
Comparison of State-Preserving vs. Non-State-Preserving Leakage Control
in Caches

Dharmesh Parikh
�
, Yan Zhang

�
, Karthik Sankaranarayanan

�
, Kevin Skadron

�
, Mircea Stan

�
�
Dept. of Electrical and Computer Engineering, � Dept. of Computer Science

University of Virginia
Charlottesville, VA 22904�

dharmesh,karthick,skadron � @cs.virginia,edu,
�
yz3w,mircea � @virginia.edu

Abstract

This paper compares the effectiveness of state-
preserving and non-state-preserving techniques for leakage
control in caches by comparing drowsy cache and gated-
V ��� for data caches using 70nm technology parameters. To
perform the comparison, we use “HotLeakage”, a new ar-
chitectural model for subthreshold and gate leakage that
explicitly models the effects of temperature, voltage, and
parameter variations, and has the ability to recalculate
leakage currents dynamically as temperature and voltage
change at runtime due to operating conditions, DVS tech-
niques, etc.

By comparing drowsy-cache and gated-V ��� at different
L2 latencies, we are able to identify a range of operat-
ing parameters at which gated-V ��� is more energy efficient
than drowsy-cache, even though gated-V ��� does not pre-
serve data in cache lines that have been deactivated. We
are also able to show potential further benefits of gated-V ���
if an effective dynamic adaptation technique can be found.

This paper duplicates some of the findings of both the
drowsy-cache and “cache-decay” papers, but also debunks
a fairly widespread belief that state-preserving techniques
are inherently superior to non-state-preserving techniques.

1 Introduction

Power is rapidly become a design constraint not only in the do-
main of mobile devices but also in high performance processors.
Although dynamic power —caused by switching activity—is the
major source of total power dissipation in today’s process gen-
eration, static power—caused by leakage current even when cir-
cuits are not switching—is gaining in importance for CMOS de-
signs due to technology scaling. The 2001 International Technol-
ogy Roadmap for Semiconductors (ITRS) [27] predicts that by the
70nm generation, leakage may constitute as much as 50% of total
power dissipation. This makes efforts at leakage control essential
to maintain control of power dissipation in both high-performance
and mobile/embedded processors.

Recently, a great deal of research work in the architecture com-
munity has focused on reducing leakage power in the caches [11,
14, 15, 19, 25, 31, 33], branch predictor [16, 17], register file [2],
issue queues [7, 8, 12, 24], and the ALUs [10]. Leakage control

at the architecture level is attractive, because architectural tech-
niques can control large groups of circuits (e.g. cache lines, banks,
or the entire cache) at once. Leakage control for caches has been
an especially active area of study because caches comprise such a
large portion of chip area. Recent work [11, 14] has suggested that
state-preserving techniques are the best choice for leakage control
in the first-level (L1) caches, because they do not incur costly ac-
cesses to the second-level (L2) cache when reading data that has
been placed in low-leakage or “standby” mode.

This paper shows that when the L2 cache offers a suffi-
ciently fast access time (e.g., when the L2 is on chip), non-state-
preserving techniques can be superior. And even when the L2 is
not especially fast, non-state-preserving techniques can still be su-
perior if runtime adaptivity can identify the proper decay interval.

To perform this study, we use HotLeakage [32], a new archi-
tectural model for subthreshold and gate leakage that has been
publicly released on the web. HotLeakage explicitly models the
effects of temperature, voltage, and parameter variations, and has
the ability to recalculate leakage currents dynamically as temper-
ature and voltage change at runtime due to operating conditions,
DVS techniques, etc.

The next section of this paper describes the two leakage-control
techniques that we study and the timing and performance assump-
tions that we make in our simulations, and then Section 3 provides
an overview of the HotLeakage model. Section 4 describes the
rest of our simulation setup and the benchmarks we use, Section 5
presents the results of our comparison study, and Section 6 con-
cludes the paper.

2 Leakage Control for Caches

The design space for low-leakage caches is daunting, encom-
passing the choice of size and threshold voltage for each transistor,
the row and bitline length, and many more parameters too numer-
ous to mention. Here we focus on just one dimension that can
be treated within the scope of a single paper, namely the choice of
state-preserving versus non-state-preserving architectural leakage-
control techniques in the L1 data cache.

Recent literature has suggested that state-preserving techniques
are preferable for leakage control in L1 D-caches, because they
do not lose data values and hence do not unnecessarily incur the
extra delay and energy associated with reloading that data from
the L2 cache. In contrast, our results suggest that this is often not
so, that the extra cost of accessing L2 with non-state-preserving
techniques is offset by other important factors.

Hanson et al. [14] found that for L1 caches, reverse
body bias (RBB) or auto-backgate-controlled MTCMOS (ABB-
MTCMOS) [23]—a state-preserving technique that manipulates
threshold voltages—outperformed gated-V ��� , primarily because
they used long decay intervals that minimized opportunities for
saving energy, and because they did not decay the cache tags [13]
(thus avoiding time wasted to waken and read the tags on misses).
We have chosen not to study RBB here, both because RBB
presents some manufacturing challenges and, more importantly,
because recent work by Intel suggests that its effectiveness is lim-
ited at future technology nodes by gate-induced drain leakage
(GIDL).

Flautner et al. [11] did not directly compare their proposed
drowsy-cache scheme against gated-V ��� , but suggested that its
state-preserving nature is a major advantage.

2.1 Lowering the Quiescent V ��� (Gated-V ���)

Leakage currents decrease as the supply voltage (V ���) is
lowered. The gated-V ��� structure was introduced as a micro-
architecture technique by Powell et al. in [25] as a way to reduce
leakage power by using a high threshold “header” transistor to dis-
connect a cell, row, or way in the cache from V ��� . This high-
threshold transistor drastically reduces the leakage of the circuit
because it breaks the connection to the power supply. While this
technique is efficient in saving leakage, there is the disadvantage
that the cell loses its state (information). This means that there will
be some performance penalty when the data in the cell is accessed
and needs to be fetched from a farther level of the cache. This is
harmless if the next access to that line would have been an evic-
tion anyway (true miss); but if useful data was discarded, the next
access will be an induced miss. This has important consequences.
First and foremost it causes dynamic power dissipation due to an
extra L2 access. Second, an induced miss might cause the program
to run longer and hence increase total energy consumption. Gated-
V ��� was proposed in [19] for shutting down individual lines in a
cache to save leakage when a line is idle. Because the sleep tran-
sistor is more effective as a “footer” on the connection to ground–it
is easier to prevent bitline leakage this way–this technique is better
called gated-V ��� .

