

Abstract
In 1996, the STiNG CC-NUMA architecture was introduced. Since
that time, it has been implemented with several generations of
Pentium Pro® and Xeon® processors, memory and I/O control
chipsets, and ASICs that comprise the SCI-based interconnect. In
this paper, we describe the performance of commercial OLTP and
DSS database benchmarks as captured by hardware event counters
embedded in the system. Comparisons are made between this data
and the original projections that were made based on simulation
models. This comparison shows that, despite some discrepancies
between the simulated and executed workloads, the architectural
simulations done during development were an accurate predictor
of system performance.

1. Introduction
Introduced in 1996, the STiNG system was the first of a

series of commercial Cache Coherent Non-Uniform
Memory Access (CC-NUMA) architecture offerings of the
late 1990’s [1]. Other examples include the SGI Origin [2]
and the Data General AViiON [3]. These systems were
each influenced to some degree by the research done in the
late 1980’s and early 1990’s on scalable shared-memory
systems, including the Stanford DASH [4] and FLASH [5]
projects, the MIT Alewife [6], the Wisconsin Wind Tunnel
[7], and the Sun S3.mp [8]. In the years since the first CC-
NUMA commercial systems were introduced, others have
arrived or have been announced, including HP’s Superdome
[9] and IBM’s Enterprise X Architecture® [10].

While this research and the commercial systems that
followed were a significant departure from the bus-based
Symmetric Multiprocessing (SMP) systems of the day,
relatively little has been reported about the measured
performance characteristics of these CC-NUMA systems,
particularly for commercially important workloads. Most of
the reported performance data has either been for scientific
workloads or was the result of system simulation studies.
While benchmark results have been published for some of
the commercially available systems [11], detailed analysis
like that found in [4] has not accompanied those results.

In this paper, we provide detailed performance data for
multiple generations of the STiNG architecture, and
compare it to the previously published simulation results

found in [1]. This data was collected from the performance
event counters embedded in the system’s processors and
custom controllers. The workloads executed for this study
included the Transaction Processing Council’s C
Benchmark (TPC-C) and part of their D Benchmark (TPC-
D) [12]. The TPC-C is the industry standard benchmark for
determining On-Line Transaction Processing (OLTP)
performance while the TPC-D benchmark is used for
determining Decision Support System (DSS) performance.1

We were not able to exactly replicate the simulated
configurations [1] in the laboratory. The discrepancies
between the simulations and the lab experiments included
workload differences, changes in cache sizes, and different
clock speeds for the various components. However, we
were able to closely correlate the measured data to the
simulated results in most cases. This led us to conclude that
the benchmarks we selected for architectural evaluation
were accurate workload representatives, and that our
architectural simulation model was an accurate description
of the system performance characteristics. The data we
present here supports these conclusions.

In the following sections we review the STiNG
architecture through several of its implementations, the
configurations of the various experiments executed, and the
detailed results.

2. Architecture and Implementation

2.1 The STiNG Architecture
Figure 1 shows the high-level block diagram of the

STiNG architecture. A system is comprised of some
number of quads, each being a 4 processor SMP machine.
In addition to the processors, each quad also contains Intel
chipset components for memory control and bridges to PCI
I/O busses, as well as a Lynx block that provides the
interface between quads. The processors, some chipset
components, and one component in the Lynx are
interconnected via a bus in the quad, referred to as the front-
side bus or quad bus. Every processor in every quad has a

1 The TPC-D benchmark has been effectively replaced by the TPC-H
and TPC-R benchmarks. We executed query 5 of the TPC-D benchmark in
a manner consistent with the intent of the TPC-H benchmark, i.e. the query
result was not pre-computed during the database load phase.

STiNG Revisited: Performance of Commercial Database Benchmarks on a
CC-NUMA Computer System

Russell Clapp, Don DeSota, Carl Love and Adrian Moga
IBM

15450 SW Koll Parkway
Beaverton, Oregon 97006-6063

rclapp@us.ibm.com, desotad@us.ibm.com, carll@us.ibm.com, moga@us.ibm.com

common view of system-wide memory and I/O address
space. Within each quad, coherence is maintained using a
standard snoop-based MESI coherence protocol as defined
by the Pentium Pro processor and the front-side bus [13].
This protocol is bridged to a directory-based scheme for
maintaining coherence throughout the system, which is
based on the Scalable Coherent Interface (SCI) [14]. This
functionality is implemented in the Lynx.

Figure 1: STiNG Block Diagram.

Figure 2 shows the high-level block diagram of the Lynx
block.2 The Lynx contains three logic components, several
memory chips for tag arrays, and memory chips to
implement a remote cache. The logic components provide
the interface to the front-side bus, remote cache control,
directory protocol processing, and SCI ring interface. These
components make use of the tag arrays to determine the
state of remote cache and local memory lines in order to
execute the proper protocol actions. Duplicate sets of tags
are provided, one each for the network side and the quad
bus side. This reduces latency for incoming SCI requests
for local memory lines modified on remote nodes. In this
case, the directory controller consults the network side tags,
determines the location of the modified cache line, and
returns the information to the requestor. This avoids the
additional latency of forwarding the request to the bus
interface chip and then consulting the bus-side tags.

The bus interface controller is responsible for snooping
every request on the quad bus and taking ownership of
requests for remote memory lines or local memory lines that
are cached remotely. Requests which do not require
cooperation with remote quads are completed in order. All
other processor requests to cacheable memory are

2 In the original paper, this was referred to as the Lynx board. We have

renamed it here as this functionality has been implemented across multiple
boards in later system releases.

completed out-of-order, with the bus interface controller
taking the responsibility of sending a request to a remote
quad for service. When a response is returned, the bus
interface controller initiates one (or more) new bus
transaction(s) to complete the original request. The bus
interface controller makes requests to local memory and
snoops to the processor’s caches on behalf of requests
originating on remote quads. The bus interface controller
also manages the remote cache, supplying data to requests at
a latency similar to that of local memory.

