add.s, keeping de-
pendencies the same, the mul.s can dispatch much
faster. While higher-order ILP distributions might
work well for some loops, the results have been
mixed and can actually lead to decreased accuracy
for general-purpose programs [3].

4. Improving HLS
In this section, we focus on improving the

processor and workload models to give more ac-
curate simulation results.

4.1. Processor Model
 It is difficult to correlate the generalized

HLS processor model to SimpleScalar for all
benchmarks. For this reason, we augmented HLS
with a register-update-unit (RUU), an issue width

Table 2: The STREAM Loops

Benchmark Equation Loop
Instructions

saxpy z[k] = z[k] + q * x[k] 10

sdot q = q + z[k] * x[k] 9

sfill z[k] = q 5

scopy z[k] = x[k] 7

ssum2 q = q + x[k] 6

sscale z[k] = q * x[k] 8

striad z[k] = y[k] + q * x[k] 11

ssum1 z[k] = y[k] + x[k] 10

Table 1: CPI Regression Analysis over 1B Instructions

Benchmarks Targeted CPI R2

HLS 0.988 SPECint
SimpleScalar 0.970

HLS 0.972 SPECint and SPECfp
SimpleScalar 0.895

HLS 0.757 SPECint, SPECfp and STREAM
SimpleScalar 0.811

start: addu $2, $3, $6
l.s $f2, 0($2)
mul.s $f2, $f4, $f2
l.s $f0, 0($3)
add.s $f2, $f2, $f0
addiu $4, $4, 1
slt $2, $5, $4
s.s $f2, 0($3)
addiu $3, $3, 4
beq $2, $0, start

Figure 6: Disassembled SAXPY Loop

and a completion width. We also rewrote the re-
current completion function to be non-recurrent
and callable prior to execution, and we rewrote
the execution unit to issue new instructions only
after prior executing instructions have been ser-
viced in the current cycle. We added code to dif-
ferentiate long and short running integer and
floating point instructions. To maintain effi-
ciency, the locality structures are still modeled
using the statistical parameters taken from sim-
outorder runs.

We first run the benchmarks on the improved
processor model using the same workload charac-
teristics modeled in HLS, except that we generate
one thousand basic blocks instead of one hundred,
and we simulate for twenty thousand cycles in
stead of ten thousand; so simulation time is about
twice that in HLS. (The same changes in HLS do
not decrease error.) The execution engine flow,
delays and parameters are all chosen to match
those in the SimpleScalar default configuration.
The baseline system was validated by comparing
sim-outorder traces, obtained from sections of the
STREAM loops, to traces taken from the im-
proved HLS assuming perfect caches and perfect
branch predictability. The validation was simpli-
fied by the fact that the loops are comprised of
only one phase.

 Figure 7 gives the results for the individual
benchmarks, and Figure 8 shows the average re-
sults per benchmark suite. The baseline run gives
the improved system results using the default
SimpleScalar parameters and using the global
instruction mix, dependency information, and

load and store miss rates. There are errors greater
than 25% for particular benchmarks, such as
ijpeg, compress and apsi. The overall error of
14.4% compares well with the 15.5% baseline
error in HLS, but it is higher than the 13.1% error
in shown in Figure 5 for HLS with improved
workload modeling.

4.2. Workload Model
We also enhanced the workload model to re-

duce correlation errors. The analysis of the graph
structure showed that modeling at the granularity
of the instruction in HLS did not contribute to
accuracy. In [7], the basic block size is the gran-
ule of simulation. However, this raises the possi-
bility of basic block size aliasing, in which many
blocks of the same size but very different instruc-
tion sequences and dependency relationships are
combined.

0

5

10

15

20

A
ll

S
P

E
C

in
t

S
P

E
C

fp

S
T

R
E

A
M

Figure 8: Improved HLS Average Error as Modeling
Changes

IP
C

 P
re

di
ct

io
n

E
rr

or
 (%

)

