
Evaluating the Relationship Between the Usefulness and Accuracy
of Profiles∗

Geoff Langdale1
1Carnegie Mellon University

Pittsburgh, PA 15213
geoffl@cs.cmu.edu

Thomas Gross1,2

2 ETH Zürich
8092 Z̈urich, Switzerland

trg@inf.ethz.ch

Abstract

The relationship between how accurately a profile pre-
dicts future program behavior and how useful it is for pro-
file directed optimization is not straightforward. We gath-
ered extensive data on the results of profile-driven opti-
mization using two different optimization systems (cc [1]
andalto [4]) and selected benchmarks and benchmark
runs from the SPEC95 and SPEC2000 suites. Instead of
following the traditional SPEC guidelines of training only
with the designated “train” profiles and gathering perfor-
mance statistics with the designated “reference” bench-
mark runs, we evaluate nearly all possible combinations
of training and evaluation runs. We summarize the useful-
ness of basic block profiles in this wider context, evaluate
the reliability of the results that we derived from using a
range of evaluation runs, and evaluate the apparently un-
controversial claim that more accurate basic block profiles
are connected to better profile-driven optimization perfor-
mance. We find that while in thealto optimization con-
text, there is a significant correlation between more accu-
rate profiles and more useful profiles, no such correlation
existed in thecc system.

1 Introduction

Profile-directed compiler optimization is a commonly im-
plemented technique and is considered to be an effec-
tive one. Profile-directed optimization (PDO) depends on

∗This research was supported, in part, by a grant from Intel MRL
(Microprocessor Research Lab).

the assumption that having more accurate predictions of
future behavior will result in better optimization perfor-
mance. Both the assumption of effectiveness of profile-
directed optimization, and the assumption of a connection
between more accurate profiles and better profile-driven
optimization performance, require quantification. In this
paper, we attempt to evaluate both assumptions.

We present a methodology for evaluating the effec-
tiveness of profile-directed optimization, for determining
the significance of variability in profile-directed optimiza-
tion performance and for measuring the strength of the
connection of profile accuracy and profile “usefulness”.
We use this methodology to analyze profile-driven op-
timization for two optimization systems,cc andalto .
Both profile-driven optimization systems used profile in-
formation to provide significantly better performance in
the resulting code. However, we derive somewhat cau-
tionary results concerning the commonly-held assumption
that profile accuracy strongly predicts profile-directed op-
timization performation; there was only a weak connec-
tion between profile usefulness and accuracy foralto
and none whatsoever forcc . Those wishing to discover
whether these assumptions hold for their own optimizers,
programs and profiling methods will need to repeat our
analyses.

We evaluate metrics that attempt to measure how ac-
curately a profile predicts a given future program execu-
tion. Suppose we have two training profilesp1 andp2 and
an evaluation run (which when profiled, produces a pro-
file pE). Suppose also that the binary produced by using
p1 for profile-driven optimization performs better on that
evaluation run than the binary produced by usingp2. A

“good” profile comparison metric in this case would be
one that shows thatp1 is a more accurate prediction ofpE

than isp2; that is, a metric that correlates strongly with
profile usefulness.

We must immediately clarify the scope of this paper.
We cannot derive results that apply to all profile-gathering
techniques, benchmarks and optimizers. In this paper we
work within the context of profiles that have been directly
gathered by basic block profiling (as opposed to approxi-
mate methods such as statistical sampling, or profiles that
are entirely synthetic, such as those generated by static
estimation). We use two optimizers and a wide range of
benchmarks but cannot generalize from these optimizers
and benchmark programs to a hypothetical “universe” of
benchmarks and optimizers.

Our methodology for analyzing profile-driven opti-
mization performance and its relationship to accuracy is
applicable to other optimizers, architectures, benchmark
sets, and profiling methods. We feel that applying our
methodology to the domain of exact basic-block profiles
is the logical starting point for analysis of the relation-
ship between profile usefulness and profile accuracy. The
choice of which training profiles to use is more “funda-
mental” than the choice of profiling methods; regardless
of what profiling methods are available, the issue of which
training profiles to use will always be present.

2 Experimentation Framework

2.1 Definitions

In the process of profile-driven optimization, a givenrun
(deterministic execution of a benchmark program with a
certain input) produces a profile that is associated with
that run. This profile is then used as input to a profile
driven optimizer, and is thus called atraining profile. The
resulting binary can be evaluated with anevaluationrun.
The latter type of run will also have a profile associated
with it, the evaluation profile, which is the basic block
profile that would have results from profiling the binary
with the evaluation run.

We draw our benchmarks from the SPEC95 and
SPEC2000 benchmarks (if a benchmark exists in both
benchmark sets, we use the SPEC2000 version and ap-
pend “2000” to the benchmark name). The SPEC bench-

marks define three standard runs, calledref , test and
train (each of which can often be combinations of mul-
tiple program runs). The profile-driven optimizations al-
lowed in the context of SPEC benchmarks involve using
train as the training run andref as the evaluation run
(test may only be used for a relatively short-running test
of the correctness of a given benchmarking setup). In our
work, we use all of the available runs as training and eval-
uation runs, in all combinations. Where the SPEC bench-
marks call for aggregating multiple runs into a single eval-
uation or training run, we consider each run individually.
Thus, instead of testing a single training profile and eval-
uation run for profile-driven optimization, we may gather
information on as many as 100 possible combinations of
training profiles and evaluation runs (we use 10 differ-
ent evaluation runs and 10 different training profiles for
the SPEC2000 benchmarkperl resulting in 100 possi-
ble combinations). More commonly, we have only the
three standard SPEC runs available to us and thus gather
information on 9 such combinations.

