Evaluating the Relationship Between the Usefulness and Accuracy
of Profiles

Geoff Langdalé Thomas Gross’
!Carnegie Mellon University 2 ETH Zlrich
Pittsburgh, PA 15213 8092 4irich, Switzerland
geoffl@cs.cmu.edu trg@inf.ethz.ch
Abstract the assumption that having more accurate predictions of

future behavior will result in better optimization perfor-
The relationship between how accurately a profile prerance. Both the assumption of effectiveness of profile-
dicts future program behavior and how useful itis for pralirected optimization, and the assumption of a connection
file directed optimization is not straightforward. We gatlbetween more accurate profiles and better profile-driven
ered extensive data on the results of profile-driven optiptimization performance, require quantification. In this
mization using two different optimization systenes ([1] paper, we attempt to evaluate both assumptions.
andalto [4]) and selected benchmarks and benchmarke present a methodology for evaluating the effec-
runs from the SPEC95 and SPEC2000 suites. Insteadi@ness of profile-directed optimization, for determining
following the traditional SPEC guidelines of training onlyhe significance of variability in profile-directed optimiza-
with the designated “train” profiles and gathering perfofipn performance and for measuring the strength of the
mance statistics with the designated “reference” benefimnection of profile accuracy and profile “usefulness”.
mark runs, we evaluate nearly all possible combinatiopfe yse this methodology to analyze profile-driven op-
of training and evaluation runs. We summarize the usefjinization for two optimization systemsc andalto
ness of basic block profiles in this wider context, evaluagg)h profile-driven optimization systems used profile in-
the reliability of the results that we derived from using gyrmation to provide significantly better performance in
range of evaluation runs, and evaluate the apparently ¥k resulting code. However, we derive somewhat cau-
controversial claim that more accurate basic block profilggnary results concerning the commonly-held assumption
are connected to better profile-driven optimization perfagiat profile accuracy strongly predicts profile-directed op-
mance. We find that while in thalto optimization con- timjzation performation; there was only a weak connec-
text, there is a significant correlation between more acGlgn petween profile usefulness and accuracydioo
rate profiles and more useful profiles, no such correlatigig none whatsoever fec. Those wishing to discover
existed in thece system. whether these assumptions hold for their own optimizers,
programs and profiling methods will need to repeat our
analyses.

We evaluate metrics that attempt to measure how ac-

- . T ._curately a profile predicts a given future program execu-
Profile-directed compiler optimization is a commonly iMaon. Suppose we have two training profigsandps and

plemented te_chnique and is_ c_ons_idered to be an effSﬁ'evaluation run (which when profiled, produces a pro-
tive one. Profile-directed optimization (PDO) depends IR pp). Suppose also that the binary produced by using

*This research was supported, in part, by a grant from Intel MR21 fOT p_mf”e'driven optim@zation performs bette_r on that
(Microprocessor Research Lab). evaluation run than the binary produced by using A

1 Introduction

“good” profile comparison metric in this case would bmarks define three standard runs, callefl , test and
one that shows that, is a more accurate predictionpf, train (each of which can often be combinations of mul-
than isp,; that is, a metric that correlates strongly withiple program runs). The profile-driven optimizations al-
profile usefulness. lowed in the context of SPEC benchmarks involve using
We must immediately clarify the scope of this paperain as the training run angef as the evaluation run
We cannot derive results that apply to all profile-gatherirftest may only be used for a relatively short-running test
techniques, benchmarks and optimizers. In this paper @fgéhe correctness of a given benchmarking setup). In our
work within the context of profiles that have been directhyork, we use all of the available runs as training and eval-
gathered by basic block profiling (as opposed to approxition runs, in all combinations. Where the SPEC bench-
mate methods such as statistical sampling, or profiles thaarks call for aggregating multiple runs into a single eval-
are entirely synthetic, such as those generated by statition or training run, we consider each run individually.
estimation). We use two optimizers and a wide range lius, instead of testing a single training profile and eval-
benchmarks but cannot generalize from these optimizeagion run for profile-driven optimization, we may gather
and benchmark programs to a hypothetical “universe” imformation on as many as 100 possible combinations of
benchmarks and optimizers. training profiles and evaluation runs (we use 10 differ-
Our methodology for analyzing profile-driven optient evaluation runs and 10 different training profiles for
mization performance and its relationship to accuracytike SPEC2000 benchmaperl resulting in 100 possi-
applicable to other optimizers, architectures, benchmdxlle combinations). More commonly, we have only the
sets, and profiling methods. We feel that applying otltree standard SPEC runs available to us and thus gather
methodology to the domain of exact basic-block profilégformation on 9 such combinations.
is the logical starting point for analysis of the relation-
ship between profile usefulness and profile accuracy. ThéVhen presenting the names of non-standard SPEC runs
choice of which training profiles to use is more “fundathatis, runs that are not simply the SPEC training, testing
mental” than the choice of profiling methods; regardless reference runs), we will indicate the source of the run as
of what profiling methods are available, the issue of whi¢teeded. There are twwerl2000 benchmark runs that

training profiles to use will always be present. involve calculation of “perfect” numbers. We refer to the
run that is one of the multiple runs in the SPEC reference
benchmark asef/perfect and the run that was part

