Virtual Memory-Induced Priority Inversion
in Multi-Tasked Systems*

Gregory S. Hartman and Priya Narasimhan
Institute for Software Research International

School of Computer Science

Carnegie Mellon University
5000 Forbes Ave, Pittsburgh. PA 15213-3890
{gghartma, priya} @cs.cmu.edu

Abstract

Virtual memory (VM) sub-systems in many widely adopted
desktop and server operating systems rely on approxima-
tions of the least-recently-used (LRU) heuristic to select
pages for replacement. These heuristics work well when
memory is abundant, but they produce counter-intuitive be-
havior when applications’ memory demands substantially
exceeds the available physical memory. This paper de-
scribes the results of preliminary experiments with a new in-
strumentation framework that observes Linux VM behavior
in a controlled setting. Repeated experiments with a micro-
benchmark consistently reveal three types of misbehavior.
First, the CPU scheduler’s intended priorities can be in-
verted for an indefinite period of time when low-priority
processes push higher-priority processes out of memory.
Second, the VM heuristics can perpetually assign unequal
amounts of memory to simultaneously running, identical
processes. Finally, processes with modest memory require-
ments experience execution delays during periods of mem-
ory shortage.

Keywords: instrumentation, interactive, latency, LRU,
memory shortage, page replacement, priority inversion, re-
sponsiveness, unfairness, virtual memory

1 Introduction

Virtual memory [3] is a well-known source of performance
problems in computing systems. Designers of real-time
systems typically choose operating systems without virtual
memory support [7], or lock their applications into mem-
ory to avoid the potentially unbounded delays introduced
by page faults [1]. However, eliminating virtual memory

*The research work reported in this paper has been sponsored in part
by the Army Research Office under Grant No. DAAD19-01-1-0646.

support is not an option for general software development,
since doing so would force programmers to predict, pre-
cisely and ahead of run-time, the amount of memory needed
by their software. In particular, web servers use software
where the demand for memory is extremely difficult to pre-
dict. These systems use virtual memory to provide best-
effort performance, given the available physical memory.
When sufficient memory is not available, these systems are
subject to performance problems, including thrashing, un-
even partitioning [10], and lack of performance isolation.
The first author of this paper confronted the following prob-
lems while supporting a high-volume commercial web site:

1. The failure of a single process running on the web
server machine could make the entire web server unre-
sponsive. At times, the performance degradation was
so severe that it was difficult to gather the data needed
to isolate the cause of the failure.

2. Estimating a process’ demand for memory was diffi-
cult. The operating system provided no accurate indi-
cator of the demand and, therefore, programmers were
forced to estimate their applications’ memory demand
using knowledge of the application. This increased
the risk of failures after upgrades; software which was
technically correct occasionally failed to meet the per-
formance requirements of the web site.

3. The data that the web servers used to process requests
was created through a lengthy, resource intensive con-
version process. The technicians who monitored this
process observed that the memory partitioning on the
systems they used to convert the data was difficult to
predict. To meet their schedules reliably, the techni-
cians were forced to run no more than a single con-
version at any given time on a system. In addition to
forcing the purchase of expensive hardware, this tech-
nique increased the burden on system administrators,

made the job of the technicians more confusing, and
caused congestion on the network, which had to cope
with large data transfers between the systems.

The complexity of the software on the web site made it diffi-
cult to reproduce these problems reliably and to distinguish
between effects caused by the application code and the op-
erating system.

We wanted to understand the operating system’s con-
tribution to these problems, and we wanted to be cer-
tain that our results were reproducible. Therefore, we de-
veloped an instrumentation framework and an automated
testing system to observe the behavior of a trivial micro-
benchmark. This paper describes the design of our instru-
mentation framework, and the statistics that we gathered.
We also describe the kind of virtual memory imbalances
that we encountered, and the conclusions that we drew from
our observations and results. This paper demonstrates that
simple micro-benchmarks can produce virtual memory mis-
behavior that is similar to the misbehavior observed with
real-world applications.

