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Abstract
Chip multiprocessors (CMPs) have become an interesting
micro-architectural style for high-end systems as well as
low-power systems. While power-performance tradeoffs
differ in these systems, a high power consumption can lead
to devastating power densities in the former and a reduced
operating time in the latter owing to limited battery capac-
ity.

In this paper, we focus on the energy wasted in the
snoopy cache protocols that keep the L1 caches in CMPs
consistent. Previous studies have focussed on the energy
wasted by snoop accesses in the private caches in SMP sys-
tems and found that it can be a big fraction of the total
energy. We apply two techniques - serial snooping and
Jetty - that were developed for SMP servers and see if they
can lead to energy savings in a CMP. We find that the tech-
niques are not well suited for a CMP and analyze why.
Serial snooping does not work well because all caches
have to be searched even if none can supply the data,
which happens to be the case most of the time. Jetty, does
not perform well because the snoop energy saved by the fil-
tering is offset by the energy lost in the filters.

1.    Introduction

Power dissipation and high-performance are two criteria
of processing systems that are both of fundamental impor-
tance for an increasing number of computer systems [11].
In high-end systems, the main concern is the high power
densities that may require special attention to cooling. On
the other hand, in low-power systems, such as laptop com-
puters, advanced phones and personal digital assistants
(PDAs), the issue is the limited battery capacity. For the
latter type of systems, techniques that provide rather high
performance with small overheads in energy consumption
are highly interesting.

Chip-multiprocessors (CMPs) [7] have gained a lot of
interest as a micro-architectural style for future micropro-
cessors for high-end systems [8, 14] as well as low-power
systems [3, 5]. In reducing power consumption for low-
power systems, CMPs offer several interesting opportuni-
ties: First, a multiprogrammed workload or a parallel pro-
gram with enough thread-level parallelism can be run on
several voltage- and frequency-scaled cores, leading to a
lower power consumption than a uni-processor with the
same performance. Secondly, as shown in [6], a simple in-
order pipeline is more energy-efficient than an out-of-order
superscalar pipeline which speaks in favor of CMPs with
simple processor cores. Finally, in modes of operation
where only a small fraction of the performance potential is
requested, all but one of the simple and power-effective
processors can be completely powered down.

Unfortunately, the amount of power that can be saved
by parallelism is limited by the power wasted by inter-
thread communication. In a CMP, communication is typi-
cally carried out through cache coherence actions across
the private caches. In such protocols, all caches do a tag-
lookup on a global (cache miss or upgrade) request, which
waste energy. In fact, our measurements on a simulation
model of a CMP driven by applications from SPLASH2
yield that more than 83% of all coherence actions are use-
less in the sense that they do not lead to any response. They
can also lead to serious losses in the energy consumed in
the L1 caches; our results indicate losses between 8% and
36% in a 16-way CMP.

We provide a comparative evaluation of two previously
proposed techniques to reduce snoop-induced power in
multiprocessors: serial snooping [12] and Jetty [10]. These
two techniques were aimed at SMP-servers with two levels
of private caches. Apart from analyzing them in a new con-
text, i.e., chip-multiprocessors, this paper also provides
detailed insights into what limits the gains of the tech-
niques.

One observation is that serial snooping is ineffective
because in most of the cases all caches have to be checked



before it can be concluded that they cannot respond to the
request. The second observation is that since the private
caches are typically smaller in a CMP, the reduction of the
energy through the Jetty is to a large extent outweighed by
the energy consumed in the Jetty.

The rest of this paper is organized as follows. Section 2
describes the baseline system and motivates why it should
be possible to remove snoop-induced tag-lookups. Section
3 describes the techniques that are evaluated and how they
are adapted to be used in a CMP. Section 4 describes the
experimental methodology followed by Section 5 that
describes the results. Finally Section 6 concludes the paper.

2.   Baseline System and Motivation

We consider a CMP with private separate instruction
and data L1-caches and a shared L2-cache like Hydra [7]
according to Figure 1. The cache coherence protocol is a
MOESI snoopy protocol [13]. To save energy, the L1-
caches are searched first and the L2-cache is only accessed
if the snoop action fails in all L1-caches. If a block is found
in another L1-cache, a cache-to-cache transfer is used since
it is cheaper to access an L1-cache than the L2-cache in
terms of both performance and energy consumption. We
assume that each L1-cache has dual tags so that the proces-
sor does not have to stall when a snoop request is issued
from another processor.