2 Experimentation Framework of the SPEC training benchmark asin/perfect
Generally the names of these runs are not significant and

2.1 Definitions are included only for reference.

In the process of profile-driven optimization, a givem We defineprofile usefulnes@ terms of an evaluation
(deterministic execution of a benchmark program withran. That is, it is meaningless to say that profileis
certain input) produces a profile that is associated witliore useful tham,; only thatp, is more useful thap,
that run. This profile is then used as input to a profilgith respect to some evaluation run.
driven optimizer, and is thus calledraining profile The
resulting binary can be evaluated with evaluationrun. Profile accuracy as measured by one of our profile
The latter type of run will also have a profile associatehmparison metrics, measures how well the behavior as-
with it, the evaluation profile which is the basic block sociated with a training profile predicts the behavior as-
profile that would have results from profiling the binargociated with an evaluation profile, strictly in terms of
with the evaluation run. the contents of the two profiles. Once again, accuracy is
We draw our benchmarks from the SPEC95 antkfined in terms of an evaluation profile. The accuracy
SPEC2000 benchmarks (if a benchmark exists in baih profile p; (given a comparison metric) is calculated
benchmark sets, we use the SPEC2000 version and stfetly by comparing the profile data associated with
pend “2000” to the benchmark name). The SPEC bendahith the profile data associated with the evaluation run.

2.2 Profile-Driven Optimization Platform all our evaluation runs at this time. We are often measur-
,)) ing only subtly different binaries, with very small varia-

We have implemented a system for evaluating profile Usgsss in run-time. We run our benchmarks on a 333Mhz

fulness and accuracy. This system consists of a setRf5 21164 machine with 1GB of memory (running Dig-

profile .gther_ing tools, a profile manipulation tool, anglh ;Nix V4.0). The machine, while old, has highly ac-
two optimization platforms (thelto [4]) system and the ¢;rate performance counters and mature and well-tuned
standard Digital Unix C Compiler[1]) using the prome%ptimizers.

that we gather. The following steps outline the operation
of our system.

First, we produce “base” binaries using the Digital Our work is not focused on producing peak optimiza-
Unix C compiler (DEC C V5.6, subsequently referred ton performance. Our focus is on studying the effects of
ascc). profile-driven optimization and methods for evaluating its

Second, we usalto to gather profile information andeffectiveness, not implementing the fastest possible opti-
build a Control Flow Graph (CFG). The base binaries af@izations. In general, the optimization performance of
instrumented bylto and used to gather profile informaour system (through either tladto path or thecc path)
tion for the various runs of the benchmark. is good. Usually, optimization performance is within 5-

Third, these profiles and the benchmark’s control-flohf% of the DEC C compiler at the highest level of opti-
graph are passed to the profile manipulation tool, whighization, and sometimes faster, due mainly to the aggres-
may apply transformations to real profiles or generat&/€ whole program optimizations implementedito
new profiles from scratch. The profile optimization tool
can generate profiles ialto format or in the standard : . . i

o : We use the technique of using the evaluation profile as
pixie format. At this stage we also gather data on pro-

. I . : a training profile, a case that we call, after Savari and
file characteristics and comparisons between profiles. - : . .
: oung [5], resubstitution While not valid as a practi-

Fourth, these new profiles are used as inputs to tﬁtechnique (why run the exact same program execution

proftljle-qtrrive_?hoptlelzatl(_)tr% ?rl(l) cestg. . T?ese pr(_)Illre]s da{ ice?), resubstitution frequently generates interesting re-
used with eithealto -~ (with full optimizations switche sults, allowing us a insight into how much benefit results

on) or the Digital C compiler (see [1] for details of thel‘rom having “perfect” information. We do not use resub-

opt|m|zat_|ons performefd). to produce an opt!mlzed bina itution cases when reporting average benefits from using
The profile-driven optimizations that provide the mofptrofile-directed optimization
S: '

substantial improvements are similar in both optimze
code placement optimizations, procedure inlining, and

super-block formation (profile-driven optimization steps Our goal is to investigate the usefulness and accuracy
in super-block formation also affect many subsequent a§f-profiles, not to generate superior SPEC results or to
timizations that are not themselves profile-driven). Wihd the ideal “representative” training profile. Our use of
also produce binaries with the same set of optimizatigen-standard SPEC training profiles and evaluation runs
flags but without profile information, for comparison. means that our results cannot be considered to be valid
Finally, the optimized binary is rin We can compute SPEC results. This does not render the results invalid
cycle counts (using the EVS5 performance counters) fior a research sense. As stated above, even the (highly
: guestionable in a benchmarking sense) use of resubstitu-
Currently, we have some missing data points (including t ; ;
SPEC2000 version of gcc) due to bugs in one or the other of the %EQ” can g_enerate interesting data. We carry out analyses
timizers, including a number of the baseline “non-profile-directed opti* determine Whgther our o_bserved performance effects
mization case” results. We are also missing some entire benchmarkff@m shorter-running evaluation runs than the SPEC “ref”
thecc optimization context. Our results are not significantly altered lyenchmarks represent real effects or whether the effects

restricting the bgnphmark set; to only those benchmarks that worléﬁq? simply due to experimental error: the former is true
across both optimization environments, so we have opted to pre

sén e -
more information (the benchmarks that worked only underathe for nea'_'ly all combinations of optimizer, benchmark and
environment) rather than less. evaluation run.

