
 

  

Abstract  
In 1996, the STiNG CC-NUMA architecture was introduced.  Since 
that time, it has been implemented with several generations of 
Pentium Pro® and Xeon® processors, memory and I/O control 
chipsets, and ASICs that comprise the SCI-based interconnect.  In 
this paper, we describe the performance of commercial OLTP and 
DSS database benchmarks as captured by hardware event counters 
embedded in the system.  Comparisons are made between this data 
and the original projections that were made based on simulation 
models.  This comparison shows that, despite some discrepancies 
between the simulated and executed workloads, the architectural 
simulations done during development were an accurate predictor 
of system performance. 

1. Introduction 
Introduced in 1996, the STiNG system was the first of a 

series of commercial Cache Coherent Non-Uniform 
Memory Access (CC-NUMA) architecture offerings of the 
late 1990’s [1].  Other examples include the SGI Origin [2] 
and the Data General AViiON [3].  These systems were 
each influenced to some degree by the research done in the 
late 1980’s and early 1990’s on scalable shared-memory 
systems, including the Stanford DASH [4] and FLASH [5] 
projects, the MIT Alewife [6], the Wisconsin Wind Tunnel 
[7], and the Sun S3.mp [8].  In the years since the first CC-
NUMA commercial systems were introduced, others have 
arrived or have been announced, including HP’s Superdome 
[9] and IBM’s Enterprise X Architecture® [10]. 

While this research and the commercial systems that 
followed were a significant departure from the bus-based 
Symmetric Multiprocessing (SMP) systems of the day, 
relatively little has been reported about the measured 
performance characteristics of these CC-NUMA systems, 
particularly for commercially important workloads.  Most of 
the reported performance data has either been for scientific 
workloads or was the result of system simulation studies.  
While benchmark results have been published for some of 
the commercially available systems [11], detailed analysis 
like that found in [4] has not accompanied those results.  

In this paper, we provide detailed performance data for 
multiple generations of the STiNG architecture, and 
compare it to the previously published simulation results 

found in [1].  This data was collected from the performance 
event counters embedded in the system’s processors and 
custom controllers.  The workloads executed for this study 
included the Transaction Processing Council’s C 
Benchmark (TPC-C) and part of their D Benchmark (TPC-
D) [12].  The TPC-C is the industry standard benchmark for 
determining On-Line Transaction Processing (OLTP) 
performance while the TPC-D benchmark is used for 
determining Decision Support System (DSS) performance.1   

We were not able to exactly replicate the simulated 
configurations [1] in the laboratory.  The discrepancies 
between the simulations and the lab experiments included 
workload differences, changes in cache sizes, and different 
clock speeds for the various components.  However, we 
were able to closely correlate the measured data to the 
simulated results in most cases.  This led us to conclude that 
the benchmarks we selected for architectural evaluation 
were accurate workload representatives, and that our 
architectural simulation model was an accurate description 
of the system performance characteristics.  The data we 
present here supports these conclusions. 

In the following sections we review the STiNG 
architecture through several of its implementations, the 
configurations of the various experiments executed, and the 
detailed results. 

2. Architecture and Implementation 

2.1 The STiNG Architecture  
Figure 1 shows the high-level block diagram of the 

STiNG architecture.  A system is comprised of some 
number of quads, each being a 4 processor SMP machine.  
In addition to the processors, each quad also contains Intel 
chipset components for memory control and bridges to PCI 
I/O busses, as well as a Lynx block that provides the 
interface between quads.  The processors, some chipset 
components, and one component in the Lynx are 
interconnected via a bus in the quad, referred to as the front-
side bus or quad bus.  Every processor in every quad has a 
                                                 

1 The TPC-D benchmark has been effectively replaced by the TPC-H 
and TPC-R benchmarks.  We executed query 5 of the TPC-D benchmark in 
a manner consistent with the intent of the TPC-H benchmark, i.e. the query 
result was not pre-computed during the database load phase. 
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common view of system-wide memory and I/O address 
space.  Within each quad, coherence is maintained using a 
standard snoop-based MESI coherence protocol as defined 
by the Pentium Pro processor and the front-side bus [13].  
This protocol is bridged to a directory-based scheme for 
maintaining coherence throughout the system, which is 
based on the Scalable Coherent Interface (SCI) [14].  This 
functionality is implemented in the Lynx. 

 
Figure 1: STiNG Block Diagram. 

