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Abstract
As memory access times continue to be a bottleneck, dif-
ferential research is required for better understanding of
memory access performance. Studies of cache-conscious
allocation and software prefetch have recently sparked re-
search in the area of software optimizations on memory, as
pointer-based data structures previously have been elusive
to the optimizing techniques available. Research on hard-
ware prefetch mechanisms have in some cases shown im-
provements, but less analytical schemes have tended to de-
grade performance for pointer-based data structures.

This paper combines four hardware schemes, normally
not efficient on pointer-based data structures, and a greedy
software prefetch with cache-conscious allocation to eval-
uate positive effects of increased locality, in a comparative
evaluation, on five level 1 data cache line sizes.

We show that cache-conscious allocation utilizes large
cache lines efficiently and that none of the prefetch strate-
gies evaluated add significantly to the effect already
achieved by the cache-conscious allocation on the hard-
ware evaluated. The passive prefetching mechanism of us-
ing large cache lines with cache-conscious allocation is by
far outstanding.

1 Introduction

As processor speeds are increasing and programs are be-
coming more memory intensive, memory access times are a
bottleneck for performance. This situation is putting pres-
sure on research for better data cache performance and some
interesting efforts have recently been devoted to this area.
Pointer-based data structures are usually randomly allocated
in memory and will generally not achieve good locality, re-
sulting in higher miss-rates. This has raised the need to han-
dle the unpredictability of pointer-based data structures in
an efficient way.

Two previously studied software-based strategies attempt
to provide performance improvements specifically for appli-

cations using pointer-based data structures. The two tech-
niques are software prefetch, [15, 16], and cache-conscious
allocation of data, [6, 5, 7]. Those results showed that
cache-conscious allocation is by far the most efficient op-
timization technique of the two. Software prefetch is, how-
ever, better suited for automatization and it has been effi-
ciently implemented in a compiler to dynamically prefetch
only hot data streams, [8], to limit the cost of the extra
instructions. Cache-conscious allocation with a software
prefetch scheme is evaluated in [2]. It compares the impact
on bandwidth and verifies that latency and bandwidth trade
off and limit the effectiveness of each optimization. It is
concluded that software prefetch does not add significantly
to the performance benefit of cache-conscious allocation.

Studies of hardware-based strategies have lately at-
tempted, in some cases successfully, [11, 14, 19, 18, 23], to
achieve performance improvements for pointer-based data
structures, often referred to in these studies as linked data
structures. These studies concentrate on calculating and
prefetching pointers, [4, 11, 19, 23], pointer dependencies,
[12, 18], and the effects of effectively predicting what to
evict from the cache to accommodate prefetched data, [14],
and they consequently require, more or less extra over-head,
memory and/or instructions. The usefulness of general (e.g.
next-line) hardware prefetch of pointer-based data struc-
tures is not encouraging, [21]. Strategies prefetching with-
out knowledge of the data flow are likely to pollute the cache
when applied to pointer-based data structures. However,
these hardware strategies have the potential to take advan-
tage of the increased locality of cache-consciously allocated
data, [20].

In theory, prefetching and cache-conscious allocation
should complement each other’s weakness. Cache-
conscious allocation should reduce the prefetch overhead of
fetching blocks with partially unwanted data in the cache
lines. Prefetching should reduce the cache misses and miss
latencies between individual nodes of data structures in dif-
ferent cache-consciously allocated blocks. The difficulties
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lie in achieving adequate correctness and precision. By
combining the hardware prefetch with cache-conscious al-
location on pointer-based data structures, the effects of both
strategies can be completely exploited, without adding any
instruction overhead of a software strategy.

The cache-conscious allocation and hardware prefetching
strategies have never been merged and evaluated for perfor-
mance and possible synergy effects. The software strategy
is compared with four hardware strategies, normally inef-
ficient on pointer-based data structures, and not requiring
extra analysis, memory or instructions. The optimization
strategies and the abbreviations used in this paper are found
in Table 1. We will present a comparative evaluation of the
strategies found in Table 2, and our conclusions of the gath-
ered results.

Optimization Abbrev.
No Optimizations noopt
SW Prefetch swpf
CC Allocation w cc-block 256 cc256
HW Prefetch on Miss hwpfpom
HW Prefetch Tagged hwpftagg
HW Prefetch on Miss, one cache block hwpfoneblk
HW Prefetch on Miss, rest of cc-block hwpfallblk

Table 1. Abbreviations of the optimization strategies

Sections 2 and 3, contain memory related performance
characteristics and background of cache-conscious alloca-
tion and prefetching for pointer-based data structures.

alone with cc256

swpf X X
cc256 X -
hwpfpom X X
hwpftagg X X
hwpfoneblk - X
hwpfallblk - X

Table 2. All combinations of the cache-conscious alloca-
tion and prefetching used in this study

The experimental framework is presented in section 4.
To perform the experiments we have modeled a MIPS-like
uniprocessor architecture in SimpleScalar, [3], and run four
benchmarks of the Olden benchmark suite, [17]. We have
analysed the performance effects of the techniques on five
different cache line sizes. The performance evaluation of
our results is found in section 5, and section 6 presents some
of the related work in these areas. In section 7 are our con-
clusions and further issues to explore.

Figure 1. How nodes can be cache-consciously allocated
in blocks to improve locality, (e.g. the next list node in a
linked list or the children of a node in a tree)

2 Cache-Conscious Allocation

The technique of cache-conscious allocation is a technique
worth further study as it has exhibited such excellent im-
provements in execution time performance. We have at-
tempted to duplicate the cache-conscious allocation used
by Chilimbi et al., [6]. Cache-conscious allocation can be
adapted to the specific needs of a program by choosing the
cache-conscious block size, or cc-block size, according to
its data structures and to the specific cache line size of a
system.

Cache-conscious allocation of data structures attempts to
co-allocate data in the same cache line, so that cache line
utilization is improved. By allocating data structures refer-
enced after each other on the same cache line, better locality
will be achieved, see Figure 1. This should lead to improved
performance by a reduction of cache misses.

2.1 About ccmalloc

In this evaluation we have used a function called
ccmalloc() for cache-conscious allocation of memory.
The main difference from a regular malloc() is that
ccmalloc() takes as an extra argument, a pointer to some
data structure that is likely to be referenced close (in time)
to the newly allocated structure. ccmalloc() attempts to
allocate the new data in the same cc-block as the data struc-
ture pointed at by the argument pointer, as introduced in [5].
In the sample code in Figure 2 the parents and their children
are attempted to be allocated together.

ccmalloc() invokes calls to the standard malloc()
in two cases; when allocating a new cc-block or when the
size of the data structure is larger than the cc-block. Other-
wise, if called with a pointer to an already allocated struc-
ture, the new structure is put in empty slot in the cc-block
right after that structure. When no proper area is found, or-
dinary malloc() is called with the cc-block size.
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#ifdef CCMALLOC
child = ccmalloc(sizeof(struct node),
parent));

#else
child = malloc(sizeof(struct node));

#endif

Figure 2. An example of how ccmalloc() is used to
co-allocate a new node close to its parent node

2.2 Cache-Conscious Blocks, cc-blocks

The trade-off of cache-conscious allocation is that it de-
mands cache lines large enough to contain more than one
pointer structure in each, to improve hit rates and execution
time. Thus the choice of the cc-block size is quite impor-
tant. The bigger the blocks the lower the miss-rate if the
allocation policy is successful, otherwise the memory over-
head, i.e. fragmentation, can overwhelm other performance
effects.

Previous studies on cache-conscious allocation used the
same hardware cache line size as the cc-block size, [2, 5].
However, the cc-block size can be set dynamically in soft-
ware, independently of the hardware cache line size. This
means that even though the hardware cache line is smaller
than the used data structures, ccmalloc() can take ad-
vantage of co-allocating data structures, and can be varied
depending on the size of the data structures the programmer
wants to co-allocate. In this study the cc-block size is set to
256 B, while the hardware cache line size is varied from 16
B to 256 B.

3 Prefetch

Prefetching structures before they are referenced will reduce
the cost of a cache miss. Ideally the prefetching should start
early enough so that the structure will be in the cache when
referenced and thereby fully hiding the cache miss latency
from the execution.

Prefetch can be controlled by software and/or hardware.
Software prefetch results in extra instructions, which could
affect performance by adding extra cycles to the execution
time. Hardware prefetch does not lead to an instruction
overhead, but to additional complexity in hardware. In our
experiments the prefetching pertains only to the level 1 data
cache.

3.1 Software Controlled Prefetch

Software prefetch is implemented by including a prefetch
instruction in the instruction set. Prefetch instructions
should be inserted in the program code, well ahead of ref-
erence, according to a prefetch algorithm. Several algo-

rithms have been investigated in earlier studies on their own,
[15, 16].

Pointer-based data structures often contain pointers to
other structures, creating a chain of pointers. These point-
ers are dereferenced to find the prefetching addresses. The
software controlled prefetch in this study is a greedy algo-
rithm duplicated from Mowry et al., [15]. It is manually
inserted in the code and does not require any extra memory
or calculations. When a node is referenced, it prefetches all
children of that node. This reduces cache miss latencies for
the consecutively referenced children, as described in Fig-
ure 3. Without extra pointers or calculation, prefetching can
only be done on the node’s children, not its grandchildren.

Software prefetch is easier to control and optimize. As it
only prefetches lines needed, the risk of polluting the cache
with unused data decreases. The difficulty lies in getting the
distance large enough to finish the prefetch before a refer-
ence. Software prefetch also imposes an instruction over-
head caused by the prefetch instructions, possibly spoiling
performance improvements gained by reduced cache miss
latencies. It is also sensitive to bandwidth, [2], and issue
width, [1].

3.2 Hardware Controlled Prefetch

There are several ways of implementing hardware prefetch
support, [10, 13], and the algorithm choosing the lines to
prefetch, [11, 19, 20, 22]. Depending on the algorithm used,
prefetching can occur when a miss is caused or when a hint
is given by the programmer through an instruction, or can
always occur on certain types of data. The prefetch will
fetch one or more extra lines into the cache.

We have implemented two hardware strategies orig-
inally described by Smith, [20], and later Vanderwiel,
[21]: prefetch-on-miss, and tagged prefetch. The hard-
ware prefetch mechanisms in this study attempt to utilize
spatial locality, and do not analyze data access patterns.
Pointer-based data structures usually do not respond well to
these general strategies alone, due to their random alloca-
tion in memory and the difficulties to control the precision
of the prefetches without extra analysis. We have also im-
plemented two strategies that are designed to prefetch parts
of the cache-consciously allocated blocks. These modified
prefetch-on-miss strategies are implemented for the purpose
of evaluating the other strategies’ prefetch data overhead.

3.2.1 Prefetch-on-Miss

The prefetch-on-miss algorithm simply prefetches the next
sequential line, i+1, when detecting a cache miss of line i.
After handling a miss in the data cache a prefetch of the fol-
lowing line is always initialized. So each miss in the cache
will lead to the fetch of two lines into the cache, if the line
to prefetch is not already in the cache.
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Figure 3. An example of how prefetch affects cache misses with the greedy algorithm, picture by [15]. The first node
always gives a miss, if latency is two cycles. By prefetching both children the penalty will decrease for the following
references.

The drawback of prefetch-on-miss is that it could lead to
a lot of unused data in the cache, as it prefetches the next
cache line on every miss. The performance of prefetch-on-
miss is decided by the regularity of data references and their
locality.

3.2.2 Tagged Prefetch

In the tagged prefetch strategy, each prefetched line is
tagged with a prefetch tag. Like in the prefetch-on-miss
strategy a cache miss of line i will lead to a prefetch of line
i+1. When a prefetched line i is then referenced for the first
time the tag is removed and line i+1 is prefetched, though
no miss has occurred.

This is an efficient prefetch method to use when mem-
ory is referenced fairly sequentially, and has been shown
in studies without pointer-based data structures, [20, 21],
to provide up to twice the performance improvements
of prefetch-on-miss. However, as with prefetch-on-miss,
prefetches are done indiscriminately on every miss and on
referencing a prefetched line in the level 1 cache, risking
unused data in the cache.

3.2.3 Prefetch-on-Miss, optimized for ccmalloc()

The hardware prefetch mechanism can be efficiently com-
bined with cache-conscious allocation, by introducing a hint
with the address to the beginning of such a block. We have
implemented a detection mechanism that prefetches only
cache-consciously allocated blocks. This mechanism is im-
plemented with two different strategies, depending on how
many cache lines to prefetch, prefetch-one-cc-on-miss, and
prefetch-all-cc-on-miss.

Prefetch-one-cc-on-miss simply prefetches the next line
after detecting a cache-miss on a cache-consciously al-
located block, like the prefetch-on-miss but only on cc-
blocks. The other, prefetch-all-cc-on-miss, decides dynam-
ically how many lines to prefetch depending on where on
the cc-block the missing cache line is located. This strategy

prefetches all cache lines in the current cc-block from the
address causing the miss and forward.

4 Experimental Framework

This section describes the hardware framework and the
benchmarks on which the strategies were evaluated.

4.1 Hardware Architecture

The tests were conducted on an out-of-order, MIPS-like,
uniprocessor simulator based on the SimpleScalar tool set,
[3], with processor architecture parameters set according to
Table 3. The memory latency is equivalent of 50 ns random
access time, no wait states, for a 266 MHz bus, and a 3 GHz
processor.

Prefetch handling was added to the simulator, introduc-
ing a prefetch instruction for the software prefetch, and
hardware prefetch detection mechanisms for the hardware
prefetch strategies. The benchmarks were compiled with
the SimpleScalar GCC compiler for big-endian using the
flags ‘-lc -03’.

4.2 The Benchmarks

The effects of merging cache-conscious allocation with ei-
ther prefetch strategy were evaluated with applications from
the Olden benchmark suite, [17]. Olden consists of ten ap-
plications with differing data structures and is commonly
used to measure effects of architectural features.

We used four applications in our experiments, health,
mst, perimeter, and treeadd. They were selected
because they use dynamically allocated pointer-based data
structures. Figure 4 shows their un-optimized stall times,
indicating where the different benchmarks have their bottle-
necks.

The busy time in Figure 4 seems to be extraordinarily
low. However, since the processor model is an out-of-order
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Architectural Parameter Value

L1 D-Cache Size 16 kB
L1 D-Cache Line Size {16 B, 32 B, 64 B, 128 B, 256 B}
L1 I-Cache Size 32 kB
L1 I-Cache Line Size 32 B
L1 Replacement Policy Last Recently Used (LRU)
L1 Cache Associativity 2-way set-associative
L2 Unified Cache Size 512 kB
L2 Replacement Policy LRU
L2 Cache Associative 2-way set-associative
D-TLB Size 512 kB
I-TLB Size 256 kB
L1 D-Cache Latency 2 cycles
L2 D-Cache Latency 12 cycles
Memory Latency 60 cycles(+ 10 cycles/sequential access)
Memory Access Bus Width 8 B
Load/Store Queue 8 entries
Instruction Fetch Queue 4 entries
Issue Width 4 instr/cycles
Functional Units 4 int, 4 FP, 2 memory
Multiplier/Divider 1 int, 1 FP
Branch Prediction Scheme Bimodal
Branch Prediction Table Size 2048 B
Branch Target Buffer 4-way associative, 512 B
Branch Miss-Prediction Latency 3 cycles

Table 3. The Architectural Model

model, the concept of stall is not well defined. We use the
same definition as has been done in many other previous
studies: when the maximum number of instructions are re-
tired in a clock cycle, that cycle is counted as busy. Oth-
erwise, we say that the cycle is stalled due to the oldest
instruction waiting to be retired. If that is a load- or store
instruction, it is a memory stall, otherwise it is a FU stall. If
there is no instruction waiting to be retired, the stall is said
to be a fetch stall. This means that busy time is the fraction
of all clock cycles when the full issue width can be utilized.

The optimization strategies are likely to have the greatest
effect on the benchmarks where memory stalls are predomi-
nant. At the end of this section is an overview of benchmark
parameters and behavior, see Table 4, chosen according to
the studies that we are re-examining and combining.

health simulates a Columbian health care system. El-
ements are moved between lists during execution, and there
is more calculation between data references compared to the
other benchmarks. Because of poor data structures and al-
gorithms, health is not an exemplary benchmark, pointed
out by Zilles, [24]. As results from health are presented
here, the reader is alerted to read those results with caution.
They are still relevant for our memory allocation evalua-

tions.
mst creates a graph and calculates its minimal span-

ning tree. The mst benchmark originally used a lo-
cality optimization procedure which made the effects of
ccmalloc() non-existent. The data structures were al-
located in 32 kB blocks, not fitting in the 256 B cc-blocks
used in ccmalloc(). mst was thus modified to use an
ordinary allocation procedure instead, to enable measuring
the effects of ccmalloc().
perimeter calculates the perimeter of a region of an

image. The data structures are allocated in an order sim-
ilar to access order, resulting in some kind of locality op-
timization. There are few calculations between references,
complicating prefetch.
treeadd calculates a recursive sum of values in a bal-

anced binary-tree. It is similar to perimeter, but has
slightly more calculations between data references.

5 Performance Evaluation

In this section we present the performance evaluation. We
begin with the impact on execution time. Then we present
effects on cache performance and prefetch issues. Finally
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Primary
Benchmark Input Parameters Data

Structure

Health levels=5, max.time=500 linked lists
probability=1

Mst nodes=512 array of linked lists
Perimeter levels=12 quad tree
Treeadd nodes=20 balanced binary tree

Table 4. The benchmarks from Olden Benchmark Suite used

noopt, 32B Cache Line
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Figure 4. Stall times without cc-allocation or prefetching
for the applications, on a 32 byte cache line

we discuss the memory and instruction overhead.

5.1 Execution Time

The execution times in Figure 5 show that cache-conscious
allocation outperforms both hardware and software prefetch
on their own, while software prefetch outperforms hardware
prefetch without cache-conscious allocation of data. The
data structures random location in memory makes sequen-
tial hardware prefetch volatile as there is no guarantee for
the next sequential line ever being used, and as expected
when there is no inherent locality in the data, the hardware
strategies decrease performance for some simulations.

5.1.1 Effects of Cache Line Size

The combinations of prefetch strategies and cache-
conscious allocation show that larger cache line sizes reduce
the impact of prefetching. Large cache lines with cache-
consciously allocated data decrease cache misses, and thus
also the need and impact of prefetching. The improvements
of the combined strategies are more noticeable on larger

cache lines. By combining hardware prefetch with cache-
conscious allocation, pollution, a common problem of large
cache lines, decreases, due to improved locality.

5.1.2 Effects on Memory Stall

To evaluate the efficiency of our memory-targeted optimiza-
tions, stall times can show if memory stall is affected. These
are presented for the 32 B line size, for the combinations of
cache-conscious allocation, with software prefetch and with
prefetch-on-miss, in Figure 6. The memory stalls for noopt
are presented in section 5.2.

Stall times are reduced by 12% on average for the com-
bined strategies. The software combination caused the
greatest stall reduction for health and mst, and the hard-
ware strategy is better for perimeter and treeadd.

5.1.3 Software vs. Hardware Prefetch, in combination with
Cache-Conscious Allocation

In general the combinations of hardware prefetch with
cache-conscious allocation outperform the combinations
with software prefetch. The results show that the ability
to exploit locality well is more important to improved per-
formance than decreased miss latencies.

Software prefetch combined with cache-conscious al-
location improves the results of software prefetch alone.
However, it is less successful than cache-conscious alloca-
tion alone. The improved cache line utilization, decreased
miss latencies, and successful prefetches, do not overcome
the overhead caused by the prefetch instructions. The issue
width of the hardware in this study, and data dependencies
can limit the ability to schedule the prefetch instruction for
early execution.

The results of hardware combinations with prefetch-on-
miss and tagged hardware prefetch do not differ very much.
The two cc-block aware strategies, prefetch-one-cc-on-miss
and prefetch-all-cc-on-miss, do not outperform prefetch-on-
miss, indicating that prefetch-on-miss exploits the locality
of the cache-consciously allocated data well, without pollut-
ing the cache. The prefetch-all-cc-on-miss strategy behaves
slightly worse than prefetch-one-cc-on-miss, indicating that
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different cache block sizes.
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Figure 6. Stall times for cc-allocation combined with software prefetch (a) and hardware prefetch-on-miss (b)

prefetching all the data from the cc-block will cause conflict
misses, throwing out data still in use.

5.2 Cache Performance

The miss-rates are improved by most optimization strate-
gies, charts showing their improvements are found in Fig-
ure 7. The increased spatial locality with ccmalloc()
reduces cache misses and minimizes cache pollution. Soft-
ware prefetch generally shows a reduction in miss-rates.
The combinations achieve the lowest rates, and the com-
bination with software prefetch has the lowest miss-rates on
average.

Figure 7 shows that large cache lines with cache-
consciously allocated data are much more effective on
cache misses than the implemented prefetchers. Hardware
prefetch tends to prefetch too much unused data, and soft-
ware prefetch tries to prefetch too much data that is already
in the cache. Many of the prefetch instructions are thus un-
necessary.

The fraction of loads that could be successfully
prefetched, and partially hiding the latency, and un-
prefetched loads are found in Figure 8. It shows that the
software prefetch achieves higher precision of prefetched
data, resulting in more successfully prefetched data in the
single strategy case.

Prefetch-on-miss and tagged prefetch, without cache-
conscious allocation, do not result in a lot of successful
prefetches at all, as shown in Figure 8. Prefetch-on-miss
and tagged hardware prefetch increase miss-rates for small
cache lines, but show a radical improvement for the largest
cache line size. These results only imply that large cache
lines are able sometimes to alleviate the bluntness of hard-
ware prefetch even without locality.

When prefetching uses cache-conscious allocation there
is a general increase of successful prefetches. The hardware
strategies are more sensitive to cache line size than the soft-
ware prefetch. Misses and tags trig the hardware prefetch,
resulting in fewer attempts to prefetch data already in the

cache. The hardware prefetch will, however, prefetch more
unused data than software prefetch, as it lacks precision.

5.2.1 Software Prefetch combined with Cache-Conscious Al-
location

Software prefetch combined with cache-conscious alloca-
tion results in an increased amount of used cache lines
among the prefetched lines, shown in Figure 8. This is
caused by the increased spatial locality allowing the acci-
dental prefetch of a node that will be used that would other-
wise cause a miss. However, it also results in an increased
amount of prefetch instructions that tries to prefetch data
already in the cache.

5.2.2 Hardware Prefetch combined with Cache-Conscious Al-
location

The hardware strategies show greater improvements with
the cache-conscious allocation than the combinations with
software prefetch, Figure 7. Prefetch-on-miss and tagged
prefetch do not differ very much in cache behavior.

The hardware strategies modified for cache-conscious al-
location do not show any great results of prefetch though
they provide more successful prefetch rates than prefetch-
on-miss and tagged without cache-conscious allocation,
shown in Figure 8. Further, the amount of unused
but prefetched lines are larger than the amount of used
prefetched lines when implementing prefetch in hardware
without any detection due to problems with precision.

Although the amount of unused prefetched lines de-
creases when combining hardware prefetch with cache-
conscious allocation, the amount is still high compared to
software prefetch. The lack of precision renders hardware
prefetch inefficient as the amount of unused data is high.
The number of used prefetched lines decreases with larger
cache lines. This is due to increased spatial locality, and
to the reduced need of prefetch caused by the larger cache
lines.
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Figure 7. Level-1 data cache miss-rates for the applications and the various allocation and prefetch strategies

5.3 Memory and Instruction Overhead

Table 5 shows the allocated heap memory for all the bench-
marks. For the prefetch strategies no extra memory is
needed. ccmalloc(), however, uses more memory than
the ordinarymalloc(). This does not necessarily improve
overall performance. This implies that the cc-block size has
to be chosen carefully. Smaller cc-blocks require less mem-
ory, but when too small for the data structures allocation
defaults to malloc().

Software prefetch generates extra instructions, and the
relative instruction increase is found in Table 6, for all the
benchmarks. The positive effects of software prefetch are
reduced and sometimes revoked by this overhead.

Health Mst Perimeter Treeadd
20% 3.0% 0.57% 3.4%

Table 6. Software Prefetch Instruction Overhead, Rela-
tive Increase

6 Related Work

The research to improve performance for applications using
pointer-based data structures has been restricted to cache-
conscious layout manipulation and prefetch. To our knowl-

edge this is the first evaluation of cache-conscious allocation
combined and compared with both hardware and software
prefetch.

In the field of prefetching, Mowry et al., [15, 16], have in-
vestigated three strategies for software prefetch of pointer-
based data structures, using the Olden benchmarks and a
simulated MIPS-like architecture. One of these, the greedy
prefetch, is implemented in this study. Mowry et al. inserted
the prefetch through a compiler, and we added the prefetch
instructions manually. We managed to duplicate their re-
sults for health, treeadd and perimeter. For mst,
however, their different allocation makes the effect of their
software prefetch less prominent than ours.

Chilimbi et al., [6, 5, 7], have done extensive research on
cache-conscious allocation, of which we have achieved sim-
ilar results to Chilimbi’s new block strategy , [6], which we
have evaluated in the different combinations and on several
cache line sizes. Chilimbi et al. also evaluated Mowry’s
greedy prefetch against ccmalloc() in [6]. The hard-
ware prefetch in this study is not comparable to ours as it
fetches loads and stores in the reorder buffer of 64 places.
In a more recent study, Chilimbi et al. conclude that more
profiling information seem necessary to prefetch with bet-
ter results, [8], and that automatization of ccmalloc() is
inefficient. Runtime systems with dynamic memory man-
agement are better suited for automating cache-conscious
schemes, [9].
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Figure 8. Prefetch Efficiency. The graphs show the fraction of loads that could be successfully prefetched, and the
partially hiding, and the latency and unprefetched loads.

Allocation Strategy Health Mst Perimeter Treeadd

malloc 2756 kB 3596 kB 3080 kB 16488 kB
ccmalloc (cc-block 256B) 9336 kB 3876 kB 6188 kB 33980 kB

Table 5. Allocated Heap Memory for different allocation strategies

Badawy et al., [2], have evaluated the effects of com-
bining software prefetch with cache-conscious allocation
in benchmarks from the Olden benchmark suite, similar to
our evaluation. Their software prefetch is, however, differ-
ent from ours, adding jump-pointers in the data structures.
They also have different hardware framework. Badawy
et al. have evaluated the impact of different bandwidths,
whereas we have evaluated the impact of different cache
line sizes, in a uniprocessor system. According to Badawy
et al., cache-conscious allocation only outperforms soft-
ware prefetch when bandwidth is limited; with sufficient
bandwidth software prefetch is the most successful strategy.
However, their research also shows that the combination of
cache-conscious allocation and software prefetch might not
lead to further performance improvements, instead it coun-
teracts changes in bandwidth or latency. Their results are
similar to ours, although we have implemented a different
software prefetch that does not require any extra memory.

Several researchers have studied hardware prefetch,
or hybrid schemes, and successfully adapted hardware
prefetch to pointer-based data structures with irregular ac-
cess behavior. However, they generally require more hard-
ware than those evaluated in this study. Hardware support

has been investigated by the use of lock-up free prefetching,
[13], and prefetch buffers, [10], and general prefetching in
hardware is described in [20, 21] together with other cache
memory aspects. Karlsson et al., [11], propose a technique
for prefetching pointer-based data structures, either in soft-
ware combined with hardware or in software alone, by im-
plementing prefetch arrays, making it possible to prefetch
both short data structures and longer data structures without
knowing the traversal path. Roth et al. have investigated
more adaptable strategies for hybrid prefetch schemes, us-
ing dependence graphs, [18], and jump pointer prefetching,
[19]. In [19], Roth et al. evaluate a framework for jump-
pointers implemented in turn in software, hardware, and in
a hybrid scheme, in which the hybrid scheme outperforms
each scheme on its own.

Annavaram et al., [1], have performed research of both
the instruction overhead and lack of spatial locality, and how
they are affected by increased issue widths. Their research
shows that out-of-order processors with a wide issue width
can hide memory latency, making pointer prefetch less use-
ful, and that as the issue width increases, the lack of spatial
locality tends to cause performance degradation.
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7 Conclusions

Cache-conscious allocation seems to be an efficient way to
overcome the drawbacks of large cache lines. This is due
to the passive hardware prefetch of cache-conscious alloca-
tion. The combinations of all prefetch strategies and cache-
conscious allocation show that the larger the cache line size
the less impact of prefetch. As the cache line gets larger,
the positive effects of prefetch are less prominent compared
to the use of cache-conscious allocation alone. With large
cache lines and cache-consciously allocated data, the cache
misses decrease, and thereby both the need and impact of
prefetching decrease.