2 Statistics of Interest

The operating system statistics of interest to our experi-
ments are those related to virtual memory behavior, and are
listed in this section. Our instrumentation framework ex-
amines the cumulative statistics given in Table 1 once every
second in order to extract the following interval statistics for
each running application on the system:

e Resident set (denoted by pages on the graphs) gives
the number of the application’s pages that are currently
in memory.

e Zero-on-write is an optimization that allows the op-
erating system to defer erasing newly allocated mem-
ory. Instead, the operating system maps an erased page
multiple times into the application’s address space
with read-only permissions. On the first write, the op-
erating system intercepts the minor fault, allocates a
new page, and maps it as a read/write page. The zow
field on the graphs indicates the number of page faults
associated with the zero-on-write optimization.

e Percentage CPU: (denoted by $ CPU on the graphs)
gives the number of timer interrupts that occurred in
the application. The timer on Linux generates an in-
terrupt at a frequency of 100Hz; the monitor reads the
statistics once per second, so the number of timer inter-
rupts incurred by the application, within the monitor-
ing interval, can be directly interpreted as the % CPU
load. However, execution delays in the monitor can
cause this statistic to exceed 100% for an application

because timer interrupts will continue to accrue during
the delay.

e Major faults: (denoted by ma jf£1t on the graphs) oc-
cur when the application attempts to access a page that
is not in memory. The operating system suspends the
application, and initiates a read for the page from the
disk.

e Minor faults: (denoted by minflt on the graphs) oc-
cur when the application attempts to access a page and
the page is discovered in memory. The zero-on-write
optimization can cause this to happen. Minor faults
also occur when the application accesses a page on the
operating system’s free list before it is reallocated.

In addition, the monitor extracts the following interval
statistics by querying the global cumulative statistics given
in Table 2:

e Swap-in: counts the number of pages read from the
disk for all running applications.

e Swap-out: counts the number of pages written to disk
for all running applications.

e Jitter: measures the variation in the time between the
monitor’s samples. Jitter is normalized so that it is zero
in the expected case. Our monitor process uses an in-
terval timer to avoid accumulating the delays, so small
values of positive jitter are often followed by a corre-
sponding negative value.

3 Instrumentation Framework
3.1 Design Objectives

Our objectives in the design of the instrumentation frame-
work included:

e Constant monitoring: The monitor should minimize
its use of system resources so that our framework can
run continuously, even on production systems without
creating performance problems of its own. Constant
monitoring of a production system has two advantages.
First, it allows us to gather data for intermittent perfor-
mance problems which may be difficult to reproduce
on a development system. Second, the monitor could
be extended to alert system administrators to perfor-
mance problems in a timely manner, ultimately reduc-
ing the time needed to correct the problem.

o Reflective monitoring: To be comprehensive, we re-
quired that our monitor process keep statistics for it-
self. This allows us to keep track of the monitor’s own

resource consumption. The data that the monitor reads
is updated by the operating system independently of
the monitor process. If the monitor is blocked (for rea-
sons such as page faults), there will be artifacts in the
reported data. By tracking the behavior of the monitor,
we can locate these artifacts, and exclude them from
our analysis.

3.2 Assumptions

We made the following assumptions while designing our
framework and while running our tests:

e The system always enters the same state after a reboot.
Therefore, identical tests started at the same time after
a reboot will produce identical results. We test this
assumption by running the same test many times, and
by comparing the results. Where the results differ, we
document the differences.

e The monitor process does not affect the behavior of the
system to the extent that our findings cannot be applied
to systems that are not running the monitor. We have
been able to reproduce the behavior described in this
document even without the use of the monitor.

e The entries in the /proc file-system [8] that we use
for gathering the kernel statistics accurately reflect the
state of the system, as documented in the Linux man
pages. We have examined the Linux kernel source
code for the statistics of interest to us, and verified that
the /proc implementation corresponds to its docu-
mentation.

e Linux has not been designed to favor processes based
on their starting time. Therefore, unequal resource al-
locations to multiple, identical simultaneously execut-
ing applications constitutes undesirable behavior.

