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Abstract
Pre-execution systems reduce the impact of cache

misses and branch mispredictions by forking a slice, a
code fragment derived from the program, in advance of
frequently mispredicted branches and frequently missing
loads in order to either resolve the branch or prefetch
the load. Because unnecessary instructions are omit-
ted the slice reaches the branch or load before the main
thread does, for loads this time margin can reduce or
even eliminate cache miss delay.

Published results have shown significant improve-
ments for some benchmarks, on the order of 20%,
with many showing at least single-digit improvements.
These studies left unexamined two system parameters
that one would expect pre-execution to be sensitive to:
fetch rate and reorder buffer size. Higher fetch rate
would allow the main thread to reach the troublesome
load sooner, but would not affect the slice and so the
slice’s margin is reduced. Studies have shown large po-
tential margins for slices, but the fetch rate effect has
not been measured. A second system parameter is re-
order buffer size. A larger reorder buffer would allow
a system to hide more of the miss latency that pre-
execution reduces.

To test the sensitivity to these factors pre-execution
schemes were simulated on systems with varying fetch
rates and reorder buffer sizes. Results show that higher
fetch rate does not reduce pre-execution speedup in most
benchmarks. Reorder buffer size sensitivity varies,
some benchmarks are insensitive to reorder buffer size
increases beyond 256 entries, but still benefit from pre-
execution, the benefit due in large part to prefetching
those loads that provide values for frequently mispre-
dicted branches. The benchmarks that are sensitive to
reorder buffer size are also the ones that benefit most
from pre-execution.

1. Introduction

Pre-execution schemes are one approach to reduc-
ing the impact of cache misses and branch mispre-
dictions. In a pre-execution scheme troublesome (fre-
quently missing) loads are identified and for each trou-
blesome load a slice consisting of the load and instruc-
tions producing its address is constructed and cached.
For each slice a trigger instruction is identified, the
next time the trigger is encountered the slice will be
retrieved and executed. If successful the load in the
slice, called the prefetch load, will execute several cy-
cles before the load for which the slice was constructed,
reducing or eliminating cache miss latency. Slices do
not affect state visible to the running program and
so they may be killed at any time, only at the cost
of missing a prefetch opportunity. Slices can also be
constructed for troublesome branches, though with the
added complication of matching the predicted outcome
to the main-thread instruction stream.

In some schemes slices are constructed dynamically
and in hardware, in others they are prepared in soft-
ware based on a profile run. The slice might be a subset
of the dynamic instruction stream, or it might be op-
timized in some way. Slice decode and execution share
existing processor resources in some schemes, in others
slice execution uses its own decode hardware, execution
hardware, or both. For more details see Section 2.

What is common in the pre-execution schemes ex-
amined here is that the slice consists of ordinary ma-
chine instructions which make use of processor state
from the running program, in particular register values,
and that the slice is forked when the program reaches
some instruction.

The use of machine state and execution resources
for slice execution is costly in one way or another. If
execution resources are duplicated the cost is direct,
and in all schemes at least the register map or register
values must be copied. If resources are shared then in-
struction queues and other scheduling hardware must
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Figure 1. Typical pre-execution hardware organiza-
tion. Slice instructions share functional units but not
reorder buffer slots. Illustrated (and simulated) system
has separate decode/rename for slices. In other pro-
posed schemes slice shared decode/rename with the
main thread.

be enlarged. When implemented on top of simultane-
ous multithreading hardware, slices displace ordinary
threads.

These costs are offset by the potential benefit, which
there is plenty of since load latency is no small problem.
Zilles and Sohi [21] show that performance would im-
prove by a large amount, more than doubling for some
SPEC2000 integer benchmarks, if troublesome loads
hit the cache and troublesome branches were correctly
predicted. Pre-execution can prefetch loads which con-
ventional hardware prefetch schemes cannot, such as
those generating irregular address patterns.

The various pre-execution schemes described in the
literature realize respectable, in some cases large,
speedups. For example, Collins, Tullsen, Wang, and
Shen demonstrate an average speedup of over 1.3 on
memory-intensive benchmarks.