The directory controller is responsible for forwarding
requests between the bus interface controller and the
interconnect controller. This is not trivial, as the directory
controller also manages the translation between the MESI
protocol of the quad and the SCI-like protocol used to
maintain system-wide coherence. Our implementation used
an embedded microinstruction sequencer, so that
“firmware” could be loaded to modify the coherence
protocol after manufacture. This is discussed more in [1].
As discussed in the original paper, the occupancy of the
microinstruction sequencer creates additional latency for
OLTP workloads due to queuing. This latency can be
mitigated by providing a second sequencer to increase
microinstruction throughput.

The interconnect controller is responsible for providing
the link and packet-level interface to the SCI ring. It takes
SCI requests from the directory controller and sends them
on the SCI ring. It receives incoming requests and either
forwards them to its sending port or strips them from the
ring if they are intended for the directory controller on this
quad. It performs link-level functions including delivery
acknowledgement and time synchronization.

2.2 NUMA-Q Implementations
Once the STiNG architecture was implemented, it was
branded “NUMA-Q” for sale in the commercial
marketplace. The NUMA-Q® brand represented several
different implementations of the architecture. Each one had
different component speeds and cache sizes, as well as some

Figure 2: Lynx Block Diagram.

Quad 0 Quad 1

Quad 2

Quad 3 Quad N-2

Quad N-1

Proc

Lynx

Proc Proc Proc

Memory/PCI
Control

SCI In

SCI Out

Interconnect
Controller

Directory
Controller

Local
Directory
Remote

Tags

Front-Side
Bus

Interface
Remote
Cache
Data

SCI_In SCI_Out

Bus Side
Snooping

Tags

Network
Side
Tags

Local
Directory
Remote

Tags
Front-Side Bus

differences in component features. A high-level summary
of differences appears in Table 1.

 The key enhancements over the life of the product were
the processor updates, cache size increases, improvement in
Intel supporting chipset, and improvements in the directory
controller.

• Processor core speeds and cache size improvements
occurred over time during migration from Pentium
Pro® processors to Xeon® processors.

• Size of the remote cache also increased as the OBIC
bus interface controller was enhanced to the DOBIC.
The DOBIC supported an additional number of
incoming and outgoing requests, enabling higher
bandwidth through the Lynx. The COBIC enabled
the front-side bus to operate at the maximum bus
frequency of 100 MHz as compared to the 90% of the
maximum frequency with previous generations of the
bus interface controller.

• The most significant changes over time occurred to
the directory controller, as the SCLIC with one
microinstruction sequencer become the DSCLIC with
two sequencer cores, one for odd cache line addresses
and another for even cache lines. The DSCLIC had
hardware assist features that implemented key
instruction sequences in logic to further reduce
instruction sequencer occupancy and latency. The
CSLIC increased the operating frequency to 100
MHz.

• The supporting chipset that supplied memory and I/O
bus bridge control was replaced with the second-
generation 82450NX [15], significantly reducing
memory latency, increasing sustainable bandwidth,
and improving the I/O DMA bandwidth for DMA
transfers to remote memory.

Table 1: Summary of NUMA-Q Implementations.

Clearly, the STiNG architecture supports many different
combinations of components, many more than were
considered in the simulation study published previously [1].
This simulation study was focused on the first
implementation, and even then it differed from what was
eventually shipped as product. This occurred due to the
time lag between the study and completion of development.
Although other simulations were done internally to consider
other likely speed and cache size combinations for the
various components, we have decided to compare our
measured results in this paper with those simulation results
previously published [1].

2.3 System-Level Considerations
In order to make database system benchmarks processor-

bound and achieve good performance, a high-performance
I/O subsystem is required. The hardware and software must
combine to provide sufficient I/O bandwidth with little
processor overhead for servicing request and interrupts.
This was achieved for NUMA-Q platforms using fibre
channel PCI host adapters attached to a fibre channel
switched fabric. The fabric also contained fibre-to-SCSI
bridges to attach large numbers of disk drives.

To provide the low processing overhead and bandwidth
rates assumed by the simulation environment, two key
features are required in the fibre channel-based I/O
subsystem. First, host-based queuing was implemented to
reduce processing overhead. This approach uses system
memory to manage work queues for I/O adapters. The
adapters consume the requests in the queue directly, thus
preventing costly processor references to memory-mapped
I/O space. The approach also has the added benefit of
reducing completion interrupts, as adapters need only
generate these when the work queue is empty.

The second key feature of the I/O subsystem is multipath
I/O. This feature enables any quad in the system to access
any disk in the system via the fibre channel host adapter in
its local PCI bus. Combined with database buffer allocation
from local memory, multipath I/O enables high locality rates
for processor access to database buffers and provides high
I/O bandwidth rates to be achieved by preventing DMA
transfers across the longer latency SCI-based interconnect.