3.3 Implementation Details

Our framework runs over a Red Hat Linux 8.0 installation.
We replaced the kernel with an enhanced stock (non-Red
Hat) 2.4.20 kernel that provides additional statistics that al-
low us to observe the behavior of the page-reclamation algo-
rithms. The test system has a Pentium 4 processor running
at 2GHz with 512MB RDRAM memory and a 40GB IDE
hard disk. Our instrumentation framework, consisting of a
monitor, a test script and some kernel-level instrumentation,
attempts to pinpoint virtual memory imbalances through a
micro-benchmark that we designed.

Micro-benchmark. Our micro-benchmark is a simple
memory scanner. It allocates a single 384MB buffer us-
ing the malloc routine in the C runtime library, and then

writes sequentially to the entire buffer one byte at a time.
When it gets to the end of the buffer, it returns to the be-
ginning of the buffer, and continues to write sequentially.
Instances of the micro-benchmark are called scanners in the
rest of this paper. One scanner will clearly fit into the phys-
ical memory (512 MB) of our system; additional scanners
will undoubtedly cause paging. This scanner was originally
intended to validate memory allocation in order to test the
statistics gathered by our monitor. Although the our current
micro-benchmark provides valuable insights, we intend to
apply our framework to more realistic workloads and ap-
plications in the future. We implemented the scanner on
Linux, and have additionally ported it to FreeBSD and Win-
dows XP.

Monitor. The monitor is a process that queries the /proc
file-system once every second to extract the kernel statistics
for every running process, and writes the values to a log file.
The monitor gathers global statistics, such as the number of
free pages, as well as process-specific statistics, such as the
number of resident pages. The monitor currently uses the
Linux /proc file-system to translate internal kernel data
structures into a text representation. The per-process and
global statistics of interest to us are listed in Tables 1 and
2, respectively. We note that the monitor does not gather
the information in an atomic operation, so discrepancies can
appear in the data. The monitor records timestamps from
the CPU clock register to allow us to detect jitter between
the samples. It also records, in the log, the first appearance
of a process, and also a process’s exit from the system.

The monitor also launches scanners. The first scanner is
launched 12s after the monitor starts. After the the mon-
itor launches a scanner, it waits for a fixed time interval
before launching an additional scanner. The delay between
launches and the number of scanners to launch are randomly
selected at the beginning of each test-run. After running for
one hour, the monitor terminates the test-run by rebooting
the system.

Test Script. This script runs during the boot sequence
on Linux. It halts the boot process, and launches the
monitor before the networking sub-system starts, thereby
minimizing the number of processes on the system, and
also eliminating any network traffic that might perturb
our experiments. The monitor and this script constitute
a fully automated test system, greatly reducing the vari-
ability of the timing of the tests. The other processes
running in the system at the time of the test include:
init, keventd, kapmd, ksoftirgd_CPUO, kswapd,
bdflush, kupdated, mdrecoveryd, kjournald,
rc, minilogd, initlog, and bash. The bash pro-
cess runs on the console, allowing the test to be terminated
so that results can be collected from the system.

Table 1. Per-process statistics of interest. The mon-
itor process logs a copy of these kernel counters
for each task on the system. The zerofilled,
reclaimed, and reclaimscans counters are
our enhancements to the kernel to understand the
behavior of the Linux page-swapping system.

Kernel Instrumentation We enhanced the Linux kernel
with counters to track the behavior of the virtual mem-
ory sub-system as it allocates and reclaims pages. These
additional counters are zerofilled, reclaimed,
reclaimscans, and are described in more detail in Ta-
ble 1. Before we added these statistics, the kernel did not
provide any indication that memory had been reclaimed
from an application.

