
A Detailed Study of Hardware Techniques
That Dynamically Exploit Frequent Operands

to Reduce Power Consumption in Integer Function Units ∗

Kaushal R. Gandhi and Nihar R. Mahapatra

Department of Computer Science & Engineering
University at Buffalo, The State University of New York

Buffalo, NY 14260-2000, USA
Email: {krgandhi, mahapatr}@cse.buffalo.edu

Abstract The use of multiple pipelines in super-
scalar processors and increasing hardware support for
intelligent compilers have resulted in processors be-
coming computationally intensive. There has been an
increase in the number of function units, which are
wider and operate at higher speeds. A high percent-
age of integer instructions executed in standard bench-
marks reveal a high usage of integer function units.

In this paper, we analyze three different techniques,
namely, memoing (caching results that can be reused),
narrow-width operand exploitation (limiting computa-
tion to low order bytes), and byte encoding (compu-
tation performed over significant bytes), that dynam-
ically exploit operands to lower power consumption in
integer function units. Each technique proposes avoid-
ing redundant computation in a function unit and pro-
viding the output or a part of the output via alternate
means. We analyze and compare these techniques in
terms of power savings, area and delay overheads, and
their effectiveness when applied to different integer
function units. Previously, estimates of power sav-
ings based on switching activity were reported. Our
implementation of integer function units (CLA, ar-
ray multiplier, comparator, etc.) at the VLSI layout
level and analysis using standard integer benchmarks
from the SPEC CPU2000 suite provide realistic power
savings, area, and delay overheads.

1 Introduction
VLSI research and development and advances in

computer architecture have resulted in processors be-
coming computationally intensive. The use of multi-
ple pipelines in superscalar processors and increasing
hardware support for intelligent and efficient compil-
ers has led to higher performance in processors, but at
the same time increased the computation demanded
from functional units. The increase in the perfor-
mance of processors has led to greater power con-
sumption and thrust low power to the forefront as
an important design parameter. A high percentage of
integer instructions executed in standard benchmarks
reveal a high usage of integer function units. Hence
the necessity of designing power-efficient integer func-

∗This research was supported by US National Science Foun-
dation Grant # 0102830.

tion units.
Power dissipation in CMOS circuits falls into two

categories: dynamic and static. Static power dissipa-
tion is due to leakage current. Dynamic power dissi-
pation is due to: (1) short-circuit current during an
output transition that is caused by a DC path be-
tween the supply rails and the ground line and (2)
the charging and dis-charging of capacitive loads dur-
ing logic changes [9]. Techniques to reduce static
power dissipation aim to turn off functional units dur-
ing idle cycles, e.g., through power gating and use of
dual threshold voltages [12, 10, 14, 18]. At the cir-
cuit level, voltage scaling, transistor sizing, transfor-
mations, and innovative circuit design techniques have
been proposed to reduce power consumption [5, 6, 17].
At a higher level of abstraction, compilers aim to re-
duce power by producing energy-efficient code. Most
of these techniques do not exploit operand values dy-
namically. Only recently, researchers have looked into
the possibility of exploiting operand values to reduce
power consumption. The observation that many com-
putations on operands are redundant for typical ap-
plications and the fact that operands that are inputs
to functional units are not completely random provide
opportunities for operand exploitation to reduce dy-
namic power dissipation. Three such techniques are:
memoization (caching frequent operand sets and re-
sults for reuse), narrow-width operand (operands that
can be represented in fewer bits) exploitation, and
byte encoding (computation skipped over insignificant
bytes). In this paper, we comprehensively analyze and
compare these techniques in terms of their power sav-
ings, area and delay overheads, and effectiveness when
applied to different functional units.

The organization of the remainder of the paper is
as follows. In Section 2, we describe the above three
techniques in detail and in Section 3, we analyze them.
Following that, in Section 4, we describe the simula-
tion setup. In Section 5, we analyze the results ob-
tained and compare them. Finally, we conclude and
propose future work in Section 6.