The published analyses of pre-execution schemes
looked at factors such as slice construction techniques,
but for the most part evaluated pre-execution on a sin-
gle type of system [1,3,10,11,14,21]. There are two sys-
tem parameters to which pre-execution may be sensi-
tive: the fetch rate and reorder buffer size. A higher
fetch rate will reduce the time advantage of a given
slice, or require triggering a slice further back, risking
triggering a slice for the wrong path. Reorder buffer
size is an important factor because a larger reorder
buffer can hide the load miss latency that pre-execution
reduces. (Put another way, pre-execution can reduce
the latency that would otherwise require a larger re-
order buffer to hide.) A related advantage of smaller
reorder buffers for pre-execution is that they are more
frequently full. That, of course, stops the main thread
but not a slice that has been triggered.

The impact of fetch rate and reorder buffer size on

pre-execution schemes will be examined here. A pre-
execution scheme will be simulated on systems having
varying fetch rate, reorder buffer sizes, and slice con-
struction window sizes. The impacts on performance,
and the reason for that impact will be analyzed in de-
tail.

The remainder of this paper is organized as follows.
A discussion of some existing pre-execution schemes ap-
pears in the next section. Pre-execution performance
factors are discussed in Section 3. Details of the sim-
ulated system and benchmarks are described in Sec-
tion 4. Experiments are described and discussed in
Section 5, related work is discussed in Section 6, and
conclusions appear in Section 7.

2. Pre-Execution Schemes

Perhaps triggered by Zilles and Sohi’s 2000 study
[20] a number of pre-execution schemes had been pub-
lished in 2001. These will be discussed here, while
antecedents and other related schemes are discussed
Section 6. An outline of pre-execution and related ter-
minology is presented below, followed by details from
published studies and the version simulated here.

2.1. Basic Pre-Execution and Terminology

In a pre-execution scheme troublesome loads are
identified, these are loads which miss the cache and
in some variations are believed to be on a critical path.
The instructions preceding a load needed to compute
its address are said to be in its dataflow tree; the num-
ber of preceding instructions considered is called the
construction window size. When a troublesome load
is identified its dataflow tree is constructed, and in
some variations optimized; the result is called a slice.
The slice is placed in a slice cache. With a slice con-
structed for it, the troublesome load is known as a tar-
get and the corresponding instruction in the slice is
called the prefetch load (briefly, prefetch). A trigger
instruction (briefly, trigger) is selected, often the earli-
est instruction in the construction window. The next
time fetch (or more often, a decode step) reaches the
trigger the slice is retrieved and forked, that is, its ex-
ecution is started, and will proceed in parallel with the
main thread. Depending on variation the forked slice
may share decode/rename resources and execution re-
sources. The prefetch does not wait if it misses the
cache.

2.2. Published Pre-Execution Schemes

Some of the schemes discussed below use pre-execution
for branches as well as loads; only the portions handling
loads are discussed.

Finding troublesome loads may be harder than it
sounds, at least for a run-time mechanism. Only two



schemes identify troublesome loads at runtime, Dy-
namic Speculative Precomputation (DSP) of Collins,
Tullsen, Wang, and Shen [3] and the Slice Processor
(SP) of Moshovos, Pnevmatikatos, and Baniasadi [11].
The SP uses a load miss predictor to select target loads
(on a miss add 4 to a counter in a PC-indexed table, on
a hit subtract 1), the DSP goes further by finding only
critical-path loads (based on the time spent waiting at
the head of the reorder buffer). The other schemes
mentioned here rely on some form of profiling to select
target loads.

There are major differences in the way the slice
itself is constructed. Unmodified dataflow trees are
used by SP, the Dependence Graph Precomputation
(DGP) scheme of Annavaram, Patel, and Davidson [1],
and speculative Data Driven Multithreading (DDM) of
Roth and Sohi [14]. Tree construction occurs dynam-
ically (at run time) in SP and DGP; in SP the tree
is constructed from the last 32 (nominally) committed
instructions while in DGP it is constructed from in-
structions waiting in the fetch queue. In DDM tree
construction occurs in a pre-processing step.

There are many opportunities to optimize instruc-
tions in the dataflow tree, for example replacing or
eliminating store/load pairs, and combining arithmetic
instructions (say, two instructions incrementing the
same variable). The DSP optimizes slices dynami-
cally while Zilles and Sohi [21] in what will be called
the Speculative Slice Study (SSS) here, construct their
slices by hand.