4 Empirical Results

Using our framework, we have observed three behaviors
that make virtual memory performance difficult to predict:

1. Priority inversion - the virtual memory sub-system
does not respect the CPU scheduler’s process prior-
ities. Specifically, a low-priority process can steal

pages allocated to a higher-priority process. In certain
circumstances, the low-priority process might retain
these pages indefinitely, suspending the higher-priority
process when the latter encounters page faults. As a

Label Name | Description Label Name | Description
comm Program name memtotal Total amount of memory in system, as re-
ppid UNIX process identifier of the parent pro- ported from /proc/meminfo. (in kB).
cess memfree Free memory, as reported from
minflt Number of the page faults that didn’t re- /proc/meminfo. (in kB).
sult in a disk I/O memshared | Shared memory, as reported from
majflt Number of page faults that resulted in /proc/meminfo. (in kB).
disk I/O swapin Number of pages read from swap files.
utime Time spent in user-level code for this pro- swapout Number of pages written to swap files.
cess cycles Number of processor cycles (w.r.t. our
stime Time spent in the operating system for 2GHz testbed) since the last read.
this process readtime Number of cycles spent reading the data
priority Process priority for the Linux scheduler from the /proc file-system.
Iss Number of pages in the page table of the fairness Value of the fairness heuristic of any
process memory scanners; -1 if no scanners, 0 if
zerofilled Number of copy-on-write operations of completely fair, 1 if completely unfair.
the process
reclaimed Number of pages reclaimed from this pro-
cess Table 2. Global statistics of interest. This is a par-
reclaimscans | Number of times that the kernel attempted tial list of the counters that track the behs.ivi.or f)f
to reclaim pages from the process all the processes on the system. The statistics in

bold are generated by the monitor.

result, the lower-priority process obtains virtually ex-
clusive CPU access, leading to priority inversion.

2. Virtual memory imbalances - identical applications ob-

tain significantly different allocations of the available
physical memory when they are run together. These
imbalances exist in the operating systems that we have
tested (Linux, FreeBSD, and Windows XP), and ap-
pear to be an artifact of the victim-selection algorithm.
Our detection of virtual memory imbalance hinges on
(1) our knowledge of our micro-benchmark’s memory-
related behavior, (ii) our use of three identical, simulta-
neously executing instances of our micro-benchmark,
and (iii) our ability to observe unfairness in physical
memory allocations across these instances.

Execution delays - processes may exhibit pauses on the
order of one second when memory is scarce. This is
true even of processes that run periodically, and that
have small, predictable page-reference strings. The
monitor process that we use to examine the Linux ker-
nel counters for the purpose of tracking resource al-
locations on Linux was originally susceptible to this
problem. We were able to work around this problem by
locking the monitor into memory. While this approach
does work for other applications, it may be infeasible
for applications which use a large amount of memory,
or those that process a mixture of high-priority and
low-priority requests.

These problems stem from the page-replacement algo-
rithm’s ability to affect which applications experience page
faults on multi-tasking systems. This, in turn, affects task
scheduling, which ultimately affects the global order of
page references in the system. When the page-replacement
algorithm is driven from this global order, as is the case
in the least-recently-used (LRU) heuristic [2] used by the
virtual memory sub-systems in Linux [5, 6] and FreeBSD,
a feedback loop can occur. While these effects have been
known for some time [10], many operating system texts
(for example [9]) present an oversimplified view of the vir-
tual memory sub-system which does not address this prob-
lem. Unfortunately, the LRU heuristic penalizes applica-
tions with conservative memory and CPU usage in favor of
applications that allocate memory and use the CPU liber-
ally.

Our instrumentation framework also indicates that the
existing kernel statistics do not provide enough information
to quantify either an application’s memory demands or the
amount of free memory on the system. We demonstrate that
the statistics in the Linux kernel can either over-estimate
or under-estimate an application’s demand for memory, de-
pending on the available memory in the system at the time.
To make matters worse, the accuracy of the statistics seems
to improve only when memory is reclaimed from applica-
tions, which often results in execution delays.