3 Results uation run, the differences between cycle counts from bi-
naries trained on different training profiles were signifi-
3.1 Usefulness of Profile-Directed Opti- cant. Thatis, were we observing real differences between
mization training runs or were the differences that we observed en-
tirely due to experimental error? This issue is somewhat
We gathered cycle counts for each combination of opgfore pressing for this work than it is for more conven-
mizer, benchmark, training profile and evaluation run. Wynal profile-driven optimization research, as some of the
repeated each evaluation run 11 timeS, discarding the fﬂ_ﬁﬁs which we were using as evaluation runs were com-
cycle count score due to significant differences in the ﬁrﬁératively brief (as compared to the standard SPE&€ *
run (almost certainly due to page faults as the program Rins). The one-way ANOVA procedure (“one-way” be-
nary is brought into memory from disk). We calculategayse we vary only a single variable; “ANOVA is short
average cycle counts from the other 10 evaluation rufg: “ANalysis Of VAriance”) attempts to determine, given
We present these average cycle counts normalized by 4§t of experimental results gathered at different ‘levels’
average cycle counts of the comparison binaries; that (i, this case, using different training profiles), whether
the optimized binaries that did not used profile-directefere are statistically significant differences among the
optimization. Thus, for a given evaluation run, a binamesuylts for different levels. That is, we attempt to dis-
produced by profile-directed optimization that runs 5¥rove the null hypothesis that the average cycle counts for
faster than the binary produced by non-profile directedgiven evaluation run are the same regardless of which
optimization is assigned a score of 0.95in Table 1. training profile was used. If the probability that this
In Table 1, we present results showing the relativguld be the case is sufficiently low, we can reject this
performance of profile-directed optimization for our difnu|l hypothesis and conclude that in fact there are statis-
ferent benchmarks as compared to the same benchmgegly significant differences between the profile-driven

optimized without profile directed optimization. As eacBptimization effects of different training profiles.

benchmark has multiple evaluation and training runs, we . . “ .
. ! RV We were able to reject the null hypothesis of “no signif-
present the average profile-driven optimization perfar-

o . .Jcant difference exists between the effect of training pro-
mance for all of the combinations of evaluation and train- ", S)
. . B o files” at a significance level of 0.05 (that is, we found that
ing runs, excluding the “resubstitution” case. I . .
2 S . it is no more than 5% likely that, given no effect at all
Overall, profile-directed optimization is an effectiv

technigue (an average improvement of 3%), but the ?(ragm training profiles, we would have seen the pattern of

sults are sharply variable: there are several benchma\fﬁgabi"ty that we did) for all but 5 evaluation runs (4 un-
Pl) deralto - two runs in theart SPEC2000 benchmark

where all training profiles make the program slower for d one run each faompress andparser , 1 under

; o an

each evaluation run. A majority of benchmarks for bot .
optimizers have at least one combination of training prgt—: - one run undecompress). For the vast majority of
our benchmark runs, the probability that we would have

f!le and evaluation run where profile-directed Optlrnlz%'bserved the variability that we did due to to factors other
tion performs badly.

Examining the individual benchmark runs, we obser\t/gan the training profile is negligible (under 0.001).

a wide range of performance variability. Table 2 presents

t_he_ top and b_Otth_“ benChmark runs by prOf'le'd”Yen Oflieen at least one training profile and the rest - it does not in itself yield
timization variability. There is a huge range of variabilityesults analyzing how many of the training profiles differ significantly
among evaluation runs. from the others. Thus, the results of a one-way ANOVA should be

; il treated with a degree of caution - when we say that a significant differ-
Given that CyC|e counts have a degree of Vanablllty d%ﬁce exists for somgerl2000 evaluation run with 10 different train-

to experimental error, we used a simple technique (OR&; profiles, we are only allowed to say that “some difference exists
way ANOVA? [8]) to determine whether, for each evalamong the usefulness of those 10 profiles”, as opposed to the stronger
statement “each and every one of these profiles is significantly different

2The results for one-way ANOVA are far too verbose to present hefegm every other one” or any of the intermediate possibilities. We car-
and many of the details are beyond the scope of this paper. One-wiag out post-hoc analyses to distinguish between this set of posibilities,
ANOVA merely detects that there exists some significant difference ms the details are again beyond the scope of the paper.

Optimizer | Benchmark Number of runs| Normalized execution time
Minimum | Maximum | Mean

alto ammp 3 0.97 0.98| 0.98
bzip2 5 0.87 1.01| 0.93
compress 3 0.94 1.06| 0.99
crafty 3 0.89 0.93| 0.91
gap 3 0.95 0.97| 0.95
go 5 0.96 1.06| 0.99
gzip 7 1.00 1.14| 1.06
ijpeg 3 0.96 0.98| 0.97
li 3 0.97 0.99| 0.98
m88ksim 3 0.83 1.00| 0.89
mcf 3 1.00 1.02| 1.01
parser 3 1.00 1.02| 1.01
perl2000 10 0.83 1.08| 0.96
twolf 3 0.93 1.01| 0.97
vortex2000 5 0.86 0.91| 0.89
ALL CASES 0.83 1.14| 0.97
cc ammp 3 0.99 1.04| 1.02
bzip2 5 0.91 1.06| 0.96
compress 3 0.92 1.02| 0.99
crafty 3 0.94 0.98| 0.96
equake 3 0.95 1.01| 0.99
gap 3 0.92 0.99| 0.95
go 5 0.99 1.14| 1.06
ijpeg 3 0.94 0.98| 0.96
li 3 0.84 0.92| 0.87
m88ksim 3 0.88 1.07| 0.96
mcf 3 0.99 1.00| 1.00
perl2000 10 0.86 1.13| 1.00
twolf 3 0.93 0.98| 0.95
vortex2000 5 0.90 0.99| 0.94
ALL CASES 0.84 1.14| 0.97