2.2 Drowsy Caches

An alternative method, proposed by Flautner et al. in [11],
achieves significant leakage reduction by putting a cache line into
a low-power drowsy mode. In drowsy mode, the information in the
cache line is preserved by switching its

� ��� to a separate power
supply that is only about 1.5 times the threshold voltage. This
reduces leakage current dramatically due to short-channel effects
and preserves the value that is stored, making this another state-
preserving technique. Like MTCMOS, there is still some overhead
because V ��� must be returned to the proper level before the value
can be safely read. Drowsy caches do not reduce leakage as much
as gated-V ��� , because the cells are not fully disconnected from the
power supply. The advantage of drowsy cache is the low penalty
of accessing a drowsy line in standby: induced misses do not re-
quire an L2 access but only 1-2 cycles to restore the full voltage
for that line. Induced misses for drowsy caches might therefore
better be called slow hits.

2.3 Modeling of Cache Leakage Control

We have implemented a generic abstraction for modeling leak-
age control techniques based on putting individual lines into
standby mode, allowing us to study techniques like gated-V ��� [19],
drowsy cache [11], and reverse-body-bias [23].

Most dynamic leakage-control techniques partition a structure
into active and passive portions. This can be done at various gran-
ularities; most recent work has done this at the granularity of rows
in the SRAM array, which correspond to cache lines.

These leakage control techniques also require some extra hard-
ware that adds to the area of the structure. Hence, these methods
have the following costs:

1. Dynamic power due to the extra hardware

2. Leakage power due to the extra hardware

3. Dynamic power due to mode transitions (active to standby
and vice-versa)

4. Dynamic power due to extra execution time, resulting either
from extra latency in accessing the structure or extra latency
in fetching data from the L2 cache.

The energy benefit of the techniques we have described is the leak-
age power saved in the lines that are in standby mode. This saving
is proportional to the average percent area that is kept in standby
mode (the turnoff ratio). Our experiments compute a net energy
savings that subtracts from this gross benefit the costs itemized
above: Wattch automatically capatures the extra energy due to
longer runtime (item #4 above); this is compared to the energy
from a baseline simulation with no leakage control, and the result-
ing cost is added to the other costs itemized above (#1–3). These
are then subtracted from the gross leakage savings.

For both techniques, we use a global counter that counts from
zero up to one-fourth the decay interval (defined as update win-
dow size in [11]) and then starts over. Following [19], each line
uses a local two-bit counter; when the global counter reaches its
maximum value, all two bit counters are incremented. When a
two-bit counter reaches its maximum, the line has been idle for
the full decay interval, it is assumed that the line’s usefulness has
decayed, and the line is deactivated. In the original drowsy-cache
paper, this corresponds to the noaccess policy. Drowsy cache also
proposes the simple policy, which uses no per-line access history
but rather automatically turns off all lines every 	 cycles. The
simple policy loses out in performance compared to the noaccess
policy, but saves more leakage power. The difference seems mod-
est for drowsy due to the fairly low cost of any extra slow hits:
there is some increase in performance loss, but also more energy
savings. To be fair to both gated-

�
��� and drowsy, we used the

same policy involving counters, namely noaccess.
For both techniques, we decay the tags too (defined as drowsy

tags in [11]). Access to a drowsy line in such a case takes at least
three cycles due to the need to wake up tags before they can be
checked. For gated-V ��� , on the other hand, a line in standby mode
has no useful information, and tags need not (cannot) be checked.
This means that on a true miss to L2 when tags are in standby,
gated-V ��� is actually faster. Hanson et al. also kept the tags awake
in their study [13, 14].

A few other simulation details are worth mentioning. The time
taken for a line to go to a low-leakage mode from high-leak nor-
mal mode (settling time) and vice versa was found from circuit
simulation and is given in Table 1. Also, for both leakage sav-
ing techniques we use the same values of threshold voltage for all

Drowsy Gated-V ���
Low leak mode to high 3 3
High leak to low 3 30

Table 1. Settling Time.

the transistors of the same type for a memory cell. In contrast,
drowsy uses high-V � for the access transistors. Modeling this is
easy with HotLeakage. But for making fair comparison, we use
the same threshold voltages (for 70nm we use 0.190 V for N-type
and 0.213 V for P-type transistor). It is true that high-V � access
transistors help drowsy more than gated-V ��� . High-V � access tran-
sistors only help gated-V ��� when lines are awake, while they help
drowsy in both situations. But since the bulk of the leakage is
when awake, we felt that using the same V � was the best solution.
Finally, HotLeakage models inter-die variation. We use the fol-
lowing three-sigma values for 70nm technology. The values were
obtained from [22].

� Length of the transistor: 47%
� Thickness of the gate oxide: 16%
� Supply voltage: 10%
� Threshold Voltage: 13%

The simulator currently models leakage control in caches using
the above costs and benefits. The dynamic power calculations are
performed using Wattch routines—see Section 4 for details. The
leakage power is calculated using our model as configured by the
command line options—see Section 3 for details.

3 An Accurate Leakage Model for Architects

Although architectural control of leakage energy has been an
active area of research in recent years, many of these studies use
only abstract models of leakage that do not fully account for all
effects that may impact leakage, like supply voltage and tem-
perature; and other studies use circuit-extracted parameters that
are not easily incorporated into other researchers’ models. Un-
like for dynamic power, where widely-available simulators like
Wattch [5] have enabled a widespread body of research, there is no
widely available model for leakage power. This inhibits leakage
research and leads to approximate experiments. Although Butts
and Sohi [6] propose a simple model for use at the architecture-
simulation level of abstraction, no corresponding software is avail-
able. Most importantly, their model cannot easily model leakage
when temperature, supply voltage, or threshold voltage vary dy-
namically: a new “normalized leakage” and

�
��� �����
	 must be cal-

culated for every possible value. This is inconvenient although
feasible for leakage-control schemes like drowsy cache that uses
two supply voltages, but intractable for any leakage studies that
account for dynamically varying temperature or involve dynamic
voltage scaling. Unlike the Butts and Sohi model, we find that�
�
� �����
	 does in fact vary with temperature, supply voltage, thresh-

old voltage, and channel length. Detailed plots can be found
in [32].

We have developed and released a software model of leakage—
based on BSIM3 [3] technology data and the Butts and Sohi
abstractions—that is computationally very simple, can easily be
integrated into popular power-performance simulators like Wattch,
can easily be extended to accommodate other technology models,

and can easily be used to model leakage in a variety of structures
(not just caches, which are the focus of this paper). We call our
model HotLeakage, because it includes the exponential effects of
temperature on leakage. Temperature effects are important, be-
cause leakage current depends exponentially on temperature, and
future operating temperatures may exceed ����� C [27]. In fact,
HotLeakage also includes the heretofore unmodeled effects of sup-
ply voltage, gate leakage, and parameter variations.

HotLeakage has high accuracy because parameters are derived
from transistor-level simulation (Cadence tools). Yet like the Butts
and Sohi model, simplicity is maintained by deriving the neces-
sary circuit-level model for individual cells, like memory cells or
decoder circuits, and then taking advantage of the regularity of
major structures to expresse leakage in simple formulas similar to
the Butts-Sohi model. All necessary components of this formula
are encapsulated in lookup tables.