2 Operand value exploitation for low
power

We analyze memoization, narrow-width operand
exploitation technique, and byte encoding tech-
nique [2, 3, 7, 8]. These techniques share some
common features: (1) hardware schemes that ex-
ploit operands dynamically, (2) detection of frequent
operands, (3) reduction of redundant computation by
avoiding computation on frequent operands and pro-
viding the output via alternate means, and (4) power
savings achieved by reduction in the switching activity
of a function unit. Memoization exploits the tempo-
ral locality of operand sets [2], while the other two
schemes exploit the magnitude of operand values at
different levels of granularity [3, 7, 8].

2.1 Memoization
Reusing results that were previously calculated, in-

stead of computing them again, could potentially lead
to significant power savings in function units. The
frequent reuse of data in many applications supports
this claim. Memoization, a technique that stores re-
sults for reuse, has been used previously for improving
performance [13]. Azam et al. use this concept to re-
duce power dynamically [2]. They proposed the use
of an execution cache per function unit that can be
used as a buffer to capture the temporal locality of
operand sets in instruction and data streams. Each
entry of the execution cache consists of a computed
value and the operand set for which it was computed.
The execution cache is either a direct-mapped cache
or an s-way set associative cache with LRU replace-
ment policy. An execution cache stage is introduced
in the processor pipeline, which is placed between the
instruction decode stage and the execute stage, to de-
termine whether an operand set is being reused.

ID CACHE EX MEM/WB

File

Register

A

B

B A

Tag Result

A

BC
om

pa
ra

to
r

Execution Cache

Mux

Op

Figure 1: Memoization: Simple bypass via operand
tagged caching [2].

During the execution cache stage, certain bits of
an operand set ready to be issued to a function unit
are used to index into the execution cache. The re-
maining bits of the operand set are compared to the
corresponding bits of the operand set stored in the
cache entry. The matching of these two operand sets
implies that computation by the function unit can be
bypassed as the result is already known and can be
reused. If the operand sets do not match, the func-
tion unit performs computation over these operands
and the result is stored in the execution cache. Using
this technique, operand sets are exploited based on
their their frequent occurrence for a particular func-
tion. The design is illustrated in Fig. 1 [2].

2.2 Narrow-width operand exploitation
Although modern microprocessors support 64-bit

addresses and operations, most ALU operands have
much smaller magnitudes that can be represented us-
ing 16, 8, or fewer bits. By dynamically shutting off
that part of a function unit which operates over the
high order bytes of frequent operands and sign exten-
sion of the result computed for the low order bytes
results in significant reduction of switching activity.
This approach to operate only a part of the original
circuit by latching of certain inputs is termed guarded
evaluation [16]. We study two implementations of this
technique [3, 7].

16

32

16

16

32

32

32

32

16

16

16

16

16

16

16

16

16

zero_by

Result

32

16
0

Mux

L
ow

H
ig

h

Operand A

zero_A

zero_by

zero_B

Clk

Gated Clk

Operand B

Zero
Detect

Integer

Function

Unit

H
ig

h
L

ow

Clk

Clk

Figure 2: Exploiting narrow-width operands [3].

Fig. 2 illustrates the architecture proposed by
Brooks et al. [3]. By disabling value changes in the
high order part of a function unit when both operands
are narrow-width operands, they are able to reduce
switching activity and thus reduce the dynamic power
dissipation. This disabling of the high order part
of a function unit is achieved by selectively clock-
ing the latches that feed the high order bits of the
operands to the function unit. The low order bits are
always latched. The selective latching of the high or-
der part of the operand depends upon whether both
the operands have leading ones/zeros in their high or-
der bits. The high order bits are latched selectively
based on the clock and a signal called zero/one. This
signal, generated using a zero/one detection logic, is
stored along with an operand in the register when the
operand was either computed as a result or when it
was loaded from the cache. The result for the high or-
der part of the function unit is supplied by hardwired
values through a multiplexor.

B

A

Clk

Load

Register − 1 Register − 2

Input − 2Input − 1

Sel

Sel
Latch − P

L
at

ch
 −

 C

Most

Significant

Part Part

Significant

Least

Sign extension logic

Output

Detection logic

Figure 3: Exploiting narrow-width operands by partially
guarded computation [7].

Fig. 3 illustrates the technique employed by Choi
et al. to reduce dynamic power dissipation [7]. The
high order bits of the inputs are selectively passed
on to that part of the function unit that operates on
them through latches. The latches are controlled by
a signal produced by a detection logic which detects
whether the high order bits of both the operands are
either zeros/ones. The high order bits of the result
are computed via a sign extension logic when both
the operands are narrow-width operands.