3. Simulated and Measured Configurations

3.1 OLTP Benchmarks
The standard benchmark for evaluating a system’s OLTP

performance has evolved from the TPC-B to the TPC-C
during the past nine years. Prior to NUMA-Q development,
the TPC-B benchmark was a well-understood and
established benchmark for OLTP [17]. Data from hardware
performance counters and address traces were available to
feed simulation models of the STiNG architecture. By the
time development of NUMA-Q was completed, however,
the TPC-C had replaced the TPC-B as the OLTP benchmark
of choice. While some early performance investigation was

Code Name NUMA-Q I
“STiNG”

NUMA-Q II
“Scorpion”

NUMA-Q III
“Centurion”

Processor
Core Speed 180MHz 495MHz 700MHz to

900MHz

Quad Bus/
Lynx Speed 60MHz 90MHz 100MHz

Processor L2
Cache Size 1MB, 4-way 2MB, 4-way 2MB, 4-way

Bus Interface
Controller OBIC DOBIC COBIC

Remote
Cache Size 32MB, 4-way

128MB to
256MB, 4-

way

128MB to
256MB, 4-way

Directory
Controller

SCLIC –
single core

DSCLIC –
dual core w/
 h/w assist.

CSCLIC –
dual core w/
h/w assist.

Interconnect
Controller

DataPump,
500MHz

DataPump,
500MHz

DataPump,
500MHz

Intel Support
Chipset

82450GX
(8 bus loads)

82450NX
 (6 bus loads)

82450NX
(6 bus loads)

done in the lab using the TPC-B benchmark, a full
performance evaluation of a NUMA-Q system with a fully
functional I/O subsystem was done using the TPC-C
workload. Due to the expense of configuring and executing
a large-scale TPC benchmark, it was not feasible to validate
our earlier simulation results in the lab with the TPC-B
workload.

While TPC-C benchmark results were published for
several configurations of NUMA-Q systems, we will report
in detail on performance results for one configuration that
was not published externally. This internal result was for a
single instance configuration that provided reasonable
scalability to 16 processors, which we will show in Sec. 4.
A single- instance configuration uses one DBMS engine that
leverages lighter weight single-address space concurrency
control and a large number of threads or processes to
achieve scaling of performance with increased numbers of
processors. We report on the single-instance result as it
creates the most stress for the underlying quad-to-quad
interconnect, and is most comparable to the single-instance
TPC-B data used in the STiNG simulation studies.

3.2 DSS Benchmarks
A standard benchmark for Decision Support Systems

appeared during the early development of NUMA-Q
systems. While database query benchmarks had been
available for some time (such as the Wisconsin benchmark
[17]), the TPC-D was the first industry-standard benchmark
put forth by the Transaction Processing Council for DSS.
The “Power” metric for this benchmark measured a
computer systems ability to apply all of its available
resources toward execution of a single database query. For
multiprocessor systems, this required a database
management system capable of subdividing the work for a
single query into subtasks and executing them in parallel.
Because the TPC-D benchmark was comprised of a suite of
queries each run in isolation for the Power test, there were
many more computational phases to consider than there
were for the TPC-B or TPC-C benchmarks. We chose
Query 6 for study while evaluating the STiNG architecture
as it had long steady state execution phase where it executed
a full table scan, where each row of a database table is read
from disk into memory. This query showed higher cache
miss rates and a higher I/O bandwidth requirement than
other long running TPC-D queries at the time, which made
it a good candidate for study.

As time passed during NUMA-Q development, the nature
of the TPC-D benchmark behavior changed rapidly. Once
the benchmark was introduced, it stimulated a lot of work
by DBMS architects and engineers to improve query-
optimizers and their execution plans. It also resulted in new
options for parallelization and optimization, including pre-
computation of results during the database load phase,
which did not exist while we were collecting data for Query
6. The end result was that, once a TPC-D benchmark was
run on a complete NUMA-Q implementation, the behavior

of Query 6 did not at all resemble the behavior of what we
originally measured. For that reason, we have selected
Query 5 from the set that was measured to compare results
against, based on the fact that it did have a long running
steady-state phase of execution. We could not compare
these results to older results for Query 5, as it was not
processor-bound in the early investigation of TPC-D
behavior that occurred prior to NUMA-Q development.

Table 2: Workload Profiles for Simulated and Measured
Benchmarks.

3.3 Workload Profiles
Table 2 shows the “workload profiles” for the simulation

experiments and what was measured in the lab. The
columns where System is labeled STiNG refer to the
simulation inputs whereas the columns where System is
labeled NUMA-Q (I or II) refer to the lab configurations
and measured results.3 The columns labeled TPC-B and
TPC-C show what was used or measured for OLTP
benchmarks, while the columns labeled TPC-D (Q06 or
Q05) refer to the DSS benchmarks. For comparisons
between the simulated results and the measured results for
each workload type, the processor count and number of
protocol sequencers were the same. The processor L2 cache
sizes differed, and the effect is shown in the variation of L2
cache misses per instruction for each experiment. We can
see from this data that the larger L2 cache reduced misses

3 Recall that the differences between NUMA-Q I and II are shown in

Table 1.

Event TPC-B TPC-C TPC-D
Q6

TPC-D
Q5

System STiNG NUMA-Q
II STiNG NUMA-Q

I

Processor
Count 16 16 32 32

Protocol
Sequencers 2 2 1 1

Processor L2
Cache Size 512K 2M 512K 1M

L2 Cache
Miss per inst 0.0223 0.0073 0.0018 0.0031

Remote
Memory
Access Rate
per L2 miss

35% 24% 35% 27%

Remote
Cache Size
(MB)

32 128 32 32

RC Miss Rate
per ref 11% 24% 15% 43%

I/O cache line
per inst 0.0014 0.0003 0.0019 0.0017

I/O bits per
inst 0.36 0.08 0.49 0.44

greatly for the OLTP benchmark as expected. The DSS
benchmarks have lower miss rates in general, and in the
case of our experiments, Q05 had a larger miss rate per
instruction than Q06 despite a larger L2 cache.