Combining cache-conscious allocation with hardware
prefetch can be unnecessary, as it seems that the effect
of cache-conscious allocation alone is not outdone by any
combination. However, cache-conscious allocation can be
used to overcome negative impact of next-line hardware
prefetch on applications using pointer-based data structures.
Our study further shows that hardware prefetch is better at
exploiting cache-conscious data than software prefetch, in
the hardware used. With a larger issue width these results
may change.

The successful hardware prefetch strategies generally re-
quire extra memory and analysis, which can be compared to
the memory required by cache-conscious allocation. This
overhead is also partly true of our prefetch schemes, but not
for those, that, in combination with cache-conscious allo-
cation, give the best results. One conclusion of the gath-
ered results from previous studies and ours is that when a
compiler can use profiling information to optimize memory
allocation in a cache-conscious fashion, the effort required
for the hardware prefetch engine is limited. However, when
profiling is too expensive performance will likely benefit
from elaborate prefetch support.

Further studies in this area can include comparisons with
more elaborate hardware and hybrid prefetching schemes to
exploit cache-conscious allocation, and varying issue width
as well as bandwidth in the hardware. Even if the possi-
bilities of automating ccmalloc() are limited, as it re-
quires extensive analysis of data flow, the use in environ-
ments where more cache-consciousness is available with
garbage collection should not be overlooked. It would also
be interesting to study how well hardware support can be
applied to object-oriented programs and be used by virtual
machines wanting to optimize cache-consciousness.
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Abstract

This paper compares the effectiveness of state-
preserving and non-state-preserving techniques for leakage
control in caches by comparingdrowsy cacheand gated-
V � � for data caches using 70nm technology parameters. To
perform the comparison, we use “HotLeakage”, a new ar-
chitectural model for subthreshold and gate leakage that
explicitly models the effects of temperature, voltage, and
parameter variations, and has the ability to recalculate
leakage currents dynamically as temperature and voltage
change at runtime due to operating conditions, DVS tech-
niques, etc.

By comparing drowsy-cache and gated-V� � at different
L2 latencies, we are able to identify a range of operat-
ing parameters at which gated-V� � is more energy efficient
than drowsy-cache, even though gated-V� � does not pre-
serve data in cache lines that have been deactivated. We
are also able to show potential further benefits of gated-V� �
if an effective dynamic adaptation technique can be found.

This paper duplicates some of the findings of both the
drowsy-cache and “cache-decay” papers, but also debunks
a fairly widespread belief that state-preserving techniques
are inherently superior to non-state-preserving techniques.

1 Introduction

Power is rapidly become a design constraint not only in the do-
main of mobile devices but also in high performance processors.
Although dynamic power —caused by switching activity—is the
major source of total power dissipation in today’s process gen-
eration, static power—caused by leakage current even when cir-
cuits are not switching—is gaining in importance for CMOS de-
signs due to technology scaling. The 2001 International Technol-
ogy Roadmap for Semiconductors (ITRS) [27] predicts that by the
70nm generation, leakage may constitute as much as 50% of total
power dissipation. This makes efforts at leakage control essential
to maintain control of power dissipation in both high-performance
and mobile/embedded processors.

Recently, a great deal of researchwork in the architecture com-
munity has focused on reducing leakage power in the caches [11,
14, 15, 19, 25, 31, 33], branch predictor [16, 17], register file [2],
issue queues [7, 8, 12, 24], and the ALUs [10]. Leakage control

at the architecture level is attractive, because architectural tech-
niques can control large groups of circuits (e.g.cache lines, banks,
or the entire cache) at once. Leakage control for caches has been
an especially active area of study because caches comprise such a
large portion of chip area. Recent work [11, 14] has suggested that
state-preservingtechniques are the best choice for leakage control
in the first-level (L1) caches, because they do not incur costly ac-
cesses to the second-level (L2) cache when reading data that has
been placed in low-leakage or “standby” mode.

This paper shows that when the L2 cache offers a suffi-
ciently fast access time (e.g., when the L2 is on chip),non-state-
preserving techniques can be superior. And even when the L2 is
not especially fast, non-state-preserving techniques can still be su-
perior if runtime adaptivity can identify the proper decay interval.

To perform this study, we useHotLeakage[32], a new archi-
tectural model for subthreshold and gate leakage that has been
publicly released on the web. HotLeakage explicitly models the
effects of temperature, voltage, and parameter variations, and has
the ability to recalculate leakage currents dynamically as temper-
ature and voltage change at runtime due to operating conditions,
DVS techniques, etc.

The next section of this paper describes the two leakage-control
techniques that we study and the timing and performance assump-
tions that we make in our simulations, and then Section 3 provides
an overview of the HotLeakage model. Section 4 describes the
rest of our simulation setup and the benchmarks we use, Section 5
presents the results of our comparison study, and Section 6 con-
cludes the paper.

2 Leakage Control for Caches

The design space for low-leakage caches is daunting, encom-
passing the choice of size and threshold voltage for each transistor,
the row and bitline length, and many more parameters too numer-
ous to mention. Here we focus on just one dimension that can
be treated within the scope of a single paper, namely the choice of
state-preserving versus non-state-preserving architectural leakage-
control techniques in the L1 data cache.

Recent literature has suggested thatstate-preserving techniques
are preferable for leakage control in L1 D-caches, because they
do not lose data values and hence do not unnecessarily incur the
extra delay and energy associatedwith reloading that data from
the L2 cache. In contrast, our results suggest that this is often not
so, that the extra cost of accessing L2 with non-state-preserving
techniques is offset by other important factors.
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Hanson et al. [14] found that for L1 caches,reverse
body bias(RBB) or auto-backgate-controlled MTCMOS (ABB-
MTCMOS) [23]—a state-preserving technique that manipulates
threshold voltages—outperformed gated-V� � , primarily because
they used long decay intervals that minimized opportunities for
saving energy, and because they did not decay the cache tags [13]
(thus avoiding time wasted to waken and read the tags on misses).
We have chosen not to study RBB here, both because RBB
presents some manufacturing challenges and, more importantly,
because recent work by Intel suggests that its effectiveness is lim-
ited at future technology nodes by gate-induced drain leakage
(GIDL).

Flautner et al. [11] did not directly compare their proposed
drowsy-cache scheme against gated-V� � , but suggested that its
state-preserving nature is a major advantage.

2.1 Lowering the Quiescent V � � (Gated-V � � )

Leakage currents decrease as the supply voltage (V� � ) is
lowered. Thegated-V� � structure was introduced as a micro-
architecture technique by Powell et al. in [25] as a way to reduce
leakage power by using a high threshold “header” transistor to dis-
connect a cell, row, or way in the cache from V� � . This high-
threshold transistor drastically reduces the leakage of the circuit
because it breaks the connection to the power supply. While this
technique is efficient in saving leakage, there is the disadvantage
that the cell loses its state (information). This means that there will
be some performance penalty when the data in the cell is accessed
and needs to be fetched from a farther level of the cache. This is
harmless if the next access to that line would have been an evic-
tion anyway (true miss); but if useful data was discarded, the next
access will be aninduced miss.This has important consequences.
First and foremost it causes dynamic power dissipation due to an
extra L2 access. Second, an induced miss might cause the program
to run longer and hence increase total energy consumption. Gated-
V � � was proposed in [19] for shutting down individual lines in a
cache to save leakage when a line is idle. Because the sleep tran-
sistor is more effective as a “footer” on the connection to ground–it
is easier to prevent bitline leakage this way–this technique is better
calledgated-V� � .

2.2 Drowsy Caches

An alternative method, proposed by Flautner et al. in [11],
achieves significant leakage reduction by putting a cache line into
a low-power drowsy mode. In drowsy mode, the information in the
cache line is preserved by switching its

� � � to a separate power
supply that is only about 1.5 times the threshold voltage. This
reduces leakage current dramatically due to short-channel effects
and preserves the value that isstored, making this anotherstate-
preservingtechnique. Like MTCMOS, there is still some overhead
because V� � must be returned to the proper level before the value
can be safely read. Drowsy caches do not reduce leakage as much
asgated-V� � , because the cells are not fully disconnected from the
power supply. The advantage of drowsy cache is the low penalty
of accessing a drowsy line in standby: induced misses do not re-
quire an L2 access but only 1-2 cycles to restore the full voltage
for that line. Induced misses fordrowsy caches might therefore
better be calledslow hits.

2.3 Modeling of Cache Leakage Control

We have implemented a generic abstraction for modeling leak-
age control techniques based on putting individual lines into
standby mode, allowing us to study techniques like gated-V� � [19],
drowsy cache [11], and reverse-body-bias [23].

Most dynamic leakage-control techniques partition a structure
into active and passive portions. This can be done at various gran-
ularities; most recent work has done this at the granularity of rows
in the SRAM array, which correspond to cache lines.

These leakage control techniques also require some extra hard-
ware that adds to the area of the structure. Hence, these methods
have the following costs:

1. Dynamic power due to the extra hardware

2. Leakage power due to the extra hardware

3. Dynamic power due to mode transitions (active to standby
and vice-versa)

4. Dynamic power due to extra execution time, resulting either
from extra latency in accessing the structure or extra latency
in fetching data from the L2 cache.

The energy benefit of the techniques we have described is the leak-
age power saved in the lines that are in standby mode. This saving
is proportional to the average percent area that is kept in standby
mode (theturnoff ratio). Our experiments compute anet energy
savings that subtracts from this gross benefit the costs itemized
above: Wattch automatically capatures the extra energy due to
longer runtime (item #4 above); this is compared to the energy
from a baseline simulation with no leakage control, and the result-
ing cost is added to the other costs itemized above (#1–3). These
are then subtracted from the gross leakage savings.

For both techniques, we use a global counter that counts from
zero up to one-fourth the decay interval ( defined asupdate win-
dow sizein [11]) and then starts over. Following [19], each line
uses a local two-bit counter; when the global counter reaches its
maximum value, all two bit counters are incremented. When a
two-bit counter reaches its maximum, the line has been idle for
the full decay interval, it is assumed that the line’s usefulness has
decayed, and the line is deactivated. In the original drowsy-cache
paper, this corresponds to thenoaccesspolicy. Drowsy cache also
proposes thesimplepolicy, which uses no per-line access history
but rather automaticallyturns off all lines every	 cycles. The
simple policy loses out in performance compared to the noaccess
policy, but saves more leakage power. The difference seems mod-
est for drowsy due to the fairly low cost of any extra slow hits:
there is some increase in performance loss, but also more energy
savings. To be fair to both gated-

� � � and drowsy, we used the
same policy involving counters, namely noaccess.

For both techniques, we decay the tags too (defined asdrowsy
tagsin [11]). Access to a drowsy line in such a case takes at least
three cycles due to the need to wake up tags before they can be
checked. For gated-V� � , on the other hand, a line in standby mode
has no useful information, and tags need not (cannot) be checked.
This means that on a true miss to L2 when tags are in standby,
gated-V� � is actually faster. Hanson et al. also kept the tags awake
in their study [13, 14].

A few other simulation details are worth mentioning. The time
taken for a line to go to a low-leakage mode from high-leak nor-
mal mode (settling time) and vice versa was found from circuit
simulation and is given in Table 1. Also, for both leakage sav-
ing techniques we use the same values of threshold voltage for all
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Drowsy Gated-V� �
Low leak mode to high 3 3
High leak to low 3 30

Table 1. Settling Time.

the transistors of the same type for a memory cell. In contrast,
drowsy uses high-V� for the access transistors. Modeling this is
easy with HotLeakage. But for making fair comparison, we use
the same threshold voltages (for 70nm we use 0.190 V for N-type
and 0.213 V for P-type transistor). It is true that high-V� access
transistors help drowsy more than gated-V� � . High-V � access tran-
sistors only help gated-V� � when lines are awake, while they help
drowsy in both situations. But since the bulk of the leakage is
when awake, we felt that using the same V� was the best solution.
Finally, HotLeakage models inter-die variation. We use the fol-
lowing three-sigma values for 70nm technology. The values were
obtained from [22].

� Length of the transistor: 47%
� Thickness of the gate oxide: 16%
� Supply voltage: 10%
� Threshold Voltage: 13%

The simulator currently modelsleakage control in caches using
the above costs and benefits. The dynamic power calculations are
performed using Wattch routines—see Section 4 for details. The
leakage power is calculated using our model as configured by the
command line options—see Section 3 for details.

3 An Accurate Leakage Model for Architects

Although architectural control of leakage energy has been an
active area of research in recent years, many of these studies use
only abstract models of leakage that do not fully account for all
effects that may impact leakage, like supply voltage and tem-
perature; and other studies use circuit-extracted parameters that
are not easily incorporated intoother researchers’ models. Un-
like for dynamic power, where widely-available simulators like
Wattch [5] have enabled a widespread body of research, there is no
widely available model for leakage power. This inhibits leakage
research and leads to approximate experiments. Although Butts
and Sohi [6] propose a simple model for use at the architecture-
simulation level of abstraction, no corresponding software is avail-
able. Most importantly, their model cannot easily model leakage
when temperature, supply voltage, or threshold voltage vary dy-
namically: a new “normalized leakage” and

�
� � � � � 
 must be cal-

culated for every possible value. This is inconvenient although
feasible for leakage-control schemes like drowsy cache that uses
two supply voltages, but intractable for any leakage studies that
account for dynamically varying temperature or involve dynamic
voltage scaling. Unlike the Butts and Sohi model, we find that� � � � � � 
 does in fact vary with temperature, supply voltage, thresh-
old voltage, and channel length. Detailed plots can be found
in [32].

We have developed and released a software model of leakage—
based on BSIM3 [3] technology data and the Butts and Sohi
abstractions—that is computationally very simple, can easily be
integrated into popular power-performance simulators like Wattch,
can easily be extended to accommodate other technology models,

and can easily be used to model leakage in a variety of structures
(not just caches, which are the focus of this paper). We call our
model HotLeakage, because it includes the exponential effects of
temperature on leakage. Temperature effects are important, be-
cause leakage current depends exponentially on temperature, and
future operating temperatures may exceed� � � � C [27]. In fact,
HotLeakage also includes the heretofore unmodeled effects of sup-
ply voltage, gate leakage, and parameter variations.

HotLeakage has high accuracy because parameters are derived
from transistor-level simulation (Cadence tools). Yet like the Butts
and Sohi model, simplicity is maintained by deriving the neces-
sary circuit-level model for individual cells, like memory cells or
decoder circuits, and then taking advantage of the regularity of
major structures to expresse leakage in simple formulas similar to
the Butts-Sohi model. All necessary components of this formula
are encapsulated in lookup tables.

We hope that this new leakage model and its public availability
will facilitate greater research on techniques for controlling leak-
age power at the architecture level. HotLeakage is publicly avail-
able for download athttp://lava.cs.virginia.edu/
HotLeakage. It is a separate library with minimal dependence
on the details of SimpleScalar and Wattch, so porting HotLeakage
for use with other simulators should be straightforward. We en-
courage not only such ports, but also any other modifications or
extensions users might wish to add.

3.1 Subthreshold Leakage

Leakage current is influenced by the threshold voltage, channel
physical dimensions, channel/surface doping profile, drain/source
junction depth, gate-oxide thickness, V� � , temperature, and varia-
tions in all these parameters. For long-channel devices, the leak-
age current is dominated by leakage from the drain-well and well-
substrate reverse-bias pn junctions. For short-channel transistors,
because of the low threshold voltage, sub-threshold leakage is
much higher. As gate oxides continue to scale, gate leakage is
also becoming important. Keshavarzi, Roy, and Hawkins give an
overview of these different leakage mechanisms in [20].

Our techniques for modeling gate leakage and parameter vari-
ations are described in Sections 3.2 and 3.3. Our technique for
modeling sub-threshold leakage and its dependence on tempera-
ture, etc. is to extend the high-level model of sub-threshold leak-
age proposed by Butts and Sohi [6]. Their model neatly compart-
mentalizes some different issues affecting static power in a way
that makes it easy to reason about leakage effects at the micro-
architecture level. Leakage is given by the following equation:

� � � � � � � � � � � � � � �
� � � � � 
 � ��  � � ! (1)

This formula must be computed for each circuit or block of
interest,e.g. the data array or a cache or the cache’s “edge logic”
(decoders and sense amplifiers).

� � �
is the supply voltage, and�

is the number of transistors in the circuit, which could be estimated
by comparing it with a circuit of known functionality. k� � � � � 
 is
a factor determined by the specific circuit topology and accounts
for effects like transistor sizing, transistor stacking and the number
and relationship of NMOS and PMOS transistors in a circuit.

��  � � !
is a normalized leakage value for asingle transistor, which we refer
to asunit leakage.

Using this model, it is easy to see the relationships of some ma-
jor factors that a processor designer can control for leakage-power
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(b) Leakage vs. Supply Voltage (Vdd)
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(c) Leakage vs. Temperature (T)
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(d) Leakage vs. Threshold Voltage (Vth)

Figure 1. Comparisons of the proposed HotLeakage model against circuit-level simulation results.

savings: given a unit leakage
�� �

� � � , leakage power is proportional
to operating voltage and the number of transistors in the unit of
interest. For example, DVS affects leakage by reducing

� 	 	
, and

“turning off” some unit (a cache bank or part of an issue queue)
by disconnecting its power supply effectively reduces� .

In the Butts and Sohi formulation, the unit leakage
�� �

� � � is cal-
culated once and assumes fixed values for threshold voltage (

� �

),
operating temperature, etc. Since recent work in low-leakage
cache design [11, 14, 23, 26] as well as broader processor-design
issues like thermal management [4, 18, 28, 29] manipulate param-
eters like

� �

and temperature that are hidden in
�

� � � � � � or
�� �

� � � ,
computing one fixed value for

�
� � � � � � and

�� �
� � � is not well-suited

for actual simulation work (see [32] for more details).
To develop a portable simulation module for use with vari-

ous architecture-level simulators, we retain the notions of
�

� � � � � �
and unit leakage but compute the unit leakage dynamically dur-
ing the simulation using the BSIM3 [3] leakage-current equation.
This lets us explicitly account for temperature, supply voltage, and
threshold voltage as key parameters, and includes the important
DIBL effect which is sensitive to supply voltage. We also use two
separate

� � � � � � � ’s for P- and N-type.

3.1.1 Unit Leakage

Based on the BSIM3 v3.2 [3] equation for leakage in a MOSFET
transistor, our leakage model of a single transistor is given by the
following equation:
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Low-level parameters are derived using transistor-level simula-
tions: 4 � is the zero bias mobility,

� � �
is gate oxide capac-

itance per unit area,
 6
�

is the aspect ratio of the transistor,
 � � � � � � � � � � �
is the DIBL factor derived from the curve fitting

method, V� � � is the default supply voltage for each technology
(V � � � =2.0 for 180nm, V� � � =1.5 for 130nm, V� � � =1.2 for 100nm
and V� � � =1.0 for 70nm),

� � 	 � 7 6 8 is the thermal voltage, V� 9
is threshold voltage which is also a function of temperature,: is
the subthreshold swing coefficient, and V; < < is an empirically de-
termined BSIM3 parameter which is also a function of threshold
voltage. In these parameters,4 � ,

� � �
, 
 6

�
and V� � � are stati-

cally defined parameters; the DIBL factor> , subthreshold swing
coefficient : and V; < < are derived from curve fitting based on
transistor-level simulations; V� � , V � 9 and

� � 	 � 7 6 8 are calcu-
lated dynamically in the simulations.

The above equation is based on two assumptions:

1. V� � =0 — we only consider the leakage current when the
transistor is off.

2. V� � =V � � — we only consider a single transistor here; the
stack effect and the interaction among multiple transistors
are taken into account when we model the cell using Equa-
tion 3.

Figure 1 shows the comparison ofleakage current calculated
by our model to the transistor-level simulation. From Figure 1a,
1b, and 1c, we can see that for the ratio
 6

�
, supply voltage V� �

and temperature
7

, our results perfectly match the simulation re-
sults. Figure 1d shows that after threshold voltage increases to
some value, the modeled leakage current does not decrease any-
more. This is due to the simplicity of our model, which only
considers the subthreshold leakage and DIBL effect. It is only
of concern if threshold voltage is beyond the normal value.

3.1.2 Leakage per Cell

Butts and Sohi point out that their single
�

� � � � � � model is suitable
only for cases where the parameters of N and P transistors are
very close, and otherwise two

�
� � � � � � ’s are needed. We indeed

found [32] that the parameters of N and P transistors differ too
much, so HotLeakage applies different

� � � � � � � factors to the N
and P transistors,

� � and
� ?

.
This means that for a specific cell, the leakage current is given

by the following equation:

� � � � � � � � � � � � 	 : � 
 @ � 
 � � B : ? 
 @ ? 
 � ?
(3)

: C and : D are the number of NMOS and PMOS transistors in the
cell, and

� C and
� D are the calculated leakage current of NMOS

and PMOS according to Equation 2; when aspect ratio
 6
�

	 

we call themunit leakage.

� � � � � � � is then a scaling factor deter-
mined for each type of cell to account for the transistor stack effect
and the aspect ratiosE 
 6

� G
of the different transistors. (The stack

effect refers to the additional reduction in leakage when multiple
series-connected transistors are off; for example, sleep transistors

take advantage of this.) This means that the expression for static
power analogous to Equation 1 is:

� � � � � � � 	 � � � 
 � � � � �
�


 � � � � �
(4)

� � and
� ?

, the design factors of N and P transistors, can be
derived by a similar method as in the single-

�
� � � � � � model. For

a given cell, we divide all possible inputs into two groups: one
group inputs will turn off the pull-down network composed of N
transistors. The other group will turn off the pull-up network com-
posed of P transistors. Thus the leakage currents are also divided
into two groups

� H � ,
� � � ,. . . ,

� � � ,. . . and
� H ?

,
� � ?

,. . . ,
� � ?

,. . . .
� � �

is the leakage current when the pull-down network is turned off,
while

� � ?
is the leakage current when the pull-up network is turned

off.
� � and

� ?
are given by the following equation:

� � 	 E � H � B � � � B 
 
 
 B � � � B 
 
 
 G
6 E � J : � J � �

G
(5)

� ? 	 E � H ? B � � ? B 
 
 
 B � � ? B 
 
 
 G
6 E � J : ? J � ? G

(6)

� is the number of all possible combinations. For example, Fig-
ure 2 is the diagram of a two-input NAND gate. There are two

Vdd

X

Y

Pull-up

Pull-down

Figure 2. Two-input NAND gate.

inputs X and Y, which make four possible combinations. There
are three combinations:E O 	 � Q R 	 �

G
, E O 	 � Q R 	 


G
andE O 	 
 Q R 	 �

G
which turn off the pull-down network.

� H � ,
� � �

and
� T � are the leakage currents corresponding to these three in-

puts. The only combination that turns off the pull-up network isE O 	 
 Q R 	 

G

and
� H ?

is the corresponding leakage current.
� �

and
� ?

are given by:
� � 	 E � H � B � � � B � T �

G
6 E � J : � J � �

G
(7)

� ? 	 � H ? 6 E � J : ? J � ? G
(8)

Here � equals 4.
The double-

�
� � � � � � model has the important property that it is

able to handle the differential scaling of N and P transistors that is
widely used in contemporary technologies. Again, detailed plots
can be found in [32]. We find that

� � and
� ?

are independent of
threshold voltage and have a linear relationship with temperature
and supply voltage. We incorporate these features into our leakage
model and

� � ,
� ?

are calculated dynamically with respect to dif-
ferent temperatures and supply voltages. These values are derived
for different technology nodes via simulations.
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3.2 Gate Leakage and GIDL Effect

In order to improve device performance, gate-oxide thickness
is projected to scale aggressively for future technology nodes [27].
The result is that gate leakage through the gate oxide increases sig-
nificantly due to the direct tunneling current. Our model includes
gate leakage for 70nm technology, where gate leakage becomes
dominant. To get an explicit equation for gate-leakage calcula-
tions is very difficult and also unnecessary for an architectural-
level model. We use AIM-spice [1] as the circuit simulator, which
includes BSIM4 among the supported models for gate leakage.
Gate current parameters have been adjusted to target 40 nA/um
gate leakage in 70nm technology at 1.2nm oxide thickness and
0.9 V supply voltage at room temperature (300K) as predicted
in [27]. Gate leakage is strongly dependent on the gate oxide thick-
ness� � � and supply voltage. It is weakly dependent on the tem-
perature. From the transistor-level simulations, we derived these
factors with curve-fitting and incorporated it into our models.

GIDL effect occurs at low gate voltage and high drain voltage
bias. This effect will raise the leakage current when gate volt-
age goes negative. It becomes worse when biasing the substrate
to negative voltage for N transistors and to positive voltage for P
transistors. This will limit the reverse body-biasing (RBB) tech-
nique.

3.3 Parameter Variations

Device parameter variations can be divided into two categories:
inter-die (die-to-die) variation andintra-die (within-die) variation.

Inter-die variation is the difference in the value of a parame-
ter across nominally identical dies and is typically accounted as a
shift in the mean of some parameter value equally across all device
or structures on any one chip. For purposes of circuit design, it is
usually sufficient to lump all the contributions in the inter-die vari-
ation into a single variation component with a mean and variance.

Intra-die variation is the deviation occurring spatially within
any one die. It may have a variety of sources depending on the
physics of the manufacturing steps. In contrast to inter-die varia-
tion (affecting all devices on any one chip equally), intra-die vari-
ation contributes to the mismatch behavior between structures on
the same chip.

Due to both inter-die and intra-die parameter variations, there is
significant variation in leakage power. Thus parameter variations
must be taken into account in the new leakage model. Inter-die
variation can be characterized asa global mean and variance while
intra-die variation is more complicated. In this version our model
only includes the inter-die variation.

There are four parameters which we are interested in. They are�
: length of the transistor;� � � : thickness of the gate oxide;

� � � :
supply voltage; and

�
� � : threshold voltage of the transistor. For

each parameter, user can give the specific mean� , variance� , and
the number of samples� . In the initializing phase of the simula-
tion, � gaussian distribution samplesare generated and the leak-
age currents are also calculated accordingly. The mean of those
leakage currents is used in the following simulations in order to
include the effects of the parameter variations.

3.4 How to Use the HotLeakage Software Within
an Architecture Simulator

The HotLeakage simulator is a configurable module. The
various parameters related to the leakage power modeling and
the leakage control techniques are specified at the command line
(see [32] for details). To use HotLeakage with currents based on
BSIM3 models and our pre-determined values of

�
� � � � � � , it is only

necessary to specify the technology parameter; e.g. 70nm. Other
parameters can also be configured, but all have reasonable default
values.

HotLeakage dynamically tracks leakage for each cell of inter-
est (e.g., an SRAM cell) and this information is then translated
into leakage at the architecture level. The functions that calcu-
late leakage for each structure of the micro-architecture are in the
main leakage module, and these need to be called whenever any of
the parameters—like temperature, supply voltage, etc.—that affect
leakage is changed. These functions will recalculate the leakage
currents using the HotLeakage model. HotLeakage and the ac-
companying simulation infrastructure currently model leakage of
caches and register files; adding models for other cache-like struc-
tures is very simple.

The power-performance simulator,e.g. Wattch, is responsi-
ble for implementing the leakage-control technique and using the
HotLeakage values accordingly.As mentioned earlier, we have
implemented a generic abstraction for modeling leakage control
techniques based on putting individual cache lines into standby,
allowing us to study techniques like gated-V� � [19], drowsy
cache [11], and reverse-body-bias [23].

4 Simulation Set-Up

4.1 Processor Model

All simulations were performed with Wattch augmented by
HotLeakage. Unless stated otherwise, this paper uses the base-
line configuration as shown in Table 2, which resembles as much
as possible the configuration of an Alpha 21264 [21]. The most
important difference for this paper is that in the 21264 there is
no separate BTB, because the I-cache has an integrated next-line
predictor [9]. As most processors currently do use a separate BTB,
our work models a separate, 2-way associative, 1 K-entry BTB that
is accessed in parallel with the I-cache and direction predictor.