2.3 Byte encoding
This scheme employs the same method of prevent-

ing the propagation of operand bits as described in

the previous section, however, at a finer granularity
[8]. Canal et al. propose exploitation of operands
at various stages in a processor pipeline. We only
discuss the application to integer function units here.
Operands are coded at a byte level and this choice
of dividing an operand into bytes is arbitrary. The
least significant byte is always considered to be sig-
nificant and a function unit always operates over this
byte of the operand sets. One scheme of encoding is
to add extra bits that represent the number of high
order bytes that are merely sign extensions. Another
scheme of encoding is to represent each high order
byte by one bit. A byte is encoded as 1 if it is the sign
extension of the adjacent byte and 0, otherwise. The
overhead in terms of bits appended to each operand is
higher in the latter scheme, but it exploits more cases
of frequent valued operands than the former. The
extension bits are computed using simple detection
logic when an operand is loaded from the instruc-
tion or data cache and when a result is computed.
The authors describe three different implementations
for a 32-bit wide processor, namely, byte-serial imple-
mentation, in which the data path is one-byte wide,
semi-parallel implementation, in which the data path
is two-bytes wide, and fully parallel implementation,
in which the data path is four-bytes wide.

3 Analysis of techniques
In this Section, we analyze the advantages of each

scheme and also discuss some of the shortcomings.
Each of these schemes involves detection of frequent
operand values, a method to bypass or limit computa-
tion on such frequent-valued operands, and a method
to provide the whole output or a part of it by alternate
means.
3.1 Frequent-valued operand detection

Integer function units that have long latencies and
cause extensive switching are targets for memoization.
The power savings would be significant in such func-
tion units if they were to operate on the same operand
set frequently. All operand sets that have temporal lo-
cality can potentially be exploited. Frequent valued
operands as exploited by this scheme are operand sets
that have temporal locality with respect to a particu-
lar function unit. The implementation by Azam et al.
uses an execution cache per function unit [2]. Hence
the area overhead is significant. In order to detect
the temporal locality of an operand set, an operand
set ready to be issued to a function unit is compared
to an operand set stored in an entry of the execution
cache. This involves a comparison each time an inte-
ger function unit is supposed to be used. This is an
expensive overhead in terms of the power dissipated

while comparing operand sets. Thus a limitation of
this technique is the kind of function that can be by-
passed to achieve significant power savings. As the
detection of frequent operands involves comparison of
operands, it is most useful to apply this technique to
functions that consume more power than addition, as
comparison of operands, during the cache stage, in-
curs power consumption similar to that of addition.

Narrow-width operand exploitation targets all
types of integer function units in the processor
pipeline and results presented previously show sig-
nificant power savings [3]. Their implementation ex-
ploits those narrow-width operands, whose high order
bits are the same in both operands. They assume
some processors have a zero-check for operands be-
fore they are loaded from memory. This may not
be true in general and it may be required to detect
narrow-width operands explicitly. Their implementa-
tion detects whether a result computed by an inte-
ger function unit can be classified as a narrow-width
operand. Although the area and delay overhead is
reduced, if the detection is carried out in the above
manner, they lose out on exploiting narrow operands
that are loaded from the instruction and data cache.

The implementation by Choi et al. exploits those
narrow-width operands, whose high order bits are
the same [7]. The detection of narrow operands
is performed explicitly by a detection logic before
operands are passed on as inputs to the integer func-
tion unit. Although this ensures exploitation of all
narrow operand sets, there is a significant delay and
area overhead due to the detection logic.

Byte encoding applies the concept of narrow-width
operands at a finer granularity with regard to the
operand value. A byte wise partitioning, although
chosen arbitrarily, performs well and significant power
savings are reported in terms of reduction in switch-
ing activity in the ALU. Frequent-valued operands are
detected by a detection logic that encodes bytes of an
operand when they are loaded from the instruction
cache and the data cache.
3.2 Avoiding computation

Bypassing computation is achieved efficiently by
memoization. If an operand set is found to be
present in the execution cache, the inputs to the func-
tion unit remain unchanged and thus switching ac-
tivity through the function unit is considerably re-
duced. The result, which is also stored along with
the operand set in the execution cache, is forwarded
as the output of the function unit. The area over-
head is due to the storage of the operand set and the
result in the execution cache. A shortcoming of the
scheme as implemented by Azam et al. is that an

execution cache is required for each function unit [2].
This is an expensive overhead in terms of area and
power consumed. Sharing an execution cache across
multiple function units by using multiple ports would
be a possible solution to this. But this would cause a
severe slowdown. Adding an extra stage to the proces-
sor pipeline is also an overhead, as the overall latency
increases.