FIGURE 1. Baseline CMP architecture. All
processors have local L1-caches and share an
on-chip L2-cache.

Results in [12] indicate that as many as 32% of all
snoop broadcasts, that are generated by loads, miss in all
other caches meaning that they must be serviced by the
next level of the memory hierarchy. This is despite the fact
that they assume large private L2-caches. Results in [10],
which assume smaller caches than [12], indicate that an
even higher percentage (79.6%) of all snoop broadcasts
miss in all other caches. In our system we have much
smaller caches and our results show that as many as 83%

miss in all other caches. This means that most of the snoop-
induced tag-lookups just waste energy and encourage
attempts to decrease the snooping activity.

3.   Description of the Jetty and the Serial
Snooping Schemes

In this section we describe the two techniques that are
previously proposed, that try to limit snoop actions in a
multiprocessor to save energy. Both of them are meant for
an SMP environment and hence have not been evaluated
for a CMP. Therefore we also describe how they have to be
adapted to make sense in a CMP environment. Section 3.1
describes the Jetty. Section 3.2 describes the Jetty in a
CMP. Section 3.3 describes Serial Snooping and Section
3.4 describes Serial Snooping in a CMP.

3.1  The Jetty Scheme

Jetty [10] is a small structure attached to each cache that
filters out useless snoop accesses. Instead of doing a tag-
lookup directly, the Jetty is first checked. In many cases,
the information in the Jetty can tell if it is any use to do the
tag-lookup or not. Since the Jetty is much smaller than the
cache, the hope is that the Jetty-lookup results in signifi-
cant energy savings. However, Jetty was proposed to save
energy in a system where the processors have private L1-
and L2-caches. There, the Jetty is used to filter out tag-
lookups in the much bigger L2-caches and therefore the
Jetty can afford to consume a reasonable amount of energy.
An interesting issue is whether this holds in the CMP
architectural framework we focus on.

There are three kinds of Jetties presented in [10]:
exclude-Jetty, include-Jetty and hybrid-Jetty. The exclude-
Jetty exploits locality in the snoop access stream, in the
sense that if a block has been recently snooped, it is likely
that the same block will be snooped again. An exclude-
Jetty is a small cache structure connected to every cache,
that records the blocks that were recently snooped and did
not exist in the cache. On an incoming snoop, the exclude-
jetty is first checked. If an entry for the block is present in
the exclude-Jetty, it is guaranteed that the block does not
exist in the cache and a tag-lookup in this cache can be
avoided. A new entry needs to be inserted in the exclude-
Jetty on every snoop-induced tag-lookup that misses. An
entry needs to be searched for, and removed if found, each
time a block is inserted into the cache. Formally, the
exclude-Jetty keeps a subset of the blocks that are not
locally cached.

The include-Jetty, on the other hand, keeps a superset of
the blocks that are cached; if there is a miss in the include-
Jetty, it is guaranteed that the block is not locally cached

PPPP
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L2−Cache
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and a tag-lookup can be avoided. Figure 2 shows an imple-
mentation of an include-Jetty. It consists of arrays of
counters and arrays of p-bits. As seen in the figure, address
bits are used to index the arrays to see what counter and
what p-bit to access. When a block is loaded into the cache,
the counters that are indexed by the address are increased
and the p-bits are set. When a block is evicted from the
cache, the counters are decreased and if the decreased
value is zero, the p-bit is cleared. To see if a block may be
in the cache, only the p-bits for the address have to be
checked. If any of the p-bits that are indexed by the address
is zero, the block can not be in the cache and no tag-lookup
has to be done.

FIGURE 2. Implementation of include-Jetty.

The hybrid-Jetty is simply a combination of an exclude-
Jetty and an include-Jetty that are checked in parallel.
However, the net effect can be better than just adding the
coverage of the exclude-Jetty and include-Jetty together
since the include-Jetty filters some of the updates of the
exclude-Jetty.