When presenting the names of non-standard SPEC runs
(that is, runs that are not simply the SPEC training, testing
or reference runs), we will indicate the source of the run as
needed. There are twoperl2000 benchmark runs that
involve calculation of “perfect” numbers. We refer to the
run that is one of the multiple runs in the SPEC reference
benchmark asref/perfect and the run that was part
of the SPEC training benchmark astrain/perfect .
Generally the names of these runs are not significant and
are included only for reference.

We defineprofile usefulnessin terms of an evaluation
run. That is, it is meaningless to say that profilep1 is
more useful thanp2; only thatp1 is more useful thanp2

with respect to some evaluation run.

Profile accuracy, as measured by one of our profile
comparison metrics, measures how well the behavior as-
sociated with a training profile predicts the behavior as-
sociated with an evaluation profile, strictly in terms of
the contents of the two profiles. Once again, accuracy is
defined in terms of an evaluation profile. The accuracy
of profile p1 (given a comparison metric) is calculated
strictly by comparing the profile data associated withp1

with the profile data associated with the evaluation run.

2.2 Profile-Driven Optimization Platform

We have implemented a system for evaluating profile use-
fulness and accuracy. This system consists of a set of
profile gathering tools, a profile manipulation tool, and
two optimization platforms (thealto [4]) system and the
standard Digital Unix C Compiler[1]) using the profiles
that we gather. The following steps outline the operation
of our system.

First, we produce “base” binaries using the Digital
Unix C compiler (DEC C V5.6, subsequently referred to
ascc).

Second, we usealto to gather profile information and
build a Control Flow Graph (CFG). The base binaries are
instrumented byalto and used to gather profile informa-
tion for the various runs of the benchmark.

Third, these profiles and the benchmark’s control-flow
graph are passed to the profile manipulation tool, which
may apply transformations to real profiles or generate
new profiles from scratch. The profile optimization tool
can generate profiles inalto format or in the standard
pixie format. At this stage we also gather data on pro-
file characteristics and comparisons between profiles.

Fourth, these new profiles are used as inputs to the
profile-driven optimization process. These profiles are
used with eitheralto (with full optimizations switched
on) or the Digital C compiler (see [1] for details of the
optimizations performed) to produce an optimized binary.
The profile-driven optimizations that provide the most
substantial improvements are similar in both optimzers:
code placement optimizations, procedure inlining, and
super-block formation (profile-driven optimization steps
in super-block formation also affect many subsequent op-
timizations that are not themselves profile-driven). We
also produce binaries with the same set of optimization
flags but without profile information, for comparison.

Finally, the optimized binary is run1. We can compute
cycle counts (using the EV5 performance counters) for

1Currently, we have some missing data points (including the
SPEC2000 version of gcc) due to bugs in one or the other of the op-
timizers, including a number of the baseline “non-profile-directed opti-
mization case” results. We are also missing some entire benchmarks in
thecc optimization context. Our results are not significantly altered by
restricting the benchmark sets to only those benchmarks that worked
across both optimization environments, so we have opted to present
more information (the benchmarks that worked only under thealto
environment) rather than less.

all our evaluation runs at this time. We are often measur-
ing only subtly different binaries, with very small varia-
tions in run-time. We run our benchmarks on a 333Mhz
EV5 21164 machine with 1GB of memory (running Dig-
ital UNIX V4.0). The machine, while old, has highly ac-
curate performance counters and mature and well-tuned
optimizers.

Our work is not focused on producing peak optimiza-
tion performance. Our focus is on studying the effects of
profile-driven optimization and methods for evaluating its
effectiveness, not implementing the fastest possible opti-
mizations. In general, the optimization performance of
our system (through either thealto path or thecc path)
is good. Usually, optimization performance is within 5-
10% of the DEC C compiler at the highest level of opti-
mization, and sometimes faster, due mainly to the aggres-
sive whole program optimizations implemented inalto .

We use the technique of using the evaluation profile as
a training profile, a case that we call, after Savari and
Young [5], resubstitution. While not valid as a practi-
cal technique (why run the exact same program execution
twice?), resubstitution frequently generates interesting re-
sults, allowing us a insight into how much benefit results
from having “perfect” information. We do not use resub-
sitution cases when reporting average benefits from using
profile-directed optimization.

Our goal is to investigate the usefulness and accuracy
of profiles, not to generate superior SPEC results or to
find the ideal “representative” training profile. Our use of
non-standard SPEC training profiles and evaluation runs
means that our results cannot be considered to be valid
SPEC results. This does not render the results invalid
in a research sense. As stated above, even the (highly
questionable in a benchmarking sense) use of resubstitu-
tion can generate interesting data. We carry out analyses
to determine whether our observed performance effects
from shorter-running evaluation runs than the SPEC “ref”
benchmarks represent real effects or whether the effects
are simply due to experimental error; the former is true
for nearly all combinations of optimizer, benchmark and
evaluation run.