baseline sequences dependencies
miss rates bpred stream info

0
5

10
15
20
25
30
35
40
45

gc
c

pe
rl

m
88

ks
im

ijp
eg

vo
rt

ex

co
m

pr
es go

li

to
m

ca
tv

su
2c

or

hy
dr

o2
d

m
gr

id

ap
pl

u

tu
rb

3d

ap
si

w
av

e5

fp
pp

p

sw
im

sa
xp

y

sd
ot

sf
ill

sc
op

y

ss
um

2

ss
ca

le

st
ria

d

ss
um

1

Figure 7: Improved HLS Error as Modeling Changes

IP
C

 P
re

di
ct

io
n

E
rr

or
 (%

)
baseline sequences dependencies miss rates bpred stream info

4.2.1. Basic Block Modeling Granularity
Instead of risking reduced accuracy with

block size aliasing, we model at the granularity of
the basic block itself. The dynamic frequencies of
all basic blocks are used as a probability distribu-
tion function for building the sequence of basic
blocks in the graph. This is the same as the k=0
modeling in the SMART-HLS system [4]. To
capture cache and branch predictor statistics for
the basic blocks, we use sim-cache augmented
with the sim-bpred code.

In the sequences bars of Figures 7 and 8, the
basic block instruction sequences are used, but the
dependencies and locality statistics for each
instruction in each basic block are still taken from
the global statistics found for the entire
benchmark. The overall correlation errors are
reduced dramatically for the three classes of
benchmarks. However, some benchmarks such as
compress and hydro2d, and the STREAM loops,
still show high correlation errors.

In the dependencies run, we include the use
of dependency information for each basic block.
In order to reduce the amount of information
stored, we merge the dependencies into the small-
est dependency relationship found in any basic
block with the same instruction sequence, as in
[4]. The average error is reduced significantly
from 8.9% to 6.3%.

On investigation, it was found that the global
miss rate calculations do not correspond to the
miss rates from the viewpoint of the memory op-
erations in a basic block. In the cache statistics,
HLS pulls in the overall cache miss rate number
from SimpleScalar, which includes writebacks to
the L2. But for individual memory operations in a
basic block, the part of the L2 miss rate due to
writebacks should not be included in the miss
rate. This is because the writebacks generally oc-
cur in parallel with the servicing of the miss so
they do not contribute to the latency of the opera-
tion. This argues for either a global L2 miss rate
calculation that does not include writebacks or the
maintenance of miss rate information for each
basic block. In addition, examination of the
STREAM loops reveals that the miss rates for
loads and stores are quite different. In saxpy, for
example, both loads miss to the L1, but the store
always hits. Because of these considerations, the
L1 and L2 probabilistic miss rates for both loads

and stores should be maintained local to each ba-
sic block.

The miss rates run includes this information.
All benchmarks improve, but a few of the
STREAM loops still have errors greater than
10%. The problem is that the STREAM loops
need information concerning how the load and
store misses, or delayed hits, overlap. In most
cases load misses overlap, but the random cache
miss variables often cause them not to overlap,
leading to an underestimation of performance.
Note that this is the reverse of the usual situation
for statistical simulation in which critical paths
are randomized to less critical paths, and per-
formance is overestimated. An additional run,
bpred, includes branch predictability local to each
basic block. This helps a few benchmarks like
ijpeg and hydro2d, but, as expected, the
STREAM loops are unaffected.

One solution is to keep overlap statistics.
This solves the delayed hits problem, but does not
provide for the modeling of additional memory
operation features. Instead, when the workload is
characterized, we track one hundred L1 and L2
hit/miss indicators (i.e. if the memory operation
was an L1 hit or miss or an L2 hit or miss) for the
sequence of loads and stores in each basic block
near the end of the one billion instruction simula-
tion. Later, during statistical simulation, we use
the stream indicators in order (but without pairing
them to particular memory operations) to deter-
mine the miss characteristics of the stream as the
loads and stores are encountered. This is a sim-
plistic way to operate, since the stream hit/miss
indicators are simply collected at the end of the
run and are therefore not necessarily representa-
tive of the entire run. However, the technique may
be applicable given the trend to identify and simu-
late program phases [10] in which stream infor-
mation may change little. Still, simulating one
billion instructions without regard to phase behav-
ior, we expect the technique to help only the
STREAM loops, and to negatively affect the oth-
ers.

The stream info bars in Figure 7 show the re-
sults. As expected, the STREAM loops improve
significantly. However, only a small amount of
accuracy is lost for the others. This indicates that
there is only one or a small number of phases in
the first one billion instructions for most bench-

marks, at least with respect to the load and store
stream behavior.