We work around this limitation in our current research by
observing multiple instances of a micro-benchmark which
has a static, pre-specified demand for memory. Any differ-
ence in the runtime allocation of memory across the identi-
cal instances, therefore, serves as an indicator of imbalance
in memory allocation. Real-world applications are not so
simple; their memory demands may vary based on the stage
of processing (for batch applications) and the input (for in-
teractive applications). In addition, few systems are exclu-
sively dedicated to running multiple copies of the same ap-
plication. Therefore, as a part of our next research steps,
we intend to find a better way of characterizing an appli-
cation’s demand for memory. Our conjecture is that we can
enhance the kernel, with minimal impact on application per-
formance, to observe the working-set [4] of applications,
and that this working-set information will accurately reflect
the memory demand of applications.

4.1 Priority Inversion and VM Imbalance

We describe a single test-run involving three scanners, each
of which is started at different times (12s, 127s, and 242s,
respectively). This test is representative of 81% of the
test-runs using three scanners (i.e., 36 out of 44 test-runs)
that we have analyzed. The remaining 19% of the test-
runs (called non-conforming tests) do not exhibit the un-
balanced memory behavior; instead, the three scanners end

up sharing the memory equally. We believe that the non-
conforming tests are different because the system does not
reach a stable state between the launches of the micro-
benchmark; all of the non-conforming tests have a delay of
less than 30s between micro-benchmark launches (as com-
pared to the 115s inter-scanner interval described below).

The variation of the kernel statistics with the launch of
the three scanners is shown in the graph in Figure 1.

o Initial system behavior: The first part of the graph
shows the behavior of the system at the beginning of
the test, when the system has just rebooted. The test-
ing process pauses for 12s to ensure that the boot has
completed. During this time, a large number of pages
are free.

o First scanner starts: After these 12s have elapsed,
the testing process launches the first scanner. A large
number of minor faults occur between 12s and 14s; all
of these seem to be caused by the zero-on-write opti-
mization. Note that the process causes 75 major faults
when it starts. Since there is plenty of memory avail-
able, the minor and major faults do not continue as the
process runs. In addition, there is no swapping activity.
The CPU load quickly approaches 100%, because the
scanner never sleeps, and never has to wait for mem-
ory. The system reaches a stable state at 15s, and re-
mains in this state until the second scanner starts.

e Second scanner starts: The monitor launches the sec-
ond scanner at 127s. This scanner also causes 75 ma-
jor faults when it starts; it also causes a large number
of minor faults, most of which are associated with the
zero-on-write optimization. Unlike at the launch of the
first scanner, memory is now constrained. The second
scanner’s demand for new pages causes pages to be
swapped out for the first time during the tests. In ad-
dition, the minor faults are spread over a 10s period
instead of being clustered in a 3s window as they when
the first scanner started. At 136s, the system begins to
page in some of the memory that it swapped out. As a
result, the CPU utilization falls below 5% once we are
144 seconds into the test-run.

e Continued instability: The system does not reach a
stable point after the second scanner runs. In fact, the
first scanner gains control of the memory and the CPU
at 173s, only to lose it again at 203s! This event, how-
ever, is not present in all of the tests-runs using three
scanners.

e Third scanner starts: The third scanner begins to run
at 242s. Since there are few free pages at this time, its
zero-on-write faults extend until 253s. There is a cor-
responding increase in swap-out activity as the operat-

N Scanner 1 N Scanner 2 Il scanner 3
» l(start point) J(start point) V - l(start point) -

% CPU

x104

[

R T T

PN

125

25 130 135

140

145

150

180 190 200 210

time (s)

Figure 1. VM imbalance in a typical three scanner test. Column 1 shows the first scanner’s launch; column 2
shows the second scanner’s launch; column 3 shows a brief period of dominance for the first scanner; column 4
shows the third scanner’s launch. The third scanner quickly pushes the others from memory.