In the narrow-width operand exploitation tech-
nique, the partition point for a function unit is se-
lected based on the number of operand sets that can
be exploited and the size of the function that will
be active during a narrow-width operation so as to
achieve significant power savings [3]. Although, this
is a reasonable way to determine the partition point,
it does not ensure maximum power savings. By se-
lectively latching only the high order bytes of narrow
operands, switching activity in the function unit that
operates over the high order bytes of the operands
is reduced. They, however, do not discuss any integer
function unit in detail with regard to its structure (for
example, CLA has a tree structure, ripple carry adder
has a linear structure, array multiplier has an array
structure, etc.). The result for the high order bits is
provided through a multiplexor for frequent operands.

The partition point as determined by Choi et al.
aims to maximize power savings from estimations of
power savings [7]. However, they assume that power
dissipation scales linearly with the size of an integer
function unit. This may not always be true for differ-
ent structures of the same function unit. The output
for the high order bits is provided by sign extend-
ing the low order part of the result computed for the
narrow operands. They use a sign extension logic to
sign extend the narrow result. The high order bits
of the result are provided through a multiplexor and
the selection is based on a select signal produced by
the detection logic. This adds to the delay and area
overhead.

The byte-serial implementation as described by
Canal et al. enables independent operation of an inte-
ger function unit over individual bytes of operands [8].
Thus the byte encoding technique exploits more
cases of frequent valued operands as compared to
the narrow-width exploitation technique. But, sev-
eral dependencies between operand bytes have to be
checked for to determine whether computation over
the operand byte can actually be avoided. The result
for an operand byte is provided by either one of the
operand bytes or multiplexing hard wired values. The
dependencies between operand bytes of the operand
set are resolved using simple logic that varies for dif-
ferent function units. This also contributes to the area

and delay overheads in addition to that incurred by
latching of operand bytes and multiplexing of output
bits.
3.3 Estimation of power savings

The energy savings reported for the memoization
technique are based on the assumption that the 2n-bit
comparator used to detect frequent-valued operand
sets consume 75% of the energy of the n-bit carry-
save adders in the multiplier and the energy required
to drive the word and bit lines of the 2n-bit tagged
cache is approximately the same as that dissipated in
an n-bit adder of the multiplier. This may report rea-
sonable power savings at a high level of abstraction,
but it does not provide realistic power savings.

The narrow-width operand exploitation technique
as implemented by Brooks et al. assumes that the
power dissipation of function units scales linearly at
the bit level. This may not necessarily be true as
function units are implemented in various structures
and thus the power savings reported by them, though
reasonably accurate at an architectural level, may not
be very realistic.

Choi et al. implemented their scheme on the array
multiplier and report power savings at the VLSI level.
However, the operands for which the array multiplier
was tested by Choi et al. were application-specific [7].
Such operands may not arise in general purpose pro-
cessors. Also, they do not implement their technique
on various integer function units for comparison.

Canal et al. estimate power savings based on activ-
ity reduction, which is based on the extension bits [8].
This does not accurately capture true power savings.
They also do not explain how such a design could
be extended to multiplication and division, which are
more complicated as compared to addition, compar-
ison, and bit-wise logical operations. In the paral-
lel compressed pipeline [8], they do not explain how
dependencies over different bytes of the ALU are re-
solved in the same cycle of operation. The detection of
dependencies would require more logic, which would
be different for different functions as the dependen-
cies would vary, and thus might not be shared across
different integer function units.