In the original drowsy paper, the L1 data cache used is 32 KB
in size and 4-way set associative and the L1 instruction cache is
32 KB in size and direct mapped. Both caches use line size of 32
bytes and a hit latency is one. In contrast, we use 64 KB, 2-way
caches with 64 B lines for both.

For Wattch and HotLeakage technology parameters we use the
process parameters for a 70 nm process at

� � � 0.9V and 5600
MHz. It is important to note that because our Wattch model
does not include state-of-the-art power-management techniques
that would be expected in the 70nm generation, our estimates for
dynamic energy may be pessimistic.

4.2 Benchmarks

In our comparative evaluation of various leakage control tech-
niques, we use 11 integer benchmarks from the SPEcpu2000 [30]
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Processor Core
Instruction Window 80-RUU, 40-LSQ
Issue width 4 instructions per cycle
Functional Units 4 IntALU,1 IntMult/Div,

2 FPALU,1 FPMult/Div,
2 mem ports

Memory Hierarchy
L1 D-cache Size 64 KB, 2-way LRU, 64 B blocks

2-cycle latency
L1 I-cache Size 64 KB, 2-way LRU, 64 B blocks

1-cycle latency
L2 Unified, 2 MB, 2-way LRU,

64B blocks, 11-cycle latency
Memory 100 cycles

Branch Predictor
Branch predictor Hybrid:

4K bimod and 4K/12-bit/GAg
4K bimod-style chooser

Branch target buffer 1 K-entry, 2-way

Table 2. Configuration of simulated processor
microarchitecture. All caches are write-back.

suite. The benchmarks were compiled for the Alpha ISA and stati-
cally linked using the Compaq Alpha compiler (withpeaksettings)
For each program, we skip the first two billion committed instruc-
tions to avoid unrepresentative startup behavior at the beginning of
the program’s execution, and then simulate 500 million committed
instructions using the reference input set.

5 Results

5.1 L2 Latency

Our results roughly duplicate those in [11]. They report slightly
higher leakage savings and slightly lower performance loss. The
former we attribute to differences in our models, including the dif-
ferent choice of threshold voltage and our use of BSIM3 mod-
els. The latter we attribute to ourchoice of shorter decay intervals
that—for our leakage model—we found to give better energy sav-
ings.

Figures 3 and 4 present thenet cache-leakage savings and the
performance loss for a systemwith an L2 cache latency of 5 cy-
cles, as might be seen for a fast, on-chip L2. Note that, in or-
der to report a measure that represents the actual “profit” in terms
of energy saved, the net savings subtracts the extra dynamic en-
ergy expended due to the leakage control scheme from the total
reduction in leakage that is realized by deactivating cache lines.
The dynamic energy overhead is computed by comparing the to-
tal dynamic energy with and without the leakage-control scheme
activated. This accounts for the contributions from (and overlap
among) (a) activity in the decay counters (gated-V� � ), (b) extra L2
accesses (gated-V� � ), (c) extra tag accesses (drowsy), and (d) extra
runtime.

Figures 5 and 6 then present the same results for an 8-cycle L2;
Figures 8 and 9 for an 11-cycle L2; and Figures 10 and 11 for a
17-cycle L2.

These results show that for5–8 cycle L2 caches, gated-V� �

is superior to drowsy cache in terms of both energy savings and

performance loss. At 5 cycles, gated-V� � is almost uniformly su-
perior, while at 8 cycles, drowsy is superior for a small number
of benchmarks. At 11 cycles, the picture is less clear. Gated-V� �

is slightly better in terms of average energy savings and slightly
worse in terms of average performance loss. But looking at indi-
vidual benchmarks, drowsy and gated-V� � are better for about an
equal number of benchmarks. Finally, at 17 cycles, drowsy cache
becomes clearly superior.
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Figure 3. Net leakage savings at 110 � and an
L2 latency of 5 cycles.
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Figure 4. Performance loss at an L2 latency
of 5 cycles.

Most importantly, these results show that contrary to
widespread belief, non-state-preserving techniques are not inher-
ently inferior. There are five reasons for this. First, gated-V� � is
able to almost entirely eliminate leakage, whereas state-preserving
techniques like drowsy and RBB still exhibit a non-trivial amount
of leakage. Second, a well-tuned decay interval will minimize so-
called induced misses, misses that result purely from premature
deactivation of a line that contains useful data. Third, induced
misses are not inherently bad. Even if data remains “live”, if its
next use is sufficiently far in the future, it may be worthwhile to
incur a modest performance loss to save energy that is otherwise
expended keeping the data active. Fourth, in an aggressive out-of-
order machine, modest L2 access latencies for induced misses can
be tolerated. Finally, when tags are decayed, gated-V� � is actually
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Figure 5. Net leakage savings at 110 � and an
L2 latency of 8 cycles.
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Figure 6. Performance loss at an L2 latency
of 8 cycles.

faster on true misses when a line is in standby—which is the more
common type of miss. The drowsy technique must first wake up
the tags, then check them, only to find that the data is not resident
and an L2 access is required. In contrast, gated-V� � can immedi-
ately begin checking the tags ofactive ways, and ways that are in
standby are guaranteed to be misses and need not be checked.

For the range of L2 access latencies that are typically observed
for on-chip caches, it is thereforefalse to automatically assume
that an L2 access is too costly. Of course, as L2 latency increases,
the above factors that mitigate for gated-V� � become less and less
helpful. For the longest L2 latency we tested, gated-V� � was no
longer able to hide a significant portion of L1 miss times, and the
state-preserving nature of drowsy cache becomes a major advan-
tage.

5.2 Temperature

Figures 7 and 8 illustrate the effects of temperature for an 11-
cycle L2 cache by comparing energy savings at 85� C and 110� C.
Because leakage is exponentially dependent on temperature, the
energy savings is much higher for both schemes.

We mentioned previously that gated-V� � is able to almost en-
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Figure 7. Net leakage savings at 85 � and an
L2 latency of 11 cycles.
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Figure 8. Net leakage savings at 110 � and an
L2 latency of 11 cycles.
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Figure 9. Performance loss at an L2 latency
of 11 cycles.

tirely eliminate leakage, whereas state-preserving techniques like
drowsy and RBB still exhibit a non-trivial amount of leakage. As
leakage increases with temperature, this advantage for gated-V� �

increases too. But this advantage is offset by the fact that the
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Figure 10. Net leakage savings at 110 � and an
L2 latency of 17 cycles.
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Figure 11. Performance loss at an L2 latency
of 17 cycles.

higher leakage at higher temperature makes shorter decay inter-
vals attractive for both gated-V� � and drowsy, and gated-V� � is
more sensitive to the smaller decayinterval. The former factor
benefits gated-V� � for programs likegcc andgzip, but the latter
factor penalizes gated-V� � for gap and twolf. On average, there-
fore, temperature has little impact on the relative performance of
gated-V� � and drowsy.

5.3 Tag Decay

We have only had the opportunity to compare gated-V� � when
tags are also placed in standby along with the line of data that is
being deactivated. If tags are not placed in standby, drowsy no
longer suffers extra penalties for true misses. If one simply uses
the same decay intervals but keeps the tags live for the drowsy
cache, this will reduce the performance loss exhibited by drowsy
but also substantially reduce the energy savings, because tags ac-
count for 5–10% of the leakage energy in caches, and this leakage
energy can no longer be reclaimed. For gated-V� � , on the other
hand, there is no advantage to keeping the tags live unless they are
used to facilitate adaptive decay intervals.
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Figure 12. Net leakage savings at 85 � and
an L2 latency of 11 cycles for the best per-
benchmark decay interval.
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Figure 13. Performance loss at an L2 latency
of 11 cycles for the best per-benchmark decay
interval.

5.4 Adaptivity

Figures 12 and 13 show how much better both schemes could
do if an adaptive scheme were employed to allow the cache-decay
mechanism to find the best decay interval for each benchmark. For
both drowsy and gated-V� � , we identify the best decay interval for
each benchmark, and these are the results that are plotted. The best
intervals are itemized in Table 3.

Adaptivity primarily benefits gated-V� � , because the best de-
cay intervals vary so widely. This in turn is a function of data-
usage patterns and available ILP that can be used to hide induced
misses. Comparing Figures 12 and 13 against Figures 7 and 9
shows that using the best per-benchmark intervals improves energy
savings for gated-V� � by 20%, from 50% to 60%, and dramati-
cally reduces performance loss, from about 1.4% to about 0.55%.
Energy savings for drowsy cache only improve by about 4% and
performance loss only improves from 1.3% to 1.0%.

It is to be expected from the analysis in [11] that adaptivity is
not necessary for drowsy cache, because for reasonable intervals,
it is fairly insensitive todecay interval. Gated-V� � does not need
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Drowsy Gated-V� �

Gcc 1k 2k
Gzip 2k 64k
Parser 4k 16k
Vortex 2k 8k
Gap 16k 16k
Perl 4k 4k
Twolf 2k 4k
Bzip2 4k 16k
Vpr 2k 8k
Mcf 1k 2k
Crafty 4k 32k

Table 3. Best decay intervals.

adaptivity to give attractive benefits for on-chip L2 caches, but
performs much better with adaptive decay intervals. It becomes
clearly superior to drowsy for most benchmarks with an 11-cycle
L2.

We are aware of three methods so far for providing adaptive de-
cay intervals: using an array of bits to select from multiple possible
decay intervals, proposed by Kaxiras et al. [19]; theadaptive mode
control technique proposed by Zhou et al. [33]; and the formal
feedback-control technique proposed in our prior work [31]. The
latter two techniques require the tags to stay awake. Our feedback-
control technique is quite simple, using the tags to identify induced
misses and requiring only a small state machine to periodically up-
date the counter containing the decay interval.

6 Conclusions and Future Work

HotLeakage provides the first publicly-available microarchi-
tecture-level leakage-modeling software of which we are aware.
Its most important features are the explicit inclusion of tempera-
ture, voltage, gate leakage, and parameter variations. HotLeak-
age provides default settings for 180nm through 70nm tech-
nologies (based upon BSIM3 models) for modeling cache and
register files, and provides a simple interface for selecting
alternate parameter values and for modeling alternative mi-
croarchitecture structures. HotLeakage also provides mod-
els for several extant cache leakage-control techniques, with
an interface for adding further techniques. The HotLeak-
age tool, with all the supporting documents, is available at
http://lava.cs.virginia.edu/HotLeakage

Using HotLeakage and Wattch, we have compared a
state-preserving technique (drowsy cache) against a non-state-
preserving technique (gated-V� � ). Conventional wisdom holds
that the state-preserving technique must be superior, because it in-
curs less performance loss on access to a line that is in standby
mode. In contrast, we have found that at 70nm and for the par-
ticular range of parameters we studied, the non-state-preserving
technique is actually superior for a set of faster L2 cache laten-
cies that might be seen with on-chip L2s. The main reasons for
this are that gated-V� � reduces leakage by a greater amount than
drowsy cache, that the latency tofetch data from L2 when access-
ing a line in standby mode can be hidden to a significant extent by
ILP, and that drowsy cache actuallyincurs a larger performance

penalty than gated-V� � for the more common case of a true (rather
than an induced) miss. In addition, the effectiveness of gated-V� �

can be expanded by using adaptive decay intervals.
The design space for power-efficient caches is notoriously

complex, and even the design space for just these two tech-
niques is too rich to fully explore in this paper. The proper
choice of leakage-control technique will depend on a variety of
factors, and we hope that the comparison here illustrates some
important tradeoffs to consider. The main point that we wish
to convey with this work is to debunk the perception that non-
state-preserving techniques are inherently inferior. Design of
low-leakage caches requires non-state-preserving techniques like
gated-V� � to be considered as potentially the most energy-efficient
and highest-performance solution.
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Abstract

Growing wire delay and clock rates limit the 

amount of cache accessible within a single 

cycle. Non-uniform cache access (NUCA) has 

been proposed as a solution to this problem in 

Kim et al, 2002 [1], and performance has been 

analyzed for various cache organizations and 

technology assumptions. Innovations included 

cache organizations which dynamically 

migrated data between blocks within the cache 

(D-NUCA) resulting in 11% improvement in 

SPEC2000 benchmarks over a static (S-NUCA) 

approach. Our work duplicates, verifies and 

extends the work of [1] in the following ways: 

1) a commercial microprocessor, the Compaq 

Alpha 21364 is used for a realistic floorplan (an 

admitted limitation by the authors of [1]), cache 

sizes and wire delay estimates, 2) process 

technology nodes 130nm, 90nm and 65nm are 

used to explore the scaling of the proposed 

approach, and 3) new topologies and policies 

are developed for migrating data within the 

cache. Our results generally corroborate those of 

[1] and show that the realistic floorplan results 

in a 16% increased performance. Furthermore, 

our improved topology and policies for 

movement of data within the cache result in still 

improved performance of 43%. It should be 

noted that there is wide variation in the 

improvement of the different SPEC2000 

benchmarks, thus pointing to future compiler-

level approaches to D-NUCA exploitation. 

_______________________________________

Our work has been supported in part by SRC 

Task 766 and an SRC/IBM Masters 

Scholarship.

1. Introduction 

Interconnect is a huge problem in high 

performance processors and memory hierarchies 

[3,5,15]. Previous work demonstrated that very 

large uniform cache architectures are incapable 

of supporting a high performance processor 

[17]. For each technology shrink, a smaller 

percentage of the chip is reachable within a 

clock cycle [13]. In particular, slow 

interconnects is the main reason for stalling a 

fast processor when waiting for cache accesses. 

Cache latency will continue to attack 

performance as long as cache sizes are 

increasing and as on-chip cache access require 

multiple cycles due to wire delay.  

1.1 Previous Work 

Prior architecture research introduced multi-

ported, banked and pipelined caches to 

overcome the penalty of long cache accesses, 

but each approach has its own drawback [18]. 

Although multi-ported cells can satisfy more 

requests simultaneously, the extra logic 

increases the chip area and timing delay per bit 

and the benefits quickly diminishes when more 

than three or more ports is supported. Banked 

caches allowed cache accesses to overlap but 

this organization is susceptible to bank conflicts 

when enough addresses reference the same 

bank. Despite the ability to pipeline cache 

requests, cache latencies greater than 2 or 3 

cycles have proven to negatively affect 

performance. More recent work shows 

performance improvement in the access latency 

as cache designs progress from uniform caches 

to non-uniform caches in Figure 1 [1]. 
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The UCA cache (uniform cache architecture) is 

the traditional cache architecture that required 

the same clock cycles for all cache accesses. 

The ML-UCA (Multi-Level Uniform Cache 

Architecture) is the notion of having multiple

levels of cache, where the smaller cache is a 

subset of the larger cache structures. The S-

NUCA-1 (Static Non-Uniform Cache 

Architecture) is the first non-uniform

architecture that is evaluated. This cache 

organization requires direct wiring to each of 

the banks where each bank is assigned a specific 

latency for every bank access. The second non-

uniform cache architecture (S-NUCA-2) 

introduces network characteristics in cache 

architectures. The S-NUCA-2 represents a grid 

of networked cache banks that use shared busses 

to transmit data. Finally the D-NUCA (Dynamic

Non-Uniform Cache Architecture) is an upgrade 

to the S-NUCA-2 where the most recently used 

data are stored in the banks closest to the 

processing core.

There are a variety of cache organizations to be 

explored but this research uses an S-NUCA2 

configuration as a basis for evaluating the 

modified D-NUCA cache on an Alpha 21364 

for a technology study (130nm, 90nm and 

65nm) and a topology study for a torus, mesh

and hypercube on-chip interconnection net-

work. The rest of the paper will 

compare/contrast the architectural components

of the D-NUCA systems in Section 2, followed 

by a description of the simulation environment

and methodology in Section 3. The remaining

two sections analyze the simulated results and 

present possible extensions to this work in 

Sections 4 and 5 respectively. Section 6 is the 

supplementary Appendix containing graphs and 

tables.

2. D-NUCA Components Comparison 

The section describes the key architecture 

components that separate a D-NUCA from an S-

NUCA2 system followed by the key difference 

between D-NUCA1 [1] and D-NUCA2 (this 

paper).

2.1 Data Mapping 

Data mapping is the organization of data among

the cache banks. The D-NUCA1 system in 

Figure 2a shows an 8-way set associative cache 

consisting of 32 banks. Each arrow represents a 

single way of the entire cache for each mapping

scheme. The simple mapping scheme organizes 

each cache way to a numbered column. This 

mapping strategy is considered simple because 

the banks themselves are wired into vertical 

columns. The shared mapping scheme upgrades 

the simple mapping scheme by mapping data in 

such a way to equalize the average access delay 

for all sets. The four closest banks to the 

processing core (first rows of column 3,4,5 and 

6) are composed of data that maps to each of the 

8 cache ways. 

Figure 1. Cache Organizations [1] 
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Figure 2a. Mapping Schemes [1] 

Figure 2b. Modified Simple Scheme

A simple mapping approach is preferred, 

because the shared mapping requires irregular 

wiring and data mapping to spliced banks. 

Because the simple mapping scheme requires 

little wiring overhead, there are a number of

vacant wiring levels to overlay a torus, mesh or 

hypercube interconnection network. For this 

research work, data is mapped slightly different 

by assigning sets to individual banks in Figure 

2b. This arrangement allocates all blocks within 

a set to a bank. Therefore a numbered set always 

points to a single bank. The D-NUCA2 uses a 

modified simple mapping scheme to allocate 

banks to a bank set. Therefore a modified

simple approach can assign all the blocks of set 

0 through set 8 to a bank versus distributing the 

blocks of a set amongst the banks in the original 

simple mapping scheme.

2.2 Bank Search 

The D-NUCA1 explored two bank search 

policies for determining the location of a cache 

block. The two policies are the incremental and 

the multicast search. In Figure 3, the 

incremental search policy checks the closest 

bank by doing a partial tag search. If the closest 

bank does not generate a tag match, then a 

partial tag search is executed on the next closest 

bank and so on, until either there is a match or a 

cache miss. The multicast policy performs a 

partial tag search on all banks within a bank set 

in parallel. Although the multicast provides 

faster average access times, checking the banks 

simultaneously can be sensitive to contention. 

The multicast search policy showed the best 

performance and was chosen as the search 

policy for the D-NUCA2. 

2.3 Promotion, Insertion and Eviction Policy 

The original D-NUCA cache promotes data 

incrementally as shown in Figure 5a. As shown, 

a data request to a far bank triggers a promotion.

When accessing a far bank, the promotion

occurs when the data transmits to the processing 

core. If the next closest bank is full then a cache 

set must be demoted to the next farthest bank, 

essentially swapping two blocks. Their goal is to 

minimize the global traffic when data is 

swapped between two banks, by restricting data 

movement to neighboring banks. This current 

research work assumes an LRU policy that 

promotes data to the closest bank as the data 

travel to the processing core in Figure 5b and 
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invalidates the set in the farther bank location. 

In the event of a promotion and the closest bank 

is full, a set in the closest bank is demoted to the 

next farthest bank. 

Processing

Core

Bank 0 Bank 1 Bank 2 Bank 3

Incremental Search

1
2

3
4

Processing

Core

Bank 0 Bank 1 Bank 2 Bank 3

Multicast Search

Figure 3. Bank Search Policies 

Demotion continues until bank has a vacancy In 

order to offset the network contention that can 

occur during the demotion process, the research 

assumes dual-ported cells, a single port for 

reading and another for writing data. This will 

allow reads and writes to occur simultaneously.

The D-NUCA1 explored a number of insertion 

policies when retrieving new data from the 

lower level of cache. The best performance

occurred when incoming data was inserted into 

cache banks that is located a moderate distance 

from the processing core and eviction policy 

that always evicts from the farthest banks. The 

D-NUCA2 uses an insertion policy that places 

new data at the head and an eviction policy that 

removes data from the farthest cache banks. 

To summarize in Table 1, this research attempts

to improve upon the D-NUCA model created at 

UT-Austin by introducing wire latency 

modeling, a more aggressive promotion policy, 

and the ability to interconnect banks into a 

variety of topologies. 

Bank 0 Bank 1 Bank 2 Bank 3Core

Data Request

Demotion

Figure 4a. Incremental Promotion

Bank 0 Bank 1 Bank 2 Bank 3Core

Data Request

Demotion Demotion Demotion

Figure 4b. Absolute Promotion

D-NUCA1 D-NUCA2

Data Mapping Shared Mapping Modified Simple Mapping 

Interconnection Scheme Mesh User Defined 

Search Policy Incremental or Multicast Multicast

Insertion Policy Head, Middle or Tail Head

Promotion Policy 2-bank/1-hit All banks/1-hit 

Eviction Policy Tail Tail

Table 1. Simulator Model Comparison
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Figure 5. Simulation Flowchart 

3.3 Global Wire Delay Table 

The global wire delay table carries the task of 

converting the wire lengths extracted from a 

floorplan into communication delay (in cycles). 

The table was generated using SPICE and the 

ITRS 2002 (International Technology Roadmap

for Semiconductor) pro-jections [2]. The ITRS 

projection includes the wire width, height, 

spacing and the dielectric permittivity. For each 

wire length entry, optimally placed repeaters 

were inserted, using the Bakoglu’s method to 

decrease the communication delay [19]. This is 

common practice in the industry. The table 

below graphically represents only pure wire 

delay and does not consider the latch delay. The 

latch delay is considered later when converting 

wire delay to wire latency. Each latency 

conversion assumes 10% of a clock cycle to be 

added to the wire delay. Therefore a wire length 

of 0.8cm in 90nm technology would translate 

into 1.98 cycles, but with the inclusion of the 

latch delay, the total delay in cycle would rise 

above 2.00 cycles. Applying the ceiling function 

would finally bring the latency to 3 cycles, 

because microprocessors are not partial-cycle 

driven.

This access delay plus the communication delay 

are entered into an extended version of 

Simplescalar that supports non-uniform caches 

and the global routing delay to and from the 

ports of a cache bank. Simplescalar then 

executes a set of benchmarks using the new 

parameters to generate performance statistics 

later shown in Table 2 and 3.

3.4 Simplescalar Extended 

Simplescalar is an architecture simulator that 

will model the Alpha 21364. A few 

modifications were made to Simplescalar to also 

model a dynamic non-uniform cache system

with wire delay support. In the extended version 

of Simplescalar, the use is capable of specifying 

the quantity, size and the optimal transmission

delay for each cache banks. The examples

below are the necessary parameters to simulate

the cache system.

cache:latency_array{

0:255:1:511:2:767:3:1023:3:1279:1:

1535:2:1791:3:2047:4:2303:1:2559:2:2815:3:3

071:4:3327:1:3583:2:3839:3:4095:4}

In the above example, the option specifies 4096 

sets that are partitioned into 16 sub-banks. The 

first bank can hold up to 256 sets starting with 

set 0x000 which requires a communication

latency of 1 cycles, the next bank can also hold 

256 sets but starts with set 256 (or 0x100) with a 

communication latency of 2 cycles. Since all 

banks are restricted to the same size, all bank 

access delays are constant. 

cache:bank_set{

Bank15, Bank14, Bank13, Bank12: Bank11,

Bank10, Bank9, Bank8: Bank7, Bank6,

Bank5, Bank4: Bank3, Bank2, Bank1, Bank0} 

cache:alt_path { 

Bank3, Bank7, Bank11, Bank15: Bank2, 

Bank6, Bank10, Bank14: Bank1, Bank5, 

Bank9, Bank13: Bank0, Bank4, Bank8, 

Bank12}
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In the event that a node is busy servicing a 

request, depending on the inter-connection 

scheme, it is possible to reroute the data to the 

processing core. The above two parameters

define the bank sets and the alternate path for 

rerouting around a busy node is necessary. For 

the configuration above, there are 4 defined 

search paths. When cache is read, a preliminary

tag comparison determines which bank set to 

search and initiates a multicast. In the event that 

a cache hit occurs and the data collides with a 

busy node then an alternate route is chosen for 

the data to travel. The only constraint is that 

data can only be rerouted between neighboring 

(point-to-point) cache banks. Therefore in the 

above alt_path parameter, a reroute can be 

performed between Bank3 & Bank7 but not 

between Bank3 & Bank11.

4. Simulation Results 

The section compares the performance of a S-

NUCA to a D-NUCA2 system. The research 

generates statistics for 130nm, 90nm and 65nm,

and a topology study of a D-NUCA2 system

that supports a torus, mesh and a hypercube. 

4.1 Technology Trend 

The technology trend uses a 21364 floorplan as 

the basis for comparing a S-NUCA to a D-

NUCA. The Alpha 21364 is a model of the 

Alpha 21264 with large on-chip L2 caches and 

multiprocessor support. The results of Table 2 

demonstrate that the IPC generated for each 

benchmark was unaffected much by 

communication delay and that pipelined cache 

accesses could easily hide the wire delay 

overhead. These results were somewhat

expected since global delay is around a cycle for 

most point-to-point transmissions. The average 

IPC improvement was a miniscule 0.25% 

despite a noticeable miss rate. This implies that 

pipelined cache access is capable of hiding 

small multi-cycle delay (less than 3 cycles) 

within a sizeable cache structures [18]. 

The Alpha floorplan (90nm) in Figure 8 is a 

21364 with 8MB of L2 cache. Figure 8 shows a 

considerable smaller processor core that is under 

50% of the original core. The 90nm processor 

core also consumes a smaller percentage of the 

chip area because of the growing chip area per 

process generation [2]. The unused area of the 

chip is filled with 0.125MB cache banks. The 

cache bank size was reduced to make more room

for supporting hardware when scaling to a 90nm

process.
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The 90nm version of the Alpha 21364 has 8MB of 

64 banks each contain 0.125MB memory

modules. The banks are organized in groups of 8 

banks creating cubic nodes across the chip. The 

groups are further broken down into two 

subgroups of four banks. The two subgroups are 

restricted from exchanging data but are 

interconnected for routing purposes described in 

Section 3.

The average IPC improvement showed a 43% 

improvement across the benchmarks with the 

exception of two benchmarks. This is 

characteristic of excessive collision between far

read accesses and data demotions from closer to 

farther banks. This implies that the data set is 
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small enough to fit inside the L2 cache banks. The 

low D-NUCA2 average miss rate from the 130nm

to the 90nm floorplan also confirms this. /The 

technology study in Figure 10 correlates the 

throughput of an S-NUCA and D-NUCA2 for 

some benchmarks in SPEC2000. The study 

explores the IPC for 2MB, 8MB, and 16MB with 

a corresponding floorplan in 130nm, 90nm and 

65nm. Each of the benchmarks shows a 

significant improvement for D-NUCA2 systems.

Surprisingly for most benchmarks, the D-NUCA2 

for 90nm outperforms the S-NUCA for a 65nm.
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Figure 9. Cubic Interconnection Scheme

In general, D-NUCA2 shows significant 

improvement over a S-NUCA for large cache 

systems. But the D-NUCA2 shows some

limitations on performance when technology 

migrates to 65nm. At 65nm, where the simulated

cache size is 16MB, the cache system is broken 

down into 128 cache banks. At this stage, bank 

contention becomes an issue and prevents data 

from taking the shortest path to the processor. 

Research results show that this occurs frequently

in 65nm technology and on occasion for apsi and

mgrid in 90nm where bank contention negatively 

affects performance.

4.2 Topology Study 

The topology study shows the performance trend 

for a D-NUCA system connected in a torus, mesh

and hypercube network. The number of available 

wiring layers and the possibility of reducing the 

average latency motivated the idea of this 

topology study. As expected each of the 

benchmark showed an improvement as the 

interconnection network complexity increased. 

Because of the increased wiring complexity, data 

was less likely to stall because of a flexible

network that is very capable of rerouting the data 

to the processor. For this reason the torus 

performs poorly. 

Given a single node, data can only travel to 

another single node. In a mesh and hypercube 

configuration, a piece of data has the option of 

one or two other nodes for rerouting, respectively. 

The hypercube outperforms the mesh network by 

providing reroutes with fewer hops. This 

translates into a smaller average latency in Figure 

11a and b. 

5. Conclusion 

Non-uniform cache access (NUCA) has been 

proposed as a solution to this problem of wire 

dominated cache access in Kim et al, 2002 [1]. 

Our works attempts to reproduce their research 

environment on an already existing chip floorplan 

as well as extend and defend their concept with 

architectural enhancements and a wire topology 

study. In general, our results corroborate those of 

UT-Austin and in using their best-reported 

configuration were able to boost performance by 

43% when using a multi-cube bank 

interconnection scheme.