3.2  Adapting the Jetty to a CMP

Moshovos et al. [10] studied various include-Jetty con-
figurations. One thing that they all have in common is that
all address bits (except block offset) are used to index the
cnt-arrays. Actually, sometimes the bits overlap. The prob-
lem with the system studied in this paper is that the caches
are much smaller, and thus the Jetties must be smaller too.
With a 32-bit physical address and a 5-bit block-offset we
have to cover 27 bits. One solution would be to have four
128-entry arrays. Each array would require 7 bits in the
address which gives 28 (4x7) address bits covered, yielding
one overlapped bit. However, four 128-entry arrays require
a considerable amount of energy compared to the caches.
We are aware of that only the p-arrays (which are cheap to
access) are checked on a snoop and thus do not consume a
lot, but to keep the Jetties updated, the local cnt-arrays

need to be accessed on each cache-miss, and this consu
energy.

An alternative would be to just cover some of th
address-bits, but it is hard to predict if the Jetty would st
work. It is reasonable to expect the behavior to deteriora
but it is hard to know if this will happen gradually or if it
will break down abruptly. This is investigated in Sectio
5.2. The exclude-Jetty does not have the same proble
Certainly, it is not possible to have such big exclude-Jetti
as in [10], but it is not a problem to resize them to mak
sense in a CMP.

The key interesting question we will address in th
experiments is whether the reduction of the snoop-ener
will be higher than the increase in energy by the Jet
mechanisms themselves.

3.3  The Serial Snooping Scheme

The serial snooping scheme is based on the assump
that if a miss occurs in one cache, it is possible to find th
block in another cache without having to check all th
other caches. If it is present in more than one of the oth
caches, the probability is high that the block will be foun
in a nearby cache. Even if the block is only present in on
cache, it is still probable that the block will be found by
just checking half the number of caches. Instead of broa
casting the snoop-transaction to all of the processors
parallel, the caches are checked serially in a system ba
on serial snooping. This technique only works for snoop
that are induced by a read miss, since in these cases
sufficient to retrieve the block from one cache. On a writ
an invalidation transaction needs to be broadcast to all p
cessors in the system and serial snooping cannot be us
(Actually it is possible to alter the scheme so that snoopi
is done serially on writes too. The termination criterion i
that case is that the block shall be found as EXCLUSIV
or MODIFIED. However, since [12] does not deal with thi
we have not investigated it.)

The baseline system assumed in the paper that int
duces serial snooping [12], is a hierarchical one with th
nodes organized as a binary tree and presumably more t
one processor per node. Further, it takes shorter time to j
broadcast the transaction to a neighboring node than to
entire system. Thus, if a block is found in a neighborin
node, performance is gained, which partly can compens
for the performance loss experienced when all nodes
checked serially without finding the block.

cnt cnt cntp p p

offset

NAND

not cached

x bits x bits x bits x bits

2x

cnt p

Physical Address
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3.4  Adapting Serial Snooping to a CMP

As mentioned above, the serial snooping scheme was
applied to a hierarchical system with different propagation
delays depending on which node that was accessed. We
don’t see why one would build a CMP with between eight
and 16 processors hierarchically, and thus the conditions
with respect to timing are different. In our implementation
of the Serial Snooping scheme, the nearest neighbors are
first accessed one cache at a time in a wrap-around fashion
by treating the first and the last processor as neighbors.

For example, if processor 2 in an 8-processor system
issues the request, the caches are checked in the following
order: 3, 1, 4, 0, 5, 7, 6. In our timing analysis we assume
that each cache that is searched adds a fixed delay to the
miss-handling time. In the paper it is suggested that the L1-
and L2-caches are checked serially but since this is already
done in our baseline system that possibility is already
exploited.

4.   Experimental Methodology

We use Simics [9] to simulate a CMP memory system
according to Figure 1 with between 4 and 16 single-issue
processor cores. We have also incorporated mechanisms to
model Jetty and Serial Snooping.