4.2.2. Basic Block Maps
In the previous simulations, the basic blocks

were not associated with each other in any way
since a random variable over the frequency distri-
bution of the blocks is used to pick the next basic
block to be simulated. At branch execution time, a
random variable based on the global branch pre-
dictability is used simply to indicate that a branch
misprediction occurred when the branch was dis-
patched, causing additional delay penalty before
the next instruction can be fetched, but that is not
related to the successor block decision. This tech-
nique treats all blocks together as if no phases
exist in which one area of the graph is favored
over another at different times.

By associating particular basic blocks with
each other in specific time intervals, for example
during a program phase, it is expected that better
simulation accuracy can be obtained for multi-
phase programs. One way to do that is to specify
the phases, the basic blocks executing in those
phases, and the relative frequencies of the basic
block executions during those phases. These three
things together constitute a basic block map.

The phase identification requires knowledge
of when the relative frequencies of the basic
blocks change. The identification of phases at a
coarse granularity can be carried out using a
phase identification program such as SimPoint
[10]. It can also be developed dynamically during
simulation by walking a representation of the con-

trol flow graph of the program. A system to do
that for the SPEC2000 benchmarks is presented in
[4]. Since the phase identification is carried out
continuously during simulation, the possibility
exists of not only detecting the coarse-grained
phases, but also the micro-phases, or small shifts
in relative block frequencies, that must be identi-
fied in order to achieve good accuracy using sta-
tistical simulation.

Following [4], we annotate each basic block
with a list of pointers to its successor blocks along
with the probabilities of accessing each successor.
By walking the basic blocks as in the previous
section, but using a random variable over the suc-
cessor probabilities to pick the successor, the pro-
gram phase behavior is uncovered. We simulate
all strategies as before.

Figures 9 and 10 show the basic block map
results. The overall error using all techniques is
improved only a little from 4.35% to 4.11%, a

0

5

10

15

20

A
ll

S
P

E
C

in
t

S
P

E
C

fp

S
T

R
E

A
M

Figure 10: Improved HLS Average Error as
Modeling Changes Using Basic Block Maps

IP
C

 P
re

di
ct

io
n

E
rr

or
 (%

)

baseline sequences dependencies
miss rates bpred stream info

0
5

10
15
20
25
30
35
40
45

gc
c

pe
rl

m
88

ks
im

ijp
eg

vo
rt

ex

co
m

pr
es go

li

to
m

ca
tv

su
2c

or

hy
dr

o2
d

m
gr

id

ap
pl

u

tu
rb

3d

ap
si

w
av

e5

fp
pp

p

sw
im

sa
xp

y

sd
ot

sf
ill

sc
op

y

ss
um

2

ss
ca

le

st
ria

d

ss
um

1

Figure 9: Improved HLS Error as Modeling Changes
Using Basic Block Maps

IP
C

 P
re

di
ct

io
n

E
rr

or
 (%

)
baseline sequences dependencies miss rates bpred stream info

5.5% decrease. SPECint95 is improved from
6.9% to 4.3%, or 38% on average. The STREAM
loops are unchanged since they consist of a single
phase, and there is no advantage in using basic
block maps in that case. The SPECfp95 show an
increase in error from 3.3% to 4.7%. Part of this
is due to the negative effects of using stream in-
formation, which cause a jump up from 3.6% er-
ror for SPECfp95. The low overall improvement
agrees with the results found in the last subsec-
tion, in which stream information, which should
be phase dependent, causes little adverse reaction.
Coupled with increased variance by simulating
only twenty thousand cycles, the result is not sur-
prising. Improvements are also limited by errors
in the graph structure, including the merge of de-
pendencies explained earlier.

Basic block maps demonstrate improvement
on programs with a number of strong phases. To
demonstrate the effectiveness of the technique,
several benchmarks are created using combina-

tions of the STREAM loops. Figure 11 shows, for
example, that a simple code created from the con-
catenation of sdot and ssum1 has correlation er-
rors of 39.4% and 14.8% in HLS and the im-
proved HLS without basic block maps, respec-
tively. In the improved HLS without basic block
maps, given that 50% of the blocks are equivalent
to sdot blocks, and 50% are equivalent to ssum1
blocks, the resulting sequence of basic blocks is a
jumble of both. The behavior of the resulting
simulations tends to be pessimistic with long-
latency L2 cache misses forming a critical chain
in the dispatch window. When the basic block
map technique is applied, the error shrinks to
0.4% because the sequence of simulated basic
blocks is more accurate.

Figure 12 and 13 compare HLS to HLS with
basic block maps running with all optimizations.
The improvements show a 4.1% average error,
which is 3.78 times more accurate than the origi-
nal HLS at 15.5% error.