A refined approach to slice selection and construc-
tion, called the Quantitative Framework (QF) here, is
presented by Roth and Sohi [15]. A score is constructed
for a candidate slice using the margin of the prefetch
over the target load adjusted for the number of times
the target load will be reached, the score also includes
the number of instructions in the slice (which reduces
the score). Slices are selected from a set of candidates
based on how well they cover target loads, combining
the effect of a short, low-margin slice against a longer,
high-margin slice that is less likely to reach the target.

In some cases the slices can contain loops. When
constructing slices DSP hardware specifically looks for
a second instance of the troublesome load so that the
constructed slice can have a loop. A loop counter and
call level monitor terminate slices that may loop too
long. The hand-constructed slices in the SSS also con-
tain loops and use a maximum iteration counter.

The various pre-execution schemes differ in the re-
sources they use to execute slices. In the boldest of
these schemes slices execute as a special thread on a
simultaneous multithreaded (SMT) [8] machine, com-
peting for decode/rename and execution resources with
the main thread. With this resource sharing there is

significant potential for slowing down the main thread.
SMT (or SMT-like) execution is done by the DSP,
DDMT, and SSS. DSP and DDMT do not compete
for reorder buffer (ROB) slots with the main thread;
it is not clear whether this is true in SSS. An alterna-
tive is to provide separate decode/rename resources for
slices, this is done in the SP. The DGP is something
of a special case since it operates on instructions in the
normal fetch stream, relying on run-ahead of the fetch
unit.

Of all the schemes only the DGP provides its own ex-
ecution resources, in the others slice instructions com-
pete with the main thread for functional units, in some
cases at a lower priority.

2.3. The Expensive Slice Machine

A goal of this study is to analyze the impact of fetch
rate and ROB size on pre-execution performance, not
to find a good cost/performance balance. Therefore a
pre-execution scheme was chosen for analysis that gives
good performance with little regard for resources used.
That is, the size of the slice cache and the number of
functional units is large, so as to bring out as much
potential performance as possible; it will be called the
Expensive Slice Machine (ESM).

Slice construction is performed as loads commit; it is
performed instantaneously and for all committing loads
generating a lead miss. ESM constructs (but does not
always cache) slices for every load instruction that gen-
erates a lead miss. A lead miss is the miss to the level 1
cache that initiates a cache fill. (A following instruction
that access the same address before the data arrives is
not said to generate a lead miss.) The slice is con-
structed by extracting the dataflow tree for the trou-
blesome load using a buffer holding recently committed
instructions. The margin for a newly constructed slice
is computed, the number of cycles by which the pre-
fetch load will precede the target load assuming that
when the slice is forked fetch proceeds at the same rate
as when it was constructed. If the margin is below 2
cycles the slice is not cached.

A miss distance is stored with each slice, this is used
to determine whether to fork the slice. When the slice
is constructed the miss distance is set to zero, it is also
set to zero if the slice’s prefetch instruction generates
a lead miss; it is incremented if the prefetch does not
generate a lead miss. (Any practical system would have
a separate load miss predictor.)

The number of simultaneously executing slices is
limited to eight. If less than eight are executing the
slice cache is probed using the addresses of decoding
instructions. If a slice is found and its miss distance
is less than 7, execution forks. The slice is decoded



and renamed at a rate of 4 instructions per cycle in the
base machine. Slice instruction execution proceeds nor-
mally, that is, decode, rename, and scheduling proceed
at the same speed as for ordinary instructions.

Slice instructions do not use ROB slots but they
share execution resources of main-thread instructions.
In the systems analyzed there are plenty of functional
units and so there is rarely any waiting.

3. Pre-Execution Performance

The speedup attained by pre-execution depends in
part on the margin of the prefetch over the target and
by the number of targets that lie on a critical path.

3.1. Critical Path and Sensitivity to ROB Size

In a dynamically scheduled system some load misses
do not impact execution time, instead the processor
“catches up” when these loads complete. Those that do
impact execution time in a particular processor config-
uration are called critical loads for that configuration.

There are two ways loads can be critical: they can
delay branch or jump target resolution, or they can con-
tribute to the filling of the reorder buffer. The first type
will be called control-critical loads, the second type will
be called window-critical loads. Control-critical loads
are those loads that, because they don’t hit the cache,
force instructions computing a branch condition or tar-
get for a mispredicted branch to wait. For window-
critical loads if the load had not missed the reorder
buffer would have filled later, if at all. In both cases
the load delays correct-path instruction fetch.