4.1  Architectural Timing Model and Applications

We model single-issue processor cores and assume that
one instruction takes one clock cycle if there is a cache hit.
Contention on the bus is modelled and the transactions are
assumed to be atomic. We do not run an operating system
so the applications do not migrate. We assume separate
data- and instruction-caches and that no snooping is done
in the instruction-caches. Therefore we only model the
data-caches. Our assumptions as far as the architectural
model are listed in Table 1.

We drive our experiments with the following set of
applications/kernels. One source is the following set of

four SPLASH2-benchmarks [16]: FFT, Raytrace, Wate
and Barnes. We use the default input datasets that are
ommended in the paper. We also use a parallelized vers
(mpeg2sliced_improved) [1] of mpeg2decode from th
MPEG Software Simulation Group, which decodes th
standard movie flwr_015.m2v.

4.2  Energy Model

During the simulation, statistics counters record th
number of operations that take place in the memory syst
that affect the energy consumed in the L1-caches and in
energy saving structures. These are then multiplied w
the energy cost associated with each operation. The ca
configurations are calculated with Cacti [15]; a tool tha
attempts to make an optimal cache configuration wi
respect to latency. The power-model for a 0.18 CMOS pr
cess from Wattch [2] is used, which models the decod
the word-line driver, the bit-line discharger and the sens
amplifier. We do not model static energy consumptio
since we are primarily interested in ultra-low powe
devices. According to [4], the leakage current is more th
three magnitudes lower for an ultra-low power process th
a ultra-high speed. This means that the approximation th
the static power consumption is negligible is still valid.

We assume that the caches are accessed in a two-s
manner so that tags are checked in parallel but that only
accessed data is read. In Wattch, it is assumed that b
data and tags are read in parallel since a more aggres
system with higher performance is assumed, in contrast
the low-power system that we study.

5.   Simulation Results

This section describes the simulation results. Secti
5.1 describes how much snoop-induced energy that can
removed in the system, while Section 5.2 deals with sizin
the Jetty. Section 5.3 shows how much snoop energy tha
removed by the techniques and Section 5.4 describes w
an exclude-Jetty does not work in a CMP. Section 5

TABLE 1. System parameters.

Number of processors 4-16

Data-cache 8Kbyte 4-way - 32Kbyte 4-way

Block-size 32 bytes

Cycles to transfer a block from one cache to another 8

Cycles to transfer a block from L2-cache 20

Cycles to transfer a block from memory to L2-cache 100

Cycles per searched cache for serial snooping 1
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investigates the total energy-saving achieved, and finally
Section 5.6 looks at the performance aspects of the tech-
niques.

5.1  Snoop-induced L1 Cache Energy

Figure 3 shows the fraction of the energy consumed in
the L1-caches that is caused by snooping, for 4-, 8-, and
16-way CMP systems. While this fraction is low for the 4-
way CMP, it becomes a significant part for 8-way CMPs
ranging from 5% to 22%. As expected, the amount of
energy consumed increases with the number of processors
and varies between 8% and 36% for a 16-way CMP. In the
rest of the paper, we will use an 8-way CMP per default.
Table 2 shows the L1 hit rates for all of the applications for
that system and it is clearly seen that a low hit rate
increases the energy consumed by snooping; for example
FFT and Radix both have low hit rate and high snoop
energy consumption.

FIGURE 3. Snoop induced percentage of the
entire L1-cache energy consumption.

Let us now investigate to what extent the snoop-induc
energy can be wiped out. Remember that a snoop acc
resulting in a tag lookup in one cache, is useless if it do
not lead to any response. An example of this is on a load
a block exists as SHARED in some caches and OWNED
another, which leads to the cache in the OWNED state su
plying the data. The caches in SHARED state do not su
ply data and do not change coherence state, which me
that the tag-lookups are useless. Table 3 shows the fract
of the snoop broadcasts that hit in 0, 1, 2, 3, 4, 5, 6 and
caches in an 8-way CMP.

A vast majority of the snoop broadcasts− 83% on aver-
age− miss completely. For another 9% of the snoop broa
casts, only one cache holds the block. Clearly, we wou
expect that there is a great potential to save snoop-indu
energy. All the tag lookups that miss are potentials to sa
energy, and in addition to these, tag lookups that do n
result in a state-transition or data supply can be remove
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TABLE 2. Hit rates for an 8-processor system
8K caches

Benchmark L1 Hit-rate

FFT 93.7%

Ray trace 95.1%

Water 98.6%

MPEG 97.9%

Barnes 95.7%

Radix 90.9%

TABLE 3. Percentage of snoops that hit in the caches.