Table 1: Execution time of PDO binaries over all evaluation runs and training profiles (each set of evaluation run
results normalized such that the non-profile-directed optimization case is equal to 1.0 for each evaluation run).

Optimizer | Benchmark | Evaluation run| Fastest Case Slowest casg Mean | Standard Deviatior]
alto peri2000 train/diffmail 0.90 1.05| 0.96 0.0457
alto perl2000 ref/diffmail 0.90 1.06| 0.96 0.0457
alto peri2000 ref/perfect 0.80 0.96| 0.89 0.0446
cc perl2000 train/scrabble 0.82 1.00| 0.93 0.0433
cc go ref2 1.00 1.12| 1.08 0.0427
cc go train 1.01 1.14| 1.08 0.0426
cc go test 1.00 1.12| 1.08 0.0412
alto perl2000 ref/makerand 0.78 0.93| 0.87 0.0408
alto gzip program 1.13 1.14| 1.13 0.0021
alto parser ref 1.00 1.00| 1.00 0.0020
alto ijpeg train 0.98 0.98| 0.98 0.0013
alto ammp train 0.98 0.98| 0.98 0.0010
cc mcf ref 1.00 1.00| 1.00 0.0009
alto parser train 1.01 1.01| 1.01 0.0008
alto ammp ref 0.98 0.98| 0.98 0.0006

Table 2: Evaluation runs with highest and lowest variability due to profile-directed optimization profile choice; units
are normalized as for Table 1.

3.2 Connection of Usefulness and Accuracy Static coverage (denoted “STCOV”) measures what
proportion of the blocks executed (“covered”) in the eval-
uation profile are also executed in the training profile.

All of our comparison metrics compare a list of basic Relative entropy (denoted “ENT") as a method of com-

block counts in a training profile with a list of basic blockparing profiles was introduced by Savari and Young [5]

counts in an evaluation profile. They return a single nurdnd is fully described there. Relative entropy treats the

ber, a score that indicates how well the basic block cou®files being compared as distributions of random vari-

in the training profile predict the basic block counts in tHbles and uses an information-theoretic approach to mea-

evaluation profile. Thus, a more accurate training profiéire the difference between the two distributions.

better predicts the CFG-level behavior of the evaluationWe use two methods for applying these comparisons

run. Most of these metrics are asymmetric. to our programs. Firstly, we can apply the comparisions
A profile comparison metric consists of a comparisdf the whole program’s set of basic block counts directly.

type and a way of applying it over the program. The conthis is the default method. Secondly, we can apply them

parison types we use in this paper are key-matching, st&tidy to the entry counts of functions, ignoring all other

coverage and relative entropy. basic block data (denoted by prefixing “FE-" to the com-
Key-matching is introduced in [7]. It uses a paramet@@rison name in our results).

that determines how many blocks are selected for key-

matching._ For example, if a function has 50 blocks, ang, , Evaluating the Connection Between Compari-

the mqtchlng level is 40% (or 0.4), then we perform key- son Metrics and Usefulness

matching on the top 20 blocks as follows: the key-match

score is the number of blocks in the top 20 blocks in tii®@ measure the association between profile usefulness and

training profile that are also in the top 20 of the evaluati@ngiven profile comparison metric, we use the Spearman

profile. Key-matching metrics are denoted by KM(leveRank Correlation Coefficient [8};,. rs can be calculated

- “level” is always 0.1 in this paper. by assigning ranks to the values being compared (scoring

3.2.1 Profile Accuracy Metrics

ties as the average rank values - so if there is a tie between Training run[| Cycle count (GCycles] Relative entropy

the top two values, they both are assigned the rank of 1.5) ref/diffmail 45.819 8.05
and calculating the more familiar Pearson correlation go- ref/makerand 47.581 22.57
efficient [8] over those ranks. Thus, calculations pflis- ref/perfect 40.774 0
card the magnitude of the differences between data points. splitmaill 46.495 852
This makes-, weaker (more likely to miss a real effect splitmail2 45.640 8.20
than Pearson’s correlation coefficient but much more fo- splitmail3 47.176 8.35
bust in the presence of non-linear relationships, outligrs splitmail4 25281 3.29
and (more generally) data that does not hold to a bi-variatgzin/qiffmail 45.615 8.06
normal distribution. train/perfect 42.515 2.45