3 Results

3.1 Usefulness of Profile-Directed Opti-
mization

We gathered cycle counts for each combination of opti-
mizer, benchmark, training profile and evaluation run. We
repeated each evaluation run 11 times, discarding the first
cycle count score due to significant differences in the first
run (almost certainly due to page faults as the program bi-
nary is brought into memory from disk). We calculated
average cycle counts from the other 10 evaluation runs.
We present these average cycle counts normalized by the
average cycle counts of the comparison binaries; that is,
the optimized binaries that did not used profile-directed
optimization. Thus, for a given evaluation run, a binary
produced by profile-directed optimization that runs 5%
faster than the binary produced by non-profile directed
optimization is assigned a score of 0.95 in Table 1.

In Table 1, we present results showing the relative
performance of profile-directed optimization for our dif-
ferent benchmarks as compared to the same benchmarks
optimized without profile directed optimization. As each
benchmark has multiple evaluation and training runs, we
present the average profile-driven optimization perfor-
mance for all of the combinations of evaluation and train-
ing runs, excluding the “resubstitution” case.

Overall, profile-directed optimization is an effective
technique (an average improvement of 3%), but the re-
sults are sharply variable: there are several benchmarks
where all training profiles make the program slower for
each evaluation run. A majority of benchmarks for both
optimizers have at least one combination of training pro-
file and evaluation run where profile-directed optimiza-
tion performs badly.

Examining the individual benchmark runs, we observe
a wide range of performance variability. Table 2 presents
the top and bottom benchmark runs by profile-driven op-
timization variability. There is a huge range of variability
among evaluation runs.

Given that cycle counts have a degree of variability due
to experimental error, we used a simple technique (one-
way ANOVA2 [8]) to determine whether, for each eval-

2The results for one-way ANOVA are far too verbose to present here,
and many of the details are beyond the scope of this paper. One-way
ANOVA merely detects that there exists some significant difference be-

uation run, the differences between cycle counts from bi-
naries trained on different training profiles were signifi-
cant. That is, were we observing real differences between
training runs or were the differences that we observed en-
tirely due to experimental error? This issue is somewhat
more pressing for this work than it is for more conven-
tional profile-driven optimization research, as some of the
runs which we were using as evaluation runs were com-
paratively brief (as compared to the standard SPEC “ref ”
runs). The one-way ANOVA procedure (“one-way” be-
cause we vary only a single variable; “ANOVA” is short
for “ANalysis Of VAriance”) attempts to determine, given
a set of experimental results gathered at different ‘levels’
(in this case, using different training profiles), whether
there are statistically significant differences among the
results for different levels. That is, we attempt to dis-
prove the null hypothesis that the average cycle counts for
a given evaluation run are the same regardless of which
training profile was used. If the probability that this
could be the case is sufficiently low, we can reject this
null hypothesis and conclude that in fact there are statis-
tically significant differences between the profile-driven
optimization effects of different training profiles.

We were able to reject the null hypothesis of “no signif-
icant difference exists between the effect of training pro-
files” at a significance level of 0.05 (that is, we found that
it is no more than 5% likely that, given no effect at all
from training profiles, we would have seen the pattern of
variability that we did) for all but 5 evaluation runs (4 un-
der alto - two runs in theart SPEC2000 benchmark
and one run each forcompress andparser , 1 under
cc - one run undercompress). For the vast majority of
our benchmark runs, the probability that we would have
observed the variability that we did due to to factors other
than the training profile is negligible (under 0.001).

tween at least one training profile and the rest - it does not in itself yield
results analyzing how many of the training profiles differ significantly
from the others. Thus, the results of a one-way ANOVA should be
treated with a degree of caution - when we say that a significant differ-
ence exists for someperl2000 evaluation run with 10 different train-
ing profiles, we are only allowed to say that “some difference exists
among the usefulness of those 10 profiles”, as opposed to the stronger
statement “each and every one of these profiles is significantly different
from every other one” or any of the intermediate possibilities. We car-
ried out post-hoc analyses to distinguish between this set of posibilities,
but the details are again beyond the scope of the paper.

Optimizer Benchmark Number of runs Normalized execution time
Minimum Maximum Mean

alto ammp 3 0.97 0.98 0.98
bzip2 5 0.87 1.01 0.93
compress 3 0.94 1.06 0.99
crafty 3 0.89 0.93 0.91
gap 3 0.95 0.97 0.95
go 5 0.96 1.06 0.99
gzip 7 1.00 1.14 1.06
ijpeg 3 0.96 0.98 0.97
li 3 0.97 0.99 0.98
m88ksim 3 0.83 1.00 0.89
mcf 3 1.00 1.02 1.01
parser 3 1.00 1.02 1.01
perl2000 10 0.83 1.08 0.96
twolf 3 0.93 1.01 0.97
vortex2000 5 0.86 0.91 0.89
ALL CASES 0.83 1.14 0.97

cc ammp 3 0.99 1.04 1.02
bzip2 5 0.91 1.06 0.96
compress 3 0.92 1.02 0.99
crafty 3 0.94 0.98 0.96
equake 3 0.95 1.01 0.99
gap 3 0.92 0.99 0.95
go 5 0.99 1.14 1.06
ijpeg 3 0.94 0.98 0.96
li 3 0.84 0.92 0.87
m88ksim 3 0.88 1.07 0.96
mcf 3 0.99 1.00 1.00
perl2000 10 0.86 1.13 1.00
twolf 3 0.93 0.98 0.95
vortex2000 5 0.90 0.99 0.94
ALL CASES 0.84 1.14 0.97

Table 1: Execution time of PDO binaries over all evaluation runs and training profiles (each set of evaluation run
results normalized such that the non-profile-directed optimization case is equal to 1.0 for each evaluation run).