The next 3 rows in the table show the remote memory
access characteristics of the benchmarks. For the simulation
studies, there was no hard data on how the memory footprint
would be partitioned across quads in the NUMA system.
During development, the DYNIX/ptx team was adding
NUMA awareness to the OS and developing an API to
enable application developers to leverage this capability. As
a result, we made what we thought was a conservative
assumption of a 35% rate of reference to remote memory for
lines that were not modified elsewhere, and a uniform
distribution for references to dirty lines. What we observed
was a lower rate of remote reference that grew as more
quads were added to the system.

In Table 2 we show the measured results for TPC-C at 4
quads and TPC-D Q05 at 8 quads which were both below
35% including references to dirty lines. It is interesting to
note that TPC-C has a lower remote reference rate that what
we assumed despite its much lower rate of L2 cache misses
per instruction, while TPC-D Q05 has a lower rate despite
its higher rate of L2 misses.

The remote cache miss rates measured in the lab were
higher than what we assumed in our simulation model. For
the simulation studies, we assumed that the remote cache
would be sized large enough to avoid capacity and conflict
misses. This proved largely to be true for OLTP,
particularly when a 128MB remote cache was used, as was
the case for TPC-C. Remote cache misses are dominated by
the communication miss rate. As communication misses
can not be prevented by the use of larger L2 caches, the
number is significant for TPC-C even though the L2 miss
per instruction is much lower than it was for TPC-B. Thus,
the remote cache miss rate must be higher as fewer L2
capacity misses that reference remote memory are present
for the TPC-C. However, a measure of the remote
bandwidth requirement per instruction (as determined by
multiplying the L2 misses by the remote memory reference
rate by the remote cache miss rate) for both workloads
shows that TPC-C has a much lower rate despite its higher
remote cache miss rate. The actual remote bandwidth
consumed was much closer however, as TPC-C had a lower

CPI than TPC-B. This is discussed further in Sec. 4.4.
For TPC-D, the remote cache miss rate varies largely from
query to query, as compulsory misses can be large when
performing a join operation across large data sets held in
memories on remote quads, as is the case for Q05. As a
result, Q05 had a much higher remote memory bandwidth
requirement than Q06.

While the I/O bandwidth consumption did not directly
affect the performance and scaling of a processor-bound
system, it is interesting to note how it varies between
workloads. OLTP consumes much less I/O bandwidth, as it
is typically configured with small disk blocks due to a lack

of spatial locality. TPC-C also has a much lower rate of I/O
bandwidth consumption than TPC-B, due to the
effectiveness of the disk block buffer cache in memory.
TPC-B was much less sensitive to memory size, as one very
large table typically forced a disk access on nearly every
transaction. For TPC-D, I/O bandwidth consumed was
much higher, as complex queries typically require access to
large amounts of data. In this case, the database is
configured to use large disk blocks as spatial locality is
present. Still, even for the DSS benchmarks where large
amounts of I/O bandwidth is consumed, it is interesting to
note that, when measured as bits of I/O per instruction, the
amount is less than one-half of the traditional rule of thumb
of 1 bit.

3.4 Review of Simulation Methodology
As described in [1], the simulation model used is

straightforward. Given the workload profiles, the model
determines instruction throughput for each processor and
thus the entire system by determining the average processor
clocks-per-instruction (CPI). It does this by issuing
instructions at the rate of the internal CPI, and then
generating cache misses for a subset of instructions
according to the workload profile. Internal CPI is the time
spent in the instruction execution pipeline as well as any
stall time related to access of on-processor caches. This
value is determined by a separate architectural simulation of
the processor. The time the processor spends stalled4
waiting on average for cache misses to be serviced is the
external CPI. The STiNG simulation model determines the
average cache miss latency and thus the external CPI by
modeling all address and data traffic on all control and data
paths in the system. The model is instrumented to provide
detailed latency and bandwidth information for the
workloads modeled. These results are presented in [1] and
in this paper.

As stated above, the model generates events to be
modeled according to the workload profile. The model is
driven by these profile probabilities instead of using address
trace-driven or execution-driven techniques. As a result, the
model is unable to uncover software bottlenecks due to lock
contention as higher levels of throughput are achieved. As
stated in [1], more sophisticated modeling approaches are
possible that should enable better accuracy and precision,
but what we have observed is that our simpler model is
indeed an accurate indicator of system performance. This is
discussed further in the next section.

4. Experimental Results

4.1 Locality Rates
Figure 3 shows the L2 cache miss service distribution for

the OLTP benchmarks. The distribution on the top

4 Not all cache misses cause the processor to stall due to architectural

techniques that allow the execution of multiple instructions in parallel.

represents what was simulated for TPC-B on the STiNG
architecture. This distribution was derived from analysis of
benchmark data collected on Sequent Symmetry [18]
systems combined with expectations for STiNG’s CC-
NUMA architecture. The distribution is determined in part
by the assumption for remote memory access rate and the
expectation that all remote cache misses be communication
misses. The distribution on the bottom shows what was
measured for TPC-C. Because of the lower remote
reference rate for TPC-C, many more L2 misses were
satisfied with an access to local memory. There were also
fewer misses that hit in the remote cache due to this effect.
Overall, locality was higher for the TPC-C, with over 90%
of the L2 misses being completed within the referencing
quad as determined by adding the local memory hit, remote
cache hit, and local cache-to-cache transfer categories.

