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Abstract

The trend towards deeper microprocessor pipelines
has made it advantageous or necessary to predict the
events that may happen in the stages ahead. A widely-used
example of thistechnique is latency speculation, where the
non-deterministic latency of some instructions, such as
loads, forces dependents to predict the number of clock
cycles these operations will take to complete execution. If
there is a misprediction, those dependents that issued
speculatively must be restarted or delayed appropriately
so that they can execute again with the correct inputs. This
process is called a scheduler replay. In the interest of
reducing the replay penalty, some recent designs, such as
the Pentium 4, have adopted selective replay mechanisms,
which reschedule only data-dependent instructions on a
latency misspeculation.

The deep pipelining trend has also forced designersto
reduce the circuit complexity of individual stages to main-
tain high clock speeds and to keep power dissipation man-
ageable. Tag elimination [4] is a technique used to reduce
the complexity of a processor's issue stage by designing
for the average case instruction. In Kim and Lipasti's
recent work on Half-Price architectures [9], the authors
state that it is “impractical” to implement a selective
replay mechanism in a machine that uses tag elimination.
In this paper, we detail the implementation of a practical
selective replay method that is compatible with tag elimi-
nation schedulers and discuss the power and performance
trade-offs that should be considered when designing a
replay system.

1 Introduction

Recent microprocessor designs have employed
increasingly deep pipelines. Breaking the execution core
into smaller piecesallows for higher clock speeds and, asa
result, higher instruction throughput. Many recent studies
[6][8][17] show that more benefit could still be extracted
by this technique, indicating that pipelines will likely con-
tinue growing longer in the future.

However, the benefits of deep processor pipelines do
not come without drawbacks. Placing extra stages in cer-
tain segments of the processor may force earlier stages to
speculate on the events that may occur later in the pipeline
[2]. For example, instruction latency speculation predicts
how many cycles a producer instruction will take to com-
plete its execution, which occurs several stages |ater in the

pipeline. Thisis done so that consumer instructions can be
issued to meet their inputs at the optimal time. If the pre-
diction iswrong, however, at least some of the instructions
in the stages between issue and execution must be
restarted or delayed.

In the interest of keeping the latency misprediction
penalty to a minimum, some processor designs, such asthe
Pentium 4, have included implementations of selective
instruction replay. By using this technique, a processor
only needs to re-execute instructions which are data-
dependent on the misspecul ated instruction.

Another pipelining obstacle is that some stages, such
as the instruction scheduler, are often too big and slow to
fit in a single cycle, and are also particularly resistant to
the decomposition process necessary to implement pipe-
lining [14].

Tag elimination [4] was proposed as a solution to an
instruction scheduler complexity problem. By tailoring the
reservation station structures for the common case of
instructions needing to wait for fewer than two inputs, the
scheduler tag bus capacitance can be reduced by up to
75%, allowing for a higher clock rate and lower power
consumption. In Kim and Lipasti's paper “Haf-Price
Architecture” [9], the authors introduce a clever selective
replay implementation that performs parent-child depen-
dence propagation using the scheduler broadcast busses.
In addition, they correctly point out that the combination
of tag elimination with broadcast-based selective instruc-
tion replay is not practical to implement.

In this paper, we describe selective replay methods
that are compatible with tag elimination. Furthermore, we
analyze the performance and power conseguences of the
replay implementation decision.

The remainder of this paper is organized as follows.
Section 2 gives background information on tag elimina
tion. In Section 3, we present the different replay mecha
nisms that are then analyzed in Section 4. Related work is
listed in Section 5 and our conclusions are presented in
Section 6.

2 Tag Elimination

The techniques presented in [4] draw from the obser-
vation that most scheduler tag comparisons are superflu-
ous to the correct operation of the instruction scheduler.
Analyses reveal that most instructions placed into the
instruction window do not reguire two source tag compar-
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Figure 1. Conventional and Reduced-Tag Reservation
Sations. Thecirclesrepresent tag comparators. The
bold tag entriesinclude a comparator. The shaded tag
entriesare not necessary and thus do not include
compar ators. Entrieswith a‘1’ hold instructionswith
only one tag to compare against.

ators because one or more operands are ready, or the oper-
ation doesn’t require two register operands.