Figure 2 shows the high-level block diagram of the Lynx 
block.2  The Lynx contains three logic components, several 
memory chips for tag arrays, and memory chips to 
implement a remote cache.  The logic components provide 
the interface to the front-side bus, remote cache control, 
directory protocol processing, and SCI ring interface.  These 
components make use of the tag arrays to determine the 
state of remote cache and local memory lines in order to 
execute the proper protocol actions.  Duplicate sets of tags 
are provided, one each for the network side and the quad 
bus side.  This reduces latency for incoming SCI requests 
for local memory lines modified on remote nodes.  In this 
case, the directory controller consults the network side tags, 
determines the location of the modified cache line, and 
returns the information to the requestor.  This avoids the 
additional latency of forwarding the request to the bus 
interface chip and then consulting the bus-side tags. 

The bus interface controller is responsible for snooping 
every request on the quad bus and taking ownership of 
requests for remote memory lines or local memory lines that 
are cached remotely.  Requests which do not require 
cooperation with remote quads are completed in order.  All 
other processor requests to cacheable memory are 

                                                 
2 In the original paper, this was referred to as the Lynx board.  We have 

renamed it here as this functionality has been implemented across multiple 
boards in later system releases. 

completed out-of-order, with the bus interface controller 
taking the responsibility of sending a request to a remote 
quad for service.  When a response is returned, the bus 
interface controller initiates one (or more) new bus 
transaction(s) to complete the original request.  The bus 
interface controller makes requests to local memory and 
snoops to the processor’s caches on behalf of requests 
originating on remote quads.  The bus interface controller 
also manages the remote cache, supplying data to requests at 
a latency similar to that of local memory. 

The directory controller is responsible for forwarding 
requests between the bus interface controller and the 
interconnect controller.  This is not trivial, as the directory 
controller also manages the translation between the MESI 
protocol of the quad and the SCI-like protocol used to 
maintain system-wide coherence.  Our implementation used 
an embedded microinstruction sequencer, so that 
“firmware” could be loaded to modify the coherence 
protocol after manufacture.  This is discussed more in [1].  
As discussed in the original paper, the occupancy of the 
microinstruction sequencer creates additional latency for 
OLTP workloads due to queuing. This latency can be 
mitigated by providing a second sequencer to increase 
microinstruction throughput.   

The interconnect controller is responsible for providing 
the link and packet-level interface to the SCI ring.  It takes 
SCI requests from the directory controller and sends them 
on the SCI ring.  It receives incoming requests and either 
forwards them to its sending port or strips them from the 
ring if they are intended for the directory controller on this 
quad.  It performs link-level functions including delivery 
acknowledgement and time synchronization. 

2.2 NUMA-Q Implementations 
Once the STiNG architecture was implemented, it was 
branded “NUMA-Q” for sale in the commercial 
marketplace.  The NUMA-Q® brand represented several 
different implementations of the architecture.  Each one had 
different component speeds and cache sizes, as well as some 

 
Figure 2: Lynx Block Diagram. 
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differences in component features.  A high-level summary 
of differences appears in Table 1.   

 The key enhancements over the life of the product were 
the processor updates, cache size increases, improvement in 
Intel supporting chipset, and improvements in the directory 
controller. 

• Processor core speeds and cache size improvements 
occurred over time during migration from Pentium 
Pro® processors to Xeon® processors.   

• Size of the remote cache also increased as the OBIC 
bus interface controller was enhanced to the DOBIC.  
The DOBIC supported an additional number of 
incoming and outgoing requests, enabling higher 
bandwidth through the Lynx. The COBIC enabled 
the front-side bus to operate at the maximum bus 
frequency of 100 MHz as compared to the 90% of the 
maximum frequency with previous generations of the 
bus interface controller.   

• The most significant changes over time occurred to 
the directory controller, as the SCLIC with one 
microinstruction sequencer become the DSCLIC with 
two sequencer cores, one for odd cache line addresses 
and another for even cache lines.  The DSCLIC had 
hardware assist features that implemented key 
instruction sequences in logic to further reduce 
instruction sequencer occupancy and latency.  The 
CSLIC increased the operating frequency to 100 
MHz.   

• The supporting chipset that supplied memory and I/O 
bus bridge control was replaced with the second-
generation 82450NX [15], significantly reducing 
memory latency, increasing sustainable bandwidth, 
and improving the I/O DMA bandwidth for DMA 
transfers to remote memory.  