Optimizer Benchmark Evaluation run Fastest Case Slowest case Mean Standard Deviation
alto perl2000 train/diffmail 0.90 1.05 0.96 0.0457
alto perl2000 ref/diffmail 0.90 1.06 0.96 0.0457
alto perl2000 ref/perfect 0.80 0.96 0.89 0.0446
cc perl2000 train/scrabble 0.82 1.00 0.93 0.0433
cc go ref2 1.00 1.12 1.08 0.0427
cc go train 1.01 1.14 1.08 0.0426
cc go test 1.00 1.12 1.08 0.0412
alto perl2000 ref/makerand 0.78 0.93 0.87 0.0408
. .
alto gzip program 1.13 1.14 1.13 0.0021
alto parser ref 1.00 1.00 1.00 0.0020
alto ijpeg train 0.98 0.98 0.98 0.0013
alto ammp train 0.98 0.98 0.98 0.0010
cc mcf ref 1.00 1.00 1.00 0.0009
alto parser train 1.01 1.01 1.01 0.0008
alto ammp ref 0.98 0.98 0.98 0.0006

Table 2: Evaluation runs with highest and lowest variability due to profile-directed optimization profile choice; units
are normalized as for Table 1.

3.2 Connection of Usefulness and Accuracy

3.2.1 Profile Accuracy Metrics

All of our comparison metrics compare a list of basic
block counts in a training profile with a list of basic block
counts in an evaluation profile. They return a single num-
ber, a score that indicates how well the basic block counts
in the training profile predict the basic block counts in the
evaluation profile. Thus, a more accurate training profile
better predicts the CFG-level behavior of the evaluation
run. Most of these metrics are asymmetric.

A profile comparison metric consists of a comparison
type and a way of applying it over the program. The com-
parison types we use in this paper are key-matching, static
coverage and relative entropy.

Key-matching is introduced in [7]. It uses a parameter
that determines how many blocks are selected for key-
matching. For example, if a function has 50 blocks, and
the matching level is 40% (or 0.4), then we perform key-
matching on the top 20 blocks as follows: the key-match
score is the number of blocks in the top 20 blocks in the
training profile that are also in the top 20 of the evaluation
profile. Key-matching metrics are denoted by KM(level)
- “level” is always 0.1 in this paper.

Static coverage (denoted “STCOV”) measures what
proportion of the blocks executed (“covered”) in the eval-
uation profile are also executed in the training profile.

Relative entropy (denoted “ENT”) as a method of com-
paring profiles was introduced by Savari and Young [5]
and is fully described there. Relative entropy treats the
profiles being compared as distributions of random vari-
ables and uses an information-theoretic approach to mea-
sure the difference between the two distributions.

We use two methods for applying these comparisons
to our programs. Firstly, we can apply the comparisions
to the whole program’s set of basic block counts directly.
This is the default method. Secondly, we can apply them
only to the entry counts of functions, ignoring all other
basic block data (denoted by prefixing “FE-” to the com-
parison name in our results).

3.2.2 Evaluating the Connection Between Compari-
son Metrics and Usefulness

To measure the association between profile usefulness and
a given profile comparison metric, we use the Spearman
Rank Correlation Coefficient [8],rs. rs can be calculated
by assigning ranks to the values being compared (scoring

ties as the average rank values - so if there is a tie between
the top two values, they both are assigned the rank of 1.5)
and calculating the more familiar Pearson correlation co-
efficient [8] over those ranks. Thus, calculations ofrs dis-
card the magnitude of the differences between data points.
This makesrs weaker (more likely to miss a real effect)
than Pearson’s correlation coefficient but much more ro-
bust in the presence of non-linear relationships, outliers
and (more generally) data that does not hold to a bi-variate
normal distribution.

When analyzing the correlation between profile accu-
racy and usefulness, we must be aware that there is no
“natural” population of profiles for a given benchmark.
For most benchmarks, we have a limited number of runs
available to us, and they have been chosen artificially. If
we include other profile types besides profiles derived di-
rectly from real runs, we are introducing further artifi-
cial biases into our population. Admittedly, the choice
of benchmark runs from the SPEC benchmark sets are ar-
tificial also, but they are not the artificial choices of the
authors of this paper - that is, they are not hand-picked to
advance our favored hypotheses.

We will proceed to show an example of how we eval-
uate the connection between profile usefulness and accu-
racy. Firstly, we present the average cycle count scores
and usefulness scores for the benchmarkperl2000 and
the ref/perfect benchmark evaluation run. For each
training profile, we have an average cycle count (reflect-
ing how many cycles the binary that was produced by
profile-driven optimization using that profile took to run
the evaluation run) and an accuracy score (reflecting how
close the training profile was to the profile produced by
the evaluation run). For this example, we will use the ac-
curacy scores provided by relative entropy3.