The other three categories show the breakdown for the
various types of remote operations. A “2 hop” remote
reference refers to either a remote cache miss to a line which
can be retrieved from the home quad or local memory
reference to a line which is modified remotely. A “4 hop”
reference refers to a remote cache miss to a line that is

modified on a quad separate from the home quad.5 “Local
Hit/Remote Invalidate” refers to the case where a processor
requests ownership for a line where the data is available on
the requesting quad but a shared copy resides on a remote
quad and must be invalidated. The fact that 2 hop and 4 hop
are equivalent at 16 processors indicates that remote cache
misses are indeed entirely for communication misses, and
that these misses are equally likely to be on any quad in the
system. This can be shown by multiplying the remote
memory reference rate for modified lines by two-thirds (for
a 4 quad system) to determine the rate of 4 hop
communication misses. For TPC-B, this is 75% multiplied
by 67%, which is about 50%. The fact that TPC-C showed
almost the same breakdown suggests that our assumptions
about communication misses were correct. We should also
mention that the rate of communication misses overall for
TPC-C is higher than that for TPC-B because the L2 cache
size was larger (2MB vs. 1MB) in the TPC-C testbed.

The interesting departure between the remote traffic rates
for TPC-B and TPC-C is the rate of remote invalidations
and the relative rates of local and remote communication
misses. There were three software effects that enabled
greater locality for the TPC-C for communication misses
and invalidations. The first was multipath I/O, which
enabled communication misses and invalidations related to
kernel I/O activity to stay local to a given quad. The second
was lowest priority processor interrupt servicing on a quad
basis, which kept interrupts local to a given quad, but also
created some additional communication misses within a
quad. The third was a “buddy locking” scheme, which gave
lock acquisition priority to processors on the same quad as
the previous holder of a lock. This reduced migrations of
lock lines and critical section data for highly contested
locks.

Figure 4 shows the L2 cache miss service distribution for
the DSS benchmarks. The diagram on the left of the figure
represents what we simulated for Query 6 on the STiNG
architecture, while the diagram on the right shows what was
measured for Query 5 on the NUMA-Q implementation.
Again, we see higher rates of requests satisfied by local
memory on the measured system as well as higher rates of
overall locality. There is also a higher rate of locality of
communication misses and invalidations in the measured
data for Query 5 as there was for TPC-C. The interesting
departure here is the relative ratio of 2 hop and 4 hop remote
operations. The assumptions for Query 6 were the same as
for TPC-B, with the rate of 4 hop requests for an eight quad
system becoming 7/8 * 6/7 = 75%, assuming all remote
misses are communication misses whose addresses are
uniformly distributed across quads. For Query 5, the
majority of remote cache misses are not communication
misses, as evidenced by the high rate of 2 hop misses.

5 We call this “4 Hop” as the home quad responds to the requestor with

the identity of the quad where the modified line resides, i.e. there was no
request forwarding for NUMA-Q.

TPC-C on NUMA-Q

9.1%

3.4%

3.3%

14.5%

68.8%

0.9%

TPC-B on STiNG

27.2%

8.9%

5.4%

5.4%
2.7%

50.4%

Hit to Local Memory Hit to Remote Cache
Local Cache-to-Cache Transfer 2 Hop Remote
4 Hop Remote Local Hit/ Remote Invalidate

TPC-C on NUMA-Q

9.1%

3.4%

3.3%

14.5%

68.8%

0.9%

TPC-B on STiNG

27.2%

8.9%

5.4%

5.4%
2.7%

50.4%

Hit to Local Memory Hit to Remote Cache
Local Cache-to-Cache Transfer 2 Hop Remote
4 Hop Remote Local Hit/ Remote Invalidate

Figure 3: L2 Cache Miss Service Distribution for OLTP
Benchmarks.

Again, this is caused by a high rate of compulsory misses
caused by processing a join operation using memory from
all quads in the system.

4.2 Latency
Figure 5 shows the average cache miss service penalty for

all simulated and executed benchmarks, normalized to bus
clocks to make the different implementations more
comparable. The figure shows that, for both workload
types, the actual measured latency was lower than what was
expected. This follows from the previous figures that
showed that quad locality was higher overall than expected.
The other thing to note on this diagram is the shape of the
curve. The simulation model predicted that the rate of
increase in average miss latency would decline as more
quads were added to the system. This occurs because the
rate of remote operations increases dramatically from zero
as the second quad is added, but much less than that as each
additional quad is added. This was shown to be true in the
measured results. It is interesting to note that this is in sharp
contrast to average miss penalty curves for SMP systems,
where latency increases slowly at first as the bandwidth
consumption increase, and then escalates very rapidly as the

memory resource saturates under heavy load. NUMA
systems add additional memory subsystems with each quad,
so this saturation effect can be avoided, provided there is
sufficient bandwidth in the node-to-node interconnect.

Figure 6 shows the average latency for end-to-end
operations that require access to at least one remote quad.
Again, the curves show the rate of increase in remote
latency declining as quads are added to the system. The
figure also shows that, for OLTP, the measured remote
latency was somewhat higher than what was predicted in
simulation using the TPC-B workload, but less than 10%.
This can be explained in part by the differences in the
hardware configuration. Each system used the same speed
SCI ring, but the measured result used a 90 MHz quad bus
and Lynx while the simulation used a 66 MHz quad bus and
Lynx. This made the relative contribution of the SCI ring to
the overall remote latency greater for the measured result.
Interestingly, the measured result for the 32-way TPC-D

150

200

250

300

350

400

450

500

4 8 12 16 20 24 28 32

Processors

bus
clocks

STiNG/DSCLIC/TPC-B NUMA-Q/DSCLIC/TPC-C

STiNG/Query 6 NUMA-Q/Query 5

Figure 6: Average L2 Cache Miss Penalty for Requests
Involving Access to Remote Quads.