Pre-execution will reduce the miss delay of both
types of critical loads, the data presented below shows
these effects separately. Reducing the impact of
control-critical loads is something that is difficult to
do by means other than larger or faster caches or bet-
ter branch predictors. In contrast, the impact of some
(perhaps most) window-critical loads can be reduced
by increasing the size of the reorder buffer. For that
reason, reorder buffer size sensitivity is important, and
is being investigated here.

Apart from just pre-fetching loads early, another
way that pre-execution, at least the published schemes,
improves performance is by allowing a slice to be
fetched and executed when the rest of the system is
stalled due to a full reorder buffer. This increases the
margin when the target load is caught waiting outside
a full reorder buffer while the pre-fetch executes. (In
most of the previous studies slices do not share reorder
buffer slots with the main thread.)

3.2. Sensitivity to Fetch Rate

As used here the fetch rate is the number of decoded
instructions (including those that will be squashed) di-
vided by the number of cycles at which decode was not
stalled (due to a full reorder buffer, lack of physical
registers, etc). The fetch rate is determined by decode
width and by the front end, the part of the proces-
sor that predicts and fetches instructions. A processor
with a decode width of 8, that is, an 8-way superscalar
processor, has an ideal fetch rate of 8 instructions per
cycle. Due to limitations of the instruction cache and
the ability of the front end to predict multiple control
transfers per cycle, the front end may deliver less than
eight instructions per cycle. Advanced front ends, such
as trace caches [13] and multiple branch predictors [19]
have higher fetch rates, approaching the maximum pos-
sible (the decode width).

Assuming no stalls around the time a slice is forked,
the margin for the slice is determined by the fetch
rate, the trigger-to-target distance, and the dataflow
distance. That there is plenty of margin for trouble-
some loads was revealed in the study of Zilles and Sohi
[20]. They identify troublesome loads, in particular
those that have the most impact on overall execution,
and plot the number of instructions in the dataflow tree
versus the distance from the target load. They show
that from 5% to 30% or more of instructions preceding
a load are in its dataflow tree, the lower number assum-
ing all stores can be omitted and the higher including
all stores. That this margin could be exploited was
demonstrated in the many projects described above.

One important question unanswered by these stud-
ies is the degree of sensitivity to fetch rate. In most
of these studies some estimate is made of margin and
slice candidates not meeting this margin are rejected.
A higher fetch rate would mean more slice candidates
would be rejected (or would be ineffective), and so re-
duce the impact on performance. Based on observed
distribution of instructions [20] moving the trigger back
would increase the margin, but at the risk of placing the
trigger before a frequently mispredicted branch. Only
the QF takes this slice survivability into account [15].

4. Evaluation
4.1. Simulator

The systems were analyzed using RSIM [12], a de-
tailed microarchitecture simulator. Modifications were
made to simulate pre-execution and many other unre-
lated modifications were made. RSIM is a microarchi-
tecture simulator which simulates a dynamically sched-
uled superscalar processor and memory system. The
processor implements a subset of the SPARC V8 ISA
[18]. Benchmark programs are compiled exactly as they
are for a real system. Linking is identical except for



Table 1. Benchmarks. (Table numbers in millions.)

Bench- Insn Insn Loads L2 Hits L2 Misses
mark Skip’d Sim’ed Cmtd
mst 1200 500 78 2.34 18.88
em3d 120 300 35 0.33 0.40
bzip2 0 305 78 9.61 3.00
gcc 0 607 108 5.21 0.26
gzip 0 636 108 26.53 1.86
mcf 1000 100 27 2.07 12.83
perl 0 181 35 2.59 0.07
swim 0 400 104 9.85 44.11
TEX 0 102 20 0.58 0.03
vpr 5000 300 69 4.74 3.87
wupwise 5000 500 170 0.28 0.95
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Figure 2. Performance of a conventional system and
one using pre-execution. Segments show CPI contribu-
tion.

the use of static libraries (though still the system’s li-
braries, not specially prepared versions) and a special
startup file. System calls are not simulated.