The strength of our simulation environment is the 

extraction of wire delay from an existing floorplan 

and simulated wire latency using Hspice and 

ITRS 2002 assumptions. The future work includes 

improved evaluation techniques that involve much

longer simulations, studies that vary the cache 

bank size for very large on-chip caches. For these 

results, SPEC2000 was used and a simulation

method that simulated the execution of 200 

million instructions after fast-forwarding the 100 

million instructions. Finally, because contention 

was an issue for very large caches, varying the 

cache bank size can extend superb performance

improvements down to 30nm where enormous

amounts of cache can fit on-chip.
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6. Appendix 

Benchmark S-NUCA2 D-NUCA2 Difference % Miss Rate %

applu 1.0833 1.2742 17.6 3.80

apsi 2.3266 1.5198 -34.7 17.2

fma3d 1.3463 2.2941 70.4 0.13

gcc 0.8118 1.4136 74.1 1.54

lucas 1.1432 1.6427 43.7 0.41

mesa 0.9707 1.9829 104.3 0.14

mgrid 2.0492 1.5003 -26.8 8.91

oammp 1.2196 1.4002 14.8 4.40

oequake 0.963 1.9928 106.9 0.17

oparser 0.985 1.7556 78.2 0.62

ovpr 1.0795 1.7822 65.1 0.36

swim 1.1829 1.7965 51.9 0.50

twolf 0.9711 1.9937 105.3 0.01

wupwise 1.4514 2.0269 39.7 0.90

Average 43.0 2.79

Table 3. Alpha 21364 90nm

Technology Study
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Abstract

Virtual memory (VM) sub-systems in many widely adopted
desktop and server operating systems rely on approxima-
tions of the least-recently-used (LRU) heuristic to select
pages for replacement. These heuristics work well when
memory is abundant, but they produce counter-intuitive be-
havior when applications’ memory demands substantially
exceeds the available physical memory. This paper de-
scribes the results of preliminary experiments with a new in-
strumentation framework that observes Linux VM behavior
in a controlled setting. Repeated experiments with a micro-
benchmark consistently reveal three types of misbehavior.
First, the CPU scheduler’s intended priorities can be in-
verted for an indefinite period of time when low-priority
processes push higher-priority processes out of memory.
Second, the VM heuristics can perpetually assign unequal
amounts of memory to simultaneously running, identical
processes. Finally, processes with modest memory require-
ments experience execution delays during periods of mem-
ory shortage.

Keywords: instrumentation, interactive, latency, LRU,
memory shortage, page replacement, priority inversion, re-

sponsiveness, unfairness, virtual memory

1 Introduction

Virtual memory [3] is a well-known source of performance

problems in computing systems. Designers of real-time

systems typically choose operating systems without virtual

memory support [7], or lock their applications into mem-

ory to avoid the potentially unbounded delays introduced

by page faults [1]. However, eliminating virtual memory

�

The research work reported in this paper has been sponsored in part

by the Army Research Office under Grant No. DAAD19-01-1-0646.

support is not an option for general software development,

since doing so would force programmers to predict, pre-

cisely and ahead of run-time, the amount of memory needed

by their software. In particular, web servers use software

where the demand for memory is extremely difficult to pre-

dict. These systems use virtual memory to provide best-

effort performance, given the available physical memory.

When sufficient memory is not available, these systems are

subject to performance problems, including thrashing, un-

even partitioning [10], and lack of performance isolation.

The first author of this paper confronted the following prob-

lems while supporting a high-volume commercial web site:

1. The failure of a single process running on the web

server machine could make the entire web server unre-

sponsive. At times, the performance degradation was

so severe that it was difficult to gather the data needed

to isolate the cause of the failure.

2. Estimating a process’ demand for memory was diffi-

cult. The operating system provided no accurate indi-

cator of the demand and, therefore, programmers were

forced to estimate their applications’ memory demand

using knowledge of the application. This increased

the risk of failures after upgrades; software which was

technically correct occasionally failed to meet the per-

formance requirements of the web site.

3. The data that the web servers used to process requests

was created through a lengthy, resource intensive con-

version process. The technicians who monitored this

process observed that the memory partitioning on the

systems they used to convert the data was difficult to

predict. To meet their schedules reliably, the techni-

cians were forced to run no more than a single con-

version at any given time on a system. In addition to

forcing the purchase of expensive hardware, this tech-

nique increased the burden on system administrators,
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made the job of the technicians more confusing, and

caused congestion on the network, which had to cope

with large data transfers between the systems.

The complexity of the software on the web site made it diffi-

cult to reproduce these problems reliably and to distinguish

between effects caused by the application code and the op-

erating system.

We wanted to understand the operating system’s con-

tribution to these problems, and we wanted to be cer-

tain that our results were reproducible. Therefore, we de-

veloped an instrumentation framework and an automated

testing system to observe the behavior of a trivial micro-

benchmark. This paper describes the design of our instru-

mentation framework, and the statistics that we gathered.

We also describe the kind of virtual memory imbalances

that we encountered, and the conclusions that we drew from

our observations and results. This paper demonstrates that

simple micro-benchmarks can produce virtual memorymis-

behavior that is similar to the misbehavior observed with

real-world applications.

2 Statistics of Interest

The operating system statistics of interest to our experi-

ments are those related to virtual memory behavior, and are

listed in this section. Our instrumentation framework ex-

amines the cumulative statistics given in Table 1 once every

second in order to extract the following interval statistics for

each running application on the system:

� Resident set (denoted by pages on the graphs) gives
the number of the application’s pages that are currently

in memory.

� Zero-on-write is an optimization that allows the op-
erating system to defer erasing newly allocated mem-

ory. Instead, the operating system maps an erased page

multiple times into the application’s address space

with read-only permissions. On the first write, the op-

erating system intercepts the minor fault, allocates a

new page, and maps it as a read/write page. The zow
field on the graphs indicates the number of page faults

associated with the zero-on-write optimization.

� Percentage CPU: (denoted by % CPU on the graphs)
gives the number of timer interrupts that occurred in

the application. The timer on Linux generates an in-

terrupt at a frequency of 100Hz; the monitor reads the

statistics once per second, so the number of timer inter-

rupts incurred by the application, within the monitor-

ing interval, can be directly interpreted as the % CPU

load. However, execution delays in the monitor can

cause this statistic to exceed 100% for an application

because timer interrupts will continue to accrue during

the delay.

� Major faults: (denoted by majflt on the graphs) oc-
cur when the application attempts to access a page that

is not in memory. The operating system suspends the

application, and initiates a read for the page from the

disk.

� Minor faults: (denoted by minflt on the graphs) oc-
cur when the application attempts to access a page and

the page is discovered in memory. The zero-on-write

optimization can cause this to happen. Minor faults

also occur when the application accesses a page on the

operating system’s free list before it is reallocated.

In addition, the monitor extracts the following interval

statistics by querying the global cumulative statistics given

in Table 2:

� Swap-in: counts the number of pages read from the
disk for all running applications.

� Swap-out: counts the number of pages written to disk
for all running applications.

� Jitter: measures the variation in the time between the
monitor’s samples. Jitter is normalized so that it is zero

in the expected case. Our monitor process uses an in-

terval timer to avoid accumulating the delays, so small

values of positive jitter are often followed by a corre-

sponding negative value.

3 Instrumentation Framework

3.1 Design Objectives

Our objectives in the design of the instrumentation frame-

work included:

� Constant monitoring: The monitor should minimize
its use of system resources so that our framework can

run continuously, even on production systems without

creating performance problems of its own. Constant

monitoring of a production system has two advantages.

First, it allows us to gather data for intermittent perfor-

mance problems which may be difficult to reproduce

on a development system. Second, the monitor could

be extended to alert system administrators to perfor-

mance problems in a timely manner, ultimately reduc-

ing the time needed to correct the problem.

� Reflective monitoring: To be comprehensive, we re-
quired that our monitor process keep statistics for it-

self. This allows us to keep track of the monitor’s own
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resource consumption. The data that the monitor reads

is updated by the operating system independently of

the monitor process. If the monitor is blocked (for rea-

sons such as page faults), there will be artifacts in the

reported data. By tracking the behavior of the monitor,

we can locate these artifacts, and exclude them from

our analysis.

3.2 Assumptions

We made the following assumptions while designing our

framework and while running our tests:

� The system always enters the same state after a reboot.

Therefore, identical tests started at the same time after

a reboot will produce identical results. We test this

assumption by running the same test many times, and

by comparing the results. Where the results differ, we

document the differences.

� The monitor process does not affect the behavior of the

system to the extent that our findings cannot be applied

to systems that are not running the monitor. We have

been able to reproduce the behavior described in this

document even without the use of the monitor.

� The entries in the /proc file-system [8] that we use
for gathering the kernel statistics accurately reflect the

state of the system, as documented in the Linux man

pages. We have examined the Linux kernel source

code for the statistics of interest to us, and verified that

the /proc implementation corresponds to its docu-
mentation.

� Linux has not been designed to favor processes based

on their starting time. Therefore, unequal resource al-

locations to multiple, identical simultaneously execut-

ing applications constitutes undesirable behavior.

3.3 Implementation Details

Our framework runs over a Red Hat Linux 8.0 installation.

We replaced the kernel with an enhanced stock (non-Red

Hat) 2.4.20 kernel that provides additional statistics that al-

low us to observe the behavior of the page-reclamation algo-

rithms. The test system has a Pentium 4 processor running

at 2GHz with 512MB RDRAM memory and a 40GB IDE

hard disk. Our instrumentation framework, consisting of a

monitor, a test script and some kernel-level instrumentation,

attempts to pinpoint virtual memory imbalances through a

micro-benchmark that we designed.

Micro-benchmark. Our micro-benchmark is a simple
memory scanner. It allocates a single 384MB buffer us-

ing the malloc routine in the C runtime library, and then

writes sequentially to the entire buffer one byte at a time.

When it gets to the end of the buffer, it returns to the be-

ginning of the buffer, and continues to write sequentially.

Instances of the micro-benchmark are called scanners in the

rest of this paper. One scanner will clearly fit into the phys-

ical memory (512 MB) of our system; additional scanners

will undoubtedly cause paging. This scanner was originally

intended to validate memory allocation in order to test the

statistics gathered by our monitor. Although the our current

micro-benchmark provides valuable insights, we intend to

apply our framework to more realistic workloads and ap-

plications in the future. We implemented the scanner on

Linux, and have additionally ported it to FreeBSD andWin-

dows XP.

Monitor. The monitor is a process that queries the /proc
file-system once every second to extract the kernel statistics

for every running process, and writes the values to a log file.

The monitor gathers global statistics, such as the number of

free pages, as well as process-specific statistics, such as the

number of resident pages. The monitor currently uses the

Linux /proc file-system to translate internal kernel data
structures into a text representation. The per-process and

global statistics of interest to us are listed in Tables 1 and

2, respectively. We note that the monitor does not gather

the information in an atomic operation, so discrepancies can

appear in the data. The monitor records timestamps from

the CPU clock register to allow us to detect jitter between

the samples. It also records, in the log, the first appearance

of a process, and also a process’s exit from the system.

The monitor also launches scanners. The first scanner is

launched 12s after the monitor starts. After the the mon-

itor launches a scanner, it waits for a fixed time interval

before launching an additional scanner. The delay between

launches and the number of scanners to launch are randomly

selected at the beginning of each test-run. After running for

one hour, the monitor terminates the test-run by rebooting

the system.

Test Script. This script runs during the boot sequence
on Linux. It halts the boot process, and launches the

monitor before the networking sub-system starts, thereby

minimizing the number of processes on the system, and

also eliminating any network traffic that might perturb

our experiments. The monitor and this script constitute

a fully automated test system, greatly reducing the vari-

ability of the timing of the tests. The other processes

running in the system at the time of the test include:

init, keventd, kapmd, ksoftirqd_CPU0, kswapd,
bdflush, kupdated, mdrecoveryd, kjournald,
rc, minilogd, initlog, and bash. The bash pro-
cess runs on the console, allowing the test to be terminated

so that results can be collected from the system.
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Label Name Description

comm Program name

ppid UNIX process identifier of the parent pro-

cess

minflt Number of the page faults that didn’t re-

sult in a disk I/O

majflt Number of page faults that resulted in

disk I/O

utime Time spent in user-level code for this pro-

cess

stime Time spent in the operating system for

this process

priority Process priority for the Linux scheduler

rss Number of pages in the page table of the

process

zerofilled Number of copy-on-write operations of

the process

reclaimed Number of pages reclaimed from this pro-

cess

reclaimscans Number of times that the kernel attempted

to reclaim pages from the process

Table 1. Per-process statistics of interest. Themon-
itor process logs a copy of these kernel counters
for each task on the system. The zerofilled,
reclaimed, and reclaimscans counters are
our enhancements to the kernel to understand the
behavior of the Linux page-swapping system.

Kernel Instrumentation We enhanced the Linux kernel

with counters to track the behavior of the virtual mem-

ory sub-system as it allocates and reclaims pages. These

additional counters are zerofilled, reclaimed,
reclaimscans, and are described in more detail in Ta-
ble 1. Before we added these statistics, the kernel did not

provide any indication that memory had been reclaimed

from an application.

4 Empirical Results

Using our framework, we have observed three behaviors

that make virtual memory performance difficult to predict:

1. Priority inversion - the virtual memory sub-system
does not respect the CPU scheduler’s process prior-

ities. Specifically, a low-priority process can steal

pages allocated to a higher-priority process. In certain

circumstances, the low-priority process might retain

these pages indefinitely, suspending the higher-priority

process when the latter encounters page faults. As a

Label Name Description

memtotal Total amount of memory in system, as re-

ported from /proc/meminfo. (in kB).
memfree Free memory, as reported from

/proc/meminfo. (in kB).
memshared Shared memory, as reported from

/proc/meminfo. (in kB).
swapin Number of pages read from swap files.

swapout Number of pages written to swap files.

cycles Number of processor cycles (w.r.t. our

2GHz testbed) since the last read.

readtime Number of cycles spent reading the data

from the /proc file-system.
fairness Value of the fairness heuristic of any

memory scanners; -1 if no scanners, 0 if

completely fair, 1 if completely unfair.

Table 2. Global statistics of interest. This is a par-
tial list of the counters that track the behavior of
all the processes on the system. The statistics in
bold are generated by the monitor.

result, the lower-priority process obtains virtually ex-

clusive CPU access, leading to priority inversion.

2. Virtual memory imbalances - identical applications ob-
tain significantly different allocations of the available

physical memory when they are run together. These

imbalances exist in the operating systems that we have

tested (Linux, FreeBSD, and Windows XP), and ap-

pear to be an artifact of the victim-selection algorithm.

Our detection of virtual memory imbalance hinges on

(i) our knowledge of our micro-benchmark’s memory-

related behavior, (ii) our use of three identical, simulta-
neously executing instances of our micro-benchmark,

and (iii) our ability to observe unfairness in physical

memory allocations across these instances.

3. Execution delays - processes may exhibit pauses on the
order of one second when memory is scarce. This is

true even of processes that run periodically, and that

have small, predictable page-reference strings. The

monitor process that we use to examine the Linux ker-

nel counters for the purpose of tracking resource al-

locations on Linux was originally susceptible to this

problem. We were able to work around this problem by

locking the monitor into memory. While this approach

does work for other applications, it may be infeasible

for applications which use a large amount of memory,

or those that process a mixture of high-priority and

low-priority requests.
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These problems stem from the page-replacement algo-

rithm’s ability to affect which applications experience page

faults on multi-tasking systems. This, in turn, affects task

scheduling, which ultimately affects the global order of

page references in the system. When the page-replacement

algorithm is driven from this global order, as is the case

in the least-recently-used (LRU) heuristic [2] used by the

virtual memory sub-systems in Linux [5, 6] and FreeBSD,

a feedback loop can occur. While these effects have been

known for some time [10], many operating system texts

(for example [9]) present an oversimplified view of the vir-

tual memory sub-system which does not address this prob-

lem. Unfortunately, the LRU heuristic penalizes applica-

tions with conservative memory and CPU usage in favor of

applications that allocate memory and use the CPU liber-

ally.

Our instrumentation framework also indicates that the

existing kernel statistics do not provide enough information

to quantify either an application’s memory demands or the

amount of free memory on the system. We demonstrate that

the statistics in the Linux kernel can either over-estimate

or under-estimate an application’s demand for memory, de-

pending on the available memory in the system at the time.

To make matters worse, the accuracy of the statistics seems

to improve only when memory is reclaimed from applica-

tions, which often results in execution delays.

We work around this limitation in our current research by

observing multiple instances of a micro-benchmark which

has a static, pre-specified demand for memory. Any differ-

ence in the runtime allocation of memory across the identi-

cal instances, therefore, serves as an indicator of imbalance

in memory allocation. Real-world applications are not so

simple; their memory demands may vary based on the stage

of processing (for batch applications) and the input (for in-

teractive applications). In addition, few systems are exclu-

sively dedicated to running multiple copies of the same ap-

plication. Therefore, as a part of our next research steps,

we intend to find a better way of characterizing an appli-

cation’s demand for memory. Our conjecture is that we can

enhance the kernel, with minimal impact on application per-

formance, to observe the working-set [4] of applications,

and that this working-set information will accurately reflect

the memory demand of applications.

4.1 Priority Inversion and VM Imbalance

We describe a single test-run involving three scanners, each

of which is started at different times (12s, 127s, and 242s,

respectively). This test is representative of 81% of the

test-runs using three scanners (i.e., 36 out of 44 test-runs)
that we have analyzed. The remaining 19% of the test-

runs (called non-conforming tests) do not exhibit the un-

balanced memory behavior; instead, the three scanners end

up sharing the memory equally. We believe that the non-

conforming tests are different because the system does not

reach a stable state between the launches of the micro-

benchmark; all of the non-conforming tests have a delay of

less than 30s between micro-benchmark launches (as com-

pared to the 115s inter-scanner interval described below).

The variation of the kernel statistics with the launch of

the three scanners is shown in the graph in Figure 1.

� Initial system behavior: The first part of the graph
shows the behavior of the system at the beginning of

the test, when the system has just rebooted. The test-

ing process pauses for 12s to ensure that the boot has

completed. During this time, a large number of pages

are free.

� First scanner starts: After these 12s have elapsed,
the testing process launches the first scanner. A large

number of minor faults occur between 12s and 14s; all

of these seem to be caused by the zero-on-write opti-

mization. Note that the process causes 75 major faults

when it starts. Since there is plenty of memory avail-

able, the minor and major faults do not continue as the

process runs. In addition, there is no swapping activity.

The CPU load quickly approaches 100%, because the

scanner never sleeps, and never has to wait for mem-

ory. The system reaches a stable state at 15s, and re-

mains in this state until the second scanner starts.

� Second scanner starts: The monitor launches the sec-
ond scanner at 127s. This scanner also causes 75 ma-

jor faults when it starts; it also causes a large number

of minor faults, most of which are associated with the

zero-on-write optimization. Unlike at the launch of the

first scanner, memory is now constrained. The second

scanner’s demand for new pages causes pages to be

swapped out for the first time during the tests. In ad-

dition, the minor faults are spread over a 10s period

instead of being clustered in a 3s window as they when

the first scanner started. At 136s, the system begins to

page in some of the memory that it swapped out. As a

result, the CPU utilization falls below 5% once we are

144 seconds into the test-run.

� Continued instability: The system does not reach a
stable point after the second scanner runs. In fact, the

first scanner gains control of the memory and the CPU

at 173s, only to lose it again at 203s! This event, how-

ever, is not present in all of the tests-runs using three

scanners.

� Third scanner starts: The third scanner begins to run
at 242s. Since there are few free pages at this time, its

zero-on-write faults extend until 253s. There is a cor-

responding increase in swap-out activity as the operat-
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Figure 1. VM imbalance in a typical three scanner test. Column 1 shows the first scanner’s launch; column 2
shows the second scanner’s launch; column 3 shows a brief period of dominance for the first scanner; column 4
shows the third scanner’s launch. The third scanner quickly pushes the others from memory.

ing system writes pages to disk. The new scanner con-

sumes 20-30% of the CPU during this period of time.

The third scanner’s share of the memory gradually in-

creases, until its all of its pages are in memory at 254s.

At this point, the third scanner consumes nearly 100%

of the CPU. While this increase occurs, there are very

few swap-ins, probably indicating that the disk is sat-

urated with the swap-out requests. The zero-on-write

optimization gives the third scanner an advantage over

the existing scanners; it can claim any page on the free

list, zero it, and use it immediately. The first two scan-

ners, on the other hand, must wait for data to be loaded

from the disk before they can use new pages.

Once the system has reached this state, the third scanner

retains its memory indefinitely, as seen in Figure 2. The

third scanner can almost always run, since most of its pages

are in memory. Therefore, its pages are not likely to be se-

lected by the LRU heuristic. On the other hand, the first two

scanners are almost always blocked as they wait for pages

from the disk; many of their pages will, thus, be on the LRU

list. This is because the LRU heuristic uses a global view

of time rather than the execution times [4] of the individual

scanners to age their respective pages. The problem may be

addressed by employing the working-set heuristic to age a

process’s pages based on the process’s execution time rather

than on a global time-base.

The memory imbalance is so pronounced that it defeats

the purpose of priorities in the Linux scheduler. This can

be seen from the data in Table 3. This data indicates that

at all of the sampling points beyond 260s (after the imbal-

ance occurs and persists), the third scanner has a priority

lower those of the first two scanners. This is expected be-

havior, because the third scanner is using nearly all of the
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Figure 2. VM imbalance persists indefinitely.
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Min Average Max Min Max

% CPU % CPU % CPU Priority Priority

1 0 1.6 8 9 12

2 0 1.6 8 9 11

3 84 96.1 107 14 20

Table 3. Priorities and CPU usages of the three
scanners between 260s and 3600s of a representa-
tive test-run. On Linux, higher numeric priority
values indicate lower-priority processes. The value
of 107 in the Max % CPU column for scanner 3 is
caused by a .07s irregularity in the scanner’s sam-
pling interval at some point during the test-run.
Priority inversion occurs because the third scanner
consistently runs at a lower priority than scanners
1 and 2, but gets a much larger share of the CPU.

CPU, and the default scheduler in Linux lowers the prior-

ity of such CPU-intensive processes. However, the behav-

ior of the virtual memory system blocks the first two scan-

ners. Therefore, they only consume only 1.6% of the CPU

in spite of their status as high-priority processes, while the

third scanner obtains 96.1% of the CPU. This is clearly a

case of priority inversion.

This behavior does not emerge in all of the tests. In 19%

of the test-runs (all of which had a delay between scan-

ner launches of 30s or less), the memory between the three

scanners was ultimately balanced. In a small number of

tests, the memory spontaneously re-balances after being un-

balanced for 20-40 minutes. We have not been able to re-

produce this behavior consistently, and it seems to happen

in approximately only 5% of the tests when the number of

scanners and the delay between scanner launches are fixed.

In addition, we can find nothing in our logged statistics to

indicate the cause of this relatively infrequent stable behav-

ior.

We ran some initial tests to verify that this behavior was

not specific to the virtual memory implementation in the

Linux kernel alone. Therefore, we ported the scanner to

FreeBSD andWindowsXP, and conducted our experiments.

We were not able to port the monitor1, so we ran the scan-

ners manually, and observed the system behavior instead

through the top utility (in the case of FreeBSD) and the
Task Manager (in the case of Windows XP). The FreeBSD

system exhibited the same instability that we observed on

Linux. The observed behavior on Windows was somewhat

different; when the second scanner starts, it is unable to re-

cover memory from the first scanner. When the third scan-

1The porting of the monitor was hindered because these operating sys-

tems do not provide the /proc interface for ready access of the kernel
statistics.

ner starts, the operating system drastically reduces the resi-

dent sizes of all of the scanners. This behavior may be de-

sirable, since the memory does not reduce the faulting rate

of the scanners. However, the GUI of Windows XP still ex-

hibits large execution delays when three scanners are run-

ning. In our future work, we plan to quantify these delays

and to log them in the monitor.

4.2 Execution Delays

In our early experiments, we occasionally observed pauses

of approximately 1.7s in the monitor output. These pauses

seemed to occur just after the second scanner started. When

we examined the logged data for the monitor process, we

discovered that the monitor was experiencing major faults

near these delays. This was somewhat surprising, because

the monitor ran once every second, and “touched” the same

addresses each time that it ran. On examining the data in the

logs further, we concluded that the monitor needs to main-

tain 76 pages (304kB) of its pages in memory in order to

avoid these major faults.

However, these pauses made the log files from the mon-

itor difficult to interpret. Therefore, we decided to lock the

monitor into memory, making its pages ineligible for re-

placement. This appears to confine the jitter to approxi-

mately 1/50th of a second, allowing us collect data even

while the system is experiencing severe swapping. Figure 3

shows data from an early version of the monitor which ex-

perienced one of these pauses. In this test-run, the sec-

ond scanner starts at 36s, causing the system to run low

on memory. As a result, there are gaps in the data at 38s

and 40s, (shown as blank spaces on the graph). At 40s,

the monitor outputs a jitter value of 1.7s. This is consis-

tent with the monitor missing two samples. The major fault

data (graphed as majflt) shows that the monitor detected
a total of 34 major faults at 39s and 41s. In this particular

test-run, the monitor experiences one additional major fault.

However, this fault does not seem to cause appreciable jitter

in the output.

5 Predicting System Performance

The instrumentation of the virtual memory system does not

allow us to make predictions about the system performance.

To make reliable predictions, we would need to understand

the memory demand of the applications. An application’s

memory demand is not equivalent to its resident size, as re-

ported by the operating system. The working set2 for an

application may be much larger than what is indicated by

the resident set in cases where the system is low on mem-

2“The working set is usually defined as a collection of recently refer-

enced segments (or pages) of a program’s virtual address space.”[4]
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Figure 3. Jitter in the monitor process. The max-
imum of the y-axis on the pages graph has been
lowered, and the non-monitor faults have been re-
moved from the majflt and minflt graphs to make
the monitor’s statistics more apparent. The gaps
at 38s and 40s are the result of missing log samples.
Some data is available at 39s, and is represented as
a thin vertical line. The 1.7s delay at sample 40
accounts for the two lost samples.

ory. This can be clearly seen in the fourth column on Fig-

ure 1. Here, the resident set accurately reflects the memory

demand for the third scanner. However, the first two scan-

ners have the same working set, but a much smaller resident

set. Because these scanners generate a large number of ma-

jor faults, we can conclude that the resident size is smaller

than the current memory demand of the scanners. However,

there do not exist kernel statistics that will tell us the differ-

ence between the current resident set and the true memory

demand of the scanner. We believe that working sets repre-

sent one potential solution in order to provide a much more

accurate estimate of the memory demand of applications.

On systems where the memory is not scarce, the resi-

dent set may overestimate the memory demand of an appli-

cation. This can be seen on Figure 3. Here, the monitor’s

resident size starts out at 231 pages (see the data between 1s

and 38s). However, when the number of free pages drops,

the operating system begins to recover some of the pages.

Once this recovery has finished, the resident size drops to

85 pages (between 41 and 43s). This is still larger than the

actual memory demand since the resident size drops to 76

pages at 44s. This approach to quantifying an application’s

memory demand has several disadvantages:

� There is no way to know when the resident size accu-

rately reflects the memory demand.

� The application often encounters major faults during

the page reclamation, degrading its performance.

� The number of pages marked as free on the system is

artificially low. This makes it difficult to predict the

behavior of the system when new applications are run.

6 Future Work

We plan to continue our investigation into the relation-

ship between the virtual memory subsystem and response

times. The questions that we would like to address in fu-

ture research include: What set of benchmarks reproduce

the problems that realistic applications encounter on mem-

ory constrained systems? Does the size of the working-set

accurately reflect an application’s memory demand? Can

we use this information to predict system behavior when

applications are added to systems? Can we detect execu-

tion delays in unmodified applications without consuming a

large portion of the system’s resources? If so, how often do

these delays occur, and what are causes of the delays?

7 Conclusion

In this paper, we have demonstrated that (i) it is relatively

straightforward to reproduce virtual memory misbehaviors,

such as priority inversion, (ii) these VM misbehaviors per-

sist for a long period of time, (iii) identical applications can

obtain radically different shares of the physical memory, de-

pending on the state of the system when they are started, (iv)

execution delays afflict all applications on the system, even

those that are written to make careful use of memory, and

(v) existing kernel statistics do not provide a clear picture of

applications’ memory demand and of the system’s available

memory.