Two scheduler tag reduction techniques were pro-
posed that work together to improve the performance of
dynamic scheduling, while at the same time reducing
power requirements. First, a reduced-tag scheduler design
was proposed that assigns instructions to reservation sta-
tions with two, one, or zero tag comparators, depending on
the number of input operands in flight. An example of a
scheduler window using tag elimination is shown in Fig-
ure 1.

To reduce tag comparison requirements for instruc-
tions with multiple operandsin flight, we al so introduced a
last-tag speculation technique. This approach predicts
which input operand of an instruction will arrive last and
schedul es the execution of that instruction based solely on
the arrival of the final operand. Since the earlier arriving
tags do not precipitate execution of the instruction, the
scheduler can safely eliminate the comparator logic for al
but the last arriving operand.

Because scheduling windows that use last-tag predic-
tion don’t track the readiness of the operands that are pre-
dicted to arrive earlier, a small table must be placed in the
following pipeline stage to check that the prediction was
correct and all operands actually arrived. This table simply
consists of one ready bit for each physical register that is
set when values become ready.

3 Implementing Selective Replay
3.1 Parent-Child Broadcast

In the Half-Price Architecture paper [9], Kim and
Lipasti present one possible implementation of selective
replay. An illustration of this schemeis shownin Figure 2.

Along with its input tags, an instruction’s dependence
information is kept in the instruction window in the form
of one dependence matrix for each input operand. This
matrix consists of W x D bits, where W is the machine
width, and D is the depth of the load shadow [2], which is
defined as the number of stages between instruction issue
and notification of a cache hit or miss. In each matrix posi-
tion, the presence of a“1” indicatesthat an instructionisin
the corresponding slot in the scheduler pipeline that the
current instruction is dependent on, either directly or
through some intermediate instructions. Every cycle, the
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Figure 2. Half-Price Selective Replay M echanism.
(Figurefrom [9])

matrix shifts down one row, to keep the information con-
sistent with the movement of instructions through the
pipeline ahead.

When a load latency misprediction occurs, the exe-
cute stage sets the appropriate bit in a W-bit wide array
caled the kill bus. These bits are broadcast to every
instruction in the scheduler. As is illustrated in part b) of
Figure 2, if thekill bushasalinthesamecolumnasalin
the bottom row of a tag's dependence matrix, that oper-
and’s ready bit is reset to zero, as it is dependent on the
instruction with the mispredicted latency. In other words,
the matching bits indicate that the operand is dependent,
either directly or indirectly, on the mis-scheduled instruc-
tion.

When an instruction leaves the scheduler window, it
merges the dependence matrices that its input operands
have received from their parent instructions and marks its
own location. It then broadcasts this matrix, aong with its
destination tag, to the rest of the instructions in the win-
dow. (It must also write these bits into atable in theregis-
ter rename stage for the benefit of dependent instructions
that may have not entered the window yet.) When instruc-
tions in the window match the input operand on the tag
bus, they also latch the dependence matrix of the broad-
casting parent instruction. This process propagates depen-
dence information from parent to child during the wakeup
phase, giving them knowledge of ancestor instructions fur-
ther up the dependence tree.

3.1.1 Tag Elimination Compatibility

Asisdiscussed in [9], this selective replay schemeis
not compatible with reduced-tag schedulers. Because
reduced-tag scheduling makes decisions based on operand
availahility, problems arise when this availability informa
tion is allowed to change after instructions enter the win-
dow. Broadcast-based replay relies on every operand in
the window tracking its dependencies. Because reduced-
tag schedulers gain their complexity benefit by removing
some operands from the tag bus, thisis not possible.

In schedulers that use non-speculative tag elimination
(i.e. they do not use last-tag speculation), instructions
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Figure 3. Intel Selective Replay Mechanism.

entering the window would get the proper dependence
matrices from the table in the rename stage and they would
still be able to monitor the kill bus. However, if the ready
bit of an operand that has no comparator needed to be
reset, there would be no way for that operand to return to
snooping the tag bus.