4 Simulations
In this section, we first describe the simulator used

to obtain operand traces and the benchmarks used in
our simulations. Next, we describe the simulations
that were performed at the VLSI level to obtain our
results.
4.1 Simulation for operand analysis

We use a version of SimpleScalar’s sim-outorder to
collect operands [4]. SimpleScalar provides a simu-

lation environment for out-of-order processors with
speculative execution. We collected operands for 10
million committed instructions for 5 integer (INT)
benchmarks from the SPEC CPU2000 suite after skip-
ping through a warm-up window of 500 million in-
structions for most benchmarks [15]. We collect 32-bit
operands just before they are issued to various integer
function units. The configuration of the simulator we
used is given in Table 1.

Benchmarks gzip, bzip2, gcc, mcf, gap

Compiler gcc 2.7.2.3 for the PISA version of Sim-
pleScalar

Inputs Reference inputs for each benchmark

Instruction
Count

10 million after the warmup window for
each benchmark

Processor
core

RUU size 16 instructions, LSQ size 8,
Fetch queue size 4 inst/cycle, Fetch
width 4 inst/cycle, Decode width 4
inst/cycle, Issue width 4 inst/cycle,
Functional units 4 integer ALUs, 1 in-
teger multiply/divide unit

Branch pre-
diction

2048-entry bimodal predictor

L1 instruc-
tion cache

512K, 32-byte blocks, direct-mapped

L1 data
cache

128K, 32-byte blocks, 4-way associative

L2 cache Unified, 1024K, 64-byte blocks, 4-way
associative

Table 1: Simulation setup to collect operands.

4.2 Simulation of integer function units
We designed and simulated the integer function

units using Cadence simulation tools and Spectre sim-
ulator. We used 0.18 micron technology to design
the circuits and designed them as static CMOS cir-
cuits. This type of circuit level simulation had not
been done previously to determine power savings in
integer function units for most of the schemes. The in-
teger function units we designed are carry look-ahead
tree adder, array-multiplier, comparator and bit-wise
logical function units (AND, OR, XOR, NOR). This
choice of function units covers various functions im-
plemented in various structures. We chose the carry
look-ahead tree adder and comparator to represent
the tree structure, the array multiplier to represent
an array structure, and the bit-wise logical function
units that are implemented in a linear fashion. Our
aim was to see the effectiveness of different techniques
when applied to different functions implemented in
different structures.

We simulated each circuit for a conventional design
of the functional unit for a set of 500 inputs per bench-

mark to obtain the energy consumption in each func-
tion unit for comparison. We then simulated function
units with same set of operands after modifying the
design according to each scheme. Ideally, a choice for
the size of the set of inputs would be as large as possi-
ble, but this would lead to excessively long simulation
times.

For the memoization technique, we determined the
set of operands that would be bypassed and the set
of operands that would not be bypassed for a direct-
mapped cache. We simulated the integer function
units for those operand sets that would not be by-
passed owing to their availability in the execution
cache. The execution cache that we used had 64 en-
tries and was a direct-mapped cache. We also per-
formed simulations for the comparisons made between
operand sets to determine whether an operand set was
present in the execution cache. We assumed that the
energy required to drive the word and bit lines of the
2n-bit tagged cache is the same as the average energy
dissipated in an n-bit adder of the multiplier based
on the assumption made by Azam et al [2]. We do
not simulate the bit-wise logical function units as the
energy consumed by the overheads would be greater
than the savings that would be made if the computa-
tion were to be bypassed. This is due to the simplicity
of the structure of bit-wise logical function units.

For the narrow-width operand exploitation tech-
nique, we determined the partition point in two ways.
A partition point is determined so as to exploit the
maximum number of operands for all the integer func-
tion units. We also determined the partition point
by estimating the maximum power savings that are
possible for all the integer function units [7]. We
obtained partition points using both techniques and
partitioned operands so that the lower part of the
operand was 16 bits and 14 bits wide, respectively. In
order to determine these partition points we assumed
that power scales linearly at the bit-level for all the
function units. We perform operand detection before
the operands are issued to a function unit. The basic
building blocks for the integer function units such as
the full adder, carry save adder, and basic logic gates
were designed as static CMOS circuits [11].