Virtual memory is used on a wide array of systems, rang-

ing from desktops to large servers. Given the information

above, we conclude that applications on these systems are

vulnerable to VM-induced performance failures. These fail-

ures could be triggered by unreasonable requests, buggy

software, or malicious programs. In addition, these systems

are difficult to configure—while a system’s statistics might
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indicate that it has insufficient memory, these statistics can-

not be used to quantify the amount of additional memory

needed to achieve acceptable application performance. Our

future work will examine the behavior of virtual memory

(and of other resources) in order to provide applications

with a stable, predictable platform.
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Abstract

The relationship between how accurately a profile pre-
dicts future program behavior and how useful it is for pro-
file directed optimization is not straightforward. We gath-
ered extensive data on the results of profile-driven opti-
mization using two different optimization systems (cc [1]
andalto [4]) and selected benchmarks and benchmark
runs from the SPEC95 and SPEC2000 suites. Instead of
following the traditional SPEC guidelines of training only
with the designated “train” profiles and gathering perfor-
mance statistics with the designated “reference” bench-
mark runs, we evaluate nearly all possible combinations
of training and evaluation runs. We summarize the useful-
ness of basic block profiles in this wider context, evaluate
the reliability of the results that we derived from using a
range of evaluation runs, and evaluate the apparently un-
controversial claim that more accurate basic block profiles
are connected to better profile-driven optimization perfor-
mance. We find that while in thealto optimization con-
text, there is a significant correlation between more accu-
rate profiles and more useful profiles, no such correlation
existed in thecc system.

1 Introduction

Profile-directed compiler optimization is a commonly im-
plemented technique and is considered to be an effec-
tive one. Profile-directed optimization (PDO) depends on

∗This research was supported, in part, by a grant from Intel MRL
(Microprocessor Research Lab).

the assumption that having more accurate predictions of
future behavior will result in better optimization perfor-
mance. Both the assumption of effectiveness of profile-
directed optimization, and the assumption of a connection
between more accurate profiles and better profile-driven
optimization performance, require quantification. In this
paper, we attempt to evaluate both assumptions.

We present a methodology for evaluating the effec-
tiveness of profile-directed optimization, for determining
the significance of variability in profile-directed optimiza-
tion performance and for measuring the strength of the
connection of profile accuracy and profile “usefulness”.
We use this methodology to analyze profile-driven op-
timization for two optimization systems,cc andalto.
Both profile-driven optimization systems used profile in-
formation to provide significantly better performance in
the resulting code. However, we derive somewhat cau-
tionary results concerning the commonly-held assumption
that profile accuracy strongly predicts profile-directed op-
timization performation; there was only a weak connec-
tion between profile usefulness and accuracy foralto
and none whatsoever forcc. Those wishing to discover
whether these assumptions hold for their own optimizers,
programs and profiling methods will need to repeat our
analyses.

We evaluate metrics that attempt to measure how ac-
curately a profile predicts a given future program execu-
tion. Suppose we have two training profilesp1 andp2 and
an evaluation run (which when profiled, produces a pro-
file pE). Suppose also that the binary produced by using
p1 for profile-driven optimization performs better on that
evaluation run than the binary produced by usingp2. A
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“good” profile comparison metric in this case would be
one that shows thatp1 is a more accurate prediction ofpE

than isp2; that is, a metric that correlates strongly with
profile usefulness.

We must immediately clarify the scope of this paper.
We cannot derive results that apply to all profile-gathering
techniques, benchmarks and optimizers. In this paper we
work within the context of profiles that have been directly
gathered by basic block profiling (as opposed to approxi-
mate methods such as statistical sampling, or profiles that
are entirely synthetic, such as those generated by static
estimation). We use two optimizers and a wide range of
benchmarks but cannot generalize from these optimizers
and benchmark programs to a hypothetical “universe” of
benchmarks and optimizers.

Our methodology for analyzing profile-driven opti-
mization performance and its relationship to accuracy is
applicable to other optimizers, architectures, benchmark
sets, and profiling methods. We feel that applying our
methodology to the domain of exact basic-block profiles
is the logical starting point for analysis of the relation-
ship between profile usefulness and profile accuracy. The
choice of which training profiles to use is more “funda-
mental” than the choice of profiling methods; regardless
of what profiling methods are available, the issue of which
training profiles to use will always be present.

2 Experimentation Framework

2.1 Definitions

In the process of profile-driven optimization, a givenrun
(deterministic execution of a benchmark program with a
certain input) produces a profile that is associated with
that run. This profile is then used as input to a profile
driven optimizer, and is thus called atraining profile. The
resulting binary can be evaluated with anevaluationrun.
The latter type of run will also have a profile associated
with it, the evaluation profile, which is the basic block
profile that would have results from profiling the binary
with the evaluation run.

We draw our benchmarks from the SPEC95 and
SPEC2000 benchmarks (if a benchmark exists in both
benchmark sets, we use the SPEC2000 version and ap-
pend “2000” to the benchmark name). The SPEC bench-

marks define three standard runs, calledref, test and
train (each of which can often be combinations of mul-
tiple program runs). The profile-driven optimizations al-
lowed in the context of SPEC benchmarks involve using
train as the training run andref as the evaluation run
(testmay only be used for a relatively short-running test
of the correctness of a given benchmarking setup). In our
work, we use all of the available runs as training and eval-
uation runs, in all combinations. Where the SPEC bench-
marks call for aggregating multiple runs into a single eval-
uation or training run, we consider each run individually.
Thus, instead of testing a single training profile and eval-
uation run for profile-driven optimization, we may gather
information on as many as 100 possible combinations of
training profiles and evaluation runs (we use 10 differ-
ent evaluation runs and 10 different training profiles for
the SPEC2000 benchmarkperl resulting in 100 possi-
ble combinations). More commonly, we have only the
three standard SPEC runs available to us and thus gather
information on 9 such combinations.

When presenting the names of non-standard SPEC runs
(that is, runs that are not simply the SPEC training, testing
or reference runs), we will indicate the source of the run as
needed. There are twoperl2000 benchmark runs that
involve calculation of “perfect” numbers. We refer to the
run that is one of the multiple runs in the SPEC reference
benchmark asref/perfect and the run that was part
of the SPEC training benchmark astrain/perfect.
Generally the names of these runs are not significant and
are included only for reference.

We defineprofile usefulnessin terms of an evaluation
run. That is, it is meaningless to say that profilep1 is
more useful thanp2; only thatp1 is more useful thanp2

with respect to some evaluation run.

Profile accuracy, as measured by one of our profile
comparison metrics, measures how well the behavior as-
sociated with a training profile predicts the behavior as-
sociated with an evaluation profile, strictly in terms of
the contents of the two profiles. Once again, accuracy is
defined in terms of an evaluation profile. The accuracy
of profile p1 (given a comparison metric) is calculated
strictly by comparing the profile data associated withp1

with the profile data associated with the evaluation run.
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2.2 Profile-Driven Optimization Platform

We have implemented a system for evaluating profile use-
fulness and accuracy. This system consists of a set of
profile gathering tools, a profile manipulation tool, and
two optimization platforms (thealto[4]) system and the
standard Digital Unix C Compiler[1]) using the profiles
that we gather. The following steps outline the operation
of our system.

First, we produce “base” binaries using the Digital
Unix C compiler (DEC C V5.6, subsequently referred to
ascc).

Second, we usealto to gather profile information and
build a Control Flow Graph (CFG). The base binaries are
instrumented byalto and used to gather profile informa-
tion for the various runs of the benchmark.

Third, these profiles and the benchmark’s control-flow
graph are passed to the profile manipulation tool, which
may apply transformations to real profiles or generate
new profiles from scratch. The profile optimization tool
can generate profiles inalto format or in the standard
pixie format. At this stage we also gather data on pro-
file characteristics and comparisons between profiles.

Fourth, these new profiles are used as inputs to the
profile-driven optimization process. These profiles are
used with eitheralto (with full optimizations switched
on) or the Digital C compiler (see [1] for details of the
optimizations performed) to produce an optimized binary.
The profile-driven optimizations that provide the most
substantial improvements are similar in both optimzers:
code placement optimizations, procedure inlining, and
super-block formation (profile-driven optimization steps
in super-block formation also affect many subsequent op-
timizations that are not themselves profile-driven). We
also produce binaries with the same set of optimization
flags but without profile information, for comparison.

Finally, the optimized binary is run1. We can compute
cycle counts (using the EV5 performance counters) for

1Currently, we have some missing data points (including the
SPEC2000 version of gcc) due to bugs in one or the other of the op-
timizers, including a number of the baseline “non-profile-directed opti-
mization case” results. We are also missing some entire benchmarks in
thecc optimization context. Our results are not significantly altered by
restricting the benchmark sets to only those benchmarks that worked
across both optimization environments, so we have opted to present
more information (the benchmarks that worked only under thealto
environment) rather than less.

all our evaluation runs at this time. We are often measur-
ing only subtly different binaries, with very small varia-
tions in run-time. We run our benchmarks on a 333Mhz
EV5 21164 machine with 1GB of memory (running Dig-
ital UNIX V4.0). The machine, while old, has highly ac-
curate performance counters and mature and well-tuned
optimizers.

Our work is not focused on producing peak optimiza-
tion performance. Our focus is on studying the effects of
profile-driven optimization and methods for evaluating its
effectiveness, not implementing the fastest possible opti-
mizations. In general, the optimization performance of
our system (through either thealto path or thecc path)
is good. Usually, optimization performance is within 5-
10% of the DEC C compiler at the highest level of opti-
mization, and sometimes faster, due mainly to the aggres-
sive whole program optimizations implemented inalto.

We use the technique of using the evaluation profile as
a training profile, a case that we call, after Savari and
Young [5], resubstitution. While not valid as a practi-
cal technique (why run the exact same program execution
twice?), resubstitution frequently generates interesting re-
sults, allowing us a insight into how much benefit results
from having “perfect” information. We do not use resub-
sitution cases when reporting average benefits from using
profile-directed optimization.

Our goal is to investigate the usefulness and accuracy
of profiles, not to generate superior SPEC results or to
find the ideal “representative” training profile. Our use of
non-standard SPEC training profiles and evaluation runs
means that our results cannot be considered to be valid
SPEC results. This does not render the results invalid
in a research sense. As stated above, even the (highly
questionable in a benchmarking sense) use of resubstitu-
tion can generate interesting data. We carry out analyses
to determine whether our observed performance effects
from shorter-running evaluation runs than the SPEC “ref”
benchmarks represent real effects or whether the effects
are simply due to experimental error; the former is true
for nearly all combinations of optimizer, benchmark and
evaluation run.
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3 Results

3.1 Usefulness of Profile-Directed Opti-
mization

We gathered cycle counts for each combination of opti-
mizer, benchmark, training profile and evaluation run. We
repeated each evaluation run 11 times, discarding the first
cycle count score due to significant differences in the first
run (almost certainly due to page faults as the program bi-
nary is brought into memory from disk). We calculated
average cycle counts from the other 10 evaluation runs.
We present these average cycle counts normalized by the
average cycle counts of the comparison binaries; that is,
the optimized binaries that did not used profile-directed
optimization. Thus, for a given evaluation run, a binary
produced by profile-directed optimization that runs 5%
faster than the binary produced by non-profile directed
optimization is assigned a score of 0.95 in Table 1.

In Table 1, we present results showing the relative
performance of profile-directed optimization for our dif-
ferent benchmarks as compared to the same benchmarks
optimized without profile directed optimization. As each
benchmark has multiple evaluation and training runs, we
present the average profile-driven optimization perfor-
mance for all of the combinations of evaluation and train-
ing runs, excluding the “resubstitution” case.

Overall, profile-directed optimization is an effective
technique (an average improvement of 3%), but the re-
sults are sharply variable: there are several benchmarks
where all training profiles make the program slower for
each evaluation run. A majority of benchmarks for both
optimizers have at least one combination of training pro-
file and evaluation run where profile-directed optimiza-
tion performs badly.

Examining the individual benchmark runs, we observe
a wide range of performance variability. Table 2 presents
the top and bottom benchmark runs by profile-driven op-
timization variability. There is a huge range of variability
among evaluation runs.

Given that cycle counts have a degree of variability due
to experimental error, we used a simple technique (one-
way ANOVA2 [8] ) to determine whether, for each eval-

2The results for one-way ANOVA are far too verbose to present here,
and many of the details are beyond the scope of this paper. One-way
ANOVA merely detects that there exists some significant difference be-

uation run, the differences between cycle counts from bi-
naries trained on different training profiles were signifi-
cant. That is, were we observing real differences between
training runs or were the differences that we observed en-
tirely due to experimental error? This issue is somewhat
more pressing for this work than it is for more conven-
tional profile-driven optimization research, as some of the
runs which we were using as evaluation runs were com-
paratively brief (as compared to the standard SPEC “ref”
runs). The one-way ANOVA procedure (“one-way” be-
cause we vary only a single variable; “ANOVA” is short
for “ANalysis Of VAriance”) attempts to determine, given
a set of experimental results gathered at different ‘levels’
(in this case, using different training profiles), whether
there are statistically significant differences among the
results for different levels. That is, we attempt to dis-
prove the null hypothesis that the average cycle counts for
a given evaluation run are the same regardless of which
training profile was used. If the probability that this
could be the case is sufficiently low, we can reject this
null hypothesis and conclude that in fact there are statis-
tically significant differences between the profile-driven
optimization effects of different training profiles.

We were able to reject the null hypothesis of “no signif-
icant difference exists between the effect of training pro-
files” at a significance level of 0.05 (that is, we found that
it is no more than 5% likely that, given no effect at all
from training profiles, we would have seen the pattern of
variability that we did) for all but 5 evaluation runs (4 un-
deralto - two runs in theart SPEC2000 benchmark
and one run each forcompress andparser, 1 under
cc - one run undercompress). For the vast majority of
our benchmark runs, the probability that we would have
observed the variability that we did due to to factors other
than the training profile is negligible (under 0.001).

tween at least one training profile and the rest - it does not in itself yield
results analyzing how many of the training profiles differ significantly
from the others. Thus, the results of a one-way ANOVA should be
treated with a degree of caution - when we say that a significant differ-
ence exists for someperl2000 evaluation run with 10 different train-
ing profiles, we are only allowed to say that “some difference exists
among the usefulness of those 10 profiles”, as opposed to the stronger
statement “each and every one of these profiles is significantly different
from every other one” or any of the intermediate possibilities. We car-
ried out post-hoc analyses to distinguish between this set of posibilities,
but the details are again beyond the scope of the paper.
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Optimizer Benchmark Number of runs Normalized execution time
Minimum Maximum Mean

alto ammp 3 0.97 0.98 0.98
bzip2 5 0.87 1.01 0.93
compress 3 0.94 1.06 0.99
crafty 3 0.89 0.93 0.91
gap 3 0.95 0.97 0.95
go 5 0.96 1.06 0.99
gzip 7 1.00 1.14 1.06
ijpeg 3 0.96 0.98 0.97
li 3 0.97 0.99 0.98
m88ksim 3 0.83 1.00 0.89
mcf 3 1.00 1.02 1.01
parser 3 1.00 1.02 1.01
perl2000 10 0.83 1.08 0.96
twolf 3 0.93 1.01 0.97
vortex2000 5 0.86 0.91 0.89
ALL CASES 0.83 1.14 0.97

cc ammp 3 0.99 1.04 1.02
bzip2 5 0.91 1.06 0.96
compress 3 0.92 1.02 0.99
crafty 3 0.94 0.98 0.96
equake 3 0.95 1.01 0.99
gap 3 0.92 0.99 0.95
go 5 0.99 1.14 1.06
ijpeg 3 0.94 0.98 0.96
li 3 0.84 0.92 0.87
m88ksim 3 0.88 1.07 0.96
mcf 3 0.99 1.00 1.00
perl2000 10 0.86 1.13 1.00
twolf 3 0.93 0.98 0.95
vortex2000 5 0.90 0.99 0.94
ALL CASES 0.84 1.14 0.97

Table 1: Execution time of PDO binaries over all evaluation runs and training profiles (each set of evaluation run
results normalized such that the non-profile-directed optimization case is equal to 1.0 for each evaluation run).
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Optimizer Benchmark Evaluation run Fastest Case Slowest case Mean Standard Deviation
alto perl2000 train/diffmail 0.90 1.05 0.96 0.0457
alto perl2000 ref/diffmail 0.90 1.06 0.96 0.0457
alto perl2000 ref/perfect 0.80 0.96 0.89 0.0446
cc perl2000 train/scrabble 0.82 1.00 0.93 0.0433
cc go ref2 1.00 1.12 1.08 0.0427
cc go train 1.01 1.14 1.08 0.0426
cc go test 1.00 1.12 1.08 0.0412
alto perl2000 ref/makerand 0.78 0.93 0.87 0.0408
. . . . . . . . . . . . . . . . . . . . .
alto gzip program 1.13 1.14 1.13 0.0021
alto parser ref 1.00 1.00 1.00 0.0020
alto ijpeg train 0.98 0.98 0.98 0.0013
alto ammp train 0.98 0.98 0.98 0.0010
cc mcf ref 1.00 1.00 1.00 0.0009
alto parser train 1.01 1.01 1.01 0.0008
alto ammp ref 0.98 0.98 0.98 0.0006

Table 2: Evaluation runs with highest and lowest variability due to profile-directed optimization profile choice; units
are normalized as for Table 1.

3.2 Connection of Usefulness and Accuracy

3.2.1 Profile Accuracy Metrics

All of our comparison metrics compare a list of basic
block counts in a training profile with a list of basic block
counts in an evaluation profile. They return a single num-
ber, a score that indicates how well the basic block counts
in the training profile predict the basic block counts in the
evaluation profile. Thus, a more accurate training profile
better predicts the CFG-level behavior of the evaluation
run. Most of these metrics are asymmetric.

A profile comparison metric consists of a comparison
type and a way of applying it over the program. The com-
parison types we use in this paper are key-matching, static
coverage and relative entropy.

Key-matching is introduced in [7]. It uses a parameter
that determines how many blocks are selected for key-
matching. For example, if a function has 50 blocks, and
the matching level is 40% (or 0.4), then we perform key-
matching on the top 20 blocks as follows: the key-match
score is the number of blocks in the top 20 blocks in the
training profile that are also in the top 20 of the evaluation
profile. Key-matching metrics are denoted by KM(level)
- “level” is always 0.1 in this paper.

Static coverage (denoted “STCOV”) measures what
proportion of the blocks executed (“covered”) in the eval-
uation profile are also executed in the training profile.

Relative entropy (denoted “ENT”) as a method of com-
paring profiles was introduced by Savari and Young [5]
and is fully described there. Relative entropy treats the
profiles being compared as distributions of random vari-
ables and uses an information-theoretic approach to mea-
sure the difference between the two distributions.

We use two methods for applying these comparisons
to our programs. Firstly, we can apply the comparisions
to the whole program’s set of basic block counts directly.
This is the default method. Secondly, we can apply them
only to the entry counts of functions, ignoring all other
basic block data (denoted by prefixing “FE-” to the com-
parison name in our results).

3.2.2 Evaluating the Connection Between Compari-
son Metrics and Usefulness

To measure the association between profile usefulness and
a given profile comparison metric, we use the Spearman
Rank Correlation Coefficient [8],rs. rs can be calculated
by assigning ranks to the values being compared (scoring
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ties as the average rank values - so if there is a tie between
the top two values, they both are assigned the rank of 1.5)
and calculating the more familiar Pearson correlation co-
efficient [8] over those ranks. Thus, calculations ofrs dis-
card the magnitude of the differences between data points.
This makesrs weaker (more likely to miss a real effect)
than Pearson’s correlation coefficient but much more ro-
bust in the presence of non-linear relationships, outliers
and (more generally) data that does not hold to a bi-variate
normal distribution.

When analyzing the correlation between profile accu-
racy and usefulness, we must be aware that there is no
“natural” population of profiles for a given benchmark.
For most benchmarks, we have a limited number of runs
available to us, and they have been chosen artificially. If
we include other profile types besides profiles derived di-
rectly from real runs, we are introducing further artifi-
cial biases into our population. Admittedly, the choice
of benchmark runs from the SPEC benchmark sets are ar-
tificial also, but they are not the artificial choices of the
authors of this paper - that is, they are not hand-picked to
advance our favored hypotheses.

We will proceed to show an example of how we eval-
uate the connection between profile usefulness and accu-
racy. Firstly, we present the average cycle count scores
and usefulness scores for the benchmarkperl2000 and
theref/perfect benchmark evaluation run. For each
training profile, we have an average cycle count (reflect-
ing how many cycles the binary that was produced by
profile-driven optimization using that profile took to run
the evaluation run) and an accuracy score (reflecting how
close the training profile was to the profile produced by
the evaluation run). For this example, we will use the ac-
curacy scores provided by relative entropy3.

Table 3 shows the cycle counts and relative entropy
scores for a list of training runs (the names refer to the
different benchmark runs available forperl2000 and
are not of any interest aside from the fact that they label
cases). To calculate a score for how closely relative en-
tropy predicts scaled cycle counts, we take thers value
of two variables (cycle count and relative entropy) over
the list of cases (training profiles), which turns out to be
rs = 0.87. This value is statistically significant at the

3More accurate profiles produce lower relative entropy scores, zero
represents a perfect match

Training run Cycle count (GCycles) Relative entropy

ref/diffmail 45.819 8.05
ref/makerand 47.581 22.57
ref/perfect 40.774 0
splitmail1 46.495 8.52
splitmail2 45.640 8.20
splitmail3 47.176 8.35
splitmail4 45.281 8.29

train/diffmail 45.615 8.06
train/perfect 42.515 2.45
train/scrabble 48.923 20.44

Table 3: Example 1:perl2000 scaled cycle counts
and accuracy metrics for a single evaluation run
(ref/perfect)

0.01 level; that is, if there was no association whatsoever
between two variables, we’d expect to see ars value this
high less than 1 in 100 times. In fact, the chance that we
would see such a strong association between two uncon-
nected variables in such a list of cases is less than 1 in
1700. The proportion of scaled cycle count variation ex-
plained by relative entropy isr2

s = 0.75 - that is, 75% of
the variation in average profile-driven optimization per-
formance in this particular case can be explained in terms
of relative entropy.

Note that this benchmark has a quite large number of
possible training profiles (10). Many of our benchmarks
have only 3 or 4 runs available, so we are often in the situ-
ation of calculating correlations over a tiny set of cases. In
this circumstance, it is possible to have apparently strong
correlations that are in fact statistically meaninglesson
their own. Only when they occur as a pattern across mul-
tiple evaluation runs and/or benchmarks can we attach any
weight to these results.

Table 4 shows this analysis repeated for all of our eval-
uation runs inperl2000. We will see a larger set of
results - now, we have a table withrs numbers for each
evaluation run. Not all of the correlations are significant at
a 0.01 level (those that are are marked with a “**”) or even
at a 0.05 level (marked with a “*”). For example, the value
rs = 0.382, seen for the evaluation runref/diffmail
is fairly low: there is a 14% chance that two unconnected
variables might show a rank correlation equal to or greater
than this value (3 evaluation runs fall into the category of
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Evaluation run name rs score

ref/diffmail .382
ref/makerand .778**
ref/perfect .867**
splitmail1 .697*
splitmail2 .612*
splitmail3 .685*
splitmail4 .612*

train/diffmail .394
train/scrabble .285

Table 4: Example 2: Allperl2000 evaluation runs with
the rank-correlation values of cycle counts and relative en-
tropy calculated over each training run

not being significant at the 0.05 level). However, even
considering only these three values in isolation, it is un-
likely that we would see three such correlations (that is,
positive and in the range0.285 < rs < 0.394) between
relative entropy and average cycle count if overall, there
was no connection between relative entropy and average
cycle count for any of these runs. In fact, the chance that
such three correlations this strong or stronger would have
arisen by chance given no connection between relative en-
tropy and cycle count is about 1%.

Note that it is quite possible to have negativers scores;
in this case, more accurate profiles actually result in worse
profile-driven optimization performance.

We can compute a summary value for the overall con-
nection of usefulness and accuracy over a benchmark by
averaging thers values for each evaluation run, yield-
ing an aggregate correlation ofmean(rs) = 0.59 for the
perl2000 benchmark.4

Using such a procedure to gather aggregate numbers
for each benchmark, this time over a range of compar-
ison metrics, we derive Table 5. This table shows the
aggregaters scores for each comparison, benchmark and
optimizer, as well as overall mean scores forrs compari-

4This is not generally good practice; more statistically rigorous is to
transform eachrs value to az-score (normal score), take the average
over thesez-scores and transform back into the range ofrs. However,
this procedure is complex and results in averagers scores little different
from those that we derive from simple averaging. Similarly, we will not
present significance results for aggregaters scores here; the statistical
justification for these results in beyond the scope of this paper.

son and optimizer. It is clear that theperl2000 bench-
mark, presented above, and particularly theperfect
evaluation run, represent a quite favorable case - note the
large number of benchmarks in this table for which the
aggregaters scores are either very low (i.e. no correla-
tion) or actually negative (i.e. more accurate profiles have
worse profile-driven optimization performance). Particu-
larly, the results for thecc optimizer show no overall pat-
tern of a connection between profile usefulness and profile
accuracy.

In thealto case, all of the profile comparison metrics
yielded small but significant correlations between pro-
file accuracy scores and profile usefulness scores. Key-
matching performed slightly worse than the other two pro-
file accuracy metrics, entropy and static coverage. The
”function-entry” versions of these latter accuracy metrics
performed slightly better than the versions that considered
all of the basic blocks in the program, although such a
small difference is not likely to be significant.

There was a substantial amount of variability among
the aggregaters scores for each benchmark. Some of this
variability is simply random; the aggregaters scores for
the benchmarks with a small number of runs are subject
to a great deal of randomness as they involve comparisons
among only 9 or 16 values. However, some benchmarks
clearly have far stronger associations between usefulness
and accuracy than others. Recall that the correlation co-
efficients in this table rank how well profile usefulness
correlates with profile accuracy; they have nothing to say
about how well profile-directed optimization works over-
all.

A major weakness of the above approach to evaluat-
ing the connection of profile-directed optimization perfor-
mance and profile accuracy is that, due to the use of non-
parametric methods and averaging across different bench-
marks, small variations in one benchmark are weighted as
heavily as huge variations in another. There is no simple
way to avoid this problem without recourse to paramet-
ric correlation methods. However, we can derive results
that are more useful by restricting our above analyses to
only those evaluation runs with greater variability due to
profile-directed optimization. The overall (per-optimizer)
results from restricting our analysis to the top half of eval-
uation runs with the highest level of profile-directed opti-
mization variability are shown in Table 6.