Table 3 shows the cycle counts and relative entropy
scores for a list of training runs (the names refer to the
different benchmark runs available forperl2000 and
are not of any interest aside from the fact that they label
cases). To calculate a score for how closely relative en-
tropy predicts scaled cycle counts, we take thers value
of two variables (cycle count and relative entropy) over
the list of cases (training profiles), which turns out to be
rs = 0.87. This value is statistically significant at the

3More accurate profiles produce lower relative entropy scores, zero
represents a perfect match

Training run Cycle count (GCycles) Relative entropy

ref/diffmail 45.819 8.05
ref/makerand 47.581 22.57

ref/perfect 40.774 0
splitmail1 46.495 8.52
splitmail2 45.640 8.20
splitmail3 47.176 8.35
splitmail4 45.281 8.29

train/diffmail 45.615 8.06
train/perfect 42.515 2.45

train/scrabble 48.923 20.44

Table 3: Example 1:perl2000 scaled cycle counts
and accuracy metrics for a single evaluation run
(ref/perfect)

0.01 level; that is, if there was no association whatsoever
between two variables, we’d expect to see ars value this
high less than 1 in 100 times. In fact, the chance that we
would see such a strong association between two uncon-
nected variables in such a list of cases is less than 1 in
1700. The proportion of scaled cycle count variation ex-
plained by relative entropy isr2

s = 0.75 - that is, 75% of
the variation in average profile-driven optimization per-
formance in this particular case can be explained in terms
of relative entropy.

Note that this benchmark has a quite large number of
possible training profiles (10). Many of our benchmarks
have only 3 or 4 runs available, so we are often in the situ-
ation of calculating correlations over a tiny set of cases. In
this circumstance, it is possible to have apparently strong
correlations that are in fact statistically meaninglesson
their own. Only when they occur as a pattern across mul-
tiple evaluation runs and/or benchmarks can we attach any
weight to these results.

Table 4 shows this analysis repeated for all of our eval-
uation runs inperl2000 . We will see a larger set of
results - now, we have a table withrs numbers for each
evaluation run. Not all of the correlations are significant at
a 0.01 level (those that are are marked with a “**”) or even
at a 0.05 level (marked with a “*”). For example, the value
rs = 0.382, seen for the evaluation runref/diffmail
is fairly low: there is a 14% chance that two unconnected
variables might show a rank correlation equal to or greater
than this value (3 evaluation runs fall into the category of

Evaluation run name rs score

ref/diffmail .382
ref/makerand .778**

ref/perfect .867**
splitmail1 .697*
splitmail2 .612*
splitmail3 .685*
splitmail4 .612*

train/diffmail .394
train/scrabble .285

Table 4: Example 2: Allperl2000 evaluation runs with
the rank-correlation values of cycle counts and relative en-
tropy calculated over each training run

not being significant at the 0.05 level). However, even
considering only these three values in isolation, it is un-
likely that we would see three such correlations (that is,
positive and in the range0.285 < rs < 0.394) between
relative entropy and average cycle count if overall, there
was no connection between relative entropy and average
cycle count for any of these runs. In fact, the chance that
such three correlations this strong or stronger would have
arisen by chance given no connection between relative en-
tropy and cycle count is about 1%.

Note that it is quite possible to have negativers scores;
in this case, more accurate profiles actually result in worse
profile-driven optimization performance.

We can compute a summary value for the overall con-
nection of usefulness and accuracy over a benchmark by
averaging thers values for each evaluation run, yield-
ing an aggregate correlation ofmean(rs) = 0.59 for the
perl2000 benchmark.4

Using such a procedure to gather aggregate numbers
for each benchmark, this time over a range of compar-
ison metrics, we derive Table 5. This table shows the
aggregaters scores for each comparison, benchmark and
optimizer, as well as overall mean scores forrs compari-

4This is not generally good practice; more statistically rigorous is to
transform eachrs value to az-score (normal score), take the average
over thesez-scores and transform back into the range ofrs. However,
this procedure is complex and results in averagers scores little different
from those that we derive from simple averaging. Similarly, we will not
present significance results for aggregaters scores here; the statistical
justification for these results in beyond the scope of this paper.

son and optimizer. It is clear that theperl2000 bench-
mark, presented above, and particularly theperfect
evaluation run, represent a quite favorable case - note the
large number of benchmarks in this table for which the
aggregaters scores are either very low (i.e. no correla-
tion) or actually negative (i.e. more accurate profiles have
worse profile-driven optimization performance). Particu-
larly, the results for thecc optimizer show no overall pat-
tern of a connection between profile usefulness and profile
accuracy.

In thealto case, all of the profile comparison metrics
yielded small but significant correlations between pro-
file accuracy scores and profile usefulness scores. Key-
matching performed slightly worse than the other two pro-
file accuracy metrics, entropy and static coverage. The
”function-entry” versions of these latter accuracy metrics
performed slightly better than the versions that considered
all of the basic blocks in the program, although such a
small difference is not likely to be significant.