In order to implement the byte encoding technique,
we simulate the byte serial implementation as de-
scribed by Canal et al. for the adder, comparator, and
the bit-wise logical operations [8]. Dependencies be-
tween bytes of the operands are resolved using simple
logic, which varies for different operations. We extend
the byte encoding technique to exploit operands in the
array multiplier. We divide the array multiplier into
four parts, so that a byte in one of the operands (A) is

multiplied by all the bytes in the other operand (B).
The presence of insignificant bytes in operand B is
also exploited. If a byte in operand B consists of all
zeros, a logical zero value is hardwired to the output
of that block. We only exploit those bytes whose bits
are all zero. The encoding of bytes for these operands
is also modified. Each byte whose constituent bits are
all zero is encoded as 1, and 0, otherwise.

5 Observations and analysis of simula-
tion results

From our simulations at the VLSI level, we ob-
serve that the estimated power savings are highly op-
timistic. Actual power savings are smaller and vary
for the various techniques. One of the reasons for this
could be that while estimating power savings, leakage
power is not taken into consideration. Another rea-
son could be that the estimations are based on the
switching activity that could potentially be reduced.
This may not accurately indicate realistic power sav-
ings. Also, the assumption that power scales linearly
at the bit-level may not always hold true for different
function units.

Our simulations show that memoization is not very
effective when applied to different integer functions.
It is effective only for long latency and complicated
functions. Although the presence of operand sets that
are reused by the same function units is abundant
(Fig. 4), exploiting these operand sets for simple func-
tions such as addition, comparison, and bit-wise log-
ical operations does not prove to be beneficial. We
only present plots for addition, comparison, and mul-
tiplication as the overheads would be too large to ex-
ploit bit-wise operations by this technique. Memo-
ization provides power savings only for multiplication
(Fig. 7). The area overhead is huge, about 65%. The
delay overhead is due to the additional stage in the
processor pipeline.

Operand availability for memoing

0

5

10

15

20

25

30

gap gcc gzip mcf bzip2

Integer benchmarks

H
it

ra
te

 o
f e

xe
cu

tio
n

ca
ch

e
fo

r
op

er
an

d
se

ts

Addition
Comparison
Multiplication

Figure 4: Availability of operands that can be exploited
by memoization.

Narrow operands for integer functions

0

5

10

15

20

25

30

35

40

45

50

Addition Comparison Bit-wise logical
operations

Multiplication

Integer functions

%
 o

f o
pe

ra
nd

 s
et

s
w

he
re

 e
ac

h
op

er
an

d
ca

n
be

 r
ep

re
se

nt
ed

in

 1
6

bi
ts

 o
r

le
ss

gap
gcc
gzip
mcf
bzip2

Figure 5: Availability of narrow-width operands.

Operand exploitation using byte
encoding

0

10

20

30

40

50

60

70

Byte 3 Byte 2 Byte 1

High order bytes of a 32-bit operand

%
 o

f o
pe

ra
nd

 b
yt

e-
pa

ir
s

th
at

 c
an

 b
e

ex
pl

oi
te

d
(a

ve
ra

ge
d

ov
er

 in
te

ge
r

be
nc

hm
ar

ks
)

Addition

Comparison

Bit-wise logical
operations

Multiplication

Figure 6: Availability of operands that can be exploited
using byte-encoding.

The abundance of narrow-width operand sets for
addition, comparison, and bit-wise logical operations
is evident from Fig. 5. We also observe that narrow
operand sets for multiplication are not as many. A
possible explanation for this is that results from mul-
tiplication are reused as operands for multiplication
frequently. In contrast, our simulations for actual
power savings for the narrow-width operand exploita-
tion technique as illustrated in Fig. 8 show that the
array multiplier gives the greatest amount of power
savings. This can be attributed to the fact that the
array multiplier has the largest and most complicated
structure as compared to the other function units un-
der consideration. Power savings for the adder and
the comparator are similar for this technique. The
power savings for the bit-wise logical operations are
not very significant, and this is probably due to the
simplicity of the structure of these function units. We
also observe that the power savings obtained by par-
titioning along the partition point obtained so as to
maximize power savings proves to be more effective as
compared to that obtained to exploit a large number
of operands. The delay overhead is similar for all the

operations except for multiplication. The same holds
true for the area overhead.