Benchmark 0 hit 1 hit 2 hits 3 hits 4 hits 5 hits 6 hits 7 hits

FFT 99.4% 0.2% 0.1% 0.1% 0.1% 0.1% 0% 0%

Raytrace 79.1% 11.1% 3.7% 2.4% 1.8% 1.2% 0.6% 0.2%

Water 57.1% 28.5% 9.4% 2.3% 1.0% 0.8% 0.6% 0.2%

MPEG 96.4% 1.7% 0.3% 0.2% 0.3% 0.4% 0.5% 0.1%

Barnes 53.3% 17.5% 12.0% 8.6% 5.2% 2.5% 0.8% 0.1%

Radix 99.0% 0.7% 0.2% 0.1% 0% 0% 0% 0%

Average 83.3% 8.7% 3.7% 2.0% 1.2% 0.7% 0.4% 0.1%
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5.2  Sizing the Include-Jetty

As mentioned in Section 3.2 it is hard to predict the
behavior of the include-Jetty when making it smaller to be
reasonable in a CMP. To get a feeling for this we have sim-
ulated different Jetty-organizations to see what happened
when the number of bits that were used to index the arrays
(and thus the size of the arrays), were decreased. The
results are shown in Figure 4.

.

FIGURE 4. Tests of different include-Jetty
configurations.

The figure shows how much snooping energy that was
removed by different Jetty-organizations. Note, however,
that the energy consumed by the Jetties themselves is not
included. As one can see, the removed snoop-energy
decreases gradually, and not abruptly, when going from 28
(covering all address bits) to 24 and finally to 15 bits. This
means that it should be possible to use an include-Jetty in a
CMP. It is just a matter of sizing it reasonably. After study-
ing different Jetty-organizations we have chosen to use a
hybrid-Jetty with the parameters shown in Table 4.

To decide these parameters we have also included the
energy cost of the Jetty itself, and tested a few configura-
tions. Figure 5 shows the total energy consumed by the L1-
caches and the energy consumed by the include-Jetties
themselves for various sizes of the Jetties.

Clearly, it is not reasonable to cover all the 28 bits in the
address since the Jetties consume to much energy. A simi-
lar study was done for the exclude-Jetty which is more
described in Section 5.4.

FIGURE 5. Total energy results for various
include-Jetties.

5.3  Removed Snoop Energy

Figure 6 shows how much of the snoop-induced ener
that is removed by the techniques, and the ideal bars sh
how much that is possible to remove.

FIGURE 6. Comparison of how much of the
snoop-induced energy that is removed with the
different techniques.

The applications seem to express very few of the pro
erties that are needed for the Serial snooping scheme, es
cially MPEG, Radix and FFT. This is not very surprising
since these three benchmarks all have very little shar
data, which is demonstrated in Table 3. As a result, a sno
request has to be propagated through the entire sys
before it is determined that the block is not found an
hence no energy is saved.

The Jetty scheme seems to have more potential. In t
of the applications it can cut more than 50% of the snoo
induced energy. Measurements that we have done sh
that almost all of the reduced energy is due to the includ
Jetty. The exclude-Jetty hardly filters any tag-lookup. Th
next section describes why the exclude-Jetty does not w
in a CMP.

TABLE 4. Jetty parameters

Include-jetty 3 tables with 32 entries

Exclude-jetty 32 entries, 4-way associative

||0

|20

|40

|60

|80

|100

 S
n

o
o

p
-e

n
er

g
y 

re
m

o
ve

d

8 processors
Removed Snoop-energy

FFT Raytrace Water MPEG2 Barnes Radix

89

28 b
its

77

24 b
its

56

15 b
its

64

28 b
its

52

24 b
its

32

15 b
its

56

28 b
its

39

24 b
its

12

15 b
its

82

28 b
its

76

24 b
its

53

15 b
its

10

28 b
its

3

24 b
its

1

15 b
its

41

28 b
its

24

24 b
its

16

15 b
its

8K L1-cache, 4-way, 32 Byte lines
512K L2-cache, 8-way, 32 Byte lines

15 bit - 28 bit include-jetty

||0

|20

|40

|60

|80

|100

|120

|140

 L
1-

en
er

g
y 

(N
o

rm
al

iz
ed

 t
o

 b
as

el
in

e)