We hope that this new leakage model and its public availability
will facilitate greater research on techniques for controlling leak-
age power at the architecture level. HotLeakage is publicly avail-
able for download at http://lava.cs.virginia.edu/
HotLeakage. It is a separate library with minimal dependence
on the details of SimpleScalar and Wattch, so porting HotLeakage
for use with other simulators should be straightforward. We en-
courage not only such ports, but also any other modifications or
extensions users might wish to add.

3.1 Subthreshold Leakage

Leakage current is influenced by the threshold voltage, channel
physical dimensions, channel/surface doping profile, drain/source
junction depth, gate-oxide thickness, V ��� , temperature, and varia-
tions in all these parameters. For long-channel devices, the leak-
age current is dominated by leakage from the drain-well and well-
substrate reverse-bias pn junctions. For short-channel transistors,
because of the low threshold voltage, sub-threshold leakage is
much higher. As gate oxides continue to scale, gate leakage is
also becoming important. Keshavarzi, Roy, and Hawkins give an
overview of these different leakage mechanisms in [20].

Our techniques for modeling gate leakage and parameter vari-
ations are described in Sections 3.2 and 3.3. Our technique for
modeling sub-threshold leakage and its dependence on tempera-
ture, etc. is to extend the high-level model of sub-threshold leak-
age proposed by Butts and Sohi [6]. Their model neatly compart-
mentalizes some different issues affecting static power in a way
that makes it easy to reason about leakage effects at the micro-
architecture level. Leakage is given by the following equation:

�
� ����� ����� �������

	
� �

�
� ������	 ����� � ��! (1)

This formula must be computed for each circuit or block of
interest, e.g. the data array or a cache or the cache’s “edge logic”
(decoders and sense amplifiers).

�"�#�
is the supply voltage, and 	

is the number of transistors in the circuit, which could be estimated
by comparing it with a circuit of known functionality. k ��� �$���
	 is
a factor determined by the specific circuit topology and accounts
for effects like transistor sizing, transistor stacking and the number
and relationship of NMOS and PMOS transistors in a circuit.

�� � ��!
is a normalized leakage value for a single transistor, which we refer
to as unit leakage.

Using this model, it is easy to see the relationships of some ma-
jor factors that a processor designer can control for leakage-power

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5
x 10

−8

W/L

Le
ak

ag
e

C
ur

re
nt

 (
A

)

model
simulation

(a) Leakage vs. Aspect Ratio (W/L)

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

−8

Vdd (V)

Le
ak

ag
e

C
ur

re
nt

 (
A

)

model
simulation

(b) Leakage vs. Supply Voltage (Vdd)

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

3.5
x 10

−8

Temperature (C)

Le
ak

ag
e

C
ur

re
nt

 (
A

)

model
simulation

(c) Leakage vs. Temperature (T)

0.1 0.2 0.3 0.4 0.5 0.6
−13

−12

−11

−10

−9

−8

−7

−6

Vth (V)

Le
ak

ag
e

C
ur

re
nt

 (
A

)
lo

g
sc

al
e

model
simulation

(d) Leakage vs. Threshold Voltage (Vth)

Figure 1. Comparisons of the proposed HotLeakage model against circuit-level simulation results.

savings: given a unit leakage
��
 � ��! , leakage power is proportional

to operating voltage and the number of transistors in the unit of
interest. For example, DVS affects leakage by reducing

�"�#�
, and

“turning off” some unit (a cache bank or part of an issue queue)
by disconnecting its power supply effectively reduces 	 .

In the Butts and Sohi formulation, the unit leakage
��� � ��! is cal-

culated once and assumes fixed values for threshold voltage (
���

),
operating temperature, etc. Since recent work in low-leakage
cache design [11, 14, 23, 26] as well as broader processor-design
issues like thermal management [4, 18, 28, 29] manipulate param-
eters like

���
and temperature that are hidden in

�
��� �$���
	 or

��
 � ��! ,
computing one fixed value for

�
�
� ������	 and

��� � ��! is not well-suited
for actual simulation work (see [32] for more details).

To develop a portable simulation module for use with vari-

ous architecture-level simulators, we retain the notions of
�
�
� ������	

and unit leakage but compute the unit leakage dynamically dur-
ing the simulation using the BSIM3 [3] leakage-current equation.
This lets us explicitly account for temperature, supply voltage, and
threshold voltage as key parameters, and includes the important
DIBL effect which is sensitive to supply voltage. We also use two
separate

�
��� �$���
	 ’s for P- and N-type.

3.1.1 Unit Leakage

Based on the BSIM3 v3.2 [3] equation for leakage in a MOSFET
transistor, our leakage model of a single transistor is given by the
following equation:

�� � ��!
� � � � ��� ������� �
	 � �������������
��������#������
��� �! �#"�$ �%�&('*) ��� "
+ & '-, + "�$/.(0/0132 &(' (2)

Low-level parameters are derived using transistor-level simula-
tions: 4 � is the zero bias mobility,

�!���
is gate oxide capac-

itance per unit area, 	65 � is the aspect ratio of the transistor,� ����� ��� �
� ���(� �
is the DIBL factor derived from the curve fitting

method, V ��� � is the default supply voltage for each technology
(V ��� � =2.0 for 180nm, V ��� � =1.5 for 130nm, V ��� � =1.2 for 100nm
and V ��� � =1.0 for 70nm),

� � � ��7 5�8 is the thermal voltage, V �-9
is threshold voltage which is also a function of temperature, : is
the subthreshold swing coefficient, and V ;�<< is an empirically de-
termined BSIM3 parameter which is also a function of threshold
voltage. In these parameters, 4 � , ���=� , 	65 � and V ��� � are stati-
cally defined parameters; the DIBL factor > , subthreshold swing
coefficient : and V ;�<< are derived from curve fitting based on
transistor-level simulations; V ��� , V �-9 and

� � � ��7 5�8 are calcu-
lated dynamically in the simulations.

The above equation is based on two assumptions:

1. V ��� =0 — we only consider the leakage current when the
transistor is off.

2. V � � =V ��� — we only consider a single transistor here; the
stack effect and the interaction among multiple transistors
are taken into account when we model the cell using Equa-
tion 3.

Figure 1 shows the comparison of leakage current calculated
by our model to the transistor-level simulation. From Figure 1a,
1b, and 1c, we can see that for the ratio 	65 � , supply voltage V ���
and temperature

7
, our results perfectly match the simulation re-

sults. Figure 1d shows that after threshold voltage increases to
some value, the modeled leakage current does not decrease any-
more. This is due to the simplicity of our model, which only
considers the subthreshold leakage and DIBL effect. It is only
of concern if threshold voltage is beyond the normal value.