Furthermore, removing the early arriving operands
from the tag bus in last-tag speculation windows makes it
impossible for those operands to receive their propagated
dependence information from a broadcasting parent
instruction.

3.2 Replay using Timed Queues

There are, however, other ways to implement selec-
tive replay. Some of these mechanisms differ from the par-
ent/child broadcast model in that, instead of re-executing
dependent instructions, they insert a delay into an instruc-
tion’s execution latency, often through use of a queue or
other type of separate instruction storage. The specific
mechanism we outline here is derived from a technique
proposed in U.S. Patent 6,212,626 [12], held by Intel for
inventors Merchant and Sager of the Pentium 4 architec-
ture team [7].2 A block diagram of this design is shown in
Figure 3.

As instructions approach execution, they are also pro-
cessed through areplay check, which consists primarily of
atable of register ready bits. Just before entering the exe-
cute stage, instructions look up the status of their input
operandsin the checker. If the table indicates that the oper-
ands are ready, the instruction is allowed to enter execu-
tion and retire normally.

If, however, the check table indicates that an operand
is unavailable, the instruction setsits output operand as not
ready in the table and returns to execution via a replay
queue and mux. The replay mechanism informs the sched-
uler of the presence of an approaching replayed instruc-
tion, so that nothing is scheduled into that slot in the same
cycle. It isimportant to note that, in order to maintain for-
ward progress, replaying instructions must always have
priority over any work that would be coming out of the
instruction scheduler.

When the replayed instruction reaches the input mux,
it is sent back into the pipeline asif it had just been issued
by the scheduler. On reaching execute, it checks its oper-
ands again, just as it did before, to determine whether it

1 Although we may refer to this as the “Intel” replay mechanism
throughout this work, we are making no claim as to whether or not thistechniqueis
used in any of their microprocessors, commercial or otherwise. We are only present-
ing the idea proposed in the publicly available patent documentation.

needs to replay again (An instruction may have to replay
several times to tolerate an L2 cache miss, for example).

In this scheme, the propagation of dependence infor-
mation is accomplished by the cascading ready bit manip-
ulations in the check table. If there is a latency mis-
prediction, the offending instruction’s output will not be
set as ready, which will trigger a replay for its children,
which in turn will cause areplay for its children’s depen-
dents.

It is not specified in the patent exactly how many
issue slots coming from the scheduler are stopped when an
instruction replays. In our evaluation, we only prohibit the
scheduler from issuing into the specific ot that the
replaying instruction will be using. This alows the sched-
uler to issue instructions in the other issue slots.

3.2.1 Tag Elimination Compatibility

A key feature of the Intel replay mechanism is that it
maintains the relative timings of instructions throughout
the replay sequence. Once a mis-speculated instruction
completes, its dependents are replayed just as they were
originaly scheduled out of the window, only the entire
stream has been delayed to accommodate the unexpected
extra latency. Consequently, there is no need to “re-sched-
ule” instructions individually, as the previously selected
scheduleisstill valid.

Because replayed instructions are not returned to the
scheduler window, there is no extraneous dependence
information kept in the window itself. Therefore, reduced-
tag schedulers are fully compatible with the Intel-style
selective replay.

In schedulers that use last-tag speculation, a last-tag
misprediction still results in a one-cycle flush. This recov-
ery is necessary to stop the wakeup of instructions depen-
dent on the last tag misprediction.

4 Replay Evaluation
4.1 Simulation M ethodology

The architectural simulators used in this study are
derived from the SimpleScalar/Alpha version 3.0 tool set
[1], a suite of functional and timing simulation tools for
the Alpha AXP ISA. The timing simulator executes only
user-level instructions, performing a detailed timing simu-
lation of an aggressive dynamically scheduled micropro-
cessor with two levels of instruction and data cache
memory. Simulation is execution-driven, including execu-
tion down any speculative path until the detection of a
fault, TLB miss, or branch misprediction.