0

20

40

60

80

100

120

0 4 8 12 16 20 24 28 32

Processors

bus
clocks

STiNG/DSCLIC/TPC-B NUMA-Q/DSCLIC/TPC-C

STiNG/Query 6 NUMA-Q/Query 5

Figure 5: Average L2 Cache Miss Penalty.

Query 6 on STiNG

27.8%

10.9%

4.5%

51.6%

1.6%
3.6%

Hit to Local Memory Hit to Remote Cache
Local Cache-to-Cache Transfer 2 Hop Remote
4 Hop Remote Local Hit/ Remote Invalidate

Query 5 on NUMA-Q

69.4%

3.1%

7.0%

1.4%

14.6%

4.4%

Query 6 on STiNG

27.8%

10.9%

4.5%

51.6%

1.6%
3.6%

Hit to Local Memory Hit to Remote Cache
Local Cache-to-Cache Transfer 2 Hop Remote
4 Hop Remote Local Hit/ Remote Invalidate

Query 5 on NUMA-Q

69.4%

3.1%

7.0%

1.4%

14.6%

4.4%

Figure 4: L2 Cache Miss Service Distribution for DSS
Benchmarks.

Query 5 matched the simulated result for Query 6, despite
higher bandwidth consumption for Query 5. This can be
explained by the SCI ring being relatively faster in this case
as the measured system used a 60 MHz quad bus and Lynx
as compared to 66 MHz for the simulation. This difference
overcomes the small increase in remote latency for the
measured result caused by queuing in the Lynx due to
increased occupancy in the SCLIC instruction sequencer
caused by higher bandwidth consumption.

Figure 7 and Figure 8 show the breakdown of remote
access latency for the OLTP benchmarks into 3 main
categories. The first is percentage of time spent on or
waiting for the quad bus, the second is the time spent on the
Lynx, and the third is the time spent on the SCI ring. For
both workload types, the breakdowns are similar between
what the simulator predicted and what was measured. There
is a greater discrepancy for OLTP, but this is due to the
greater speed differential between the SCI ring and the Lynx
and quad bus for the measured case versus the simulated
case as mentioned earlier. The percentage of time spent on
the Lynx is greater for OLTP, given its higher quad-to-quad
bandwidth requirement and thus increased queuing delays.
These results show that the model of the system was indeed
accurate, and with modest bandwidth consumption on a
latency-limited system, the variations between workloads
were fairly small.

4.3 Bandwidth
Figure 9 shows the data bandwidth utilization of the quad

bus. For OLTP, the measured results track the simulated
results quite closely, despite the much lower cache miss rate
for TPC-C. The rate of bandwidth consumption is higher
than expected given the lower miss rate for TPC-C due to a
combination of lower relative CPI and a higher core
processor speed. This lower relative CPI results from a
lower L2 cache miss penalty for TPC-C when compared to
the simulation results for TPC-B as shown in Figure 5, and
is the result of greater degree of locality as shown in Figure

3. It is also interesting to note that the quad bus bandwidth
consumption decreases as quads are added to the system, as
predicted. Although an increase in remote traffic causes
additional bus transactions to occur, this is more than offset
by the increased latency of remote operations, which
increases the CPI and reduces the processor’s ability to
consume bandwidth.

In the case of DSS, the bandwidth consumption is not
following this regular pattern. The CPI for DSS is lower
than for OLTP, and it increases at a much slower rate as
quads are added. Most of the bus bandwidth for DSS is also
consumed for I/O transfers, and small percentage of that
bandwidth is assumed to require remote transfers in the
simulation. This causes offsetting effects for quad bus
bandwidth consumption. Unfortunately, the scaling results
for Query 5 were not available for comparison. However,
we can see that the quad bus bandwidth consumed for 32
processors for Query 5 is much higher than for Query 6.
This is due to the much higher miss rate for Query 5

STiNG TPC-B
with Dual SCLIC Engine

12%62%

26%

NUMA-Q TPC-C
with Dual SCLIC Engine

65% 19%

16%

Bus Lynx SCI

STiNG TPC-B
with Dual SCLIC Engine

12%62%

26%

NUMA-Q TPC-C
with Dual SCLIC Engine

65% 19%

16%

Bus Lynx SCI Bus Lynx SCI

Figure 7: Breakdown of Average Remote Access Latency for
OLTP.

Bus Lynx SCI

STiNG Query 6

55%

22%

23%

NUMA-Q Query 5

18%
54%

28%

Bus Lynx SCI Bus Lynx SCI

STiNG Query 6

55%

22%

23%

NUMA-Q Query 5

18%
54%

28%

Figure 8: Breakdown of Remote Access Latency for DSS.

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

0 4 8 12 16 20 24 28 32

Processors

STiNG/DSCLIC/TPC-B NUMA-Q/DSCLIC/TPC-C

STiNG/Query 6 NUMA-Q/Query 5

Figure 9: Average Data Bandwidth Utilization on Quad
Bus.

compared to Query 6 that is not offset by a much higher
CPI. More details on the CPI for the workloads are
provided in Sec. 4.4.

Figure 10 shows the data bandwidth utilization on the
SCI ring. There are two measured results shown for OLTP,
one labeled “No NOOPs”. A NOOP response is essentially
an SCI “retry” response that is sent to a requestor when the
requested line is in a transition state. These responses were
assumed to occur very infrequently, and were not part of the
simulation model. However, the number of NOOPs can be
noticeable, especially in the case of lock contention, where
many processors are trying to access the same cache line
simultaneously. Due to the high rate of locking in TPC-C,
we measured the SCI ring bandwidth consumption with and
without NOOPs, as we were surprised that the measured
SCI ring bandwidth consumption was higher than what the
simulation predicted, especially given the higher locality
rate for TPC-C. The “No NOOPs” measurement showed
good correlation with the simulated results, which we would
expect given that the quad bus bandwidth consumption was
very similar between TPC-C and TPC-B. As the effective
bandwidth of the ring did not increase as quads were added
to the system, the utilization increased steadily. Still, in this
range, the SCI ring was not close to becoming a system
bottleneck. The same trend was observed for TPC-D Query
6, but the bandwidth consumption was much lower. Query
5 on the other hand had remote bandwidth consumption
closer to TPC-B, again due its higher L2 and remote cache
miss rates as described above in Sec. 3.3.