8 processors
JettyL1-cache

FFT Raytrace Water MPEG2 Barnes Radix

118

28 b
its

105

24 b
its

99

15 b
its

118

28 b
its

107

24 b
its

102

15 b
its

106

28 b
its

103

24 b
its

102

15 b
its

108

28 b
its

102

24 b
its

100

15 b
its

122

28 b
its

112
24 b

its

106

15 b
its

133

28 b
its

117

24 b
its

107

15 b
its

8K L1-cache, 4-way, 32 Byte lines

||0

|20

|40

|60

|80

|100

|120

 S
n

o
o

p
-e

n
er

g
y 

re
m

o
ve

d

8 processors
Removed Snoop-energy

FFT Raytrace Water MPEG2 Barnes Radix

100

Id
eal

56

Jetty

0

S
erial

97

Id
eal

32

Jetty

11

S
erial

91

Id
eal

12

Jetty

27

S
erial

99

Id
eal

53

Jetty

2

S
erial

96

Id
eal

1

Jetty

29

S
erial

100

Id
eal

16

Jetty

1

S
erial

8K L1-cache, 4-way, 32 Byte lines



r-

ses
be
er-
s a
te
ate

lty,
ot
the
on

he
as

o-
as

es
ial
r-
for-
ly
5.4  Trashing of Exclude-Jetty in a CMP

As Table 3 shows, hardly any snoop-induced tag-look-
ups hit in the remote caches. Since the exclude-Jetty is
updated on a miss, almost every snoop will lead to an
update of the exclude-Jetty. The snoops are induced
because of cache-misses or because a processor wants to
change the state of an already loaded block to MODIFIED.
The misses are caused by cold/capacity/conflict-misses and
coherence-misses. If the major part of the snoops is
induced due to cold/capacity/conflict-misses, and each of
these transactions will update the exclude-Jetty, then the
Jetty will experience the same update-pattern as an L2-
cache. Thus, we can not expect a better hit-rate in the
exclude-Jetty than in an L2-cache with room for as many
blocks as there are entries in the exclude-Jetty. An exclude-
Jetty with 32 entries would experience the same hit-rate as
an L2-cache of 1KB (32x32), which is a smaller cache than
the first level cache. The problem for the exclude-Jetty in a
CMP is that due to the small caches, most of the snoop-
induced tag-lookups are due to conflict/capacity-misses.
These updates trash the exclude-Jetty, and destroy the pos-
sibilities to catch producer-consumer behavior for exam-
ple. Because of these problems we do not consider an
exclude-Jetty in the rest of the paper.

Even if we had not had any problems with trashing there
is another reason that the exclude-Jetty would not work
well, namely that we do not use sub-blocking This is nec-
essary to get a good hit rate when there is little or no shar-
ing according to [10], where they assume that the cache
blocks are 64 bytes and divided into two 32 byte sub-
blocks. The cache coherence protocol works on the sub-
block level while the exclude-Jetty records blocks on the
block-level. This means that when two cache misses occur
on consecutive blocks, the second miss will probably be fil-
tered by the exclude-Jetty since the first miss recently
updated the exclude-Jetty with an entry covering the two
sub-blocks. However, this assumes that there has not been
many updates to the Jetty between the two misses.

5.5  Total Energy Results

The reduced snoop-energy of the techniques is interest-
ing, but the total energy that is consumed is the bottomline
number, since that takes the overhead associated with the
techniques into account. For the include-Jetty, the counters
need to be updated every time a block is read into or
thrown out of the cache. The present-arrays also need to be
accessed. On each snoop broadcast, all remote present-
arrays are checked to try to eliminate a tag-lookup. The
Serial snooping technique is approximated as having no
energy-overhead, while it in practice has a bus overhead.