The failure of our profile accuracy metrics to explain
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Optimizer Benchmark mean(rs)
ENT STC KM(0.1) FE-ENT FE-STC FE-KM(0.1)

alto ammp -0.67 -0.79 -0.50 -0.50 -0.58 -0.67
art 0.20 0.23 0.35 0.25 0.07 0.23
bzip2 -0.12 -0.06 0.09 0.00 0.14 0.16
compress 1.00 0.91 0.83 1.00 0.29 0.58
crafty 0.83 0.67 0.67 0.67 0.17 0.50
equake 0.17 0.17 0.00 0.17 0.00 0.58
gap 0.83 0.83 0.50 0.83 0.79 0.50
go 0.26 0.13 0.20 0.34 0.30 0.23
gzip -0.16 -0.24 -0.28 -0.26 0.12 -0.24
ijpeg -0.83 -0.67 -0.67 -0.83 0.00 -0.79
li 0.83 0.96 0.50 0.83 0.96 0.50
m88ksim 0.67 0.67 0.67 0.67 0.79 0.67
mcf 0.50 0.62 0.67 0.50 0.58 0.87
parser -0.50 -0.83 -0.83 -0.50 -0.29 -0.67
perl2000 0.59 0.60 0.45 0.52 0.60 0.50
twolf 0.33 0.33 0.17 0.33 0.58 0.29
vortex2000 0.38 0.36 0.38 0.64 0.17 0.48
vpr 0.52 0.59 0.57 0.55 0.51 0.54
alto MEAN 0.27 0.25 0.21 0.29 0.29 0.24

cc ammp 0.00 -0.04 0.33 0.33 -0.58 0.00
bzip2 0.16 0.04 0.15 0.06 -0.07 -0.09
compress 0.33 0.17 0.17 0.33 0.29 0.29
crafty 0.67 0.33 0.00 0.33 -0.46 0.00
equake -0.83 -0.83 -0.50 -0.50 0.00 0.00
gap -0.33 -0.33 -0.33 -0.33 -0.46 -0.17
go -0.72 -0.76 -0.74 -0.72 -0.60 -0.65
ijpeg 0.33 0.00 0.00 -0.33 0.00 -0.33
li -0.17 -0.46 0.33 -0.17 -0.46 0.33
m88ksim -0.17 -0.17 -0.17 -0.33 -0.12 -0.17
mcf 0.33 0.33 0.17 0.33 0.58 0.29
perl2000 -0.18 -0.23 -0.17 -0.19 -0.21 -0.14
twolf 0.33 0.33 0.17 0.33 0.58 0.33
vortex2000 0.04 -0.01 -0.02 0.06 0.02 0.06
cc MEAN -0.06 -0.12 -0.04 -0.06 -0.11 -0.02

Table 5: The connection of usefulness and accuracy: aggregatedrs scores over optimizers, benchmarks and different
comparison metrics

Optimizer ENT STC KM(0.1) FE-ENT FE-STC FE-KM(0.1)
alto mean 0.57 0.52 0.48 0.58 0.45 0.45
cc mean -0.15 -0.22 -0.14 -0.17 -0.03 -0.03

Table 6: Aggregatedrs scores over optimizers, considering only the top half of evaluation runs by PDO variability
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cc profile-directed optimization performance turns out to
be unconnected to profile-directed optimization variabil-
ity. Even considering only benchmarks and benchmark
runs that had large variations in profile-directed optimiza-
tion performance did not improve the connection between
profile accuracy and profile usefulness when usingcc.
However, ouralto results become substantially stronger
when we eliminate benchmark runs with small variations
in profile usefulness. Entropy-based methods, in partic-
ular, improve markedly. The “FE-ENT” accuracy metric
predicts 34% of the variation in our profile-directed op-
timization results underalto - a modest result, but the
strongest one so far.

We found no similar improvements from restricting our
analysis to smaller (e.g. top quarter by PDO variability)
subgroups of our evaluation runs. Not suprisingly, the
bottom half of evaluation runs by PDO variability showed
no significant correlation (underalto or cc) between
profile accuracy and profile usefulness.

3.2.3 Discussion

There was no reason to suppose that any reliable con-
nection between accuracy and usefulness existed in the
cc optimization context whatsoever. We conjecture that
the much more extensive and high-level optimizations
present incc sufficiently transform the control-flow-
graph to the point where the relatively subtle differences
between training profiles are irrelevant. This does not
mean that profile-driven optimization does not work in
cc, nor does it mean that arbitarily inaccurate profiles will
produce profile-driven optimization performance indistin-
guishable from good ones. What it does mean is that,
within the fairly narrow range of profiles and benchmarks
we tested, accuracy could not be shown to have any con-
nection to usefulness. We evaluated many other profile
comparison metrics than (carrying out key- and weight-
matching at multiple levels, using dynamic coverage) pre-
sented here and found that none of them performed any
better than the comparison metrics presented.

Our results for thealto optimization context were
more encouraging, but still relatively weak. Even when
restricting our analysis to benchmarks with large profile-
directed optimization variability, we could explain no
more than a third of the variation in average cycle counts
by some accuracy metric.

One of the most startling results was the fact that the
accuracy metric “FE-STC” performed as well as it did de-
spite the fact that it ignores away nearly all of the informa-
tion in the block profile. This extremely simple metric can
be calculated by determining the number of functions en-
tered in the training profile and the evaluation run divided
by the total number of functions entered in the evaluation
run.

The effectiveness of this metric (and similarly restricted
metrics) could result from there being little variation in
within-function behavior from run to run (that is, when
profiles produced from benchmark runs differ, it is be-
cause they cover a different set of functions, not because
they have radically different behavior within those func-
tions). An alternate possibility is that the optimizations
in alto really only effectively worked at a per-function
level and thus made little use of the within-block informa-
tion (code placement optimizations that work at a whole-
function level and procedure inlining are both examples of
optimizations that work very well with only per-function
information, although both benefit from knowledge of
call site counts - or, nearly equivalently, call graph edge
counts). These possibilities are not easily separated, al-
though the fact that our “function-entry only” compari-
son metrics are strongly correlated (rs > 0.9) with their
whole-program counterparts for nearly all benchmarks is
suggestive that the former possibility is true (across both
optimizers,bzip2 andgzip were the only exceptions).

4 Related Work

Wall [7] makes the first systematic attempt to evaluate
profile accuracy. Wall compares real profiles and static
estimates for accuracy using key- and weight-matching to
compare profiles. His comparisons use key- and weight-
matching at both fixed levels (topk) and, similar to our
work, at levels proportional to the total number of blocks
(top N%). He shows strong improvements in accuracy
from using real profiles over static estimates. He briefly
analyzes some theoretical optimization algorithms, show-
ing weaker results, and warns against unrealistic expec-
tations concerning profile driven optimization. Wu and
Larus discuss static estimation in [9], using Dempster-
Shafer theory to combine branch prediction heuristics.
Key- and weight-matching are used to evaluate the accu-
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racy of the static profiling methods. Wagner et. al do a
similar analysis to Wall’s in [6].

These works do not attempt to establish any connection
between profile accuracy and profile-driven optimization
performance. Our work diverges from all of these works
by connecting accuracy metrics to actual profile-driven
optimization performance in two mature optimizers.

Fisher and Freudenberger report that profile data gath-
ered from previous runs yields good branch predictions
[3]. They mention the possibility that the differences in
real benchmark runs might be related to the benchmark’s
coverage of the program as opposed to differences in be-
havior in code that is covered by both runs. This is an in-
teresting observation, which unfortunately they were not
able to quantify. Our results suggest that this intuition
was correct (at least in terms of what informationalto
was able to use effectively); the comparatively strong pre-
dictive value of the accuracy metric “FE-STC” (function
entry static coverage) supports this.

An extensive treatment of information-theoretic meth-
ods for comparing and combining profiles, including the
relative entropy comparison used in this work, appears in
Savari and Young [5]. Our work validates the use of rela-
tive entropy as a profile comparison metric.

Cohn and Lowney compare the differences in useful-
ness between profile-driven optimization and static esti-
mation on the Compaq Alpha in [1]. They report a sub-
stantial speedup (17%) on the SPEC 95 integer bench-
marks from using feedback directed optimization. Their
results show a larger effect from profile-driven optimiza-
tion than this paper; they use more aggressive optimiza-
tions on a more recent iteration of the Alpha architecture.
Another difference between their work and ours is that we
use a wider variety of benchmarks (including SPEC2000
and floating point benchmarks) and benchmark runs than
they do; this may also contribute to the performance gap
between this paper and their work.

Eeckhout et al. [2] use statistical data analysis tech-
niques to cluster similar “program-input pairs” (in our
terms, pairs consisting of a benchmark and an evaluation
run). They concentrate on overall benchmark character-
istics as opposed to profile accuracy and/or profile use-
fulness.For our analyses in this paper, we have little need
to reduce the number of “program-input pairs” to cover a
hopefully representative set of benchmarks, training pro-
files, and evaluation runs, as our analyses benefit from

more data points rather than fewer. This is true even if
some of the training profiles and evaluation runs produce
very similar effects.

5 Conclusion

Profile-directed optimization is a worthwhile technique,
on average, in both of the optimizers evaluated. On av-
erage, we saw an improvement over non-profile-directed
optimizations of about 3.5% onalto and 5% on cc; these
aggregate numbers concealed substantial variations (the
best case for either optimizer was approximately 17% bet-
ter than non-profile-directed optimization and the worst
case for either was approximately 14% worse).

Nearly all of the benchmark runs showed significant
variation in profile-directed optimization performance. In
only 1% of our evaluation runs were we unable to detect
significant variation among profile-directed optimization
performance (that is, no variation due to profile-directed
optimization existed or it was so small that we were un-
able to separate this variation from experimental error).
Again, large differences existed between the evaluation
runs with the largest amount of profile-directed optimiza-
tion variability and those with the smallest - the stan-
dard deviations in speed-up over the non-profile-directed-
optimization case ranged from effectively zero to nearly
5%.

Profile accuracy is only weakly associated with profile
usefulness in one of our optimizers (alto) and not con-
nected at all with profile usefulness in another (cc), for
our set of benchmarks and benchmark runs. While con-
sidering only benchmarks or runs with higher variabil-
ity in profile-driven optimization performance improved
the connection onalto, the connection between useful-
ness and accuracy still accounted for only 34% of the
observed variation in profile-driven optimization perfor-
mance. While the comparatively weak (non-parametric)
correlation methods that we had to use may have caused
us to be overly conservative, it seems unlikely that any ac-
curacy metric whatsoever would explain in excess of 50%
of the variation. Of the variation in profile usefulness ex-
plainable by profile accuracy metrics, much of it was ex-
plainable by fairly simple profile accuracy metrics, most
notably static coverage of function entries (“FE-STC”).
We find some quantitative support for Fisher and Freuden-
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berger’s claim [3] that differences in exact profiles are
mainly due to a different set of functions being covered
in different runs, as opposed to different behavior within
the functions from run to run.

That the overall results are negative forcc and weak
for alto is not entirely suprising. Much of the variation
in our training profiles does not necessarily cause different
optimization outcomes. That which does does not neces-
sarily help. Not every optimization “decision” produces
better performance, regardless of whether it is based on
good information - few compiler optimizations are truly
“optimizations”, particularly when interacting with many
other optimizations. We see substantial and significant
variations due to profile choice in profile-driven optimiza-
tion, and for most benchmarks, much of this variation is
not explainable in terms of profile accuracy. This sug-
gests that there is a large component of randomness in the
outcome of the profile-driven optimization process.

Our major contributions are twofold. Firstly, we have
developed a methodology for evaluation of profile-driven
optimization performance and its connection to profile ac-
curacy that can be applied to any combination of proces-
sor architecture, optimizer, and set of benchmarks. Sec-
ondly, our results show that there exists at least one op-
timizer for which usefulness and accuracy are not corre-
lated (in our experimental context) and one in which this
correlation exists but fails to explain the bulk of profile-
directed optimization performance.

Therefore, any claims about profile-directed optimiza-
tion techniques or more accurate profiling techniques (or
the necessity of obtaining more accurate precise basic
block profiles - dynamically or otherwise) should be eval-
uatedexperimentally, not in terms of profile accuracy.
We have shown that there are a range of cases where lit-
tle or no connection between profile accuracy and profile
usefulness exists. Thus, it is incumbent on designers of
profile-directed optimization systems to demonstrate that
the profile-directed optimizations in their systems are ac-
tually effective over a wide range of benchmarks, rather
than merely showing that the profiles gathered are of high
accuracy.
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Abstract
The trend towards deeper microprocessor pipelines

has made it advantageous or necessary to predict the
events that may happen in the stages ahead. A widely-used
example of this technique is latency speculation, where the
non-deterministic latency of some instructions, such as
loads, forces dependents to predict the number of clock
cycles these operations will take to complete execution. If
there is a misprediction, those dependents that issued
speculatively must be restarted or delayed appropriately
so that they can execute again with the correct inputs. This
process is called a scheduler replay. In the interest of
reducing the replay penalty, some recent designs, such as
the Pentium 4, have adopted selective replay mechanisms,
which reschedule only data-dependent instructions on a
latency misspeculation.

The deep pipelining trend has also forced designers to
reduce the circuit complexity of individual stages to main-
tain high clock speeds and to keep power dissipation man-
ageable. Tag elimination [4] is a technique used to reduce
the complexity of a processor's issue stage by designing
for the average case instruction. In Kim and Lipasti’s
recent work on Half-Price architectures [9], the authors
state that it is “impractical” to implement a selective
replay mechanism in a machine that uses tag elimination.
In this paper, we detail the implementation of a practical
selective replay method that is compatible with tag elimi-
nation schedulers and discuss the power and performance
trade-offs that should be considered when designing a
replay system.

1   Introduction
Recent microprocessor designs have employed

increasingly deep pipelines. Breaking the execution core
into smaller pieces allows for higher clock speeds and, as a
result, higher instruction throughput. Many recent studies
[6][8][17] show that more benefit could still be extracted
by this technique, indicating that pipelines will likely con-
tinue growing longer in the future.

However, the benefits of deep processor pipelines do
not come without drawbacks. Placing extra stages in cer-
tain segments of the processor may force earlier stages to
speculate on the events that may occur later in the pipeline
[2]. For example, instruction latency speculation predicts
how many cycles a producer instruction will take to com-
plete its execution, which occurs several stages later in the

pipeline. This is done so that consumer instructions can be
issued to meet their inputs at the optimal time. If the pre-
diction is wrong, however, at least some of the instructions
in the stages between issue and execution must be
restarted or delayed.

In the interest of keeping the latency misprediction
penalty to a minimum, some processor designs, such as the
Pentium 4, have included implementations of selective
instruction replay. By using this technique, a processor
only needs to re-execute instructions which are data-
dependent on the misspeculated instruction.

Another pipelining obstacle is that some stages, such
as the instruction scheduler, are often too big and slow to
fit in a single cycle, and are also particularly resistant to
the decomposition process necessary to implement pipe-
lining [14].

Tag elimination [4] was proposed as a solution to an
instruction scheduler complexity problem. By tailoring the
reservation station structures for the common case of
instructions needing to wait for fewer than two inputs, the
scheduler tag bus capacitance can be reduced by up to
75%, allowing for a higher clock rate and lower power
consumption. In Kim and Lipasti’s paper “Half-Price
Architecture” [9], the authors introduce a clever selective
replay implementation that performs parent-child depen-
dence propagation using the scheduler broadcast busses.
In addition, they correctly point out that the combination
of tag elimination with broadcast-based selective instruc-
tion replay is not practical to implement.

In this paper, we describe selective replay methods
that are compatible with tag elimination. Furthermore, we
analyze the performance and power consequences of the
replay implementation decision. 

The remainder of this paper is organized as follows.
Section 2 gives background information on tag elimina-
tion. In Section 3, we present the different replay mecha-
nisms that are then analyzed in Section 4. Related work is
listed in Section 5 and our conclusions are presented in
Section 6.

2   Tag Elimination
The techniques presented in [4] draw from the obser-

vation that most scheduler tag comparisons are superflu-
ous to the correct operation of the instruction scheduler.
Analyses reveal that most instructions placed into the
instruction window do not require two source tag compar-
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ators because one or more operands are ready, or the oper-
ation doesn’t require two register operands.

Two scheduler tag reduction techniques were pro-
posed that work together to improve the performance of
dynamic scheduling, while at the same time reducing
power requirements. First, a reduced-tag scheduler design
was proposed that assigns instructions to reservation sta-
tions with two, one, or zero tag comparators, depending on
the number of input operands in flight. An example of a
scheduler window using tag elimination is shown in Fig-
ure 1.

To reduce tag comparison requirements for instruc-
tions with multiple operands in flight, we also introduced a
last-tag speculation technique. This approach predicts
which input operand of an instruction will arrive last and
schedules the execution of that instruction based solely on
the arrival of the final operand. Since the earlier arriving
tags do not precipitate execution of the instruction, the
scheduler can safely eliminate the comparator logic for all
but the last arriving operand.

Because scheduling windows that use last-tag predic-
tion don’t track the readiness of the operands that are pre-
dicted to arrive earlier, a small table must be placed in the
following pipeline stage to check that the prediction was
correct and all operands actually arrived. This table simply
consists of one ready bit for each physical register that is
set when values become ready.

3   Implementing Selective Replay
3.1  Parent-Child Broadcast

In the Half-Price Architecture paper [9], Kim and
Lipasti present one possible implementation of selective
replay. An illustration of this scheme is shown in Figure 2. 

Along with its input tags, an instruction’s dependence
information is kept in the instruction window in the form
of one dependence matrix for each input operand. This
matrix consists of W x D bits, where W is the machine
width, and D is the depth of the load shadow [2], which is
defined as the number of stages between instruction issue
and notification of a cache hit or miss. In each matrix posi-
tion, the presence of a “1” indicates that an instruction is in
the corresponding slot in the scheduler pipeline that the
current instruction is dependent on, either directly or
through some intermediate instructions. Every cycle, the

matrix shifts down one row, to keep the information con-
sistent with the movement of instructions through the
pipeline ahead.

When a load latency misprediction occurs, the exe-
cute stage sets the appropriate bit in a W-bit wide array
called the kill bus. These bits are broadcast to every
instruction in the scheduler. As is illustrated in part b) of
Figure 2, if the kill bus has a 1 in the same column as a 1 in
the bottom row of a tag’s dependence matrix, that oper-
and’s ready bit is reset to zero, as it is dependent on the
instruction with the mispredicted latency. In other words,
the matching bits indicate that the operand is dependent,
either directly or indirectly, on the mis-scheduled instruc-
tion.

When an instruction leaves the scheduler window, it
merges the dependence matrices that its input operands
have received from their parent instructions and marks its
own location. It then broadcasts this matrix, along with its
destination tag, to the rest of the instructions in the win-
dow. (It must also write these bits into a table in the regis-
ter rename stage for the benefit of dependent instructions
that may have not entered the window yet.) When instruc-
tions in the window match the input operand on the tag
bus, they also latch the dependence matrix of the broad-
casting parent instruction. This process propagates depen-
dence information from parent to child during the wakeup
phase, giving them knowledge of ancestor instructions fur-
ther up the dependence tree.

3.1.1  Tag Elimination Compatibility

As is discussed in [9], this selective replay scheme is
not compatible with reduced-tag schedulers. Because
reduced-tag scheduling makes decisions based on operand
availability, problems arise when this availability informa-
tion is allowed to change after instructions enter the win-
dow. Broadcast-based replay relies on every operand in
the window tracking its dependencies. Because reduced-
tag schedulers gain their complexity benefit by removing
some operands from the tag bus, this is not possible.

In schedulers that use non-speculative tag elimination
(i.e. they do not use last-tag speculation), instructions

Figure 1. Conventional and Reduced-Tag Reservation 
Stations. The circles represent tag comparators. The 

bold tag entries include a comparator. The shaded tag 
entries are not necessary and thus do not include 

comparators. Entries with a ‘1’ hold instructions with 
only one tag to compare against.
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entering the window would get the proper dependence
matrices from the table in the rename stage and they would
still be able to monitor the kill bus. However, if the ready
bit of an operand that has no comparator needed to be
reset, there would be no way for that operand to return to
snooping the tag bus.

Furthermore, removing the early arriving operands
from the tag bus in last-tag speculation windows makes it
impossible for those operands to receive their propagated
dependence information from a broadcasting parent
instruction.

3.2  Replay using Timed Queues
There are, however, other ways to implement selec-

tive replay. Some of these mechanisms differ from the par-
ent/child broadcast model in that, instead of re-executing
dependent instructions, they insert a delay into an instruc-
tion’s execution latency, often through use of a queue or
other type of separate instruction storage. The specific
mechanism we outline here is derived from a technique
proposed in U.S. Patent 6,212,626 [12], held by Intel for
inventors Merchant and Sager of the Pentium 4 architec-
ture team [7].1 A block diagram of this design is shown in
Figure 3.

As instructions approach execution, they are also pro-
cessed through a replay check, which consists primarily of
a table of register ready bits. Just before entering the exe-
cute stage, instructions look up the status of their input
operands in the checker. If the table indicates that the oper-
ands are ready, the instruction is allowed to enter execu-
tion and retire normally. 

If, however, the check table indicates that an operand
is unavailable, the instruction sets its output operand as not
ready in the table and returns to execution via a replay
queue and mux. The replay mechanism informs the sched-
uler of the presence of an approaching replayed instruc-
tion, so that nothing is scheduled into that slot in the same
cycle. It is important to note that, in order to maintain for-
ward progress, replaying instructions must always have
priority over any work that would be coming out of the
instruction scheduler.

When the replayed instruction reaches the input mux,
it is sent back into the pipeline as if it had just been issued
by the scheduler. On reaching execute, it checks its oper-
ands again, just as it did before, to determine whether it

needs to replay again (An instruction may have to replay
several times to tolerate an L2 cache miss, for example).

In this scheme, the propagation of dependence infor-
mation is accomplished by the cascading ready bit manip-
ulations in the check table. If there is a latency mis-
prediction, the offending instruction’s output will not be
set as ready, which will trigger a replay for its children,
which in turn will cause a replay for its children’s depen-
dents.

It is not specified in the patent exactly how many
issue slots coming from the scheduler are stopped when an
instruction replays. In our evaluation, we only prohibit the
scheduler from issuing into the specific slot that the
replaying instruction will be using. This allows the sched-
uler to issue instructions in the other issue slots.

3.2.1  Tag Elimination Compatibility

A key feature of the Intel replay mechanism is that it
maintains the relative timings of instructions throughout
the replay sequence. Once a mis-speculated instruction
completes, its dependents are replayed just as they were
originally scheduled out of the window, only the entire
stream has been delayed to accommodate the unexpected
extra latency. Consequently, there is no need to “re-sched-
ule” instructions individually, as the previously selected
schedule is still valid.

Because replayed instructions are not returned to the
scheduler window, there is no extraneous dependence
information kept in the window itself. Therefore, reduced-
tag schedulers are fully compatible with the Intel-style
selective replay.

In schedulers that use last-tag speculation, a last-tag
misprediction still results in a one-cycle flush. This recov-
ery is necessary to stop the wakeup of instructions depen-
dent on the last tag misprediction.

4   Replay Evaluation
4.1  Simulation Methodology

The architectural simulators used in this study are
derived from the SimpleScalar/Alpha version 3.0 tool set
[1], a suite of functional and timing simulation tools for
the Alpha AXP ISA. The timing simulator executes only
user-level instructions, performing a detailed timing simu-
lation of an aggressive dynamically scheduled micropro-
cessor with two levels of instruction and data cache
memory. Simulation is execution-driven, including execu-
tion down any speculative path until the detection of a
fault, TLB miss, or branch misprediction.

To perform our evaluation, we collected results from
all 25 of the SPEC2000 benchmarks [18]. All SPEC pro-
grams were compiled for a Compaq Alpha AXP-21264
processor using the Compaq C and Fortran compilers
under the OSF/1 V4.0 operating system using full com-
piler optimization (-O4). The simulations were run for 100
million instructions using the SPEC reference inputs. We
used the SimPoint toolset’s Early SimPoints [16] to pin-
point program locations to simulate for peak accuracy.
Simulation parameters are shown in Table 1. 

The simulators were modified to separate reservation
stations from the re-order buffer. They were also given
support for reduced-tag windows and last-tag prediction.
Finally, we were able to simulate either 21264-style flush
replay [3] or selective replay using one of the two methods
outlined in Section 3. 

Figure 3. Intel Selective Replay Mechanism.

1. Although we may refer to this as the “Intel” replay mechanism 
throughout this work, we are making no claim as to whether or not this technique is 
used in any of their microprocessors, commercial or otherwise. We are only present-
ing the idea proposed in the publicly available patent documentation.
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4.2  Tag Elimination and Replay
The SPEC benchmarks were simulated with three dif-

ferent schedulers on both 4- and 8-wide issue configura-
tions, with the results shown in Figure 4. The baseline
scheduler (“Monolithic”) and the reduced-tag schedulers
(“Mixed” and “Last-tag”) all gain 2-3% performance
improvement due to the decreased replay penalty. Galgel
benefitted the most with a 26% improvement due to a
large number of memory references and enough parallel-
ism to suffer from pipeline flushes. No benchmarks saw a
performance degradation due to selective replay. The per-
formance improvement of 2-3% would close much of the
gap demonstrated in the experiments of Kim and Lipasti
[9].

4.3  Instruction Window Pressure
As is discussed briefly in Borch et al.’s work [2], the

parent-child broadcast replay model requires that instruc-
tions must remain in the scheduler window for several
cycles after they are issued, in order to monitor the kill bus
for a replay indication. When all of an instruction’s ances-
tors are safely into execution, only then will it finally
release its reservation station.

As a result of keeping instructions in the window
beyond their issue time, this mechanism can suffer from a
reduction in effective scheduler window size. For exam-
ple, an 8-wide machine with a 4-cycle load shadow could
be holding as many as 32 instructions in the scheduler
window that have already issued, reducing the number of
spots that are available for newer instructions. For the typ-
ical case, the number of extra instructions held in the win-
dow will not be that large because the processor will not
usually be filling all of its issue slots.

Using the Intel replay technique, instructions never
re-execute out of the scheduler window, thus removing the
need to stockpile instructions after they’ve issued. This
reduces the instruction pressure in the window, allowing
more work to flow into the empty slots.

On the other hand, the Intel approach can limit execu-
tion bandwidth when too many instructions are in replay,
thus preventing new instructions from entering execution.
However, if there is a large number of replaying instruc-
tions, either they are all waiting for one long-latency load,
or there are multiple outstanding latency mispeculations.
In either case, it is not likely that much more parallelism
could be found anyway.

Schedulers with 32, 64, and 128 entries were simu-
lated using both replay techniques, with the results shown
in Figure 5. As intuition would suggest, the most benefit
was seen in configurations with smaller windows and
wider issue, with the 32-entry 8-wide scheduler receiving
a 5% performance improvement from the reduced instruc-
tion window pressure.

Figure 4. Effect of Selective Replay on Reduced-Tag Schedulers.
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Table 1. Simulation Parameters

Parameter Values

Execution 256-Entry ROB
4- or 8- wide issue

128-Entry Instruction Scheduler Window
“Mixed” windows have 1/2/1 ratio

“Last-tag” windows have 0/3/1 ratio
replay with 4-cycle load shadow

Function 
Units

8 Integer ALU/MULT/DIV, 4 memory ports, 

8 FP ALU/MULT/DIV

Branch

Prediction

8k entry GSHARE with 8 bits of global his-
tory

2K entry BTB, 8-entry RAS

Last Tag

Prediction

4k entry GSHARE

(only for “Last-tag” configurations)

1-cycle flush misprediction penalty

Memory

System

32KB 4-way associative L1 Instruction and 
Data Caches with 1-cycle latency, 256KB 4-

way associative unified L2 with 16-cycle 
latency, 100 cycle main memory latency 

across a 16-byte bus
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4.4  Power Consumption
In the parent-child broadcast mechanism, the depen-

dence matrix of an issuing operation is sent to all other
instructions in the scheduler window. It has been shown in
previous studies [4] that these wire-intensive broadcasts
can be very costly from a power standpoint.

The load on the broadcast bus as seen by each depen-
dence matrix bit can be estimated as roughly equivalent to
that seen by each destination tag bit. While each bit of the
matrix bus could be separated from the matrix latches by a
low-capacitance pass gate, the bus line must still be able to
drive the input of the latch if this gate is open. While hav-
ing all of the pass gates open is an extreme case (all
instructions depend on the broadcast through both oper-
ands), it is necessary to take it into account as a peak case.
The kill bus bits will also have the same load as the tag
bits, since they are also being driven to comparators for
each operand.

In a standard instruction scheduler without this replay
mechanism, the number of bits broadcast each cycle is

W x (dest tag bits),

where W is the scheduler issue width and the number
of destination tag bits is log2(# of physical regs). If the
parent-child broadcast mechanism is incorporated, the
number of bits broadcast each cycle is

W x (dest tag bits) + (W x (W x D)) + W,

where D is the number of cycles in the load shadow.
The first portion of the equation represents the destination
tag broadcasts, and it is the same as for the standard win-
dow. The second and third terms of the equation represent
the dependence matrix bits and the kill bus bits, respec-
tively.

This drastic increase in broadcasts may not directly
alter the cycle time (although the layout expansion could
have some effect). However, the power consumption will
likely be noticeably larger. For example, an 8-wide win-
dow with a load shadow of 4 and 256 registers will need to
broadcast 328 bits across the scheduler instead of just 64.

The Intel replay technique requires none of these
extra broadcasts. The mechanism does include some extra
logic, but the power consumed by the check table should
be less than the amount that would be dissipated across
wire-intensive broadcast lines. This comparison is similar
in scope to the comparison of the power usage of a last-tag
predictor table with the power used by the scheduler win-
dow given in [4]. 