Dynamic execution is aggressive: The register map
used for renaming is checkpointed when branches or
jumps are decoded so that recovery can start when
mispredicted instructions resolve. Exception recovery
is initiated when the faulting instruction is ready to
commit. Other system characteristics are summarized
below:
Front End

Branch target prediction using a basic block predic-
tor [19] with a 215-node block address cache; directions
predicted with a variation on a YAGS predictor[4] us-
ing a 16-bit GHR. Base system has three instruction
cache ports and predicts two blocks per cycle. One-
and two-icache-port systems predict one block per cy-
cle; four-port system predicts three blocks per cycle.
Block predictions are queued. Indirect jump predictor
uses a 216 entry GHR-indexed table. Returns predicted

with an 8-entry RAS.
Core

Base system 8-way superscalar; three cycle delay
from decode to earliest execution opportunity. Reorder
buffer holds 256 entries; virtually unlimited functional
units. Instruction queues and load/store queues have
virtually unlimited space.
Memory

L1 instruction cache: 328 kB, 5-way. L1 data cache:
16 kiB, 4-way, 64-byte line; 2-cycle hit latency including
address generation. L2 data cache: 256 kiB, 8-way, 16-
cycle hit latency. Memory, 100 cycle access latency plus
congestion and overhead.
Pre-Execution

Slices constructed from 256-instruction window; max-
imum slice size 64 instructions; slice rejected if margin
(prefetch to target) less than 2 cycles. Slice cache size
216 entries. Slice not forked if target load has more
than 6 consecutive non lead misses (a hit or miss to
a line already on the way). At most 8 slices in flight;
slices injected at half the decode width (4 instructions
per cycle in base system). Slices execute with shared
execution resources, but use private decode and rename
and do not use reorder buffer slots.

4.2. Benchmark Programs

The simulated programs come from the SPEC and
Olden suites. Except for vpr, the SPEC programs were
not selected for pre-execution suitability. (That is, no
program was selected because of favorable speedup or
any other performance reason.) The Olden benchmarks
are a set of pointer-intensive microbenchmarks adapted
by Luk [9] for use in studying prefetching and used later
by other investigators to test the effectiveness of pre-
execution and other schemes. They are included here
so results can be compared to other studies that use
these benchmarks.

Benchmarks vpr, swim, gzip, mcf, and wupwise are
compiled using the SPEC CPU2000 makefiles, using
code from that suite. The code for the other bench-
marks was obtained from their standard distributions,
compiled with optimization. Optimization was tar-
geted to an UltraSPARC II processor, so scheduling
would not perfectly match the wider-issue systems sim-
ulated here.

Benchmark swim uses test inputs, mcf and wupwise
use reference inputs. Benchmark vpr uses reference in-
puts but is only run for placement. Olden benchmark
em3d uses input 25000 100 75 1, benchmark mst uses
input 3407 1. The other spec benchmarks use short-
ened inputs. Table 1 summarizes benchmark charac-
teristics including the portion of the benchmark simu-
lated.
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Figure 3. Load latency per committed instruction of a
conventional system and one using pre-execution. Seg-
ments show contribution from level 1 hits, level 2 hits,
and misses.
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Figure 4. Speedup of pre-execution with varying con-
struction window sizes. Total is the actual speedup,
Stall shows the speedup due to window-critical loads,
and Squash shows the speedup due to control-critical
loads.

5. Experiments

The performance of conventional and pre-execution
systems is shown in Figure 2. The total height
of each bar is the execution time in cycles per in-
struction (CPI), the segments show the ideal ex-
ecution time, Commit, and four factors degrading
performance: correct-path stalls, Stall, misprediction
squashes and wrong-path stalls Squash, instruction
cache port limitations Fetch, and miscellaneous fac-
tors, Other. Control-critical loads primarily effect the
Squash segment while window-critical loads primarily

effect the Stall segment.
The size of each segment is determined by tallying

how each decode slot is used at each cycle and divid-
ing each tally by the number of committed instructions
times the decode width. The Commit segment shows
slots used by committed instructions, its height is the
ideal execution time of 1

8 CPI. The Fetch segment
shows decode slots unused due to a limit on the num-
ber of instruction cache ports. The Squash segment
shows slots wasted due to mispredicted or unpredicted
control transfers. This includes slots holding instruc-
tions that survive long enough to be scheduled but are
ultimately squashed due to mispredictions and slots
empty because the ROB is full while waiting to fetch
down a mispredicted path. The Stall segment shows
slots empty because the ROB is full while waiting to
fetch down a correct path. The Other segment shows
other cases. For most benchmarks this is dominated
by instructions that are squashed before they could be
scheduled and instruction cache misses.