When analyzing the correlation between profile accUs zin/scrabble 48.923 20.44

racy and usefulness, we must be aware that there iso
“natural” population of profiles for a given benchmarkrable 3: Example 1:perl2000 scaled cycle counts
For most benchmarks, we have a limited number of ruasd accuracy metrics for a single evaluation run
available to us, and they have been chosen artificially. (ief/perfect)
we include other profile types besides profiles derived di-
rectly from real runs, we are introducing further artifi-
cial biases into our population. Admittedly, the choice-01 level; that is, if there was no association whatsoever
of benchmark runs from the SPEC benchmark sets arekgtween two variables, we'd expect to see, aalue this
tificial also, but they are not the artificial choices of thBigh less than 1 in 100 times. In fact, the chance that we
authors of this paper - that is, they are not hand-picked#@uld see such a strong association between two uncon-
advance our favored hypotheses. nected variables in such a list of cases is less than 1 in
We will proceed to show an example of how we evak/00-: The propprtion of sceled cycle count variation ex-
uate the connection between profile usefulness and ad¥gined by relative entropy is; = 0.75 - that is, 75% of
racy. Firstly, we present the average cycle count scof8§ variation in average profile-driven optimization per-
and usefulness scores for the benchnek2000 and formance in this particular case can be explained in terms
theref/perfect ~ benchmark evaluation run. For eacRf relative entropy.
training profile, we have an average cycle count (reflect-Note that this benchmark has a quite large number of
ing how many cycles the binary that was produced B@ssible training profiles (10). Many of our benchmarks
profile-driven optimization using that profile took to rufave only 3 or 4 runs available, so we are often in the situ-
the evaluation run) and an accuracy score (reflecting hg#Pn of calculating correlations over a tiny set of cases. In
close the training profile was to the profile produced BYis circumstance, itis possible to have apparently strong
the evaluation run). For this example, we will use the agorrelations that are in fact statistically meaningless
curacy scores provided by relative entrdpy their own. iny when they occur as a pattern across mul-
Table 3 shows the cycle counts and relative entroB?l_e evaluation runs and/or benchmarks can we attach any
scores for a list of training runs (the names refer to tHEFight to these results. .
different benchmark runs available fperl2000 and Table 4shows this analysis repeated for all of our eval-
are not of any interest aside from the fact that they lap&tion runs inperl2000 . We will see a larger set of
cases). To calculate a score for how closely relative gSUlts - now, we have a table with numbers for each
tropy predicts scaled cycle counts, we take thevalue evaluation run. Not all of the correlatlons_are significant at
of two variables (cycle count and relative entropy) ové&0-01 level (those that are are marked with a “**”) or even
the list of cases (training profiles), which turns out to K& & 005 level (marked with a**”). For example, the value

r, = 0.87. This value is statistically significant at thds = 0-382, seen for the evaluation ruef/diffmail
is fairly low: there is a 14% chance that two unconnected

3More accurate profiles produce lower relative entropy scores, zé’r‘%riabl_es might show a ra_nk Corre|ati0_n equalto or greater
represents a perfect match than this value (3 evaluation runs fall into the category of

|_Evaluation run name r score| son and optimizer. It is clear that tiperl2000 bench-

ref/diffmail .382 mark, presented above, and particularly pesfect
ref/makerand 778** evaluation run, represent a quite favorable case - note the
ref/perfect 867 large number of benchmarks in this table for which the
splitmaill 697* aggregater, scores are either very low (i.e. no correla-
splitmail2 612* tion) or actually negative (i.e. more accurate profiles have
splitmail3 685" worse profile-driven optimization performance). Particu-
splitmail4 B12* larly, the results for thec optimizer show no overall pat-
train/diffmail 394 tern of a connection between profile usefulness and profile
train/scrabble 285 accuracy.

Inthealto case, all of the profile comparison metrics
Table 4: Example 2: Alperl2000 evaluation runs with Yielded small but significant correlations between pro-
the rank-correlation values of cycle counts and relative €fie accuracy scores and profile usefulness scores. Key-
tropy calculated over each training run matching performed slightly worse than the other two pro-
file accuracy metrics, entropy and static coverage. The
"function-entry” versions of these latter accuracy metrics
not being significant at the 0.05 level). However, evegrerformed slightly better than the versions that considered
considering only these three values in isolation, it is ual of the basic blocks in the program, although such a
likely that we would see three such correlations (that gnall difference is not likely to be significant.
positive and in the range.285 < r, < 0.394) between There was a substantial amount of variability among
relative entropy and average cycle count if overall, thetlee aggregate, scores for each benchmark. Some of this
was no connection between relative entropy and averageiability is simply random; the aggregatg scores for
cycle count for any of these runs. In fact, the chance tile benchmarks with a small number of runs are subject
such three correlations this strong or stronger would haeea great deal of randomness as they involve comparisons
arisen by chance given no connection between relative among only 9 or 16 values. However, some benchmarks
tropy and cycle count is about 1%. clearly have far stronger associations between usefulness
Note that it is quite possible to have negativescores; and accuracy than others. Recall that the correlation co-
in this case, more accurate profiles actually result in worgicients in this table rank how well profile usefulness
profile-driven optimization performance. correlates with profile accuracy; they have nothing to say
We can compute a summary value for the overall Coﬁbout how well profile-directed optimization works over-
nection of usefulness and accuracy over a benchmar
averaging ther, values for each evaluation run, yield- A major weakness of the above approach to evaluat-
ing an aggregate correlation ofcan(r,) = 0.59 for the N9 the connection of profile-directed optimization perfor-
perl2000 benchmark: mance and profile accuracy is that, due to the use of non-
Using such a procedure to gather aggregate numbRasametric methpd; anc_i averaging across d|ffere_nt bench-
for each benchmark, this time over a range of compé?—ark_s' small variations in one benchmark are_welgh'Fed as
ison metrics, we derive Table 5. This table shows thgaVily @s huge variations in another. There is no simple
aggregate, scores for each comparison, benchmark a{®y to avqld this problem without recourse to_paramet-
optimizer, as well as overall mean scores:focompari- ric correlation methods. HOV_/e_/er, we can derive results
that are more useful by restricting our above analyses to
4This is not generally good practice; more statistically rigorous is gnly those evaluation runs with greater variability due to
transform each s value to az-score (normal score), take the averagprofile-directed optimization. The overall (per-optimizer)
over thesez-scores and transform back into the range of However, results from restricting our analysis to the top half of eval-