5   Related Work
Several researchers have recently made the observa-

tion that benefit can be gained from removing long latency
instructions from the scheduler window as soon as possi-
ble. LeBeck’s WIB scheduler identifies instructions
dependent on long latency operations (data cache misses),
and directs these operations to a secondary scheduler [10].
When the long latency operation nears completion, the
dependent operations are dumped en masse into a small
CAM-based dynamic scheduling window. Morancho used
a similar approach to move dependent operations follow-
ing long latency instructions out of the instruction window
[13]. Unlike the WIB, they record relative instruction
latencies to simplify the re-execution of operations once a
valid schedule has been built. The Intel mechanism uti-
lizes a similar approach. As instructions replay, dependen-
cies between dependent operations are maintained by their
spacing in the scheduler queues. A schedule is picked and
fully committed to for the lifetime of the instruction. Our
recent work on the Cyclone scheduler [5] takes this
method a step further and replaces the scheduler window

Figure 5. Effect of Reduced Scheduler Pressure. Results presented show the relative performance of a scheduler 
using the Intel replay mechanism with respect to a scheduler of the same size with a broadcast-based mechanism.
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with a dataflow pre-scheduler and timed queues. A queue-
based replay mechanism is relied upon to accommodate
any incorrectly scheduled instructions.

A number of previous efforts have utilized the register
forwarding infrastructure to initiate selective instruction
re-execution. The sentinel scheduling technique [11] used
“poison bits” contained in the register file that were set
when load instructions faulted or did not complete. A
branch back to the start of the faulting code would then
selectively re-execute the faulting code sequence. As
instructions read their registers, only those instructions
with poison operands needed to re-execute. The approach
is quite similar to the Intel replay queue approach, except
instead of redirecting program control, instructions them-
selves are redirected back into the replay queue. Poison
bits were employed in a similar manner by Rogers [15].

6   Conclusions
In the interest of minimizing the performance penal-

ties of deep pipelining, modern processors include selec-
tive replay mechanisms to reduce the number of
instructions lost due to latency mispredictions. Because
these designs may also wish to use complexity-reduction
techniques such as tag elimination to improve the perfor-
mance of dynamic scheduling, it is important for the selec-
tive replay implementation to be as unintrusive as possible
to the instruction window.

The Intel-style selective replay allows for optimiza-
tions such as tag elimination by having its mechanism
almost completely external to the instruction scheduler
structure. In addition, selective replay mechanisms that are
queue and table based have the benefits of both less
instruction pressure on the issue window and favorable
power characteristics.
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Abstract
Pre-execution systems reduce the impact of cache

misses and branch mispredictions by forking a slice, a
code fragment derived from the program, in advance of
frequently mispredicted branches and frequently missing
loads in order to either resolve the branch or prefetch
the load. Because unnecessary instructions are omit-
ted the slice reaches the branch or load before the main
thread does, for loads this time margin can reduce or
even eliminate cache miss delay.

Published results have shown significant improve-
ments for some benchmarks, on the order of 20%,
with many showing at least single-digit improvements.
These studies left unexamined two system parameters
that one would expect pre-execution to be sensitive to:
fetch rate and reorder buffer size. Higher fetch rate
would allow the main thread to reach the troublesome
load sooner, but would not affect the slice and so the
slice’s margin is reduced. Studies have shown large po-
tential margins for slices, but the fetch rate effect has
not been measured. A second system parameter is re-
order buffer size. A larger reorder buffer would allow
a system to hide more of the miss latency that pre-
execution reduces.

To test the sensitivity to these factors pre-execution
schemes were simulated on systems with varying fetch
rates and reorder buffer sizes. Results show that higher
fetch rate does not reduce pre-execution speedup in most
benchmarks. Reorder buffer size sensitivity varies,
some benchmarks are insensitive to reorder buffer size
increases beyond 256 entries, but still benefit from pre-
execution, the benefit due in large part to prefetching
those loads that provide values for frequently mispre-
dicted branches. The benchmarks that are sensitive to
reorder buffer size are also the ones that benefit most
from pre-execution.

1. Introduction

Pre-execution schemes are one approach to reduc-
ing the impact of cache misses and branch mispre-
dictions. In a pre-execution scheme troublesome (fre-
quently missing) loads are identified and for each trou-
blesome load a slice consisting of the load and instruc-
tions producing its address is constructed and cached.
For each slice a trigger instruction is identified, the
next time the trigger is encountered the slice will be
retrieved and executed. If successful the load in the
slice, called the prefetch load, will execute several cy-
cles before the load for which the slice was constructed,
reducing or eliminating cache miss latency. Slices do
not affect state visible to the running program and
so they may be killed at any time, only at the cost
of missing a prefetch opportunity. Slices can also be
constructed for troublesome branches, though with the
added complication of matching the predicted outcome
to the main-thread instruction stream.

In some schemes slices are constructed dynamically
and in hardware, in others they are prepared in soft-
ware based on a profile run. The slice might be a subset
of the dynamic instruction stream, or it might be op-
timized in some way. Slice decode and execution share
existing processor resources in some schemes, in others
slice execution uses its own decode hardware, execution
hardware, or both. For more details see Section 2.

What is common in the pre-execution schemes ex-
amined here is that the slice consists of ordinary ma-
chine instructions which make use of processor state
from the running program, in particular register values,
and that the slice is forked when the program reaches
some instruction.

The use of machine state and execution resources
for slice execution is costly in one way or another. If
execution resources are duplicated the cost is direct,
and in all schemes at least the register map or register
values must be copied. If resources are shared then in-
struction queues and other scheduling hardware must
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Figure 1. Typical pre-execution hardware organiza-
tion. Slice instructions share functional units but not
reorder buffer slots. Illustrated (and simulated) system
has separate decode/rename for slices. In other pro-
posed schemes slice shared decode/rename with the
main thread.

be enlarged. When implemented on top of simultane-
ous multithreading hardware, slices displace ordinary
threads.

These costs are offset by the potential benefit, which
there is plenty of since load latency is no small problem.
Zilles and Sohi [21] show that performance would im-
prove by a large amount, more than doubling for some
SPEC2000 integer benchmarks, if troublesome loads
hit the cache and troublesome branches were correctly
predicted. Pre-execution can prefetch loads which con-
ventional hardware prefetch schemes cannot, such as
those generating irregular address patterns.

The various pre-execution schemes described in the
literature realize respectable, in some cases large,
speedups. For example, Collins, Tullsen, Wang, and
Shen demonstrate an average speedup of over 1.3 on
memory-intensive benchmarks.

The published analyses of pre-execution schemes
looked at factors such as slice construction techniques,
but for the most part evaluated pre-execution on a sin-
gle type of system [1,3,10,11,14,21]. There are two sys-
tem parameters to which pre-execution may be sensi-
tive: the fetch rate and reorder buffer size. A higher
fetch rate will reduce the time advantage of a given
slice, or require triggering a slice further back, risking
triggering a slice for the wrong path. Reorder buffer
size is an important factor because a larger reorder
buffer can hide the load miss latency that pre-execution
reduces. (Put another way, pre-execution can reduce
the latency that would otherwise require a larger re-
order buffer to hide.) A related advantage of smaller
reorder buffers for pre-execution is that they are more
frequently full. That, of course, stops the main thread
but not a slice that has been triggered.

The impact of fetch rate and reorder buffer size on

pre-execution schemes will be examined here. A pre-
execution scheme will be simulated on systems having
varying fetch rate, reorder buffer sizes, and slice con-
struction window sizes. The impacts on performance,
and the reason for that impact will be analyzed in de-
tail.

The remainder of this paper is organized as follows.
A discussion of some existing pre-execution schemes ap-
pears in the next section. Pre-execution performance
factors are discussed in Section 3. Details of the sim-
ulated system and benchmarks are described in Sec-
tion 4. Experiments are described and discussed in
Section 5, related work is discussed in Section 6, and
conclusions appear in Section 7.

2. Pre-Execution Schemes

Perhaps triggered by Zilles and Sohi’s 2000 study
[20] a number of pre-execution schemes had been pub-
lished in 2001. These will be discussed here, while
antecedents and other related schemes are discussed
Section 6. An outline of pre-execution and related ter-
minology is presented below, followed by details from
published studies and the version simulated here.

2.1. Basic Pre-Execution and Terminology

In a pre-execution scheme troublesome loads are
identified, these are loads which miss the cache and
in some variations are believed to be on a critical path.
The instructions preceding a load needed to compute
its address are said to be in its dataflow tree; the num-
ber of preceding instructions considered is called the
construction window size. When a troublesome load
is identified its dataflow tree is constructed, and in
some variations optimized; the result is called a slice.
The slice is placed in a slice cache. With a slice con-
structed for it, the troublesome load is known as a tar-
get and the corresponding instruction in the slice is
called the prefetch load (briefly, prefetch). A trigger
instruction (briefly, trigger) is selected, often the earli-
est instruction in the construction window. The next
time fetch (or more often, a decode step) reaches the
trigger the slice is retrieved and forked, that is, its ex-
ecution is started, and will proceed in parallel with the
main thread. Depending on variation the forked slice
may share decode/rename resources and execution re-
sources. The prefetch does not wait if it misses the
cache.

2.2. Published Pre-Execution Schemes

Some of the schemes discussed below use pre-execution
for branches as well as loads; only the portions handling
loads are discussed.

Finding troublesome loads may be harder than it
sounds, at least for a run-time mechanism. Only two
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schemes identify troublesome loads at runtime, Dy-
namic Speculative Precomputation (DSP) of Collins,
Tullsen, Wang, and Shen [3] and the Slice Processor
(SP) of Moshovos, Pnevmatikatos, and Baniasadi [11].
The SP uses a load miss predictor to select target loads
(on a miss add 4 to a counter in a PC-indexed table, on
a hit subtract 1), the DSP goes further by finding only
critical-path loads (based on the time spent waiting at
the head of the reorder buffer). The other schemes
mentioned here rely on some form of profiling to select
target loads.

There are major differences in the way the slice
itself is constructed. Unmodified dataflow trees are
used by SP, the Dependence Graph Precomputation
(DGP) scheme of Annavaram, Patel, and Davidson [1],
and speculative Data Driven Multithreading (DDM) of
Roth and Sohi [14]. Tree construction occurs dynam-
ically (at run time) in SP and DGP; in SP the tree
is constructed from the last 32 (nominally) committed
instructions while in DGP it is constructed from in-
structions waiting in the fetch queue. In DDM tree
construction occurs in a pre-processing step.

There are many opportunities to optimize instruc-
tions in the dataflow tree, for example replacing or
eliminating store/load pairs, and combining arithmetic
instructions (say, two instructions incrementing the
same variable). The DSP optimizes slices dynami-
cally while Zilles and Sohi [21] in what will be called
the Speculative Slice Study (SSS) here, construct their
slices by hand.

A refined approach to slice selection and construc-
tion, called the Quantitative Framework (QF) here, is
presented by Roth and Sohi [15]. A score is constructed
for a candidate slice using the margin of the prefetch
over the target load adjusted for the number of times
the target load will be reached, the score also includes
the number of instructions in the slice (which reduces
the score). Slices are selected from a set of candidates
based on how well they cover target loads, combining
the effect of a short, low-margin slice against a longer,
high-margin slice that is less likely to reach the target.

In some cases the slices can contain loops. When
constructing slices DSP hardware specifically looks for
a second instance of the troublesome load so that the
constructed slice can have a loop. A loop counter and
call level monitor terminate slices that may loop too
long. The hand-constructed slices in the SSS also con-
tain loops and use a maximum iteration counter.

The various pre-execution schemes differ in the re-
sources they use to execute slices. In the boldest of
these schemes slices execute as a special thread on a
simultaneous multithreaded (SMT) [8] machine, com-
peting for decode/rename and execution resources with
the main thread. With this resource sharing there is

significant potential for slowing down the main thread.
SMT (or SMT-like) execution is done by the DSP,
DDMT, and SSS. DSP and DDMT do not compete
for reorder buffer (ROB) slots with the main thread;
it is not clear whether this is true in SSS. An alterna-
tive is to provide separate decode/rename resources for
slices, this is done in the SP. The DGP is something
of a special case since it operates on instructions in the
normal fetch stream, relying on run-ahead of the fetch
unit.

Of all the schemes only the DGP provides its own ex-
ecution resources, in the others slice instructions com-
pete with the main thread for functional units, in some
cases at a lower priority.

2.3. The Expensive Slice Machine

A goal of this study is to analyze the impact of fetch
rate and ROB size on pre-execution performance, not
to find a good cost/performance balance. Therefore a
pre-execution scheme was chosen for analysis that gives
good performance with little regard for resources used.
That is, the size of the slice cache and the number of
functional units is large, so as to bring out as much
potential performance as possible; it will be called the
Expensive Slice Machine (ESM).

Slice construction is performed as loads commit; it is
performed instantaneously and for all committing loads
generating a lead miss. ESM constructs (but does not
always cache) slices for every load instruction that gen-
erates a lead miss. A lead miss is the miss to the level 1
cache that initiates a cache fill. (A following instruction
that access the same address before the data arrives is
not said to generate a lead miss.) The slice is con-
structed by extracting the dataflow tree for the trou-
blesome load using a buffer holding recently committed
instructions. The margin for a newly constructed slice
is computed, the number of cycles by which the pre-
fetch load will precede the target load assuming that
when the slice is forked fetch proceeds at the same rate
as when it was constructed. If the margin is below 2
cycles the slice is not cached.

A miss distance is stored with each slice, this is used
to determine whether to fork the slice. When the slice
is constructed the miss distance is set to zero, it is also
set to zero if the slice’s prefetch instruction generates
a lead miss; it is incremented if the prefetch does not
generate a lead miss. (Any practical system would have
a separate load miss predictor.)

The number of simultaneously executing slices is
limited to eight. If less than eight are executing the
slice cache is probed using the addresses of decoding
instructions. If a slice is found and its miss distance
is less than 7, execution forks. The slice is decoded
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and renamed at a rate of 4 instructions per cycle in the
base machine. Slice instruction execution proceeds nor-
mally, that is, decode, rename, and scheduling proceed
at the same speed as for ordinary instructions.

Slice instructions do not use ROB slots but they
share execution resources of main-thread instructions.
In the systems analyzed there are plenty of functional
units and so there is rarely any waiting.

3. Pre-Execution Performance

The speedup attained by pre-execution depends in
part on the margin of the prefetch over the target and
by the number of targets that lie on a critical path.

3.1. Critical Path and Sensitivity to ROB Size

In a dynamically scheduled system some load misses
do not impact execution time, instead the processor
“catches up” when these loads complete. Those that do
impact execution time in a particular processor config-
uration are called critical loads for that configuration.

There are two ways loads can be critical: they can
delay branch or jump target resolution, or they can con-
tribute to the filling of the reorder buffer. The first type
will be called control-critical loads, the second type will
be called window-critical loads. Control-critical loads
are those loads that, because they don’t hit the cache,
force instructions computing a branch condition or tar-
get for a mispredicted branch to wait. For window-
critical loads if the load had not missed the reorder
buffer would have filled later, if at all. In both cases
the load delays correct-path instruction fetch.

Pre-execution will reduce the miss delay of both
types of critical loads, the data presented below shows
these effects separately. Reducing the impact of
control-critical loads is something that is difficult to
do by means other than larger or faster caches or bet-
ter branch predictors. In contrast, the impact of some
(perhaps most) window-critical loads can be reduced
by increasing the size of the reorder buffer. For that
reason, reorder buffer size sensitivity is important, and
is being investigated here.

Apart from just pre-fetching loads early, another
way that pre-execution, at least the published schemes,
improves performance is by allowing a slice to be
fetched and executed when the rest of the system is
stalled due to a full reorder buffer. This increases the
margin when the target load is caught waiting outside
a full reorder buffer while the pre-fetch executes. (In
most of the previous studies slices do not share reorder
buffer slots with the main thread.)

3.2. Sensitivity to Fetch Rate

As used here the fetch rate is the number of decoded
instructions (including those that will be squashed) di-
vided by the number of cycles at which decode was not
stalled (due to a full reorder buffer, lack of physical
registers, etc). The fetch rate is determined by decode
width and by the front end, the part of the proces-
sor that predicts and fetches instructions. A processor
with a decode width of 8, that is, an 8-way superscalar
processor, has an ideal fetch rate of 8 instructions per
cycle. Due to limitations of the instruction cache and
the ability of the front end to predict multiple control
transfers per cycle, the front end may deliver less than
eight instructions per cycle. Advanced front ends, such
as trace caches [13] and multiple branch predictors [19]
have higher fetch rates, approaching the maximum pos-
sible (the decode width).

Assuming no stalls around the time a slice is forked,
the margin for the slice is determined by the fetch
rate, the trigger-to-target distance, and the dataflow
distance. That there is plenty of margin for trouble-
some loads was revealed in the study of Zilles and Sohi
[20]. They identify troublesome loads, in particular
those that have the most impact on overall execution,
and plot the number of instructions in the dataflow tree
versus the distance from the target load. They show
that from 5% to 30% or more of instructions preceding
a load are in its dataflow tree, the lower number assum-
ing all stores can be omitted and the higher including
all stores. That this margin could be exploited was
demonstrated in the many projects described above.

One important question unanswered by these stud-
ies is the degree of sensitivity to fetch rate. In most
of these studies some estimate is made of margin and
slice candidates not meeting this margin are rejected.
A higher fetch rate would mean more slice candidates
would be rejected (or would be ineffective), and so re-
duce the impact on performance. Based on observed
distribution of instructions [20] moving the trigger back
would increase the margin, but at the risk of placing the
trigger before a frequently mispredicted branch. Only
the QF takes this slice survivability into account [15].

4. Evaluation
4.1. Simulator

The systems were analyzed using RSIM [12], a de-
tailed microarchitecture simulator. Modifications were
made to simulate pre-execution and many other unre-
lated modifications were made. RSIM is a microarchi-
tecture simulator which simulates a dynamically sched-
uled superscalar processor and memory system. The
processor implements a subset of the SPARC V8 ISA
[18]. Benchmark programs are compiled exactly as they
are for a real system. Linking is identical except for
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Table 1. Benchmarks. (Table numbers in millions.)

Bench- Insn Insn Loads L2 Hits L2 Misses
mark Skip’d Sim’ed Cmtd
mst 1200 500 78 2.34 18.88
em3d 120 300 35 0.33 0.40
bzip2 0 305 78 9.61 3.00
gcc 0 607 108 5.21 0.26
gzip 0 636 108 26.53 1.86
mcf 1000 100 27 2.07 12.83
perl 0 181 35 2.59 0.07
swim 0 400 104 9.85 44.11
TEX 0 102 20 0.58 0.03
vpr 5000 300 69 4.74 3.87
wupwise 5000 500 170 0.28 0.95
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Figure 2. Performance of a conventional system and
one using pre-execution. Segments show CPI contribu-
tion.

the use of static libraries (though still the system’s li-
braries, not specially prepared versions) and a special
startup file. System calls are not simulated.

Dynamic execution is aggressive: The register map
used for renaming is checkpointed when branches or
jumps are decoded so that recovery can start when
mispredicted instructions resolve. Exception recovery
is initiated when the faulting instruction is ready to
commit. Other system characteristics are summarized
below:
Front End

Branch target prediction using a basic block predic-
tor [19] with a 215-node block address cache; directions
predicted with a variation on a YAGS predictor[4] us-
ing a 16-bit GHR. Base system has three instruction
cache ports and predicts two blocks per cycle. One-
and two-icache-port systems predict one block per cy-
cle; four-port system predicts three blocks per cycle.
Block predictions are queued. Indirect jump predictor
uses a 216 entry GHR-indexed table. Returns predicted

with an 8-entry RAS.
Core

Base system 8-way superscalar; three cycle delay
from decode to earliest execution opportunity. Reorder
buffer holds 256 entries; virtually unlimited functional
units. Instruction queues and load/store queues have
virtually unlimited space.
Memory

L1 instruction cache: 328 kB, 5-way. L1 data cache:
16 kiB, 4-way, 64-byte line; 2-cycle hit latency including
address generation. L2 data cache: 256 kiB, 8-way, 16-
cycle hit latency. Memory, 100 cycle access latency plus
congestion and overhead.
Pre-Execution

Slices constructed from 256-instruction window; max-
imum slice size 64 instructions; slice rejected if margin
(prefetch to target) less than 2 cycles. Slice cache size
216 entries. Slice not forked if target load has more
than 6 consecutive non lead misses (a hit or miss to
a line already on the way). At most 8 slices in flight;
slices injected at half the decode width (4 instructions
per cycle in base system). Slices execute with shared
execution resources, but use private decode and rename
and do not use reorder buffer slots.

4.2. Benchmark Programs

The simulated programs come from the SPEC and
Olden suites. Except for vpr, the SPEC programs were
not selected for pre-execution suitability. (That is, no
program was selected because of favorable speedup or
any other performance reason.) The Olden benchmarks
are a set of pointer-intensive microbenchmarks adapted
by Luk [9] for use in studying prefetching and used later
by other investigators to test the effectiveness of pre-
execution and other schemes. They are included here
so results can be compared to other studies that use
these benchmarks.

Benchmarks vpr, swim, gzip, mcf, and wupwise are
compiled using the SPEC CPU2000 makefiles, using
code from that suite. The code for the other bench-
marks was obtained from their standard distributions,
compiled with optimization. Optimization was tar-
geted to an UltraSPARC II processor, so scheduling
would not perfectly match the wider-issue systems sim-
ulated here.

Benchmark swim uses test inputs, mcf and wupwise
use reference inputs. Benchmark vpr uses reference in-
puts but is only run for placement. Olden benchmark
em3d uses input 25000 100 75 1, benchmark mst uses
input 3407 1. The other spec benchmarks use short-
ened inputs. Table 1 summarizes benchmark charac-
teristics including the portion of the benchmark simu-
lated.
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Figure 3. Load latency per committed instruction of a
conventional system and one using pre-execution. Seg-
ments show contribution from level 1 hits, level 2 hits,
and misses.
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Figure 4. Speedup of pre-execution with varying con-
struction window sizes. Total is the actual speedup,
Stall shows the speedup due to window-critical loads,
and Squash shows the speedup due to control-critical
loads.

5. Experiments

The performance of conventional and pre-execution
systems is shown in Figure 2. The total height
of each bar is the execution time in cycles per in-
struction (CPI), the segments show the ideal ex-
ecution time, Commit, and four factors degrading
performance: correct-path stalls, Stall, misprediction
squashes and wrong-path stalls Squash, instruction
cache port limitations Fetch, and miscellaneous fac-
tors, Other. Control-critical loads primarily effect the
Squash segment while window-critical loads primarily

effect the Stall segment.
The size of each segment is determined by tallying

how each decode slot is used at each cycle and divid-
ing each tally by the number of committed instructions
times the decode width. The Commit segment shows
slots used by committed instructions, its height is the
ideal execution time of 1

8 CPI. The Fetch segment
shows decode slots unused due to a limit on the num-
ber of instruction cache ports. The Squash segment
shows slots wasted due to mispredicted or unpredicted
control transfers. This includes slots holding instruc-
tions that survive long enough to be scheduled but are
ultimately squashed due to mispredictions and slots
empty because the ROB is full while waiting to fetch
down a mispredicted path. The Stall segment shows
slots empty because the ROB is full while waiting to
fetch down a correct path. The Other segment shows
other cases. For most benchmarks this is dominated
by instructions that are squashed before they could be
scheduled and instruction cache misses.

The benchmarks show variation in their CPI, the
performance loss due to control- and window-critical
loads, and in how much pre-execution helps. Bench-
marks perl, TEX, and gcc are the most efficient and are
little improved by pre-execution while most of the less
efficient benchmarks enjoy more substantial speedup
with the exception of gzip, which is ILP limited.

The benchmarks’ sensitivity to pre-execution is de-
termined in part to the number of cache misses. Load
latency per committed instruction is plotted in Fig-
ure 3. The segments show the contribution of loads
that hit the level 1 cache, hit the level 2 cache, and
those that miss the level 2 cache. Benchmark mcf has
the longest load latency but because the loads that miss
the cache are participating in a long pointer chase pre-
execution can do little to reduce the latency.

5.1. Speedup and Cons. Window Size

Average speedup is plotted in Figure 4 and the
speedup of selected benchmarks is plotted in Fig-
ure 5. In both plots speedup is shown for pre-execution
schemes with construction windows varying from 32 to
2048 instructions. The points marked Total show the
speedup over the conventional system. Benchmarks
vary in the size of the window needed (based on the
level 2 cache hit ratio), average performance peaks at
a window size of 384. Performance drops with further
increase in window size because of the limit of eight
in-flight slices. The base construction window size of
256 achieves close to maximum performance.

In addition to total speedup these figures show
an estimate of the speedup obtained by improving
only control-critical loads, Squash, and window-critical
loads, Stall. The control-critical speedup estimate is
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Figure 5. Speedup of pre-execution with varying construction window sizes.
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Figure 6. Average speedup of benchmarks on systems
with, P, and without, C, pre-execution with varying re-
order buffer sizes. Speedup is over conventional system
with a 256-entry ROB.

obtained by essentially replacing the Squash segments
(from Figure 2 ) of the conventional system with the
corresponding segments in the pre-execution system
and comparing the result to the unmodified conven-
tional system. A similar approach is used for the
window-critical speedup.

From Figure 4 one can see that for these benchmarks
most performance improvement is from window-critical

loads. Looking at individual benchmarks in Figure 5
one can see that for some benchmarks, such as mst and
swim, almost all improvement is for window-critical
loads, for others control critical loads are more impor-
tant.

5.2. Reorder Buffer Size

The impact of reorder buffer size and pre-execution
on critical loads is shown in Figure 6 where speedups
are plotted for systems with reorder buffer sizes from
256 to 512, the left group is conventional, the right is
using pre-execution. All speedups are with respect to
the base system (with a 256-entry ROB).

On average the speedup obtained with pre-execution
and a 256-entry ROB is about the same as a con-
ventional system with a 448-entry ROB. If both sys-
tems are feasible, the less expensive system is better.
(Further below larger ROB systems also have longer
pipelines.)

As expected, both pre-execution and larger ROBs
reduce the impact of window-critical loads. Comparing
a 512-entry ROB conventional system to a 256-entry
pre-execution system, the two center points, shows
better performance on the conventional system. The
pre-execution system is not as effective at improving
window-critical loads but unlike the conventional sys-
tem can improve control-critical loads.

Pre-execution is still effective on systems with larger
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ROB sizes, at least up to 512 entries. On the base
systems it would take more than 800 entries to cover
the level 2 miss latency.

Figure 7 shows the same data for selected bench-
marks. Pre-execution is able to out-perform a larger
ROB on bzip2, gzip, and vpr due to the control-critical
loads that can be helped.

In the comparisons above the systems with a larger
reorder buffer got it for “free,” in real systems ROB
size may be limited by critical paths in scheduling
queues needed to hold pending instructions. Figure 8

shows the speedup of three systems: a conventional sys-
tem with a 512-entry ROB (the same as the one used
above), a conventional system with a 512-entry ROB
and three additional stages in the scheduling pipeline,
L, and a pre-execution system using a 256-entry ROB.

The longer scheduling pipeline is felt after branch
mispredictions, its impact can be seen in the Squash
speedup component. For four of the benchmarks this
results in a slowdown over the base system, for the oth-
ers it reduces the speedup over the conventional system
with the unmodified pipeline.

When compared to a conventional system with a
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Figure 9. Performance of conventional and pre-execution systems with different front ends.
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Figure 10. Speedup and speedup contributions of conventional and pre-execution systems with different front ends.

longer pipeline pre-execution does much better, outper-
forming the conventional system on all but two bench-
marks (one of which is synthetic).

5.3. Fetch Rate

Fetch rate is another system parameter that can af-
fect pre-execution. Systems with varying front ends
were simulated, including 4-, 8-, and 16-way proces-
sors. Front ends that can predict from one to three
basic blocks were simulated, the number of instruction
cache ports was varied from one to four. The systems
with one and two ports predict one block per cycle; the

ones with three ports predict two blocks, and the one
with four ports predicts three blocks.

The averaged results are plotted in Figure 11 and
the results for individual benchmarks are in Figure 9
speedups are shown in Figure 10. In all plots sys-
tems are arranged in order of increasing fetch rate The
speedup shown is for a pre-execution system compared
to a conventional one using the same front end, showing
how much added performance can be obtained using
pre-execution.

The reduction of pre-execution effectiveness with
fetch rate, if present, is small. Several benchmarks
show increased speedup with fetch rate as the impact
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Figure 11. Average performance of conventional and
pre-execution systems with different front ends. DW
indicates decode width (from 4- to 16-way superscalar),
Ports indicates number of instruction cache ports. Seg-
ments show CPI contribution.

of control- and window-critical loads becomes a larger
fraction of execution time.