3.1.2 Leakage per Cell

Butts and Sohi point out that their single
�
��� �$���
	 model is suitable

only for cases where the parameters of N and P transistors are
very close, and otherwise two

�
�
� ������	 ’s are needed. We indeed

found [32] that the parameters of N and P transistors differ too
much, so HotLeakage applies different

�
��� �$���
	 factors to the N

and P transistors,
� 	 and

�?
.

This means that for a specific cell, the leakage current is given
by the following equation:

� � � � ��!�� � � � : 	 �@ 	 ��� 	BA : ? ��@ ? � � ?
(3)

:�C and :�D are the number of NMOS and PMOS transistors in the
cell, and

� C and
� D are the calculated leakage current of NMOS

and PMOS according to Equation 2; when aspect ratio 	65 � � �
we call them unit leakage.

�
�
� ������	 is then a scaling factor deter-

mined for each type of cell to account for the transistor stack effect
and the aspect ratios E 	65 �GF of the different transistors. (The stack
effect refers to the additional reduction in leakage when multiple
series-connected transistors are off; for example, sleep transistors

take advantage of this.) This means that the expression for static
power analogous to Equation 1 is:

�
� ����� ��� � � ��� � 	 � � � ��� � � (4)

� 	 and
� ?

, the design factors of N and P transistors, can be
derived by a similar method as in the single-

�
�
� �����
	 model. For

a given cell, we divide all possible inputs into two groups: one
group inputs will turn off the pull-down network composed of N
transistors. The other group will turn off the pull-up network com-
posed of P transistors. Thus the leakage currents are also divided
into two groups

��H 	 ,
� � 	 ,. . . ,

� ! 	 ,. . . and
��H ?

,
� � ? ,. . . ,

� ! ? ,. . . .
� ! 	

is the leakage current when the pull-down network is turned off,
while

� ! ? is the leakage current when the pull-up network is turned
off.

� 	 and
� ?

are given by the following equation:

� 	 � E � H 	 A � � 	 A � ��� A � ! 	BA � � � F 5 E 	JIK:�	LI � 	 F (5)

�? � E � H ? A � � ? A � ��� A � ! ? A � � � F 5 E 	MIK: ? I � ? F (6)

	 is the number of all possible combinations. For example, Fig-
ure 2 is the diagram of a two-input NAND gate. There are two

Vdd

X

Y

Pull-up

Pull-down

Figure 2. Two-input NAND gate.

inputs X and Y, which make four possible combinations. There
are three combinations: EON � QP�R �

F
, EON � �P(R � �

F
andEON � �SP(R �

F
which turn off the pull-down network.

�SH 	 ,
� � 	

and
��T 	 are the leakage currents corresponding to these three in-

puts. The only combination that turns off the pull-up network isEON � �SP�R � �
F

and
��H ?

is the corresponding leakage current.
� 	

and
�?

are given by:
� 	 � E � H 	 A � � 	 A � T 	 F 5 E 	JIK:�	LI � 	 F (7)

�? � � H ? 5 E 	UIV: ? I � ? F (8)

Here 	 equals 4.
The double-

�
��� �����
	 model has the important property that it is

able to handle the differential scaling of N and P transistors that is
widely used in contemporary technologies. Again, detailed plots
can be found in [32]. We find that

� 	 and
� ?

are independent of
threshold voltage and have a linear relationship with temperature
and supply voltage. We incorporate these features into our leakage
model and

� 	 ,
� ?

are calculated dynamically with respect to dif-
ferent temperatures and supply voltages. These values are derived
for different technology nodes via simulations.

3.2 Gate Leakage and GIDL Effect

In order to improve device performance, gate-oxide thickness
is projected to scale aggressively for future technology nodes [27].
The result is that gate leakage through the gate oxide increases sig-
nificantly due to the direct tunneling current. Our model includes
gate leakage for 70nm technology, where gate leakage becomes
dominant. To get an explicit equation for gate-leakage calcula-
tions is very difficult and also unnecessary for an architectural-
level model. We use AIM-spice [1] as the circuit simulator, which
includes BSIM4 among the supported models for gate leakage.
Gate current parameters have been adjusted to target 40 nA/um
gate leakage in 70nm technology at 1.2nm oxide thickness and
0.9 V supply voltage at room temperature (300K) as predicted
in [27]. Gate leakage is strongly dependent on the gate oxide thick-
ness � ;�� and supply voltage. It is weakly dependent on the tem-
perature. From the transistor-level simulations, we derived these
factors with curve-fitting and incorporated it into our models.

GIDL effect occurs at low gate voltage and high drain voltage
bias. This effect will raise the leakage current when gate volt-
age goes negative. It becomes worse when biasing the substrate
to negative voltage for N transistors and to positive voltage for P
transistors. This will limit the reverse body-biasing (RBB) tech-
nique.

3.3 Parameter Variations

Device parameter variations can be divided into two categories:
inter-die (die-to-die) variation and intra-die (within-die) variation.

Inter-die variation is the difference in the value of a parame-
ter across nominally identical dies and is typically accounted as a
shift in the mean of some parameter value equally across all device
or structures on any one chip. For purposes of circuit design, it is
usually sufficient to lump all the contributions in the inter-die vari-
ation into a single variation component with a mean and variance.

Intra-die variation is the deviation occurring spatially within
any one die. It may have a variety of sources depending on the
physics of the manufacturing steps. In contrast to inter-die varia-
tion (affecting all devices on any one chip equally), intra-die vari-
ation contributes to the mismatch behavior between structures on
the same chip.

Due to both inter-die and intra-die parameter variations, there is
significant variation in leakage power. Thus parameter variations
must be taken into account in the new leakage model. Inter-die
variation can be characterized as a global mean and variance while
intra-die variation is more complicated. In this version our model
only includes the inter-die variation.

There are four parameters which we are interested in. They are�
: length of the transistor; � ;�� : thickness of the gate oxide;

� ��� :
supply voltage; and

� �-9 : threshold voltage of the transistor. For
each parameter, user can give the specific mean � , variance � , and
the number of samples 	 . In the initializing phase of the simula-
tion, 	 gaussian distribution samples are generated and the leak-
age currents are also calculated accordingly. The mean of those
leakage currents is used in the following simulations in order to
include the effects of the parameter variations.

3.4 How to Use the HotLeakage Software Within
an Architecture Simulator

The HotLeakage simulator is a configurable module. The
various parameters related to the leakage power modeling and
the leakage control techniques are specified at the command line
(see [32] for details). To use HotLeakage with currents based on
BSIM3 models and our pre-determined values of

�
�
� �����
	 , it is only

necessary to specify the technology parameter; e.g. 70nm. Other
parameters can also be configured, but all have reasonable default
values.