There was a substantial amount of variability among
the aggregaters scores for each benchmark. Some of this
variability is simply random; the aggregaters scores for
the benchmarks with a small number of runs are subject
to a great deal of randomness as they involve comparisons
among only 9 or 16 values. However, some benchmarks
clearly have far stronger associations between usefulness
and accuracy than others. Recall that the correlation co-
efficients in this table rank how well profile usefulness
correlates with profile accuracy; they have nothing to say
about how well profile-directed optimization works over-
all.

A major weakness of the above approach to evaluat-
ing the connection of profile-directed optimization perfor-
mance and profile accuracy is that, due to the use of non-
parametric methods and averaging across different bench-
marks, small variations in one benchmark are weighted as
heavily as huge variations in another. There is no simple
way to avoid this problem without recourse to paramet-
ric correlation methods. However, we can derive results
that are more useful by restricting our above analyses to
only those evaluation runs with greater variability due to
profile-directed optimization. The overall (per-optimizer)
results from restricting our analysis to the top half of eval-
uation runs with the highest level of profile-directed opti-
mization variability are shown in Table 6.

The failure of our profile accuracy metrics to explain

Optimizer Benchmark mean(rs)
ENT STC KM(0.1) FE-ENT FE-STC FE-KM(0.1)

alto ammp -0.67 -0.79 -0.50 -0.50 -0.58 -0.67
art 0.20 0.23 0.35 0.25 0.07 0.23
bzip2 -0.12 -0.06 0.09 0.00 0.14 0.16
compress 1.00 0.91 0.83 1.00 0.29 0.58
crafty 0.83 0.67 0.67 0.67 0.17 0.50
equake 0.17 0.17 0.00 0.17 0.00 0.58
gap 0.83 0.83 0.50 0.83 0.79 0.50
go 0.26 0.13 0.20 0.34 0.30 0.23
gzip -0.16 -0.24 -0.28 -0.26 0.12 -0.24
ijpeg -0.83 -0.67 -0.67 -0.83 0.00 -0.79
li 0.83 0.96 0.50 0.83 0.96 0.50
m88ksim 0.67 0.67 0.67 0.67 0.79 0.67
mcf 0.50 0.62 0.67 0.50 0.58 0.87
parser -0.50 -0.83 -0.83 -0.50 -0.29 -0.67
perl2000 0.59 0.60 0.45 0.52 0.60 0.50
twolf 0.33 0.33 0.17 0.33 0.58 0.29
vortex2000 0.38 0.36 0.38 0.64 0.17 0.48
vpr 0.52 0.59 0.57 0.55 0.51 0.54
alto MEAN 0.27 0.25 0.21 0.29 0.29 0.24

cc ammp 0.00 -0.04 0.33 0.33 -0.58 0.00
bzip2 0.16 0.04 0.15 0.06 -0.07 -0.09
compress 0.33 0.17 0.17 0.33 0.29 0.29
crafty 0.67 0.33 0.00 0.33 -0.46 0.00
equake -0.83 -0.83 -0.50 -0.50 0.00 0.00
gap -0.33 -0.33 -0.33 -0.33 -0.46 -0.17
go -0.72 -0.76 -0.74 -0.72 -0.60 -0.65
ijpeg 0.33 0.00 0.00 -0.33 0.00 -0.33
li -0.17 -0.46 0.33 -0.17 -0.46 0.33
m88ksim -0.17 -0.17 -0.17 -0.33 -0.12 -0.17
mcf 0.33 0.33 0.17 0.33 0.58 0.29
perl2000 -0.18 -0.23 -0.17 -0.19 -0.21 -0.14
twolf 0.33 0.33 0.17 0.33 0.58 0.33
vortex2000 0.04 -0.01 -0.02 0.06 0.02 0.06
cc MEAN -0.06 -0.12 -0.04 -0.06 -0.11 -0.02

Table 5: The connection of usefulness and accuracy: aggregatedrs scores over optimizers, benchmarks and different
comparison metrics

Optimizer ENT STC KM(0.1) FE-ENT FE-STC FE-KM(0.1)
alto mean 0.57 0.52 0.48 0.58 0.45 0.45
cc mean -0.15 -0.22 -0.14 -0.17 -0.03 -0.03

Table 6: Aggregatedrs scores over optimizers, considering only the top half of evaluation runs by PDO variability

cc profile-directed optimization performance turns out to
be unconnected to profile-directed optimization variabil-
ity. Even considering only benchmarks and benchmark
runs that had large variations in profile-directed optimiza-
tion performance did not improve the connection between
profile accuracy and profile usefulness when usingcc .
However, ouralto results become substantially stronger
when we eliminate benchmark runs with small variations
in profile usefulness. Entropy-based methods, in partic-
ular, improve markedly. The “FE-ENT” accuracy metric
predicts 34% of the variation in our profile-directed op-
timization results underalto - a modest result, but the
strongest one so far.

We found no similar improvements from restricting our
analysis to smaller (e.g. top quarter by PDO variability)
subgroups of our evaluation runs. Not suprisingly, the
bottom half of evaluation runs by PDO variability showed
no significant correlation (underalto or cc) between
profile accuracy and profile usefulness.