6. Related Work

Pre-execution schemes rely on a main thread to re-
peatedly trigger slices that only run briefly. In contrast
the Slipstream Processor of Sundaramoorthy, Purser,
and Rotenberg [17] and in systems using Master/Slave
Speculative Parallelization of Zilles and Sohi [22] a con-
densed version of the original program serves the same
purpose as a slice: it produces critical values faster
than the original program would. Unlike a slice the
condensed program is long running and produces more
than just troublesome results. Its results are communi-
cated to hardware running the original program where
it is used for predictions and later checked for correct-
ness. Correctness needs to be checked because the con-
densed program, in order to keep ahead of the original,
may not always compute correct results.

Pre-execution is just one way of executing a load
instruction early. Another is to allow fetch to pro-
ceed when some resource limit nears. Instructions
fetched under these conditions may prefetch the cache
and can provide branch outcomes. Balasubramonian,
Dwarkadas, and Albonesi [2] describe such a scheme
in which fetch goes on as a future thread even when
the number of physical registers is low and can dis-
card completed or unneeded instructions, avoiding the
reorder buffer size limitation.

Pre-execution schemes are one way of starting loads
early, hardware prefetch schemes are another [7]. In
such schemes hardware monitors addresses that miss
the cache, both level-1 and level-2 prefetchers have been

investigated. The hardware, designed to recognize se-
quential [16], stride [5], or previously encountered pat-
terns [6], generates a prefetch for a predicted next ad-
dress in the pattern.

Hardware prefetch schemes are quite effective on
many memory access patterns, but have trouble pre-
dicting many others. Several of the pre-execution
schemes have been compared against hardware prefetch
and found to complement it well, prefetching addresses
that hardware prefetch could not [1,11].

7. Conclusions

Pre-execution improves performance by resolving
load addresses and branch directions early using a
thread that is forked speculatively upstream of the
load. As verified here, pre-execution cannot be out-
run by any reasonable front end, faster fetch results in
only a small reduction in speedup.

Performance improvement is achieved by prefetching
control- and window-critical loads. There are few al-
ternative mechanisms to improve control-critical loads,
but the impact of many window-critical loads can be
reduced by increasing the reorder buffer size. Data pre-
sented here show that for some benchmarks, systems
with larger reorder buffers enjoy the same speedup as
those with pre-execution, the benchmarks so affected
are the ones pre-execution is most effective on. When
systems with larger reorder buffers also have longer
scheduling delays pre-execution is at a greater advan-
tage. The longer scheduling delays slow many pro-
grams while the larger ROB size helps only a few. This
is in contrast to pre-execution which (as simulated)
only slows one program. One factor not examined here
is which is less costly, pre-execution or increased re-
order buffer size.
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Abstract The use of multiple pipelines in super-
scalar processors and increasing hardware support for
intelligent compilers have resulted in processors be-
coming computationally intensive. There has been an
increase in the number of function units, which are
wider and operate at higher speeds. A high percent-
age of integer instructions executed in standard bench-
marks reveal a high usage of integer function units.

In this paper, we analyze three different techniques,
namely, memoing (caching results that can be reused),
narrow-width operand exploitation (limiting computa-
tion to low order bytes), and byte encoding (compu-
tation performed over significant bytes), that dynam-
ically exploit operands to lower power consumption in
integer function units. Each technique proposes avoid-
ing redundant computation in a function unit and pro-
viding the output or a part of the output via alternate
means. We analyze and compare these techniques in
terms of power savings, area and delay overheads, and
their effectiveness when applied to different integer
function units. Previously, estimates of power sav-
ings based on switching activity were reported. Our
implementation of integer function units (CLA, ar-
ray multiplier, comparator, etc.) at the VLSI layout
level and analysis using standard integer benchmarks
from the SPEC CPU2000 suite provide realistic power
savings, area, and delay overheads.

1 Introduction
VLSI research and development and advances in

computer architecture have resulted in processors be-
coming computationally intensive. The use of multi-
ple pipelines in superscalar processors and increasing
hardware support for intelligent and efficient compil-
ers has led to higher performance in processors, but at
the same time increased the computation demanded
from functional units. The increase in the perfor-
mance of processors has led to greater power con-
sumption and thrust low power to the forefront as
an important design parameter. A high percentage of
integer instructions executed in standard benchmarks
reveal a high usage of integer function units. Hence
the necessity of designing power-efficient integer func-

∗This research was supported by US National Science Foun-
dation Grant # 0102830.

tion units.
Power dissipation in CMOS circuits falls into two

categories: dynamic and static. Static power dissipa-
tion is due to leakage current. Dynamic power dissi-
pation is due to: (1) short-circuit current during an
output transition that is caused by a DC path be-
tween the supply rails and the ground line and (2)
the charging and dis-charging of capacitive loads dur-
ing logic changes [9]. Techniques to reduce static
power dissipation aim to turn off functional units dur-
ing idle cycles, e.g., through power gating and use of
dual threshold voltages [12, 10, 14, 18]. At the cir-
cuit level, voltage scaling, transistor sizing, transfor-
mations, and innovative circuit design techniques have
been proposed to reduce power consumption [5, 6, 17].
At a higher level of abstraction, compilers aim to re-
duce power by producing energy-efficient code. Most
of these techniques do not exploit operand values dy-
namically. Only recently, researchers have looked into
the possibility of exploiting operand values to reduce
power consumption. The observation that many com-
putations on operands are redundant for typical ap-
plications and the fact that operands that are inputs
to functional units are not completely random provide
opportunities for operand exploitation to reduce dy-
namic power dissipation. Three such techniques are:
memoization (caching frequent operand sets and re-
sults for reuse), narrow-width operand (operands that
can be represented in fewer bits) exploitation, and
byte encoding (computation skipped over insignificant
bytes). In this paper, we comprehensively analyze and
compare these techniques in terms of their power sav-
ings, area and delay overheads, and effectiveness when
applied to different functional units.

The organization of the remainder of the paper is
as follows. In Section 2, we describe the above three
techniques in detail and in Section 3, we analyze them.
Following that, in Section 4, we describe the simula-
tion setup. In Section 5, we analyze the results ob-
tained and compare them. Finally, we conclude and
propose future work in Section 6.
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2 Operand value exploitation for low
power

We analyze memoization, narrow-width operand
exploitation technique, and byte encoding tech-
nique [2, 3, 7, 8]. These techniques share some
common features: (1) hardware schemes that ex-
ploit operands dynamically, (2) detection of frequent
operands, (3) reduction of redundant computation by
avoiding computation on frequent operands and pro-
viding the output via alternate means, and (4) power
savings achieved by reduction in the switching activity
of a function unit. Memoization exploits the tempo-
ral locality of operand sets [2], while the other two
schemes exploit the magnitude of operand values at
different levels of granularity [3, 7, 8].

2.1 Memoization
Reusing results that were previously calculated, in-

stead of computing them again, could potentially lead
to significant power savings in function units. The
frequent reuse of data in many applications supports
this claim. Memoization, a technique that stores re-
sults for reuse, has been used previously for improving
performance [13]. Azam et al. use this concept to re-
duce power dynamically [2]. They proposed the use
of an execution cache per function unit that can be
used as a buffer to capture the temporal locality of
operand sets in instruction and data streams. Each
entry of the execution cache consists of a computed
value and the operand set for which it was computed.
The execution cache is either a direct-mapped cache
or an s-way set associative cache with LRU replace-
ment policy. An execution cache stage is introduced
in the processor pipeline, which is placed between the
instruction decode stage and the execute stage, to de-
termine whether an operand set is being reused.
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Figure 1: Memoization: Simple bypass via operand
tagged caching [2].

During the execution cache stage, certain bits of
an operand set ready to be issued to a function unit
are used to index into the execution cache. The re-
maining bits of the operand set are compared to the
corresponding bits of the operand set stored in the
cache entry. The matching of these two operand sets
implies that computation by the function unit can be
bypassed as the result is already known and can be
reused. If the operand sets do not match, the func-
tion unit performs computation over these operands
and the result is stored in the execution cache. Using
this technique, operand sets are exploited based on
their their frequent occurrence for a particular func-
tion. The design is illustrated in Fig. 1 [2].

2.2 Narrow-width operand exploitation
Although modern microprocessors support 64-bit

addresses and operations, most ALU operands have
much smaller magnitudes that can be represented us-
ing 16, 8, or fewer bits. By dynamically shutting off
that part of a function unit which operates over the
high order bytes of frequent operands and sign exten-
sion of the result computed for the low order bytes
results in significant reduction of switching activity.
This approach to operate only a part of the original
circuit by latching of certain inputs is termed guarded
evaluation [16]. We study two implementations of this
technique [3, 7].
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Figure 2: Exploiting narrow-width operands [3].
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Fig. 2 illustrates the architecture proposed by
Brooks et al. [3]. By disabling value changes in the
high order part of a function unit when both operands
are narrow-width operands, they are able to reduce
switching activity and thus reduce the dynamic power
dissipation. This disabling of the high order part
of a function unit is achieved by selectively clock-
ing the latches that feed the high order bits of the
operands to the function unit. The low order bits are
always latched. The selective latching of the high or-
der part of the operand depends upon whether both
the operands have leading ones/zeros in their high or-
der bits. The high order bits are latched selectively
based on the clock and a signal called zero/one. This
signal, generated using a zero/one detection logic, is
stored along with an operand in the register when the
operand was either computed as a result or when it
was loaded from the cache. The result for the high or-
der part of the function unit is supplied by hardwired
values through a multiplexor.
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Figure 3: Exploiting narrow-width operands by partially
guarded computation [7].

Fig. 3 illustrates the technique employed by Choi
et al. to reduce dynamic power dissipation [7]. The
high order bits of the inputs are selectively passed
on to that part of the function unit that operates on
them through latches. The latches are controlled by
a signal produced by a detection logic which detects
whether the high order bits of both the operands are
either zeros/ones. The high order bits of the result
are computed via a sign extension logic when both
the operands are narrow-width operands.

2.3 Byte encoding
This scheme employs the same method of prevent-

ing the propagation of operand bits as described in

the previous section, however, at a finer granularity
[8]. Canal et al. propose exploitation of operands
at various stages in a processor pipeline. We only
discuss the application to integer function units here.
Operands are coded at a byte level and this choice
of dividing an operand into bytes is arbitrary. The
least significant byte is always considered to be sig-
nificant and a function unit always operates over this
byte of the operand sets. One scheme of encoding is
to add extra bits that represent the number of high
order bytes that are merely sign extensions. Another
scheme of encoding is to represent each high order
byte by one bit. A byte is encoded as 1 if it is the sign
extension of the adjacent byte and 0, otherwise. The
overhead in terms of bits appended to each operand is
higher in the latter scheme, but it exploits more cases
of frequent valued operands than the former. The
extension bits are computed using simple detection
logic when an operand is loaded from the instruc-
tion or data cache and when a result is computed.
The authors describe three different implementations
for a 32-bit wide processor, namely, byte-serial imple-
mentation, in which the data path is one-byte wide,
semi-parallel implementation, in which the data path
is two-bytes wide, and fully parallel implementation,
in which the data path is four-bytes wide.

3 Analysis of techniques
In this Section, we analyze the advantages of each

scheme and also discuss some of the shortcomings.
Each of these schemes involves detection of frequent
operand values, a method to bypass or limit computa-
tion on such frequent-valued operands, and a method
to provide the whole output or a part of it by alternate
means.
3.1 Frequent-valued operand detection

Integer function units that have long latencies and
cause extensive switching are targets for memoization.
The power savings would be significant in such func-
tion units if they were to operate on the same operand
set frequently. All operand sets that have temporal lo-
cality can potentially be exploited. Frequent valued
operands as exploited by this scheme are operand sets
that have temporal locality with respect to a particu-
lar function unit. The implementation by Azam et al.
uses an execution cache per function unit [2]. Hence
the area overhead is significant. In order to detect
the temporal locality of an operand set, an operand
set ready to be issued to a function unit is compared
to an operand set stored in an entry of the execution
cache. This involves a comparison each time an inte-
ger function unit is supposed to be used. This is an
expensive overhead in terms of the power dissipated
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while comparing operand sets. Thus a limitation of
this technique is the kind of function that can be by-
passed to achieve significant power savings. As the
detection of frequent operands involves comparison of
operands, it is most useful to apply this technique to
functions that consume more power than addition, as
comparison of operands, during the cache stage, in-
curs power consumption similar to that of addition.

Narrow-width operand exploitation targets all
types of integer function units in the processor
pipeline and results presented previously show sig-
nificant power savings [3]. Their implementation ex-
ploits those narrow-width operands, whose high order
bits are the same in both operands. They assume
some processors have a zero-check for operands be-
fore they are loaded from memory. This may not
be true in general and it may be required to detect
narrow-width operands explicitly. Their implementa-
tion detects whether a result computed by an inte-
ger function unit can be classified as a narrow-width
operand. Although the area and delay overhead is
reduced, if the detection is carried out in the above
manner, they lose out on exploiting narrow operands
that are loaded from the instruction and data cache.

The implementation by Choi et al. exploits those
narrow-width operands, whose high order bits are
the same [7]. The detection of narrow operands
is performed explicitly by a detection logic before
operands are passed on as inputs to the integer func-
tion unit. Although this ensures exploitation of all
narrow operand sets, there is a significant delay and
area overhead due to the detection logic.

Byte encoding applies the concept of narrow-width
operands at a finer granularity with regard to the
operand value. A byte wise partitioning, although
chosen arbitrarily, performs well and significant power
savings are reported in terms of reduction in switch-
ing activity in the ALU. Frequent-valued operands are
detected by a detection logic that encodes bytes of an
operand when they are loaded from the instruction
cache and the data cache.
3.2 Avoiding computation

Bypassing computation is achieved efficiently by
memoization. If an operand set is found to be
present in the execution cache, the inputs to the func-
tion unit remain unchanged and thus switching ac-
tivity through the function unit is considerably re-
duced. The result, which is also stored along with
the operand set in the execution cache, is forwarded
as the output of the function unit. The area over-
head is due to the storage of the operand set and the
result in the execution cache. A shortcoming of the
scheme as implemented by Azam et al. is that an

execution cache is required for each function unit [2].
This is an expensive overhead in terms of area and
power consumed. Sharing an execution cache across
multiple function units by using multiple ports would
be a possible solution to this. But this would cause a
severe slowdown. Adding an extra stage to the proces-
sor pipeline is also an overhead, as the overall latency
increases.

In the narrow-width operand exploitation tech-
nique, the partition point for a function unit is se-
lected based on the number of operand sets that can
be exploited and the size of the function that will
be active during a narrow-width operation so as to
achieve significant power savings [3]. Although, this
is a reasonable way to determine the partition point,
it does not ensure maximum power savings. By se-
lectively latching only the high order bytes of narrow
operands, switching activity in the function unit that
operates over the high order bytes of the operands
is reduced. They, however, do not discuss any integer
function unit in detail with regard to its structure (for
example, CLA has a tree structure, ripple carry adder
has a linear structure, array multiplier has an array
structure, etc.). The result for the high order bits is
provided through a multiplexor for frequent operands.

The partition point as determined by Choi et al.
aims to maximize power savings from estimations of
power savings [7]. However, they assume that power
dissipation scales linearly with the size of an integer
function unit. This may not always be true for differ-
ent structures of the same function unit. The output
for the high order bits is provided by sign extend-
ing the low order part of the result computed for the
narrow operands. They use a sign extension logic to
sign extend the narrow result. The high order bits
of the result are provided through a multiplexor and
the selection is based on a select signal produced by
the detection logic. This adds to the delay and area
overhead.

The byte-serial implementation as described by
Canal et al. enables independent operation of an inte-
ger function unit over individual bytes of operands [8].
Thus the byte encoding technique exploits more
cases of frequent valued operands as compared to
the narrow-width exploitation technique. But, sev-
eral dependencies between operand bytes have to be
checked for to determine whether computation over
the operand byte can actually be avoided. The result
for an operand byte is provided by either one of the
operand bytes or multiplexing hard wired values. The
dependencies between operand bytes of the operand
set are resolved using simple logic that varies for dif-
ferent function units. This also contributes to the area
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and delay overheads in addition to that incurred by
latching of operand bytes and multiplexing of output
bits.
3.3 Estimation of power savings

The energy savings reported for the memoization
technique are based on the assumption that the 2n-bit
comparator used to detect frequent-valued operand
sets consume 75% of the energy of the n-bit carry-
save adders in the multiplier and the energy required
to drive the word and bit lines of the 2n-bit tagged
cache is approximately the same as that dissipated in
an n-bit adder of the multiplier. This may report rea-
sonable power savings at a high level of abstraction,
but it does not provide realistic power savings.

The narrow-width operand exploitation technique
as implemented by Brooks et al. assumes that the
power dissipation of function units scales linearly at
the bit level. This may not necessarily be true as
function units are implemented in various structures
and thus the power savings reported by them, though
reasonably accurate at an architectural level, may not
be very realistic.

Choi et al. implemented their scheme on the array
multiplier and report power savings at the VLSI level.
However, the operands for which the array multiplier
was tested by Choi et al. were application-specific [7].
Such operands may not arise in general purpose pro-
cessors. Also, they do not implement their technique
on various integer function units for comparison.

Canal et al. estimate power savings based on activ-
ity reduction, which is based on the extension bits [8].
This does not accurately capture true power savings.
They also do not explain how such a design could
be extended to multiplication and division, which are
more complicated as compared to addition, compar-
ison, and bit-wise logical operations. In the paral-
lel compressed pipeline [8], they do not explain how
dependencies over different bytes of the ALU are re-
solved in the same cycle of operation. The detection of
dependencies would require more logic, which would
be different for different functions as the dependen-
cies would vary, and thus might not be shared across
different integer function units.

4 Simulations
In this section, we first describe the simulator used

to obtain operand traces and the benchmarks used in
our simulations. Next, we describe the simulations
that were performed at the VLSI level to obtain our
results.
4.1 Simulation for operand analysis

We use a version of SimpleScalar’s sim-outorder to
collect operands [4]. SimpleScalar provides a simu-

lation environment for out-of-order processors with
speculative execution. We collected operands for 10
million committed instructions for 5 integer (INT)
benchmarks from the SPEC CPU2000 suite after skip-
ping through a warm-up window of 500 million in-
structions for most benchmarks [15]. We collect 32-bit
operands just before they are issued to various integer
function units. The configuration of the simulator we
used is given in Table 1.

Benchmarks gzip, bzip2, gcc, mcf, gap

Compiler gcc 2.7.2.3 for the PISA version of Sim-
pleScalar

Inputs Reference inputs for each benchmark

Instruction
Count

10 million after the warmup window for
each benchmark

Processor
core

RUU size 16 instructions, LSQ size 8,
Fetch queue size 4 inst/cycle, Fetch
width 4 inst/cycle, Decode width 4
inst/cycle, Issue width 4 inst/cycle,
Functional units 4 integer ALUs, 1 in-
teger multiply/divide unit

Branch pre-
diction

2048-entry bimodal predictor

L1 instruc-
tion cache

512K, 32-byte blocks, direct-mapped

L1 data
cache

128K, 32-byte blocks, 4-way associative

L2 cache Unified, 1024K, 64-byte blocks, 4-way
associative

Table 1: Simulation setup to collect operands.

4.2 Simulation of integer function units
We designed and simulated the integer function

units using Cadence simulation tools and Spectre sim-
ulator. We used 0.18 micron technology to design
the circuits and designed them as static CMOS cir-
cuits. This type of circuit level simulation had not
been done previously to determine power savings in
integer function units for most of the schemes. The in-
teger function units we designed are carry look-ahead
tree adder, array-multiplier, comparator and bit-wise
logical function units (AND, OR, XOR, NOR). This
choice of function units covers various functions im-
plemented in various structures. We chose the carry
look-ahead tree adder and comparator to represent
the tree structure, the array multiplier to represent
an array structure, and the bit-wise logical function
units that are implemented in a linear fashion. Our
aim was to see the effectiveness of different techniques
when applied to different functions implemented in
different structures.

We simulated each circuit for a conventional design
of the functional unit for a set of 500 inputs per bench-
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mark to obtain the energy consumption in each func-
tion unit for comparison. We then simulated function
units with same set of operands after modifying the
design according to each scheme. Ideally, a choice for
the size of the set of inputs would be as large as possi-
ble, but this would lead to excessively long simulation
times.

For the memoization technique, we determined the
set of operands that would be bypassed and the set
of operands that would not be bypassed for a direct-
mapped cache. We simulated the integer function
units for those operand sets that would not be by-
passed owing to their availability in the execution
cache. The execution cache that we used had 64 en-
tries and was a direct-mapped cache. We also per-
formed simulations for the comparisons made between
operand sets to determine whether an operand set was
present in the execution cache. We assumed that the
energy required to drive the word and bit lines of the
2n-bit tagged cache is the same as the average energy
dissipated in an n-bit adder of the multiplier based
on the assumption made by Azam et al [2]. We do
not simulate the bit-wise logical function units as the
energy consumed by the overheads would be greater
than the savings that would be made if the computa-
tion were to be bypassed. This is due to the simplicity
of the structure of bit-wise logical function units.

For the narrow-width operand exploitation tech-
nique, we determined the partition point in two ways.
A partition point is determined so as to exploit the
maximum number of operands for all the integer func-
tion units. We also determined the partition point
by estimating the maximum power savings that are
possible for all the integer function units [7]. We
obtained partition points using both techniques and
partitioned operands so that the lower part of the
operand was 16 bits and 14 bits wide, respectively. In
order to determine these partition points we assumed
that power scales linearly at the bit-level for all the
function units. We perform operand detection before
the operands are issued to a function unit. The basic
building blocks for the integer function units such as
the full adder, carry save adder, and basic logic gates
were designed as static CMOS circuits [11].

In order to implement the byte encoding technique,
we simulate the byte serial implementation as de-
scribed by Canal et al. for the adder, comparator, and
the bit-wise logical operations [8]. Dependencies be-
tween bytes of the operands are resolved using simple
logic, which varies for different operations. We extend
the byte encoding technique to exploit operands in the
array multiplier. We divide the array multiplier into
four parts, so that a byte in one of the operands (A) is

multiplied by all the bytes in the other operand (B).
The presence of insignificant bytes in operand B is
also exploited. If a byte in operand B consists of all
zeros, a logical zero value is hardwired to the output
of that block. We only exploit those bytes whose bits
are all zero. The encoding of bytes for these operands
is also modified. Each byte whose constituent bits are
all zero is encoded as 1, and 0, otherwise.

5 Observations and analysis of simula-
tion results

From our simulations at the VLSI level, we ob-
serve that the estimated power savings are highly op-
timistic. Actual power savings are smaller and vary
for the various techniques. One of the reasons for this
could be that while estimating power savings, leakage
power is not taken into consideration. Another rea-
son could be that the estimations are based on the
switching activity that could potentially be reduced.
This may not accurately indicate realistic power sav-
ings. Also, the assumption that power scales linearly
at the bit-level may not always hold true for different
function units.

Our simulations show that memoization is not very
effective when applied to different integer functions.
It is effective only for long latency and complicated
functions. Although the presence of operand sets that
are reused by the same function units is abundant
(Fig. 4), exploiting these operand sets for simple func-
tions such as addition, comparison, and bit-wise log-
ical operations does not prove to be beneficial. We
only present plots for addition, comparison, and mul-
tiplication as the overheads would be too large to ex-
ploit bit-wise operations by this technique. Memo-
ization provides power savings only for multiplication
(Fig. 7). The area overhead is huge, about 65%. The
delay overhead is due to the additional stage in the
processor pipeline.
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Figure 4: Availability of operands that can be exploited
by memoization.
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Narrow operands for integer functions
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Figure 5: Availability of narrow-width operands.
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Figure 6: Availability of operands that can be exploited
using byte-encoding.

The abundance of narrow-width operand sets for
addition, comparison, and bit-wise logical operations
is evident from Fig. 5. We also observe that narrow
operand sets for multiplication are not as many. A
possible explanation for this is that results from mul-
tiplication are reused as operands for multiplication
frequently. In contrast, our simulations for actual
power savings for the narrow-width operand exploita-
tion technique as illustrated in Fig. 8 show that the
array multiplier gives the greatest amount of power
savings. This can be attributed to the fact that the
array multiplier has the largest and most complicated
structure as compared to the other function units un-
der consideration. Power savings for the adder and
the comparator are similar for this technique. The
power savings for the bit-wise logical operations are
not very significant, and this is probably due to the
simplicity of the structure of these function units. We
also observe that the power savings obtained by par-
titioning along the partition point obtained so as to
maximize power savings proves to be more effective as
compared to that obtained to exploit a large number
of operands. The delay overhead is similar for all the

operations except for multiplication. The same holds
true for the area overhead.

We analyzed operand availability for exploitation
by byte encoding at a byte level, since our implemen-
tation is of a byte-serial nature. Since it is possible
to operate over bytes of an operand independently,
we study the percentage of operands available for ex-
ploitation in individual bytes of the operand (Fig. 6).
We observe that the opportunity to exploit operands
is greatest in the most significant byte and decreases
as we move toward the least significant byte. The
power savings using byte encoding is again greatest
for multiplication(Fig. 9). The area overhead is much
greater compared to the narrow-width operand ex-
ploitation technique, as more logic is required to de-
tect dependencies between operands. Also, additional
logic is required to produce the output for frequent-
valued operand bytes. The delay overhead is greater
due to the excessive logic used.
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Figure 7: Power savings using memoization.
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Our results show that the byte encoding technique
is the most efficient technique to reduce power con-
sumption. This is because byte encoding exploits the
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Operand Integer Area Delay Estimated Actual
exploitation function overhead overhead power power
technique unit savings savings

CLA - - - -
Memoization Comparator - - - -

Bit-wise logical operations - - - -
Array multiplier 65% - 20.5% 11.2%

Narrow CLA 22.5% 1.3% 22.2% 12.1%
operand Comparator 22.2% 1.3% 19.4% 12.1%

exploitation Bit-wise logical operations 21.9% 1.3% 10.3% 5.1%
(16-bit) Array multiplier 27.4% 1.7% 24.1% 13.2%

Narrow CLA 21.3% 1.3% 18.4% 13.4%
operand Comparator 23.3% 1.3% 17.6% 13.3%

exploitation Bit-wise logical operations 20.4% 1.3% 9.1% 5.3%
(14-bit) Array multiplier 25.3% 1.7% 24.1% 14.9%

Byte CLA 26.6% 2.2% 27.2% 14.2%
encoding Comparator 26.1% 2.1% 22.2% 14.2%
(byte- Bit-wise logical operations 24.7% 2.2% 13.2% 6.1%
serial) Array multiplier 28.6% 2.4% 29% 16.4%

Table 2: Results averaged over integer benchmarks for different integer function units using various techniques to exploit
frequent-valued operands.
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Figure 9: Power savings using byte-encoding.

most number of cases of frequent valued operands at
a finer granularity. Table 2 tabulates the results. Our
results show that power can be reduced by 10-15% for
addition, comparison, and multiplication. The power
savings for bit-wise logical operations are still lower.

6 Conclusions and future work
In this paper, we presented power savings for in-

teger function units that were simulated at the VLSI
level using various low power techniques that exploit
frequent operands. We find from our results that the
power estimates predicted by previous work are op-
timistic, whereas actual power savings are smaller.
Another shortcoming to previous techniques is that
they only target reduction of dynamic power dissipa-
tion. These techniques do not address the issue of
leakage power, which becomes a significant part of

the total power dissipated as design moves towards
sub-micron technology. In order to gain considerable
power savings, these techniques need to be applied
more aggressively to design function units. We ob-
serve from our results that memoization, when ap-
plied to integer function units for general applications,
does not perform too well. However, narrow-operand
exploitation of operands and byte encoding prove to
be effective. A better organized execution cache that
is more efficient than the present implementation to
buffer operand sets and their results could lead to
greater power savings. Encoding of operand sets that
are operated on repeatedly can also be considered to
improve this technique. In order to exploit frequent-
valued operands more effectively, a more refined parti-
tioning of function units, based on operand statistics,
that exploits more cases of frequent valued operands
needs to be developed. An exhaustive enumeration of
all the possible frequent valued operands that could
be exploited by careful analysis of the structure of
function units can also be considered for future work.
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