We analyzed operand availability for exploitation
by byte encoding at a byte level, since our implemen-
tation is of a byte-serial nature. Since it is possible
to operate over bytes of an operand independently,
we study the percentage of operands available for ex-
ploitation in individual bytes of the operand (Fig. 6).
We observe that the opportunity to exploit operands
is greatest in the most significant byte and decreases
as we move toward the least significant byte. The
power savings using byte encoding is again greatest
for multiplication(Fig. 9). The area overhead is much
greater compared to the narrow-width operand ex-
ploitation technique, as more logic is required to de-
tect dependencies between operands. Also, additional
logic is required to produce the output for frequent-
valued operand bytes. The delay overhead is greater
due to the excessive logic used.

Power savings for multiplication by
memoization

0

5

10

15

20

25

30

gap gcc gzip mcf bzip2

Integer benchmarks

%
 p

ow
er

 s
av

in
gs

Estimated power savings
Actual power savings

Figure 7: Power savings using memoization.

Power savings using narrow operand
exploitation (averaged over integer

benchmarks)

0

5

10

15

20

25

30

Addition Comparison Bit-wise logical
operations

Multiplication

Integer function

%
 p

ow
er

 s
av

in
gs

Estimated power, high
order bits: 31-16, low
order bits: 15-0
Actual power, high
order bits: 31-16, low
order bits: 15-0
Estimated power, high
order bits: 31-14, low
order bits: 13-0
Actual power, high
order bits: 31-14, low
order bits: 13-0

Figure 8: Power savings using narrow-width operand
exploitation.

Our results show that the byte encoding technique
is the most efficient technique to reduce power con-
sumption. This is because byte encoding exploits the

Operand Integer Area Delay Estimated Actual
exploitation function overhead overhead power power
technique unit savings savings

CLA - - - -
Memoization Comparator - - - -

Bit-wise logical operations - - - -
Array multiplier 65% - 20.5% 11.2%

Narrow CLA 22.5% 1.3% 22.2% 12.1%
operand Comparator 22.2% 1.3% 19.4% 12.1%

exploitation Bit-wise logical operations 21.9% 1.3% 10.3% 5.1%
(16-bit) Array multiplier 27.4% 1.7% 24.1% 13.2%

Narrow CLA 21.3% 1.3% 18.4% 13.4%
operand Comparator 23.3% 1.3% 17.6% 13.3%

exploitation Bit-wise logical operations 20.4% 1.3% 9.1% 5.3%
(14-bit) Array multiplier 25.3% 1.7% 24.1% 14.9%

Byte CLA 26.6% 2.2% 27.2% 14.2%
encoding Comparator 26.1% 2.1% 22.2% 14.2%

(byte- Bit-wise logical operations 24.7% 2.2% 13.2% 6.1%
serial) Array multiplier 28.6% 2.4% 29% 16.4%

Table 2: Results averaged over integer benchmarks for different integer function units using various techniques to exploit
frequent-valued operands.

Power savings using byte encoding
(averaged over integer benchmarks)

0

5

10

15

20

25

30

35

Addition Comparison Bit-wise logical
operations

Multiplication

Integer function

%
 p

ow
er

 s
av

in
gs

Estimated power
savings
Actual power savings

Figure 9: Power savings using byte-encoding.

most number of cases of frequent valued operands at
a finer granularity. Table 2 tabulates the results. Our
results show that power can be reduced by 10-15% for
addition, comparison, and multiplication. The power
savings for bit-wise logical operations are still lower.

6 Conclusions and future work
In this paper, we presented power savings for in-

teger function units that were simulated at the VLSI
level using various low power techniques that exploit
frequent operands. We find from our results that the
power estimates predicted by previous work are op-
timistic, whereas actual power savings are smaller.
Another shortcoming to previous techniques is that
they only target reduction of dynamic power dissipa-
tion. These techniques do not address the issue of
leakage power, which becomes a significant part of

the total power dissipated as design moves towards
sub-micron technology. In order to gain considerable
power savings, these techniques need to be applied
more aggressively to design function units. We ob-
serve from our results that memoization, when ap-
plied to integer function units for general applications,
does not perform too well. However, narrow-operand
exploitation of operands and byte encoding prove to
be effective. A better organized execution cache that
is more efficient than the present implementation to
buffer operand sets and their results could lead to
greater power savings. Encoding of operand sets that
are operated on repeatedly can also be considered to
improve this technique. In order to exploit frequent-
valued operands more effectively, a more refined parti-
tioning of function units, based on operand statistics,
that exploits more cases of frequent valued operands
needs to be developed. An exhaustive enumeration of
all the possible frequent valued operands that could
be exploited by careful analysis of the structure of
function units can also be considered for future work.