To perform our evauation, we collected results from
all 25 of the SPEC2000 benchmarks [18]. All SPEC pro-
grams were compiled for a Compag Alpha AXP-21264
processor using the Compaq C and Fortran compilers
under the OSF/1 V4.0 operating system using full com-
piler optimization (-O4). The simulations were run for 100
million instructions using the SPEC reference inputs. We
used the SimPoint toolset’s Early SimPoints [16] to pin-
point program locations to simulate for peak accuracy.
Simulation parameters are shown in Table 1.

The simulators were modified to separate reservation
stations from the re-order buffer. They were also given
support for reduced-tag windows and last-tag prediction.
Finally, we were able to simulate either 21264-style flush
replay [3] or selective replay using one of the two methods
outlined in Section 3.
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Figure 4. Effect of Selective Replay on Reduced-Tag Schedulers.

Table 1. Simulation Parameters

Par ameter Values

256-Entry ROB
4- or 8- wide issue
128-Entry Instruction Scheduler Window
“Mixed” windows have 1/2/1 ratio
“Last-tag” windows have 0/3/1 ratio
replay with 4-cycle load shadow

Execution

Function 8 Integer ALU/MULT/DIV, 4 memory ports,
Units 8 FP ALU/MULT/DIV
Branch 8k entry GSHARE with 8 bits of globa his-
Prediction tory
2K entry BTB, 8-entry RAS
Last Tag 4k entry GSHARE
Prediction (only for “Last-tag” configurations)
1-cycle flush misprediction penalty

Memory 32K B 4-way associative L1 Instruction and

System Data Caches with 1-cycle latency, 256K B 4-
way associative unified L2 with 16-cycle
latency, 100 cycle main memory latency
across a 16-byte bus

4.2 Tag Elimination and Replay

The SPEC benchmarks were simulated with three dif-
ferent schedulers on both 4- and 8-wide issue configura-
tions, with the results shown in Figure 4. The baseline
scheduler (“Monoalithic”) and the reduced-tag schedulers
(“Mixed” and “Last-tag”) dal gain 2-3% performance
improvement due to the decreased replay penalty. Galgel
benefitted the most with a 26% improvement due to a
large number of memory references and enough parallel-
ism to suffer from pipeline flushes. No benchmarks saw a
performance degradation due to selective replay. The per-
formance improvement of 2-3% would close much of the
gap demonstrated in the experiments of Kim and Lipasti
[9].

4.3 Instruction Window Pressure

As is discussed briefly in Borch et al.’s work [2], the
parent-child broadcast replay model requires that instruc-
tions must remain in the scheduler window for several
cycles after they areissued, in order to monitor the kill bus
for areplay indication. When all of an instruction’s ances-
tors are safely into execution, only then will it finaly
release its reservation station.

As a result of keeping instructions in the window
beyond their issue time, this mechanism can suffer from a
reduction in effective scheduler window size. For exam-
ple, an 8-wide machine with a 4-cycle load shadow could
be holding as many as 32 instructions in the scheduler
window that have already issued, reducing the number of
spots that are available for newer instructions. For the typ-
ical case, the number of extrainstructions held in the win-
dow will not be that large because the processor will not
usualy befilling al of itsissue slots.

Using the Intel replay technique, instructions never
re-execute out of the scheduler window, thus removing the
need to stockpile instructions after they’ve issued. This
reduces the instruction pressure in the window, allowing
more work to flow into the empty slots.

On the other hand, the Intel approach can limit execu-
tion bandwidth when too many instructions are in replay,
thus preventing new instructions from entering execution.
However, if there is a large number of replaying instruc-
tions, either they are al waiting for one long-latency load,
or there are multiple outstanding latency mispeculations.
In either case, it is not likely that much more parallelism
could be found anyway.

Schedulers with 32, 64, and 128 entries were simu-
lated using both replay techniques, with the results shown
in Figure 5. As intuition would suggest, the most benefit
was seen in configurations with smaller windows and
wider issue, with the 32-entry 8-wide scheduler receiving
a 5% performance improvement from the reduced instruc-
tion window pressure.
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4.4 Power Consumption

In the parent-child broadcast mechanism, the depen-
dence matrix of an issuing operation is sent to al other
instructions in the scheduler window. It has been shown in
previous studies [4] that these wire-intensive broadcasts
can be very costly from a power standpoint.