HotLeakage dynamically tracks leakage for each cell of inter-
est (e.g., an SRAM cell) and this information is then translated
into leakage at the architecture level. The functions that calcu-
late leakage for each structure of the micro-architecture are in the
main leakage module, and these need to be called whenever any of
the parameters—like temperature, supply voltage, etc.—that affect
leakage is changed. These functions will recalculate the leakage
currents using the HotLeakage model. HotLeakage and the ac-
companying simulation infrastructure currently model leakage of
caches and register files; adding models for other cache-like struc-
tures is very simple.

The power-performance simulator, e.g. Wattch, is responsi-
ble for implementing the leakage-control technique and using the
HotLeakage values accordingly. As mentioned earlier, we have
implemented a generic abstraction for modeling leakage control
techniques based on putting individual cache lines into standby,
allowing us to study techniques like gated-V ��� [19], drowsy
cache [11], and reverse-body-bias [23].

4 Simulation Set-Up

4.1 Processor Model

All simulations were performed with Wattch augmented by
HotLeakage. Unless stated otherwise, this paper uses the base-
line configuration as shown in Table 2, which resembles as much
as possible the configuration of an Alpha 21264 [21]. The most
important difference for this paper is that in the 21264 there is
no separate BTB, because the I-cache has an integrated next-line
predictor [9]. As most processors currently do use a separate BTB,
our work models a separate, 2-way associative, 1 K-entry BTB that
is accessed in parallel with the I-cache and direction predictor.

In the original drowsy paper, the L1 data cache used is 32 KB
in size and 4-way set associative and the L1 instruction cache is
32 KB in size and direct mapped. Both caches use line size of 32
bytes and a hit latency is one. In contrast, we use 64 KB, 2-way
caches with 64 B lines for both.

For Wattch and HotLeakage technology parameters we use the
process parameters for a 70 nm process at

� ��� 0.9V and 5600
MHz. It is important to note that because our Wattch model
does not include state-of-the-art power-management techniques
that would be expected in the 70nm generation, our estimates for
dynamic energy may be pessimistic.

4.2 Benchmarks

In our comparative evaluation of various leakage control tech-
niques, we use 11 integer benchmarks from the SPEcpu2000 [30]

Processor Core
Instruction Window 80-RUU, 40-LSQ
Issue width 4 instructions per cycle
Functional Units 4 IntALU,1 IntMult/Div,

2 FPALU,1 FPMult/Div,
2 mem ports

Memory Hierarchy
L1 D-cache Size 64 KB, 2-way LRU, 64 B blocks

2-cycle latency
L1 I-cache Size 64 KB, 2-way LRU, 64 B blocks

1-cycle latency
L2 Unified, 2 MB, 2-way LRU,

64B blocks, 11-cycle latency
Memory 100 cycles

Branch Predictor
Branch predictor Hybrid:

4K bimod and 4K/12-bit/GAg
4K bimod-style chooser

Branch target buffer 1 K-entry, 2-way

Table 2. Configuration of simulated processor
microarchitecture. All caches are write-back.

suite. The benchmarks were compiled for the Alpha ISA and stati-
cally linked using the Compaq Alpha compiler (with peak settings)
For each program, we skip the first two billion committed instruc-
tions to avoid unrepresentative startup behavior at the beginning of
the program’s execution, and then simulate 500 million committed
instructions using the reference input set.

5 Results

5.1 L2 Latency

Our results roughly duplicate those in [11]. They report slightly
higher leakage savings and slightly lower performance loss. The
former we attribute to differences in our models, including the dif-
ferent choice of threshold voltage and our use of BSIM3 mod-
els. The latter we attribute to our choice of shorter decay intervals
that—for our leakage model—we found to give better energy sav-
ings.

Figures 3 and 4 present the net cache-leakage savings and the
performance loss for a system with an L2 cache latency of 5 cy-
cles, as might be seen for a fast, on-chip L2. Note that, in or-
der to report a measure that represents the actual “profit” in terms
of energy saved, the net savings subtracts the extra dynamic en-
ergy expended due to the leakage control scheme from the total
reduction in leakage that is realized by deactivating cache lines.
The dynamic energy overhead is computed by comparing the to-
tal dynamic energy with and without the leakage-control scheme
activated. This accounts for the contributions from (and overlap
among) (a) activity in the decay counters (gated-V ���), (b) extra L2
accesses (gated-V ���), (c) extra tag accesses (drowsy), and (d) extra
runtime.

Figures 5 and 6 then present the same results for an 8-cycle L2;
Figures 8 and 9 for an 11-cycle L2; and Figures 10 and 11 for a
17-cycle L2.

These results show that for 5–8 cycle L2 caches, gated-V ���
is superior to drowsy cache in terms of both energy savings and

performance loss. At 5 cycles, gated-V ��� is almost uniformly su-
perior, while at 8 cycles, drowsy is superior for a small number
of benchmarks. At 11 cycles, the picture is less clear. Gated-V ���
is slightly better in terms of average energy savings and slightly
worse in terms of average performance loss. But looking at indi-
vidual benchmarks, drowsy and gated-V ��� are better for about an
equal number of benchmarks. Finally, at 17 cycles, drowsy cache
becomes clearly superior.

Ne t E n e r g y S a v in g s

0

0 .1

0 .2

0 .3

0 .4

0 .5

0 .6

0 .7

0 .8

0 .9

1

G
cc

G
zi

p

P
ar

se
r

V
o

rt
ex

G
ap

P
er

l

T
w

o
lf

B
zi

p
2

V
p

r

M
cf

C
ra

ft
y

A
ve

ra
g

e

B e n c h m a r k s

N
o

rm
al

iz
ed

 N
et

 L
ea

ka
g

e
S

av
in

g
s

d r o w s y (2 k) g a te d V s s (2 k)

Figure 3. Net leakage savings at 110 � and an
L2 latency of 5 cycles.

Pe r fo r m a n c e L o s s

0

0 .0 0 5

0 .0 1

0 .0 1 5

0 .0 2

0 .0 2 5

G
cc

G
zi

p

P
ar

se
r

V
o

rt
ex

G
ap

P
er

l

T
w

o
lf

B
zi

p
2

V
p

r

M
cf

C
ra

ft
y

A
ve

ra
g

e

B e n c h m a r k s

P
er

fo
rm

an
ce

 L
o

ss
 a

s
F

ra
ct

io
n

D r o w s y (2 k) G a te d V s s (2 k)

Figure 4. Performance loss at an L2 latency
of 5 cycles.