References
[1] M. Alidina, J. Monteiro, S. Devadas, A. Ghosh and

M. Papaefthymiou. Precomputation-based sequential
logic optimization for low power. In IEEE Trans.
Very Large Scale Integr. Syst. 2, 4 (Dec. 1994), 426-
436.

[2] M. Azam, P. Franzon and W. Liu. Low-power data
processing by elimination of redundant computation.
In proceedings of the international symposium on low
power electronics and design, 1997.

[3] D. Brooks, M. Martonosi. Value-based clock gating
and operation packing: dynamic strategies for im-
proving processor power and performance. In ACM
Transactions on computer systems, Vol. 18, 2. May,
2000.

[4] D. Burger, T. Austin. The simple scalar tool set.
Tech. Rep. TR-1342. Computer Science Dept., Univ.
of Wisconsin, Madison. 1997

[5] A. P. Chandrakasan, R. W. Brodersen. Minimizing
Power Consumption in Digital CMOS Circuits. Pro-
ceedings of the IEEE, Vol. 83: 498-523, April 1995.

[6] A. P. Chandrakasan, M. Potomac, R. Mehra,
J. Rabaey, R. W. Brodersen. Optimizing Power
Using Transformations. In IEEE Transactions on
Computer-Aided Design, 1995.

[7] J. Choi, J. Jeon, K. Choi. Power minimization of
functional units by partially guarded computation.
ACM/IEEE International Symposium on Low Power
Electronics and Design (ISLPED), 2000.

[8] R. Canal, A. Gonzalez, J. Smith. Very low power
pipelines using significance compression. Proceedings
of the 33rd Annual ACM/IEEE international sympo-
sium on Microarchitecture, 2000.

[9] M. Pedram. Design technologies for Low Power VLSI.
In Encyclopedia of Computer Science and Technology,
Vol. 36, Marcel Dekker, Inc., 1997, pp. 73-96.

[10] M. D. Powell, S-H. Yang, B. Falsafi, K. Roy, and
T. N. Vijaykumar. Gated Vdd: A Circuit Technique
to Reduce Leakage in Deep-Submicron Cache Memo-
ries. In ACM/IEEE International Symposium on Low
Power Electronics and Design (ISLPED), 2000.

[11] J. Rabaey. Digital integrated circuits, a design per-
spective. Prentice Hall, Inc. 1996.

[12] S. Rele, S. Pande, S. Onder, and R. Gupta. Optimiza-
tion of Static Power Dissipation by Functional Units
in Superscalar Processors. International Conference
on Compiler Construction, LNCS 2304, Springer Ver-
lag, pages 261-275, Grenoble, France, April 2002

[13] S. E. Richardson. Caching function results: faster
arithmetic by avoiding unnecessary computation.
Technical report, Sun Microsystems Laboratories,
1992.

[14] K. Roy. Leakage Power Reduction in Low-Voltage
CMOS Design. In IEEE International Conference on
Circuits and Systems, pages 167-173, 1998.

[15] K. Skadron , P. Ahuja , M. Martonosi , D. Clark.
Branch Prediction, Instruction-Window Size, and
Cache Size: Performance Trade-Offs and Simulation
Techniques. In IEEE Transactions on Computers,
v.48 n.11, p.1260-1281, November 1999

[16] V. Tiwari, S. Malik, P. Ashar. Guarded Evalua-
tion: Pushing Power Management to Logic Synthe-
sis/Design. IEEE Trans. on CAD, vol. 17, no. 10,
Oct. 1998, pp. 1051-60.

[17] V. Tiwari , D. Singh , S. Rajgopal , G. Mehta , R.
Patel , F. Baez. Reducing power in high-performance
microprocessors. Proceedings of the 35th annual con-

ference on Design automation conference p.732-737,
June 15-19, 1998.

[18] Q. Wang and S. Vrudhula. Static Power Optimization
of Deep Submicron CMOS Circuits for Dual VT Tech-
nology. In International Conference on Computer-
Aided Design (ICCAD), pages 490-496, 1998.