3.2.3 Discussion

There was no reason to suppose that any reliable con-
nection between accuracy and usefulness existed in the
cc optimization context whatsoever. We conjecture that
the much more extensive and high-level optimizations
present incc sufficiently transform the control-flow-
graph to the point where the relatively subtle differences
between training profiles are irrelevant. This does not
mean that profile-driven optimization does not work in
cc , nor does it mean that arbitarily inaccurate profiles will
produce profile-driven optimization performance indistin-
guishable from good ones. What it does mean is that,
within the fairly narrow range of profiles and benchmarks
we tested, accuracy could not be shown to have any con-
nection to usefulness. We evaluated many other profile
comparison metrics than (carrying out key- and weight-
matching at multiple levels, using dynamic coverage) pre-
sented here and found that none of them performed any
better than the comparison metrics presented.

Our results for thealto optimization context were
more encouraging, but still relatively weak. Even when
restricting our analysis to benchmarks with large profile-
directed optimization variability, we could explain no
more than a third of the variation in average cycle counts
by some accuracy metric.

One of the most startling results was the fact that the
accuracy metric “FE-STC” performed as well as it did de-
spite the fact that it ignores away nearly all of the informa-
tion in the block profile. This extremely simple metric can
be calculated by determining the number of functions en-
tered in the training profile and the evaluation run divided
by the total number of functions entered in the evaluation
run.

The effectiveness of this metric (and similarly restricted
metrics) could result from there being little variation in
within-function behavior from run to run (that is, when
profiles produced from benchmark runs differ, it is be-
cause they cover a different set of functions, not because
they have radically different behavior within those func-
tions). An alternate possibility is that the optimizations
in alto really only effectively worked at a per-function
level and thus made little use of the within-block informa-
tion (code placement optimizations that work at a whole-
function level and procedure inlining are both examples of
optimizations that work very well with only per-function
information, although both benefit from knowledge of
call site counts - or, nearly equivalently, call graph edge
counts). These possibilities are not easily separated, al-
though the fact that our “function-entry only” compari-
son metrics are strongly correlated (rs > 0.9) with their
whole-program counterparts for nearly all benchmarks is
suggestive that the former possibility is true (across both
optimizers,bzip2 andgzip were the only exceptions).

4 Related Work

Wall [7] makes the first systematic attempt to evaluate
profile accuracy. Wall compares real profiles and static
estimates for accuracy using key- and weight-matching to
compare profiles. His comparisons use key- and weight-
matching at both fixed levels (topk) and, similar to our
work, at levels proportional to the total number of blocks
(top N%). He shows strong improvements in accuracy
from using real profiles over static estimates. He briefly
analyzes some theoretical optimization algorithms, show-
ing weaker results, and warns against unrealistic expec-
tations concerning profile driven optimization. Wu and
Larus discuss static estimation in [9], using Dempster-
Shafer theory to combine branch prediction heuristics.
Key- and weight-matching are used to evaluate the accu-

racy of the static profiling methods. Wagner et. al do a
similar analysis to Wall’s in [6].

These works do not attempt to establish any connection
between profile accuracy and profile-driven optimization
performance. Our work diverges from all of these works
by connecting accuracy metrics to actual profile-driven
optimization performance in two mature optimizers.

Fisher and Freudenberger report that profile data gath-
ered from previous runs yields good branch predictions
[3]. They mention the possibility that the differences in
real benchmark runs might be related to the benchmark’s
coverage of the program as opposed to differences in be-
havior in code that is covered by both runs. This is an in-
teresting observation, which unfortunately they were not
able to quantify. Our results suggest that this intuition
was correct (at least in terms of what informationalto
was able to use effectively); the comparatively strong pre-
dictive value of the accuracy metric “FE-STC” (function
entry static coverage) supports this.

An extensive treatment of information-theoretic meth-
ods for comparing and combining profiles, including the
relative entropy comparison used in this work, appears in
Savari and Young [5]. Our work validates the use of rela-
tive entropy as a profile comparison metric.

Cohn and Lowney compare the differences in useful-
ness between profile-driven optimization and static esti-
mation on the Compaq Alpha in [1]. They report a sub-
stantial speedup (17%) on the SPEC 95 integer bench-
marks from using feedback directed optimization. Their
results show a larger effect from profile-driven optimiza-
tion than this paper; they use more aggressive optimiza-
tions on a more recent iteration of the Alpha architecture.
Another difference between their work and ours is that we
use a wider variety of benchmarks (including SPEC2000
and floating point benchmarks) and benchmark runs than
they do; this may also contribute to the performance gap
between this paper and their work.

Eeckhout et al. [2] use statistical data analysis tech-
niques to cluster similar “program-input pairs” (in our
terms, pairs consisting of a benchmark and an evaluation
run). They concentrate on overall benchmark character-
istics as opposed to profile accuracy and/or profile use-
fulness.For our analyses in this paper, we have little need
to reduce the number of “program-input pairs” to cover a
hopefully representative set of benchmarks, training pro-
files, and evaluation runs, as our analyses benefit from

more data points rather than fewer. This is true even if
some of the training profiles and evaluation runs produce
very similar effects.