The load on the broadcast bus as seen by each depen-
dence matrix bit can be estimated as roughly equivalent to
that seen by each destination tag bit. While each bit of the
matrix bus could be separated from the matrix latches by a
low-capacitance pass gate, the bus line must still be able to
drive the input of the latch if this gate is open. While hav-
ing al of the pass gates open is an extreme case (all
instructions depend on the broadcast through both oper-
ands), it is necessary to take it into account as a peak case.
The kill bus bits will also have the same load as the tag
bits, since they are also being driven to comparators for
each operand.

In a standard instruction scheduler without this replay
mechanism, the number of bits broadcast each cycleis

W x (dest tag bits),

where W is the scheduler issue width and the number
of destination tag bits is logy(# of physical regs). If the
parent-child broadcast mechanism is incorporated, the
number of bits broadcast each cycleis

W x (dest tag bits) + (Wx (Wx D)) + W,

where D is the number of cycles in the load shadow.
The first portion of the equation represents the destination
tag broadcasts, and it is the same as for the standard win-
dow. The second and third terms of the equation represent
the dependence matrix bits and the kill bus bits, respec-
tively.

This drastic increase in broadcasts may not directly
alter the cycle time (although the layout expansion could
have some effect). However, the power consumption will
likely be noticeably larger. For example, an 8-wide win-
dow with aload shadow of 4 and 256 registers will need to
broadcast 328 bits across the scheduler instead of just 64.

The Intel replay technique requires none of these
extra broadcasts. The mechanism does include some extra
logic, but the power consumed by the check table should
be less than the amount that would be dissipated across
wire-intensive broadcast lines. This comparison is similar
in scope to the comparison of the power usage of alast-tag
predictor table with the power used by the scheduler win-
dow givenin [4].

5 Related Work

Severd researchers have recently made the observa-
tion that benefit can be gained from removing long latency
instructions from the scheduler window as soon as possi-
ble. LeBeck’'s WIB scheduler identifies instructions
dependent on long latency operations (data cache misses),
and directs these operations to a secondary scheduler [10].
When the long latency operation nears completion, the
dependent operations are dumped en masse into a small
CAM -based dynamic scheduling window. Morancho used
a similar approach to move dependent operations follow-
ing long latency instructions out of the instruction window
[13]. Unlike the WIB, they record relative instruction
latencies to simplify the re-execution of operations once a
valid schedule has been built. The Intel mechanism uti-
lizes a similar approach. As instructions replay, dependen-
cies between dependent operations are maintained by their
spacing in the scheduler queues. A schedule is picked and
fully committed to for the lifetime of the instruction. Our
recent work on the Cyclone scheduler [5] takes this
method a step further and replaces the scheduler window



with a dataflow pre-scheduler and timed queues. A queue-
based replay mechanism is relied upon to accommodate
any incorrectly scheduled instructions.

A number of previous efforts have utilized the register
forwarding infrastructure to initiate selective instruction
re-execution. The sentinel scheduling technique [11] used
“poison bits’ contained in the register file that were set
when load instructions faulted or did not complete. A
branch back to the start of the faulting code would then
selectively re-execute the faulting code sequence. As
instructions read their registers, only those instructions
with poison operands needed to re-execute. The approach
is quite similar to the Intel replay queue approach, except
instead of redirecting program control, instructions them-
selves are redirected back into the replay queue. Poison
bits were employed in a similar manner by Rogers [15].

6 Conclusions

In the interest of minimizing the performance penal-
ties of deep pipelining, modern processors include selec-
tive replay mechanisms to reduce the number of
instructions lost due to latency mispredictions. Because
these designs may also wish to use complexity-reduction
techniques such as tag elimination to improve the perfor-
mance of dynamic scheduling, it isimportant for the selec-
tive replay implementation to be as unintrusive as possible
to the instruction window.

The Intel-style selective replay allows for optimiza-
tions such as tag elimination by having its mechanism
amost completely external to the instruction scheduler
structure. In addition, selective replay mechanismsthat are
queue and table based have the benefits of both less
instruction pressure on the issue window and favorable
power characteristics.
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