ing system writes pages to disk. The new scanner con-
sumes 20-30% of the CPU during this period of time.
The third scanner’s share of the memory gradually in-
creases, until its all of its pages are in memory at 254s.
At this point, the third scanner consumes nearly 100%
of the CPU. While this increase occurs, there are very
few swap-ins, probably indicating that the disk is sat-
urated with the swap-out requests. The zero-on-write
optimization gives the third scanner an advantage over
the existing scanners; it can claim any page on the free
list, zero it, and use it immediately. The first two scan-
ners, on the other hand, must wait for data to be loaded
from the disk before they can use new pages.

Once the system has reached this state, the third scanner
retains its memory indefinitely, as seen in Figure 2. The
third scanner can almost always run, since most of its pages

are in memory. Therefore, its pages are not likely to be se-
lected by the LRU heuristic. On the other hand, the first two
scanners are almost always blocked as they wait for pages
from the disk; many of their pages will, thus, be on the LRU
list. This is because the LRU heuristic uses a global view
of time rather than the execution times [4] of the individual
scanners to age their respective pages. The problem may be
addressed by employing the working-set heuristic to age a
process’s pages based on the process’s execution time rather
than on a global time-base.

The memory imbalance is so pronounced that it defeats
the purpose of priorities in the Linux scheduler. This can
be seen from the data in Table 3. This data indicates that
at all of the sampling points beyond 260s (after the imbal-
ance occurs and persists), the third scanner has a priority
lower those of the first two scanners. This is expected be-
havior, because the third scanner is using nearly all of the

% CPU

«10° § Scanner 1 & Scanner 2 . Scanner 3

A P D R TN AP R RIRIRIN S
RN A A A R AR R R R R e s R s RSN R R R

DA AR RN
TN R T R R TR R TR R R AN R R

WL...L.. PV RIEETI T PRSP ORIPUL ¥ WO AR TR 1Y RTTPORPTav PORPRPTIPTY WOV S PO T TN | PO T PR AR TAP | UTHTY R PRSI ORI
nickibadi 1 I | 1 1 1

500 1000 1500 2000 2500 3000 3500
time (s)

Figure 2. VM imbalance persists indefinitely.

Min | Average Max Min Max

% CPU | 9% CPU | % CPU | Priority | Priority

1 0 1.6 8 9 12
2 0 1.6 8 9 11
3 84 96.1 107 14 20

Table 3. Priorities and CPU usages of the three
scanners between 260s and 3600s of a representa-
tive test-run. On Linux, higher numeric priority
values indicate lower-priority processes. The value
of 107 in the Max % CPU column for scanner 3 is
caused by a .07s irregularity in the scanner’s sam-
pling interval at some point during the test-run.
Priority inversion occurs because the third scanner
consistently runs at a lower priority than scanners
1 and 2, but gets a much larger share of the CPU.

CPU, and the default scheduler in Linux lowers the prior-
ity of such CPU-intensive processes. However, the behav-
ior of the virtual memory system blocks the first two scan-
ners. Therefore, they only consume only 1.6% of the CPU
in spite of their status as high-priority processes, while the
third scanner obtains 96.1% of the CPU. This is clearly a
case of priority inversion.

This behavior does not emerge in all of the tests. In 19%
of the test-runs (all of which had a delay between scan-
ner launches of 30s or less), the memory between the three
scanners was ultimately balanced. In a small number of
tests, the memory spontaneously re-balances after being un-
balanced for 20-40 minutes. We have not been able to re-
produce this behavior consistently, and it seems to happen
in approximately only 5% of the tests when the number of
scanners and the delay between scanner launches are fixed.
In addition, we can find nothing in our logged statistics to
indicate the cause of this relatively infrequent stable behav-
ior.