The benchmarks show variation in their CPI, the
performance loss due to control- and window-critical
loads, and in how much pre-execution helps. Bench-
marks perl, TEX, and gcc are the most efficient and are
little improved by pre-execution while most of the less
efficient benchmarks enjoy more substantial speedup
with the exception of gzip, which is ILP limited.

The benchmarks’ sensitivity to pre-execution is de-
termined in part to the number of cache misses. Load
latency per committed instruction is plotted in Fig-
ure 3. The segments show the contribution of loads
that hit the level 1 cache, hit the level 2 cache, and
those that miss the level 2 cache. Benchmark mcf has
the longest load latency but because the loads that miss
the cache are participating in a long pointer chase pre-
execution can do little to reduce the latency.

5.1. Speedup and Cons. Window Size

Average speedup is plotted in Figure 4 and the
speedup of selected benchmarks is plotted in Fig-
ure 5. In both plots speedup is shown for pre-execution
schemes with construction windows varying from 32 to
2048 instructions. The points marked Total show the
speedup over the conventional system. Benchmarks
vary in the size of the window needed (based on the
level 2 cache hit ratio), average performance peaks at
a window size of 384. Performance drops with further
increase in window size because of the limit of eight
in-flight slices. The base construction window size of
256 achieves close to maximum performance.

In addition to total speedup these figures show
an estimate of the speedup obtained by improving
only control-critical loads, Squash, and window-critical
loads, Stall. The control-critical speedup estimate is
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Figure 5. Speedup of pre-execution with varying construction window sizes.
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Figure 6. Average speedup of benchmarks on systems
with, P, and without, C, pre-execution with varying re-
order buffer sizes. Speedup is over conventional system
with a 256-entry ROB.

obtained by essentially replacing the Squash segments
(from Figure 2 ) of the conventional system with the
corresponding segments in the pre-execution system
and comparing the result to the unmodified conven-
tional system. A similar approach is used for the
window-critical speedup.

From Figure 4 one can see that for these benchmarks
most performance improvement is from window-critical

loads. Looking at individual benchmarks in Figure 5
one can see that for some benchmarks, such as mst and
swim, almost all improvement is for window-critical
loads, for others control critical loads are more impor-
tant.

5.2. Reorder Buffer Size

The impact of reorder buffer size and pre-execution
on critical loads is shown in Figure 6 where speedups
are plotted for systems with reorder buffer sizes from
256 to 512, the left group is conventional, the right is
using pre-execution. All speedups are with respect to
the base system (with a 256-entry ROB).

On average the speedup obtained with pre-execution
and a 256-entry ROB is about the same as a con-
ventional system with a 448-entry ROB. If both sys-
tems are feasible, the less expensive system is better.
(Further below larger ROB systems also have longer
pipelines.)

As expected, both pre-execution and larger ROBs
reduce the impact of window-critical loads. Comparing
a 512-entry ROB conventional system to a 256-entry
pre-execution system, the two center points, shows
better performance on the conventional system. The
pre-execution system is not as effective at improving
window-critical loads but unlike the conventional sys-
tem can improve control-critical loads.

Pre-execution is still effective on systems with larger
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Figure 8. Speedup of a conventional system with a larger ROB, second C, one with a larger ROB but with 3 additional
scheduling pipeline stages, L, and a pre-execution system with a 256-entry ROB, P.

ROB sizes, at least up to 512 entries. On the base
systems it would take more than 800 entries to cover
the level 2 miss latency.

Figure 7 shows the same data for selected bench-
marks. Pre-execution is able to out-perform a larger
ROB on bzip2, gzip, and vpr due to the control-critical
loads that can be helped.

In the comparisons above the systems with a larger
reorder buffer got it for “free,” in real systems ROB
size may be limited by critical paths in scheduling
queues needed to hold pending instructions. Figure 8

shows the speedup of three systems: a conventional sys-
tem with a 512-entry ROB (the same as the one used
above), a conventional system with a 512-entry ROB
and three additional stages in the scheduling pipeline,
L, and a pre-execution system using a 256-entry ROB.