this procedure is complex and results in averagscores little different ; : - T .
from those that we derive from simple averaging. Similarly, we will nolfle_ltlon runs with the highest level of profile-directed opti

present significance results for aggregatescores here: the statisticalMization _Variabi"ty are Shown in Table 6.
justification for these results in beyond the scope of this paper. The failure of our profile accuracy metrics to explain

Optimizer | Benchmark mean(rs)
ENT | STC | KM(0.1) | FE-ENT | FE-STC | FE-KM(0.1)
alto ammp -0.67 | -0.79 -0.50 -0.50 -0.58 -0.67
art 0.20| 0.23 0.35 0.25 0.07 0.23
bzip2 -0.12 | -0.06 0.09 0.00 0.14 0.16
compress 1.00| 0.91 0.83 1.00 0.29 0.58
crafty 0.83| 0.67 0.67 0.67 0.17 0.50
equake 0.17| 0.17 0.00 0.17 0.00 0.58
gap 0.83| 0.83 0.50 0.83 0.79 0.50
go 0.26| 0.13 0.20 0.34 0.30 0.23
gzip -0.16 | -0.24 -0.28 -0.26 0.12 -0.24
ijpeg -0.83 | -0.67 -0.67 -0.83 0.00 -0.79
li 0.83| 0.96 0.50 0.83 0.96 0.50
m88ksim 0.67| 0.67 0.67 0.67 0.79 0.67
mcf 0.50| 0.62 0.67 0.50 0.58 0.87
parser -0.50 | -0.83 -0.83 -0.50 -0.29 -0.67
perl2000 0.59| 0.60 0.45 0.52 0.60 0.50
twolf 0.33| 0.33 0.17 0.33 0.58 0.29
vortex2000 0.38| 0.36 0.38 0.64 0.17 0.48
vpr 0.52| 0.59 0.57 0.55 0.51 0.54
alto MEAN 0.27| 0.25 0.21 0.29 0.29 0.24
cc ammp 0.00| -0.04 0.33 0.33 -0.58 0.00
bzip2 0.16 | 0.04 0.15 0.06 -0.07 -0.09
compress 0.33| 0.17 0.17 0.33 0.29 0.29
crafty 0.67| 0.33 0.00 0.33 -0.46 0.00
equake -0.83 | -0.83 -0.50 -0.50 0.00 0.00
gap -0.33] -0.33 -0.33 -0.33 -0.46 -0.17
go -0.72 | -0.76 -0.74 -0.72 -0.60 -0.65
ijpeg 0.33| 0.00 0.00 -0.33 0.00 -0.33
I -0.17 | -0.46 0.33 -0.17 -0.46 0.33
m88ksim -0.17 | -0.17 -0.17 -0.33 -0.12 -0.17
mcf 0.33| 0.33 0.17 0.33 0.58 0.29
perl2000 -0.18 | -0.23 -0.17 -0.19 -0.21 -0.14
twolf 0.33| 0.33 0.17 0.33 0.58 0.33
vortex2000 0.04| -0.01 -0.02 0.06 0.02 0.06
cc MEAN -0.06 | -0.12 -0.04 -0.06 -0.11 -0.02

Table 5: The connection of usefulness and accuracy: aggregasedres over optimizers, benchmarks and different
comparison metrics

Optimizer ENT | STC| KM(0.1) | FE-ENT | FE-STC | FE-KM(0.1)
alto mean|| 0.57| 0.52 0.48 0.58 0.45 0.45
cc mean -0.15| -0.22 -0.14 -0.17 -0.03 -0.03