Most importantly, these results show that contrary to
widespread belief, non-state-preserving techniques are not inher-
ently inferior. There are five reasons for this. First, gated-V ��� is
able to almost entirely eliminate leakage, whereas state-preserving
techniques like drowsy and RBB still exhibit a non-trivial amount
of leakage. Second, a well-tuned decay interval will minimize so-
called induced misses, misses that result purely from premature
deactivation of a line that contains useful data. Third, induced
misses are not inherently bad. Even if data remains “live”, if its
next use is sufficiently far in the future, it may be worthwhile to
incur a modest performance loss to save energy that is otherwise
expended keeping the data active. Fourth, in an aggressive out-of-
order machine, modest L2 access latencies for induced misses can
be tolerated. Finally, when tags are decayed, gated-V ��� is actually

Ne t E n e r g y S a v in g s

0

0 .1

0 .2

0 .3

0 .4

0 .5

0 .6

0 .7

0 .8

0 .9

1

G
cc

G
zi

p

P
ar

se
r

V
o

rt
ex

G
ap

P
er

l

T
w

o
lf

B
zi

p
2

V
p

r

M
cf

C
ra

ft
y

A
ve

ra
g

e

B e n c h m a r k s

N
o

rm
al

iz
ed

 N
et

 L
ea

ka
g

e
S

av
in

g
s

d r o w s y (1 k) g a te d V s s (4 k)

Figure 5. Net leakage savings at 110 � and an
L2 latency of 8 cycles.

Pe r fo r m a c e L o s s

0

0 .0 0 5

0 .0 1

0 .0 1 5

0 .0 2

0 .0 2 5

0 .0 3

G
cc

G
zi

p

P
ar

se
r

V
o

rt
ex

G
ap

P
er

l

T
w

o
lf

B
zi

p
2

V
p

r

M
cf

C
ra

ft
y

A
ve

ra
g

e

B e n c h m a r k s

P
er

fo
rm

an
ce

 L
o

ss
 a

s
F

ra
ct

io
n

D r o w s y (1 k) G a te d V s s (4 k)

Figure 6. Performance loss at an L2 latency
of 8 cycles.

faster on true misses when a line is in standby—which is the more
common type of miss. The drowsy technique must first wake up
the tags, then check them, only to find that the data is not resident
and an L2 access is required. In contrast, gated-V ��� can immedi-
ately begin checking the tags of active ways, and ways that are in
standby are guaranteed to be misses and need not be checked.

For the range of L2 access latencies that are typically observed
for on-chip caches, it is therefore false to automatically assume
that an L2 access is too costly. Of course, as L2 latency increases,
the above factors that mitigate for gated-V ��� become less and less
helpful. For the longest L2 latency we tested, gated-V ��� was no
longer able to hide a significant portion of L1 miss times, and the
state-preserving nature of drowsy cache becomes a major advan-
tage.

5.2 Temperature

Figures 7 and 8 illustrate the effects of temperature for an 11-
cycle L2 cache by comparing energy savings at 85 � C and 110 � C.
Because leakage is exponentially dependent on temperature, the
energy savings is much higher for both schemes.

We mentioned previously that gated-V ��� is able to almost en-

Ne t E n e r g y S a v in g s

0

0 .1

0 .2

0 .3

0 .4

0 .5

0 .6

0 .7

0 .8

0 .9

1

G
cc

G
zi

p

P
ar

se
r

V
o

rt
ex

G
ap

P
er

l

T
w

o
lf

B
zi

p
2

V
p

r

M
cf

C
ra

ft
y

A
ve

ra
g

e

B e n c h m a r k s

N
o

rm
al

iz
ed

 N
et

 L
ea

ka
g

e
S

av
in

g
s

d r o w s y (2 k) g a te d V s s (8 k)

Figure 7. Net leakage savings at 85 � and an
L2 latency of 11 cycles.

Ne t E n e r g y S a v in g s

0

0 .1

0 .2

0 .3

0 .4

0 .5

0 .6

0 .7

0 .8

0 .9

1

G
cc

G
zi

p

P
ar

se
r

V
o

rt
ex

G
ap

P
er

l

T
w

o
lf

B
zi

p
2

V
p

r

M
cf

C
ra

ft
y

A
ve

ra
g

e

B e n c h m a r k s

N
o

rm
al

iz
ed

 N
et

 L
ea

ka
g

e
S

av
in

g
s

d r o w s y (1 k) g a te d V s s (4 k)

Figure 8. Net leakage savings at 110 � and an
L2 latency of 11 cycles.

Pe r fo r m a n c e L o s s

0

0 .0 0 5

0 .0 1

0 .0 1 5

0 .0 2

0 .0 2 5

0 .0 3

0 .0 3 5

0 .0 4

G
cc

G
zi

p

P
ar

se
r

V
o

rt
ex

G
ap

P
er

l

T
w

o
lf

B
zi

p
2

V
p

r

M
cf

C
ra

ft
y

A
ve

ra
g

e

B e n c h m a r k s

P
er

fo
rm

ac
e

L
o

ss
 a

s
F

ra
ct

io
n

D r o w s y (1 k) G a te d V s s (4 k)

Figure 9. Performance loss at an L2 latency
of 11 cycles.

tirely eliminate leakage, whereas state-preserving techniques like
drowsy and RBB still exhibit a non-trivial amount of leakage. As
leakage increases with temperature, this advantage for gated-V ���
increases too. But this advantage is offset by the fact that the

Ne t E n e r g y S a v in g s

0

0 .1

0 .2

0 .3

0 .4

0 .5

0 .6

0 .7

0 .8

0 .9

1

G
cc

G
zi

p

P
ar

se
r

V
o

rt
ex

G
ap

P
er

l

T
w

o
lf

B
zi

p
2

V
p

r

M
cf

C
ra

ft
y

A
ve

ra
g

e

B e n c h m a r k s

N
o

rm
al

iz
ed

 N
et

 L
ea

ka
g

e
S

av
in

g
s

d r o w s y (2 k) g a te d V s s (8 k)

Figure 10. Net leakage savings at 110 � and an
L2 latency of 17 cycles.

Pe r fo r m a c e L o s s

0

0 .0 0 5

0 .0 1

0 .0 1 5

0 .0 2

0 .0 2 5

0 .0 3

0 .0 3 5

0 .0 4

0 .0 4 5

0 .0 5

G
cc

G
zi

p

P
ar

se
r

V
o

rt
ex

G
ap

P
er

l

T
w

o
lf

B
zi

p
2

V
p

r

M
cf

C
ra

ft
y

A
ve

ra
g

e

B e n c h m a r k s

P
er

fo
rm

an
ce

 L
o

ss
 a

s
F

ra
ct

io
n

D r o w s y (2 k) G a te d V s s (8 k)

Figure 11. Performance loss at an L2 latency
of 17 cycles.

higher leakage at higher temperature makes shorter decay inter-
vals attractive for both gated-V ��� and drowsy, and gated-V ��� is
more sensitive to the smaller decay interval. The former factor
benefits gated-V ��� for programs like gcc and gzip, but the latter
factor penalizes gated-V ��� for gap and twolf. On average, there-
fore, temperature has little impact on the relative performance of
gated-V ��� and drowsy.