4.4 Processor Clocks per Instruction (CPI)
Figure 11 shows the breakdown of the processor CPI into

internal and external components for the OLTP benchmarks.
The total CPI is time required on average to execute each
instruction as measured in processor core clock cycles. The
figure shows the relative contribution to this execution of
the time for several categories. As stated above, internal

CPI is the time spent in the instruction execution pipeline as
well as any stall time related to access of on- processor
caches. All of the other categories combine to add up to the
external CPI, or that amount of time per instruction that the
processor is stalled waiting for data from an external source.
The figure shows that the breakdown between internal and
external CPI was very similar for TPC-B and TPC-C, and
that the relative contribution from external sources was also
very similar. Despite the higher core speed for the
measured TPC-C result compared to the simulated TPC-B
result (495 MHz vs. 133 MHz), the CPI was actually very
similar. This shows that the internal component of CPI was
nearly the same between the two workloads, and its
throughput scaled with processor cycle time. The external
component was similar as the lower miss rates for TPC-C
were offset by the increased processor cycle time, as
described earlier in Sec. 3.3. The breakdown in the various
external components was nearly the same due to the high

internal local miss remote miss invalidate

Query 6 on STiNG, 8 Quads

85%

3%

4%

8%

Query 5 on NUMA-Q, 8 Quads
2%

59%18%

21%

internal local miss remote miss invalidateinternal local miss remote miss invalidate

Query 6 on STiNG, 8 Quads

85%

3%

4%

8%

Query 5 on NUMA-Q, 8 Quads
2%

59%18%

21%

Figure 12: Internal and External Components of CPI for DSS.

0%

5%

10%

15%

20%

25%

30%

8 12 16 20 24 28 32
Processors

NUMA-Q/TPC-C NUMA-Q/Query 5

NUMA-Q/TPC-C/No NOOPs STiNG/Query 6

STiNG/TPC-B

Figure 10: Interquad Bandwidth Consumption.

internal local miss remote miss invalidate

TPC-B on STiNG, 4 Quads

21%

26% 11%

42%

TPC-C on NUMA-Q, 4 Quads

21%

6%28%

45%

internal local miss remote miss invalidateinternal local miss remote miss invalidate

TPC-B on STiNG, 4 Quads

21%

26% 11%

42%

TPC-C on NUMA-Q, 4 Quads

21%

6%28%

45%

Figure 11: Internal and External Components of CPI for
OLTP.

rate of locality predicted and measured, as well as the
similarity between predicted and measured local and remote
access latencies.

Figure 12 shows the relative breakdown of CPI for the
DSS benchmarks. Unlike the OLTP results, the DSS
workloads had much different CPIs as well as different
breakdowns, although the CPIs were much lower than what
was observed for OLTP. Query 5 had a much higher CPI
(67% higher) due to its higher L2 cache miss rate. The
internal component of CPI, however, was almost the same
between the Query 5 and Query 6. Again, this shows great
similarity between the benchmarks as well as scaling of the
internal CPI with processor core speed. The external CPI
showed a different relative breakdown between remote and
local misses and invalidates for the measured results when
compared to simulation. This is caused by differing locality
rates as shown in Figure 4.

4.5 System Throughput
Figure 13 shows the predicted scaling efficiency in

throughput for TPC-B and TPC-D Query 6, as well the
measured scaling for TPC-C. This chart captures the net
effect of the miss rates, locality rates, and access latencies
on system level performance for the latency-limited
processor bound system. The scaling efficiency for TPC-C
was very similar although somewhat better than what was
predicted for TPC-B. A higher locality rate enabled better
scaling initially, but this begins to be offset at 4 quads due
to increased spinning on locks. The simulation model did
not account for spinning on locks, and thus the scaling
efficiency curve maintained its trend for 4 quads and
beyond. With a lower CPI and very low external CPI, the
TPC-D Query 6 curve shows very good scaling, as it is less
sensitive to the average L2 cache miss penalty.
Unfortunately, scaling results for Query 5 were unavailable
for comparison. Although the scaling efficiency for OLTP
is much lower, this has been demonstrated previously as an
acceptable result for large-scale systems.

5. Summary and Conclusion
This paper analyzed the detailed performance aspects of

the NUMA-Q implementation of the STiNG architecture
and compared measured results to expectations determined
by simulation studies. We have shown that, despite
significant workload differences between what was
simulated and what was measured, it is still possible to
make sense of the data and draw meaningful conclusions.

In particular, we conclude that the simulated results for
STiNG were accurate, despite known shortcomings in the
model. The model predicted system throughput scaling
within 15% of measured results, despite differences in
workload characteristics and component speeds. This
suggests that more precise simulation approaches based on
trace or execution-driven methods may not be worth the
significantly higher effort, especially when considering the

reduced flexibility and increase in simulation turnaround
time.

Furthermore, we have shown both in simulation and with
measured data that the system level performance is
determined by the rate of locality and the remote and local
access latencies, and is not data bandwidth limited. Because
of this, the behavior of the measured workloads is very
similar, despite differences in miss rates and CPI. For this
reason, our approach in using this simulation model to
assess design trade-offs is valid, despite the inevitable
evolution in benchmarks between the time a system is
designed and the time it is deployed in the field.