0

10

20

30

40

sdot_ssum1

sdot_sfill

sscale_ssum2

ssum2_sfill

scopy_sdot

ssum2_sdot

avg

Figure 11: HLS and Improved HLS on Two-Phase
Benchmarks

IP
C

 P
re

di
ct

io
n

E
rr

or
 (%

)

HLS Improved HLS Improved HLS (bbmaps)

0
5

10
15
20
25
30

A
ll

S
P

E
C

in
t

S
P

E
C

fp

S
T

R
E

A
M

Figure 12: HLS vs. Improved HLS with Basic
Block Maps

IP
C

 P
re

di
ct

io
n

E
rr

or
 (%

)

HLS Improved HLS

0

10

20

30

40

50

gc
c

pe
rl

m
88

ks
im

ijp
eg

vo
rt

ex

co
m

pr
es go

li

to
m

ca
tv

su
2c

or

hy
dr

o2
d

m
gr

id

ap
pl

u

tu
rb

3d

ap
si

w
av

e5

fp
pp

p

sw
im

sa
xp

y

sd
ot

sf
ill

sc
op

y

ss
um

2

ss
ca

le

st
ria

d

ss
um

1

Figure 13: HLS vs. Improved HLS with Basic Block Maps

IP
C

 P
re

di
ct

io
n

E
rr

or
 (%

)

HLS Improved HLS

5. Implementation Costs
Table 3 shows the cost of the improvements

in bytes as a function of the number of basic
blocks (NBB), the average length of the basic
blocks (LBB), the average number of loads and
stores in the basic block (NLS), the average num-
ber of successors in the basic blocks (SBB), and
the amount of stream data used (NSD). NSD is
NLS x 100 = 4.71 x 100 = 471 in our runs. Table
4 shows the error reduction as the average reduc-
tion in correlation error as each technique aug-
ments the previous technique.

 There are only five instruction types, so
we use four bits to represent each. There are two
dependencies per instruction, each of which is
limited to within 255; so two bytes of storage per
instruction are needed. We maintain both load and
store miss rates for the L1 and L2 caches; so four
floats are needed. For basic block maps, the suc-
cessor pointer and frequency are maintained in in
a 32-bit address and a float.

Clearly, including detailed stream data is in-
efficient on average compared to using the other
techniques, but future work, including phase iden-
tification techniques, can seek to reduce the
amount of data being collected.

6. Conclusions
Statistical simulation can provide an accurate

and efficient simulation capability. In the HLS
system, we identified several issues related to
workload and processor modeling that affect
simulation accuracy negatively.

One workload modeling issue is that the
front-end graph structure of HLS operates at the

Table 4: Implementation Costs

Technique Cost Formula (Bytes)
Avg. Cost Per
Benchmark

(Bytes)

Percent
Error

Reduction

Cost Per
Percent Error

Reduction
(Bytes)

~Storage per
Block

Cumulative
Frequencies NBB x 4 2098 1 Float

Sequences NBB x LBB x ½ 2806
42.7% 115

6 Bytes

Dependencies NBB x LBB x 2 x 1 11222 25.4% 442 22 Bytes

Miss Rates NBB x 4 x 4 4195 6.5% 645 4 Floats
Branch Pre-
dictability NBB x 4 2098 2.3% 912 1 Float

Stream Info NBB x NSD x ¼ 61701 25.0% 2468 118 Bytes
Basic Block

Maps NBB x SBB x 2 x 4 7929 5.3% 1496 4 Floats

 Overall 92049 73.5% 1252 186 Bytes

Table 3: Benchmark Information

Name
Number
of basic
blocks

Average
Block

Length

Average
Ld St per

Block

Average
Number of

Successors
gcc 2714 12.74 6.07 2.19
perl 575 9.39 4.93 1.82

m88ksim 398 10.90 4.7 1.86
ijpeg 661 13.09 6.03 1.76
vortex 1134 14.38 8.53 1.64

compress 151 8.30 3.4 1.94
go 1732 15.17 5.01 2.26
li 318 8.74 4.42 1.96

tomcatv 258 8.91 3.9 1.9
su2cor 406 9.58 3.84 1.76
hydro2d 646 11.91 3.99 1.81
mgrid 450 12.41 4.74 2.02
applu 552 25.24 8.21 1.87
turb3d 496 12.57 4.92 1.77
apsi 1010 17.94 8.45 1.65

wave5 507 9.89 3.96 1.86
fpppp 452 18.94 8.59 1.77
swim 419 12.44 4.66 1.91
saxpy 177 9.01 3.55 2.12
sdot 109 8.58 3.92 2.3
sfill 177 8.94 3.53 2.12

scopy 177 8.97 3.54 2.12
ssum2 109 8.50 3.89 2.3
sscale 177 8.98 3.54 2.12
striad 177 9.03 3.55 2.12
ssum1 177 9.02 3.55 2.12