5.3 Tag Decay

We have only had the opportunity to compare gated-V ��� when
tags are also placed in standby along with the line of data that is
being deactivated. If tags are not placed in standby, drowsy no
longer suffers extra penalties for true misses. If one simply uses
the same decay intervals but keeps the tags live for the drowsy
cache, this will reduce the performance loss exhibited by drowsy
but also substantially reduce the energy savings, because tags ac-
count for 5–10% of the leakage energy in caches, and this leakage
energy can no longer be reclaimed. For gated-V ��� , on the other
hand, there is no advantage to keeping the tags live unless they are
used to facilitate adaptive decay intervals.

Ne t E n e r g y S a v in g s -- B e s t In te r v a l

0

0 .1

0 .2

0 .3

0 .4

0 .5

0 .6

0 .7

0 .8

0 .9

1

G
cc

G
zi

p

P
ar

se
r

V
o

rt
ex

G
ap

P
er

l

T
w

o
lf

B
zi

p
2

V
p

r

M
cf

C
ra

ft
y

A
ve

ra
g

e

B e n c h m a r k s

N
o

rm
al

iz
ed

 N
et

 L
ea

ka
g

e
S

av
in

g
s

D r o w s y G a te d V s s

Figure 12. Net leakage savings at 85 � and
an L2 latency of 11 cycles for the best per-
benchmark decay interval.

Pe r fo r m a n c e L o s s -- B e s t In te r v a l

0

0 .0 0 5

0 .0 1

0 .0 1 5

0 .0 2

0 .0 2 5

G
cc

G
zi

p

P
ar

se
r

V
o

rt
ex

G
ap

P
er

l

T
w

o
lf

B
zi

p
2

V
p

r

M
cf

C
ra

ft
y

A
ve

ra
g

e

B e n c h m a r k s

P
er

fo
rm

an
ce

 L
o

ss
 a

s
F

ra
ct

io
n

D r o w s y G a te d V s s

Figure 13. Performance loss at an L2 latency
of 11 cycles for the best per-benchmark decay
interval.

5.4 Adaptivity

Figures 12 and 13 show how much better both schemes could
do if an adaptive scheme were employed to allow the cache-decay
mechanism to find the best decay interval for each benchmark. For
both drowsy and gated-V ��� , we identify the best decay interval for
each benchmark, and these are the results that are plotted. The best
intervals are itemized in Table 3.

Adaptivity primarily benefits gated-V ��� , because the best de-
cay intervals vary so widely. This in turn is a function of data-
usage patterns and available ILP that can be used to hide induced
misses. Comparing Figures 12 and 13 against Figures 7 and 9
shows that using the best per-benchmark intervals improves energy
savings for gated-V ��� by 20%, from 50% to 60%, and dramati-
cally reduces performance loss, from about 1.4% to about 0.55%.
Energy savings for drowsy cache only improve by about 4% and
performance loss only improves from 1.3% to 1.0%.

It is to be expected from the analysis in [11] that adaptivity is
not necessary for drowsy cache, because for reasonable intervals,
it is fairly insensitive to decay interval. Gated-V ��� does not need

Drowsy Gated-V ���
Gcc 1k 2k
Gzip 2k 64k
Parser 4k 16k
Vortex 2k 8k
Gap 16k 16k
Perl 4k 4k
Twolf 2k 4k
Bzip2 4k 16k
Vpr 2k 8k
Mcf 1k 2k
Crafty 4k 32k

Table 3. Best decay intervals.

adaptivity to give attractive benefits for on-chip L2 caches, but
performs much better with adaptive decay intervals. It becomes
clearly superior to drowsy for most benchmarks with an 11-cycle
L2.

We are aware of three methods so far for providing adaptive de-
cay intervals: using an array of bits to select from multiple possible
decay intervals, proposed by Kaxiras et al. [19]; the adaptive mode
control technique proposed by Zhou et al. [33]; and the formal
feedback-control technique proposed in our prior work [31]. The
latter two techniques require the tags to stay awake. Our feedback-
control technique is quite simple, using the tags to identify induced
misses and requiring only a small state machine to periodically up-
date the counter containing the decay interval.

6 Conclusions and Future Work

HotLeakage provides the first publicly-available microarchi-
tecture-level leakage-modeling software of which we are aware.
Its most important features are the explicit inclusion of tempera-
ture, voltage, gate leakage, and parameter variations. HotLeak-
age provides default settings for 180nm through 70nm tech-
nologies (based upon BSIM3 models) for modeling cache and
register files, and provides a simple interface for selecting
alternate parameter values and for modeling alternative mi-
croarchitecture structures. HotLeakage also provides mod-
els for several extant cache leakage-control techniques, with
an interface for adding further techniques. The HotLeak-
age tool, with all the supporting documents, is available at
http://lava.cs.virginia.edu/HotLeakage

Using HotLeakage and Wattch, we have compared a
state-preserving technique (drowsy cache) against a non-state-
preserving technique (gated-V ���). Conventional wisdom holds
that the state-preserving technique must be superior, because it in-
curs less performance loss on access to a line that is in standby
mode. In contrast, we have found that at 70nm and for the par-
ticular range of parameters we studied, the non-state-preserving
technique is actually superior for a set of faster L2 cache laten-
cies that might be seen with on-chip L2s. The main reasons for
this are that gated-V ��� reduces leakage by a greater amount than
drowsy cache, that the latency to fetch data from L2 when access-
ing a line in standby mode can be hidden to a significant extent by
ILP, and that drowsy cache actually incurs a larger performance

penalty than gated-V ��� for the more common case of a true (rather
than an induced) miss. In addition, the effectiveness of gated-V ���
can be expanded by using adaptive decay intervals.

The design space for power-efficient caches is notoriously
complex, and even the design space for just these two tech-
niques is too rich to fully explore in this paper. The proper
choice of leakage-control technique will depend on a variety of
factors, and we hope that the comparison here illustrates some
important tradeoffs to consider. The main point that we wish
to convey with this work is to debunk the perception that non-
state-preserving techniques are inherently inferior. Design of
low-leakage caches requires non-state-preserving techniques like
gated-V ��� to be considered as potentially the most energy-efficient
and highest-performance solution.

Acknowledgments

This work was funded in part by the National Science Foun-
dation under grant nos. CCR-0133634, CCR-0105626, and MIP-
9703440, a grant from Intel MRL, and an Excellence Award from
the University of Virginia Fund for Excellence in Science and
Technology.

References

[1] Aim-Spice Home Page. http://www.aimspice.com.

[2] A. Alvandpour, R. Krishnamurthy, K. Soumyanath, and
S. Borkar. A low-leakage dynamic multi-ported register file
in 0.13um CMOS. In Proceedings of the 2001 International
Symposium on Low Power Electronics and Design, pages
68–71, Aug. 2001.

[3] U.C. Berkeley. BSIM3 v3.1 SPICE MOS device models,
1997. http://www-device.EECS.Berkeley.EDU/˜bsim3/.

[4] D. Brooks and M. Martonosi. Dynamic thermal management
for high-performance microprocessors. In Proceedings of
the Seventh International Symposium on High-Performance
Computer Architecture, pages 171–82, Jan. 2001.