5 Conclusion

Profile-directed optimization is a worthwhile technique,
on average, in both of the optimizers evaluated. On av-
erage, we saw an improvement over non-profile-directed
optimizations of about 3.5% onalto and 5% on cc; these
aggregate numbers concealed substantial variations (the
best case for either optimizer was approximately 17% bet-
ter than non-profile-directed optimization and the worst
case for either was approximately 14% worse).

Nearly all of the benchmark runs showed significant
variation in profile-directed optimization performance. In
only 1% of our evaluation runs were we unable to detect
significant variation among profile-directed optimization
performance (that is, no variation due to profile-directed
optimization existed or it was so small that we were un-
able to separate this variation from experimental error).
Again, large differences existed between the evaluation
runs with the largest amount of profile-directed optimiza-
tion variability and those with the smallest - the stan-
dard deviations in speed-up over the non-profile-directed-
optimization case ranged from effectively zero to nearly
5%.

Profile accuracy is only weakly associated with profile
usefulness in one of our optimizers (alto) and not con-
nected at all with profile usefulness in another (cc), for
our set of benchmarks and benchmark runs. While con-
sidering only benchmarks or runs with higher variabil-
ity in profile-driven optimization performance improved
the connection onalto , the connection between useful-
ness and accuracy still accounted for only 34% of the
observed variation in profile-driven optimization perfor-
mance. While the comparatively weak (non-parametric)
correlation methods that we had to use may have caused
us to be overly conservative, it seems unlikely that any ac-
curacy metric whatsoever would explain in excess of 50%
of the variation. Of the variation in profile usefulness ex-
plainable by profile accuracy metrics, much of it was ex-
plainable by fairly simple profile accuracy metrics, most
notably static coverage of function entries (“FE-STC”).
We find some quantitative support for Fisher and Freuden-

berger’s claim [3] that differences in exact profiles are
mainly due to a different set of functions being covered
in different runs, as opposed to different behavior within
the functions from run to run.

That the overall results are negative forcc and weak
for alto is not entirely suprising. Much of the variation
in our training profiles does not necessarily cause different
optimization outcomes. That which does does not neces-
sarily help. Not every optimization “decision” produces
better performance, regardless of whether it is based on
good information - few compiler optimizations are truly
“optimizations”, particularly when interacting with many
other optimizations. We see substantial and significant
variations due to profile choice in profile-driven optimiza-
tion, and for most benchmarks, much of this variation is
not explainable in terms of profile accuracy. This sug-
gests that there is a large component of randomness in the
outcome of the profile-driven optimization process.

Our major contributions are twofold. Firstly, we have
developed a methodology for evaluation of profile-driven
optimization performance and its connection to profile ac-
curacy that can be applied to any combination of proces-
sor architecture, optimizer, and set of benchmarks. Sec-
ondly, our results show that there exists at least one op-
timizer for which usefulness and accuracy are not corre-
lated (in our experimental context) and one in which this
correlation exists but fails to explain the bulk of profile-
directed optimization performance.

Therefore, any claims about profile-directed optimiza-
tion techniques or more accurate profiling techniques (or
the necessity of obtaining more accurate precise basic
block profiles - dynamically or otherwise) should be eval-
uatedexperimentally, not in terms of profile accuracy.
We have shown that there are a range of cases where lit-
tle or no connection between profile accuracy and profile
usefulness exists. Thus, it is incumbent on designers of
profile-directed optimization systems to demonstrate that
the profile-directed optimizations in their systems are ac-
tually effective over a wide range of benchmarks, rather
than merely showing that the profiles gathered are of high
accuracy.

References

[1] R. Cohn and P. Lowney. Feedback directed optimiza-
tion in Compaq’s compilation tools for Alpha. InIn
Proc. 2nd Workshop on Feedback Directed Optimiza-
tion, 1999, 1999.

[2] L. Eeckhout, H. Vandierendonck, and K. D. Boss-
chere. Workload design: Selecting representative
program-input pairs. InThe Eleventh International
Conference on Parallel Architectures and Compila-
tion Techniques (PACT-2002), 2002.

[3] J. Fisher and S. Freudenberger. Predicting conditional
branches from previous runs of a program.Proc. Ar-
chitectural Support for Programming Languages and
Operating Systems (ASPLOS), pages 85–95, 1992.

[4] R. Muth, S. Debray, S. Watterson, and K. de Boss-
chere. alto: A link-time optimizer for the DEC Alpha.
Technical Report TR98-14, Department of Computer
Science, The University of Arizona, 1998.

[5] S. Savari and C. Young. Comparing and combining
profiles. In Proc. Second Workshop on Feedback-
Directed Optimization (FDO), 1999.

[6] T. A. Wagner, V. Maverick, S. L. Graham, and M. A.
Harrison. Accurate static estimators for program op-
timization. ACM SIGPLAN Notices, 29(6):85–96,
1994.

[7] D. W. Wall. Predicting program behavior using real
or estimated profiles. 26(6):59–70, June 1991.Pro-
ceedings of the ACM SIGPLAN ’91 Conference on
Programming Language Design and Implementation.

[8] R. Walpole, R. Myers, and S. Myers.Probability and
Statistics for Engineers and Scientists. Prentice Hall,
1998.

[9] Y. Wu and J. Larus. Static branch frequency and pro-
gram profile analysis. InIn 27th International Sym-
posium on Microarchitecture, pages 1–11, 1994.