Another conclusion we can offer is that CC-NUMA is a
viable architecture from a systems performance standpoint.
With reasonable locality, scaling of performance with
processor count is achievable, as we have shown. Although
some may argue that the remote access latencies of this
system are too high, our conclusion on scaling performance
still holds. As more aggressive designs have come to
market with more to follow, we will undoubtedly see an
increase in scaling efficiency for CC-NUMA systems
running commercial workloads.

6. Acknowledgements
The authors would like to acknowledge the contributions

of the NUMA-Q design team, without whose support this
study would not have been possible. This includes a large
number of people involved in both the hardware and
software aspects of the system design. However, we would
like to specifically thank Tommy Tse, Ruth Forester, and
Mary Meredith for their role in executing experiments on
the NUMA-Q systems and reporting the results, as well as
providing insight into the behavior of the application
software. We would also like to specifically thank Bob
Safranek, Eric Lais, Rob Joersz, and Bruce Gilbert for their
aid in determining the precise function of the hardware
event counters.

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

Quads

Effective
Quads

STiNG/TPC-B NUMA-Q/TPC-C STiNG/Query 6

Figure 13: Efficiency of Scaling Throughput with Quads.

This work represents the view of the authors and does not
necessarily represent the views of IBM.

7. References
[1] T. Lovett and R. Clapp. STiNG: A CC-NUMA Computer

System for the Commercial Marketplace. In Proceedings of
the 23rd Annual Int'l Symposium on Computer Architecture,
pages 308-317, May 1996.

[2] J. Laudon and D. Lenowski. The SGI Origin: A ccNUMA
Highly Scalable Server. In Proceedings of the 24th Annual
Int'l Symposium on Computer Architecture, pp. 241-251,
June 1997.

[3] R. Clark and K. Alnes. SCI Interconnect Chipset and Adapter:
Building Large Scale Enterprise Servers with Pentium Pro
SHV Nodes. Hot Interconnects IV Symposium Record, pp.
221-245, August 1996.

[4] D. Lenoski, J. Laudon, T. Joe, D. Nakahira, L. Stevens, A.
Gupta, and J. Hennessy. The DASH prototype: Logic
overhead and performance. IEEE Transactions of Parallel and
Distributed Systems, pages 41-61, vol. 4, no. 1, January 1993.

[5] J. Kuskin, D. Ofelt, M. Heinrich, J. Heinlein, R. Simoni, K.
Gharachorloo, J. Chapin, D. Nakahira, J. Baxter, M.
Horowitz, A. Gupta, M. Rosenblum, and J. Hennessy. The
Stanford FLASH multiprocessor. In Proceedings of the 21st
International Symposium on Computer Architecture, pages
302-313, April 1994.

[6] A. Agarwal, R. Bianchini, D. Chaiken, K. L. Johnson, D.
Kranz, J. Kubiatowicz, B.-H. Lim, K. Mackenzie, and D.
Yeung. The MIT Alewife machine: Architecture and
performance. In Proceedings of the 22nd International
Symposium on Computer Architecture, pages 2-13, June
1995.

[7] S. Reinhardt, J. Larus, and D. Wood. Tempest and typhoon:
User-level shared memory. In Proceedings of the 21st
International Symposium on Computer Architecture, pages
325-336, April 1994.

[8] A. Nowatzyk, G. Aybay, M. Browne, E. Kelly, M. Parkin, B.
Radke, and S. Vishin. The S3.mp scalable shared memory
multiprocessor. In Proceedings of the 1995 International
Conference on Parallel Processing, August 1995.

[9] Hewlett Packard Company. Meet the hp superdome servers.
http://www.hp.com/products1/servers/scalableservers/superdo
me/infolibrary/technical_wp.pdf

[10] M. Chapman. Introducing IBM Enterprise X-Architecture
Technology.
ftp://ftp.pc.ibm.com/pub/pccbbs/pc_servers_pdf/exawhitepap
er.pdf

[11] Transaction Processing Council. TPC Results Listing.
http://www.tpc.org/information/results.asp

[12] Transaction Processing Council. TPC Results Listing.
http://www.tpc.org/information/benchmarks.asp

[13] Intel Corporation. Pentium Pro Family Developer’s Manual
Volume 1: Specifications, pages 7.1-7.2, January 1996.

[14] IEEE Computer Society. IEEE Standard for Scalable
Coherent Interface (SCI), IEEE Std 1596-1992, New York,
New York, August, 1993.

[15] Intel Corporation. Intel 450NX PCIset Revision 1.3, March
1999.
http://www.intel.com/design/chipsets/datashts/24377102.pdf

[16] Intel Corporation. Intel 450KX/GX PCIset, 1996.
http://developer.intel.com/design/chipsets/datashts/29052301.
pdf

[17] J. Gray, Editor. The Benchmark Handbook for Database and
Transaction Processing Systems, Morgan Kaufmann
Publishers, San Mateo, CA, 1991

[18] T. Lovett and S. Thakkar. The Symmetry multiprocessor
system. In Proceedings of the 1988 International Conference
on Parallel Processing, pages 303-310, August 1988.

8. Trademarks
The following terms are trademarks or registered

trademarks of International Business Machines Corporation
in the United States, other countries, or both:

 IBM, X-Architecture, NUMA-Q
IBM Trademarks information can be found at

http://www.ibm.com/legal/copytrade.shtml
Pentium is a registered trademark of Intel Corporation in

the United States, other countries, or both.
Other trademarks are the property of their respective

owners.