Table 6: Aggregated, scores over optimizers, considering only the top half of evaluation runs by PDO variability

cc profile-directed optimization performance turns out to One of the most startling results was the fact that the
be unconnected to profile-directed optimization variabéccuracy metric “FE-STC” performed as well as it did de-
ity. Even considering only benchmarks and benchmaskite the fact that it ignores away nearly all of the informa-
runs that had large variations in profile-directed optimiz&en in the block profile. This extremely simple metric can
tion performance did not improve the connection betwebe calculated by determining the number of functions en-
profile accuracy and profile usefulness when using tered in the training profile and the evaluation run divided
However, oumlto results become substantially strongéyy the total number of functions entered in the evaluation
when we eliminate benchmark runs with small variatioman.
in profile usefulness. Entropy-based methods, in partic-The effectiveness of this metric (and similarly restricted
ular, improve markedly. The “FE-ENT” accuracy metrienetrics) could result from there being little variation in
predicts 34% of the variation in our profile-directed opwithin-function behavior from run to run (that is, when
timization results undealto - a modest result, but theprofiles produced from benchmark runs differ, it is be-
strongest one so far. cause they cover a different set of functions, not because
We found no similar improvements from restricting ouhey have radically different behavior within those func-
analysis to smaller (e.g. top quarter by PDO variabilityjons). An alternate possibility is that the optimizations
subgroups of our evaluation runs. Not suprisingly, the alto really only effectively worked at a per-function
bottom half of evaluation runs by PDO variability showebtvel and thus made little use of the within-block informa-
no significant correlation (undexlto or cc) between tion (code placement optimizations that work at a whole-

profile accuracy and profile usefulness. function level and procedure inlining are both examples of
optimizations that work very well with only per-function
323 Discussion information, although both benefit from knowledge of

call site counts - or, nearly equivalently, call graph edge

There was no reason to suppose that any reliable coounts). These possibilities are not easily separated, al-
nection between accuracy and usefulness existed in theugh the fact that our “function-entry only” compari-
cc optimization context whatsoever. We conjecture thebn metrics are strongly correlated (> 0.9) with their
the much more extensive and high-level optimizatiomghole-program counterparts for nearly all benchmarks is
present incc sufficiently transform the control-flow- suggestive that the former possibility is true (across both
graph to the point where the relatively subtle differenceptimizersbzip2 andgzip were the only exceptions).
between training profiles are irrelevant. This does not
mean that profile-driven optimization does not work in
cc, nor does it mean that arbitarily inaccurate profileswitt ~ Related Work
produce profile-driven optimization performance indistin-
guishable from good ones. What it does mean is th&¥all [7] makes the first systematic attempt to evaluate
within the fairly narrow range of profiles and benchmarksrofile accuracy. Wall compares real profiles and static
we tested, accuracy could not be shown to have any cestimates for accuracy using key- and weight-matching to
nection to usefulness. We evaluated many other profilempare profiles. His comparisons use key- and weight-
comparison metrics than (carrying out key- and weightiatching at both fixed levels (tof and, similar to our
matching at multiple levels, using dynamic coverage) preork, at levels proportional to the total number of blocks
sented here and found that none of them performed dtgp N%). He shows strong improvements in accuracy
better than the comparison metrics presented. from using real profiles over static estimates. He briefly

Our results for thealto optimization context were analyzes some theoretical optimization algorithms, show-
more encouraging, but still relatively weak. Even wheing weaker results, and warns against unrealistic expec-
restricting our analysis to benchmarks with large profiléations concerning profile driven optimization. Wu and
directed optimization variability, we could explain nd.arus discuss static estimation in [9], using Dempster-
more than a third of the variation in average cycle courshafer theory to combine branch prediction heuristics.
by some accuracy metric. Key- and weight-matching are used to evaluate the accu-

racy of the static profiling methods. Wagner et. al doraore data points rather than fewer. This is true even if
similar analysis to Wall's in [6]. some of the training profiles and evaluation runs produce

These works do not attempt to establish any connectiogry similar effects.
between profile accuracy and profile-driven optimization
performance. Our work diverges from all of these works]
by connecting accuracy metrics to actual profile-drivén Conclusion
optimization performance in two mature optimizers.

Fisher and Freudenberger report that profile data gaftofile-directed optimization is a worthwhile technique,
ered from previous runs yields good branch predictions average, in both of the optimizers evaluated. On av-
[3]. They mention the possibility that the differences iarage, we saw an improvement over non-profile-directed
real benchmark runs might be related to the benchmar@ptimizations of about 3.5% aaito and 5% on cc; these
coverage of the program as opposed to differences in Bggregate numbers concealed substantial variations (the
havior in code that is covered by both runs. This is an ihest case for either optimizer was approximately 17% bet-
teresting observation, which unfortunately they were nigtr than non-profile-directed optimization and the worst
able to quantify. Our results suggest that this intuiticzase for either was approximately 14% worse).
was correct (at least in terms of what informatialito Nearly all of the benchmark runs showed significant
was able to use effectively); the comparatively strong preariation in profile-directed optimization performance. In
dictive value of the accuracy metric “FE-STC” (functiornly 1% of our evaluation runs were we unable to detect
entry static coverage) supports this. significant variation among profile-directed optimization

An extensive treatment of information-theoretic metlperformance (that is, no variation due to profile-directed
ods for comparing and combining profiles, including theptimization existed or it was so small that we were un-
relative entropy comparison used in this work, appearsahle to separate this variation from experimental error).
Savari and Young [5]. Our work validates the use of rel&gain, large differences existed between the evaluation
tive entropy as a profile comparison metric. runs with the largest amount of profile-directed optimiza-