We ran some initial tests to verify that this behavior was
not specific to the virtual memory implementation in the
Linux kernel alone. Therefore, we ported the scanner to
FreeBSD and Windows XP, and conducted our experiments.
We were not able to port the monitor', so we ran the scan-
ners manually, and observed the system behavior instead
through the top utility (in the case of FreeBSD) and the
Task Manager (in the case of Windows XP). The FreeBSD
system exhibited the same instability that we observed on
Linux. The observed behavior on Windows was somewhat
different; when the second scanner starts, it is unable to re-
cover memory from the first scanner. When the third scan-

I'The porting of the monitor was hindered because these operating sys-
tems do not provide the /proc interface for ready access of the kernel
statistics.

ner starts, the operating system drastically reduces the resi-
dent sizes of all of the scanners. This behavior may be de-
sirable, since the memory does not reduce the faulting rate
of the scanners. However, the GUI of Windows XP still ex-
hibits large execution delays when three scanners are run-
ning. In our future work, we plan to quantify these delays
and to log them in the monitor.

4.2 Execution Delays

In our early experiments, we occasionally observed pauses
of approximately 1.7s in the monitor output. These pauses
seemed to occur just after the second scanner started. When
we examined the logged data for the monitor process, we
discovered that the monitor was experiencing major faults
near these delays. This was somewhat surprising, because
the monitor ran once every second, and “touched” the same
addresses each time that it ran. On examining the data in the
logs further, we concluded that the monitor needs to main-
tain 76 pages (304kB) of its pages in memory in order to
avoid these major faults.

However, these pauses made the log files from the mon-
itor difficult to interpret. Therefore, we decided to lock the
monitor into memory, making its pages ineligible for re-
placement. This appears to confine the jitter to approxi-
mately 1/50th of a second, allowing us collect data even
while the system is experiencing severe swapping. Figure 3
shows data from an early version of the monitor which ex-
perienced one of these pauses. In this test-run, the sec-
ond scanner starts at 36s, causing the system to run low
on memory. As a result, there are gaps in the data at 38s
and 40s, (shown as blank spaces on the graph). At 40s,
the monitor outputs a jitter value of 1.7s. This is consis-
tent with the monitor missing two samples. The major fault
data (graphed as ma j£1t) shows that the monitor detected
a total of 34 major faults at 39s and 41s. In this particular
test-run, the monitor experiences one additional major fault.
However, this fault does not seem to cause appreciable jitter
in the output.

5 Predicting System Performance

The instrumentation of the virtual memory system does not
allow us to make predictions about the system performance.
To make reliable predictions, we would need to understand
the memory demand of the applications. An application’s
memory demand is not equivalent to its resident size, as re-
ported by the operating system. The working set’ for an
application may be much larger than what is indicated by
the resident set in cases where the system is low on mem-

2“The working set is usually defined as a collection of recently refer-
enced segments (or pages) of a program’s virtual address space.”[4]

§ Others . Monitor

jitter (s)

minflt
(¥,

o
[2B

200 R SR SRR R

maijfit

time (s)

Figure 3. Jitter in the monitor process. The max-
imum of the y-axis on the pages graph has been
lowered, and the non-monitor faults have been re-
moved from the majfit and minflt graphs to make
the monitor’s statistics more apparent. The gaps
at 38s and 40s are the result of missing log samples.
Some data is available at 39s, and is represented as
a thin vertical line. The 1.7s delay at sample 40
accounts for the two lost samples.

ory. This can be clearly seen in the fourth column on Fig-
ure 1. Here, the resident set accurately reflects the memory
demand for the third scanner. However, the first two scan-
ners have the same working set, but a much smaller resident
set. Because these scanners generate a large number of ma-
jor faults, we can conclude that the resident size is smaller
than the current memory demand of the scanners. However,
there do not exist kernel statistics that will tell us the differ-
ence between the current resident set and the true memory
demand of the scanner. We believe that working sets repre-
sent one potential solution in order to provide a much more
accurate estimate of the memory demand of applications.