Average 524.4 10.7 4.71 1.89

granularity of the instruction and contributes little
to the performance of the system. The HLS proc-
essor model does not implement a specific issue
width or a commit width, making calibration to a
detailed processor simulator such as SimpleScalar
difficult.

To meet these challenges, we model the
workload at the granularity of the basic block and
recode the processor model to decrease error. We
find that IPC prediction error can be reduced from
15.5% to 4.1%. We quantify the cost of the im-
provements in terms of increased storage re-
quirements and find that less than 100K bytes on
average are needed per benchmark to achieve the
maximum error reduction. Runtime is approxi-
mately twice that of HLS.

A simple regression analysis shows that the
SPECint95 workload is susceptible to very simple
processor models. Our results point to a major
pitfall for simulator developers: reliance on a
small set of benchmarks, datasets and simulated
instructions to qualify a simulation system.

Aknowledgements
The authors would like to thank the anony-

mous reviewers for their feedback. Rob Bell is
supported by the IBM Graduate Work Study pro-
gram and the Server and Technology Division of
IBM. Lieven Eeckhout is a Postdoctoral Fellow
of the Fund for Scientific Research – Flanders
(Belgium) (F.W.O. Vlaanderen). This research is
also partially supported by the Institute for the
Promotion of Innovation by Science and Tech-
nology in Flanders (IWT), by Ghent University,
by the United States National Science Foundation
under grant number 0113105, and by IBM, Intel
and AMD corporations.

References
[1] D. C. Burger and T. M. Austin, “The Sim-
pleScalar Toolset,” Computer Architecture News,
1997.

[2] R. Carl and J. E. Smith, "Modeling Supersca-
lar Processors Via Statistical Simulation,” Work-
shop on Performance Analysis and Its Impact on
Design, June 1998.

[3] L. Eeckhout, S. Nussbaum, J. E. Smith and K.
De Bosschere, “Statistical Simulation: Adding
Efficiency to the Computer Designer’s Toolbox,”

IEEE Micro, Vol. 23 No. 5, Sept/Oct 2003, pp.
26-38.

[4] L. Eeckhout, R. H. Bell Jr., B. Stougie, K. De
Bosschere and L. K. John, “Improved Control
Flow in Statistical Simulation for Accurate and
Efficient Processor Design Studies,” Proceedings
of the International Symposium on Computer Ar-
chitecture, June 2004, to appear.

[5] C. P. Joshi, A. Kumar and M. Balakrishnan,
"A New Performance Evaluation Approach for
System Level Design Space Exploration," IEEE
International Symposium on System Synthesis,
October 2002, pp. 180-185.

[6] J. D. McCalpin, “Memory Bandwidth and
Machine Balance in Current High Performance
Computers,” IEEE Technical Committee on
Computer Architecture Newsletter, December
1995.

[7] S. Nussbaum and J. E. Smith, "Modeling Su-
perscalar Processors Via Statistical Simulation,"
Proceedings of the International Conference on
Parallel Architectures and Compilation Tech-
niques, September 2001, pp. 15-24.

[8] M. Oskin, F.T.Chong and M. Farrens, "HLS:
Combining Statistical and Symbolic Simulation to
Guide Microprocessor Design," Proceedings of
the 27th Annual International Symposium on
Computer Architecture, June 2000, pp. 71-82.

[9]http://www.cs.washington.edu/homes/okskin/t
ools.html

[10] T. Sherwood, E. Perelman, G. Hamerly and
B. Calder, “Automatically Characterizing Large
Scale Program Behavior,” Proceedings of the In-
ternational Conference on Architected Support for
Programming Languages and Operating Systems,
October 2002, pp. 45-57.

[11]http://www.cs.wisc.edu/~mscalar/simplescala
r.html

[12]http://www.spec.org

[13]http://www.cs.virginia.edu/stream/ref.html