[5] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A frame-
work for architectural-level power analysis and optimiza-
tions. In Proceedings of the 27th Annual International Sym-
posium on Computer Architecture, pages 83–94, June 2000.

[6] J. A. Butts and G. S. Sohi. A static power model for archi-
tects. In Proceedings of the 33rd Annual IEEE/ACM Inter-
national Symposium on Microarchitecture, pages 191–201,
Dec. 2000.

[7] A. Buyuktosunoglu, D. H. Albonesi, P. Bose, P. W. Cook, ,
and S. E. Schuster. Tradeoffs in power-efficient issue queue
design. In Proceedings of the 2002 International Symposium
on Low Power Electronics and Design, Aug. 2002.

[8] A. Buyuktosunoglu, S. E. Schuster, D. Brooks, P. Bose, P. W.
Cook, and D. H. Albonesi. An adaptive issue queue for re-
duced power at high performance. In Workshop on Power-
Aware Computer Systems, Nov. 2000.

[9] B. Calder and D. Grunwald. Next cache line and set pre-
diction. In Proceedings of the 22nd Annual International
Symposium on Computer Architecture, pages 287–96, June
1995.

[10] S. Dropsho, V. Kursun, D. H. Albonesi, S. Dwarkadas, and
E. G. Friedman. Managing static leakage energy in micro-
processor functional units. In Proceedings of the 35th Annual
IEEE/ACM International Symposium on Microarchitecture,
pages 321–32, Nov. 2002.

[11] K. Flautner, N. S. Kim, S. Martin, D. Blaauw, and T. Mudge.
Drowsy caches: Simple techniques for reducing leakage
power. In Proceedings of the 29th Annual International Sym-
posium on Computer Architecture, pages 147–57, May 2002.

[12] D. Folegnani and A. Gonzalez. Energy-effective issue logic.
In Proceedings of the 28th Annual International Symposium
on Computer Architecture, pages 248–59, June. 2001.

[13] H. Hanson. Personal communication, May 2003.

[14] H. Hanson et al. Static energy reduction techniques for mi-
croprocessor caches. In Proceedings of the 2001 Interna-
tional Conference on Computer Design, pages 276–83, Sept.
2001.

[15] S. Heo, K. Barr, M. Hampton, and K. Asanović. Dynamic
fine-grain leakage reduction using leakage-biased bitlines. In
Proceedings of the 29th Annual International Symposium on
Computer Architecture, pages 137–47, May 2002.

[16] Z. Hu, P. Juang, P. Diodato, S. Kaxiras, K. Skadron,
M. Martonosi, and D. W. Clark. Managing leakage for tran-
sient data: Decay and quasi-static memory cells. In Pro-
ceedings of the 2002 International Symposium on Low Power
Electronics and Design, pages 52–55, Aug. 2002.

[17] Z. Hu, P. Juang, K. Skadron, D. Clark, and M. Martonosi.
Applying decay strategies to branch predictors for leakage
energy savings. In Proceedings of the 2002 International
Conference on Computer Design, pages 442–45, Sept. 2002.

[18] W. Huang, J. Renau, S.-M. Yoo, and J. Torellas. A frame-
work for dynamic energy efficiency and temperature man-
agement. In Proceedings of the 33rd Annual IEEE/ACM In-
ternational Symposium on Microarchitecture, pages 202–13,
Dec. 2000.

[19] S. Kaxiras, Z. Hu, and M. Martonosi. Cache decay: Exploit-
ing generational behavior to reduce cache leakage power. In
Proceedings of the 28th Annual International Symposium on
Computer Architecture, July 2001.

[20] A. Keshavarzi, K. Roy, and C. F. Hawkins. Intrinsic leak-
age in low power deep submicron CMOS ICs. In Proc. of
the 1997 International Test Conference, pages 146–55, Nov.
1997.

[21] R. E. Kessler, E. J. McLellan, and D. A. Webb. The Alpha
21264 microprocessor architecture. In Proceedings of the
1998 International Conference on Computer Design, pages
90–95, Oct. 1998.

[22] S. R. Nassif. Modeling and forecasting of manufacturing
variations. In Proceedings of the 2001 Asia and South Pacific
Design Automation Conference, 2001.

[23] K. Nii et al. A low power SRAM using auto-backgate-
controlled MT-CMOS. In Proceedings of the 1998 Inter-
national Symposium on Low Power Electronics and Design,
pages 293–98, Aug. 1998.

[24] D. Ponomarev, G. Kucuk, and K. Ghose. Reducing power
requirements of instruction scheduling through dynamic al-
location of multiple datapath resources. In Proceedings of

the 34th Annual ACM/IEEE International Symposium on Mi-
croarchitecture, pages 248–59, Dec. 2001.

[25] M. Powell, S.-H. Yang, B. Falsafi, K. Roy, and T. N. Vi-
jaykumar. Gated-Vdd: A circuit technique to reduce leak-
age in deep-submicron cache memories. In Proceedings of
the 2000 International Symposium on Low Power Electron-
ics and Design, pages 90–95, July 2000.

[26] K. Roy. Leakage power reduction in low-voltage CMOS de-
signs. In Proceedings of the International Conference on
Electronics, Circuits, and Systems, pages 167–73, 1998.

[27] SIA. International Technology Roadmap for Semiconduc-
tors, 2001.

[28] K. Skadron, T. Abdelzaher, and M. R. Stan. Control-
theoretic techniques and thermal-RC modeling for accurate
and localized dynamic thermal management. In Proceedings
of the Eighth International Symposium on High-Performance
Computer Architecture, pages 17–28, Feb. 2002.

[29] K. Skadron, M. R. Stan, W. Huang, S. Velusamy, K. Sankara-
narayanan, and D. Tarjan. Temperature-aware microarchitec-
ture. In Proceedings of the 30th Annual International Sym-
posium on Computer Architecture, Apr. 2003.

[30] Standard Performance Evaluation Corporation. SPEC CPU-
2000 Benchmarks. http://www.specbench.org/osg/cpu2000.

[31] S. Velusamy, K. Sankaranarayanan, D. Parikh, T. Abdelza-
her, and K. Skadron. Adaptive cache decay using formal
feedback control. In Proceedings of the 2002 Workshop on
Memory Performance Issues, May 2002.

[32] Y. Zhang, D. Parikh, K. Sankaranarayanan, K. Skadron, and
M. Stan. Hotleakage: A temperature-aware model of sub-
threshold and gate leakage for architects. Technical Report
CS-2003-05, University of Virginia Department of Computer
Science, Mar. 2003.

[33] H. Zhou, M. Toburen, E. Rotenberg, and T. Conte. Adaptive
mode control: A static-power-efficient cache design. In Pro-
ceedings of the 2001 International Conference on Parallel
Architectures and Compilation Techniques, Sept. 2001.