The longer scheduling pipeline is felt after branch
mispredictions, its impact can be seen in the Squash
speedup component. For four of the benchmarks this
results in a slowdown over the base system, for the oth-
ers it reduces the speedup over the conventional system
with the unmodified pipeline.

When compared to a conventional system with a
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Figure 9. Performance of conventional and pre-execution systems with different front ends.
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Figure 10. Speedup and speedup contributions of conventional and pre-execution systems with different front ends.

longer pipeline pre-execution does much better, outper-
forming the conventional system on all but two bench-
marks (one of which is synthetic).

5.3. Fetch Rate

Fetch rate is another system parameter that can af-
fect pre-execution. Systems with varying front ends
were simulated, including 4-, 8-, and 16-way proces-
sors. Front ends that can predict from one to three
basic blocks were simulated, the number of instruction
cache ports was varied from one to four. The systems
with one and two ports predict one block per cycle; the

ones with three ports predict two blocks, and the one
with four ports predicts three blocks.

The averaged results are plotted in Figure 11 and
the results for individual benchmarks are in Figure 9
speedups are shown in Figure 10. In all plots sys-
tems are arranged in order of increasing fetch rate The
speedup shown is for a pre-execution system compared
to a conventional one using the same front end, showing
how much added performance can be obtained using
pre-execution.

The reduction of pre-execution effectiveness with
fetch rate, if present, is small. Several benchmarks
show increased speedup with fetch rate as the impact
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Figure 11. Average performance of conventional and
pre-execution systems with different front ends. DW
indicates decode width (from 4- to 16-way superscalar),
Ports indicates number of instruction cache ports. Seg-
ments show CPI contribution.

of control- and window-critical loads becomes a larger
fraction of execution time.

6. Related Work

Pre-execution schemes rely on a main thread to re-
peatedly trigger slices that only run briefly. In contrast
the Slipstream Processor of Sundaramoorthy, Purser,
and Rotenberg [17] and in systems using Master/Slave
Speculative Parallelization of Zilles and Sohi [22] a con-
densed version of the original program serves the same
purpose as a slice: it produces critical values faster
than the original program would. Unlike a slice the
condensed program is long running and produces more
than just troublesome results. Its results are communi-
cated to hardware running the original program where
it is used for predictions and later checked for correct-
ness. Correctness needs to be checked because the con-
densed program, in order to keep ahead of the original,
may not always compute correct results.

Pre-execution is just one way of executing a load
instruction early. Another is to allow fetch to pro-
ceed when some resource limit nears. Instructions
fetched under these conditions may prefetch the cache
and can provide branch outcomes. Balasubramonian,
Dwarkadas, and Albonesi [2] describe such a scheme
in which fetch goes on as a future thread even when
the number of physical registers is low and can dis-
card completed or unneeded instructions, avoiding the
reorder buffer size limitation.

Pre-execution schemes are one way of starting loads
early, hardware prefetch schemes are another [7]. In
such schemes hardware monitors addresses that miss
the cache, both level-1 and level-2 prefetchers have been

investigated. The hardware, designed to recognize se-
quential [16], stride [5], or previously encountered pat-
terns [6], generates a prefetch for a predicted next ad-
dress in the pattern.

Hardware prefetch schemes are quite effective on
many memory access patterns, but have trouble pre-
dicting many others. Several of the pre-execution
schemes have been compared against hardware prefetch
and found to complement it well, prefetching addresses
that hardware prefetch could not [1,11].

7. Conclusions

Pre-execution improves performance by resolving
load addresses and branch directions early using a
thread that is forked speculatively upstream of the
load. As verified here, pre-execution cannot be out-
run by any reasonable front end, faster fetch results in
only a small reduction in speedup.

Performance improvement is achieved by prefetching
control- and window-critical loads. There are few al-
ternative mechanisms to improve control-critical loads,
but the impact of many window-critical loads can be
reduced by increasing the reorder buffer size. Data pre-
sented here show that for some benchmarks, systems
with larger reorder buffers enjoy the same speedup as
those with pre-execution, the benchmarks so affected
are the ones pre-execution is most effective on. When
systems with larger reorder buffers also have longer
scheduling delays pre-execution is at a greater advan-
tage. The longer scheduling delays slow many pro-
grams while the larger ROB size helps only a few. This
is in contrast to pre-execution which (as simulated)
only slows one program. One factor not examined here
is which is less costly, pre-execution or increased re-
order buffer size.
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