On systems where the memory is not scarce, the resi-
dent set may overestimate the memory demand of an appli-
cation. This can be seen on Figure 3. Here, the monitor’s
resident size starts out at 231 pages (see the data between 1s

and 38s). However, when the number of free pages drops,
the operating system begins to recover some of the pages.
Once this recovery has finished, the resident size drops to
85 pages (between 41 and 43s). This is still larger than the
actual memory demand since the resident size drops to 76
pages at 44s. This approach to quantifying an application’s
memory demand has several disadvantages:

e There is no way to know when the resident size accu-
rately reflects the memory demand.

e The application often encounters major faults during
the page reclamation, degrading its performance.

e The number of pages marked as free on the system is
artificially low. This makes it difficult to predict the
behavior of the system when new applications are run.

6 Future Work

We plan to continue our investigation into the relation-
ship between the virtual memory subsystem and response
times. The questions that we would like to address in fu-
ture research include: What set of benchmarks reproduce
the problems that realistic applications encounter on mem-
ory constrained systems? Does the size of the working-set
accurately reflect an application’s memory demand? Can
we use this information to predict system behavior when
applications are added to systems? Can we detect execu-
tion delays in unmodified applications without consuming a
large portion of the system’s resources? If so, how often do
these delays occur, and what are causes of the delays?

7 Conclusion

In this paper, we have demonstrated that (i) it is relatively
straightforward to reproduce virtual memory misbehaviors,
such as priority inversion, (ii) these VM misbehaviors per-
sist for a long period of time, (iii) identical applications can
obtain radically different shares of the physical memory, de-
pending on the state of the system when they are started, (iv)
execution delays afflict all applications on the system, even
those that are written to make careful use of memory, and
(v) existing kernel statistics do not provide a clear picture of
applications’ memory demand and of the system’s available
memory.

Virtual memory is used on a wide array of systems, rang-
ing from desktops to large servers. Given the information
above, we conclude that applications on these systems are
vulnerable to VM-induced performance failures. These fail-
ures could be triggered by unreasonable requests, buggy
software, or malicious programs. In addition, these systems
are difficult to configure—while a system’s statistics might

indicate that it has insufficient memory, these statistics can-
not be used to quantify the amount of additional memory
needed to achieve acceptable application performance. Our
future work will examine the behavior of virtual memory
(and of other resources) in order to provide applications
with a stable, predictable platform.

8 Acknowledgments

We would like to thank the anonymous reviewers for their
comments that helped us to improve this paper. We also
thank Tim Halloran and Jay Wylie for helping us to clarify
our ideas in the final version of the paper.

References

[1] Digital UNIX Guide To Realtime Programming. Dig-
ital Equipment Corporation, March 1996.

[2] L. A. Belady. A study of replacement algorithms
for a virtual-storage computer. /BM Systems Journal,
5(2):78-101, July 1966.

[3] P.J. Denning. Virtual memory. ACM Computing Sur-
veys (CSUR), 2(3):153-189, 1970.

[4] P. J. Denning. Working sets past and present. [EEE
Transactions on Software Engineering, SE-6(1):64—
84, 1980.

[5] M. Gorman. Code commentary on the Linux vir-
tual memory manager. Technical report, University
of Limerick, 2003.

[6] M. Gorman. Understanding the Linux virtual memory

manager. Technical report, University of Limerick,
2003.

[7] H. Kopetz. Real-Time Systems. Kluwer Academic
Publishers, 1997.

[8] A. Rubini and J. Corbet. Linux Device Drivers, pages
103-108. O’Reilly and Associates, Inc., 2nd edition,
2001.

[9] A. Silberschatz, P. B. Galvin, and G. Gagne. Oper-
ating System Concepts. John Wiley & Sons, Inc., 6th
edition, 2003.

[10] A. J. Smith. Multiprogramming and memory
contention. Software—Practice and Experience,
10(7):531-552, 1980.