Figures 7 and 8 show the total energy results for the diffe
ent systems.

The results show that Jetty saves energy in some ca
and in some it does not. An alternative approach would
to make the Jetties even smaller, but that affects the cov
age of the Jetty too much. Serial snooping mostly save
few per cent energy. However, this is when we approxima
the technique to have no overhead. The ideal bars indic
that there is still plenty to cut.

FIGURE 7. Energy comparison for an 8-
processor system.

FIGURE 8. Energy comparison for a 16-
processor system.

5.6  Performance Results

Jetty is approximated as having no performance pena
which is true if the time it takes to check the Jetty does n
increase the bus cycle time. Serial snooping increases
time to serve a cache miss, and the time is dependent
where in the system a block is found. Table 5 shows t
performance penalty for a system with Serial snooping
well as some other properties.

Since we have a rather rough timing model of the pr
cessor core, these numbers should not be interpreted
exact numbers but more to get a feeling for the properti
of the benchmarks that affect the performance of the ser
snooping scheme. Overall, there is a significant perfo
mance overhead. As more processors are added, per
mance will deteriorate and serial snooping will probab
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need to be done hierarchically for systems with 16 proces-
sors or more. However, this would decrease the energy
saved.

The performance penalty is dependent on the number of
processors, the number of accesses to the bus, the amount
of these accesses that are writes, and the amount of shared
data in the system. This is best understood by studying the
applications. Radix has a very small amount of shared data,
which means that the snoops that are reads mostly propa-
gate to all the caches. It also has a very low hit-rate
(90.9%) in the L1-caches, which means that there is much
snooping in the system. However, according to Table 5, the
amount of write misses compared to the amount of read
misses is rather high. Since Serial Snooping is not per-
formed on writing, the miss-handling time will not increase
for the write misses and therefore the performance penalty
is not that high that the miss-rate and amount of shared
data would imply.

FFT on the other hand, has a higher hit-rate (93.7%) and
little shared data, but a lower amount of write misses com-
pared to read misses than Radix, which gives FFT slightly
higher performance loss. Barnes (hit rate 95.7%), which
experiences severe performance loss has a very low
amount of write misses compared to the amount of read
misses. Even though Barnes has rather much shared data,
and hence the penalty for each read access is not as big as
if there was no shared data, the increased miss handling
time gives a big performance penalty.

6.   Conclusion

The snoop induced tag-lookups consume a significant
amount of energy in the L1-caches in a CMP. Since most of
these lookups are useless, it is an interesting target for
power reduction.

In this paper we have presented a comparative eval
tion of two previously proposed techniques to cut th
snoop-induced energy. Both these techniques were p
posed in another context, i.e., SMP systems, where sign
cantly bigger private caches are used. By evaluating the
in a CMP context, where the private caches are mu
smaller, an immediate consequence is that more sno
induced tag-lookups miss and hence more of the snoo
induced tag-lookups are useless.

The most important observations of our study are th
following: We first find that up to 36% of the energy con
sumed in the L1 caches in a 16-way CMP is attributable
snooping and more than 83% of this energy could be co
served if the outcome of the snoop action was known.

Serial snooping does not manage to cut much ener
because most of the time, no caches will be able to respo
which means that all caches will be searched. For Jetty
significant portion of the snoop-energy is cut but this sa
ing is outweighed by the energy lost in the Jetty. Despi
our effort to study the impact of a range of Jetty param
ters, we did not manage to find any design point where
significant saving of energy was observed.

To conclude, reducing snoop energy in CMPs appear
be an important problem to solve. Yet, previous techniqu
to address the same problem in an SMP environment
quite useless. Thus, there is room for considerable inno
tion and we are currently investigating a solution to th
problem.
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TABLE 5. Performance issues for an 8-processor system 8K caches

Benchmark
Performance
loss Serial

% of misses
that are reads

% of misses
that are writes

FFT 5.8% 78.2% 21.8%

Raytrace 11.7% 91.1% 8.9%

Water 3.2% 94.1% 5.9%

MPEG 8.5% 90.1% 9.9%

Barnes 21.2% 97.6% 2.4%

Radix 4.3% 34.8% 65.2%
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