Cohn and Lowney compare the differences in usefiiion variability and those with the smallest - the stan-
ness between profile-driven optimization and static egiard deviations in speed-up over the non-profile-directed-
mation on the Compaq Alpha in [1]. They report a sul®ptimization case ranged from effectively zero to nearly
stantial speedup (17%) on the SPEC 95 integer benbfe.
marks from using feedback directed optimization. Their Profile accuracy is only weakly associated with profile
results show a larger effect from profile-driven optimizaisefulness in one of our optimizemlto) and not con-
tion than this paper; they use more aggressive optimizeected at all with profile usefulness in anothec), for
tions on a more recent iteration of the Alpha architecturaur set of benchmarks and benchmark runs. While con-
Another difference between their work and ours is that veé&dering only benchmarks or runs with higher variabil-
use a wider variety of benchmarks (including SPEC20@9 in profile-driven optimization performance improved
and floating point benchmarks) and benchmark runs thiéwe connection omlto , the connection between useful-
they do; this may also contribute to the performance gapss and accuracy still accounted for only 34% of the
between this paper and their work. observed variation in profile-driven optimization perfor-

Eeckhout et al. [2] use statistical data analysis teamance. While the comparatively weak (non-parametric)
nigues to cluster similar “program-input pairs” (in oucorrelation methods that we had to use may have caused
terms, pairs consisting of a benchmark and an evaluatizto be overly conservative, it seems unlikely that any ac-
run). They concentrate on overall benchmark charactewracy metric whatsoever would explain in excess of 50%
istics as opposed to profile accuracy and/or profile usd-the variation. Of the variation in profile usefulness ex-
fulness.For our analyses in this paper, we have little ng@dinable by profile accuracy metrics, much of it was ex-
to reduce the number of “program-input pairs” to covergainable by fairly simple profile accuracy metrics, most
hopefully representative set of benchmarks, training proetably static coverage of function entries (“FE-STC”).
files, and evaluation runs, as our analyses benefit fréfe find some quantitative support for Fisher and Freuden-

berger’s claim [3] that differences in exact profiles alReferences

mainly due to a different set of functions being covered

in different runs, as opposed to different behavior with{#] R. Cohn and P. Lowney. Feedback directed optimiza-

the functions from run to run. tion in Compaq’s compilation tools for Alpha. Im
Proc. 2nd Workshop on Feedback Directed Optimiza-

tion, 1999 1999.
That the overall results are negative far and weak

for alto is not entirely suprising. Much of the variatior{2] L. Eeckhout, H. Vandierendonck, and K. D. Boss-
in our training profiles does not necessarily cause different chere. Workload design: Selecting representative
optimization outcomes. That which does does not neces- program-input pairs. IiThe Eleventh International
sarily help. Not every optimization “decision” produces Conference on Parallel Architectures and Compila-
better performance, regardless of whether it is based on tion Techniques (PACT-2002002.

good information - few compiler optimizations are trul
“optimizations”, particularly when interacting with man
other optimizations. We see substantial and significant
variations due to profile choice in profile-driven optimiza-
tion, and for most benchmarks, much of this variation is

not explainable in terms of profile accuracy. This sug] R. Muth, S. Debray, S. Watterson, and K. de Boss-

gests that there is a large component of randomness in thechere. alto: A link-time optimizer for the DEC Alpha.

outcome of the profile-driven optimization process. Technical Report TR98-14, Department of Computer
Science, The University of Arizona, 1998.

Our major contributions are twofold. Firstly, we haV?S] S. Savari and C. Young_ Comparing and Combining
developed a methodology for evaluation of profile-driven profiles. InProc. Second Workshop on Feedback-
optimization performance and its connection to profile ac- pjrected Optimization (FDQ)1999.
curacy that can be applied to any combination of proces-
sor architecture, optimizer, and set of benchmarks. S& T. A. Wagner, V. Maverick, S. L. Graham, and M. A.
ondly, our results show that there exists at least one op- Harrison. Accurate static estimators for program op-
timizer for which usefulness and accuracy are not corre- timization. ACM SIGPLAN Noticgs29(6):85-96,
lated (in our experimental context) and one in which this 1994.

cprrelatlon §X|§ts put fails to explain the bulk of prof|le[-7] D. W. Wall. Predicting program behavior using real
directed optimization performance.

or estimated profiles. 26(6):59-70, June 1981to-
ceedings of the ACM SIGPLAN '91 Conference on
Therefore, any claims about profile-directed optimiza- Programming Language Design and Implementation

tion techniques or more accurate profiling techniques té .
. L . R. Walpole, R. Myers, and S. MyerBrobability and
the necessity of obtaining more accurate precise ba Ii Statistics for Engineers and ScientisBrentice Hall,

block profiles - dynamically or otherwise) should be eval-
. : . 1998.
uated experimentally not in terms of profile accuracy.

We have shown that there are a range of cases wherefdf- v. wu and J. Larus. Static branch frequency and pro-
tle or no connection between profile accuracy and profile gram profile analysis. Iin 27th International Sym-
usefulness exists. Thus, it is incumbent on designers of posium on Microarchitecturepages 1-11, 1994.

profile-directed optimization systems to demonstrate that
the profile-directed optimizations in their systems are ac-
tually effective over a wide range of benchmarks, rather
than merely showing that the profiles gathered are of high
accuracy.

3] J. Fisherand S. Freudenberger. Predicting conditional
branches from previous runs of a prograRroc. Ar-
chitectural Support for Programming Languages and
Operating Systems (ASPLO$ages 85-95, 1992.