Table 1: Summary of NUMA-Q Implementations. 

Clearly, the STiNG architecture supports many different 
combinations of components, many more than were 
considered in the simulation study published previously [1].  
This simulation study was focused on the first 
implementation, and even then it differed from what was 
eventually shipped as product.  This occurred due to the 
time lag between the study and completion of development.  
Although other simulations were done internally to consider 
other likely speed and cache size combinations for the 
various components, we have decided to compare our 
measured results in this paper with those simulation results 
previously published [1]. 

2.3 System-Level Considerations 
In order to make database system benchmarks processor-

bound and achieve good performance, a high-performance 
I/O subsystem is required.  The hardware and software must 
combine to provide sufficient I/O bandwidth with little 
processor overhead for servicing request and interrupts.  
This was achieved for NUMA-Q platforms using fibre 
channel PCI host adapters attached to a fibre channel 
switched fabric.  The fabric also contained fibre-to-SCSI 
bridges to attach large numbers of disk drives. 

To provide the low processing overhead and bandwidth 
rates assumed by the simulation environment, two key 
features are required in the fibre channel-based I/O 
subsystem.  First, host-based queuing was implemented to 
reduce processing overhead.  This approach uses system 
memory to manage work queues for I/O adapters.  The 
adapters consume the requests in the queue directly, thus 
preventing costly processor references to memory-mapped 
I/O space.  The approach also has the added benefit of 
reducing completion interrupts, as adapters need only 
generate these when the work queue is empty.   

The second key feature of the I/O subsystem is multipath 
I/O.  This feature enables any quad in the system to access 
any disk in the system via the fibre channel host adapter in 
its local PCI bus.  Combined with database buffer allocation 
from local memory, multipath I/O enables high locality rates 
for processor access to database buffers and provides high 
I/O bandwidth rates to be achieved by preventing DMA 
transfers across the longer latency SCI-based interconnect. 

3. Simulated and Measured Configurations 

3.1 OLTP Benchmarks 
The standard benchmark for evaluating a system’s OLTP 

performance has evolved from the TPC-B to the TPC-C 
during the past nine years.  Prior to NUMA-Q development, 
the TPC-B benchmark was a well-understood and 
established benchmark for OLTP [17].  Data from hardware 
performance counters and address traces were available to 
feed simulation models of the STiNG architecture.  By the 
time development of NUMA-Q was completed, however, 
the TPC-C had replaced the TPC-B as the OLTP benchmark 
of choice.  While some early performance investigation was 

Code Name NUMA-Q I 
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done in the lab using the TPC-B benchmark, a full 
performance evaluation of a NUMA-Q system with a fully 
functional I/O subsystem was done using the TPC-C 
workload.  Due to the expense of configuring and executing 
a large-scale TPC benchmark, it was not feasible to validate 
our earlier simulation results in the lab with the TPC-B 
workload. 

While TPC-C benchmark results were published for 
several configurations of NUMA-Q systems, we will report 
in detail on performance results for one configuration that 
was not published externally.  This internal result was for a 
single instance configuration that provided reasonable 
scalability to 16 processors, which we will show in Sec. 4.    
A single- instance configuration uses one DBMS engine that 
leverages lighter weight single-address space concurrency 
control and a large number of threads or processes to 
achieve scaling of performance with increased numbers of 
processors.  We report on the single-instance result as it 
creates the most stress for the underlying quad-to-quad 
interconnect, and is most comparable to the single-instance 
TPC-B data used in the STiNG simulation studies. 

3.2 DSS Benchmarks 
A standard benchmark for Decision Support Systems 

appeared during the early development of NUMA-Q 
systems.  While database query benchmarks had been 
available for some time (such as the Wisconsin benchmark 
[17]), the TPC-D was the first industry-standard benchmark 
put forth by the Transaction Processing Council for DSS.  
The “Power” metric for this benchmark measured a 
computer systems ability to apply all of its available 
resources toward execution of a single database query.  For 
multiprocessor systems, this required a database 
management system capable of subdividing the work for a 
single query into subtasks and executing them in parallel.  
Because the TPC-D benchmark was comprised of a suite of 
queries each run in isolation for the Power test, there were 
many more computational phases to consider than there 
were for the TPC-B or TPC-C benchmarks.  We chose 
Query 6 for study while evaluating the STiNG architecture 
as it had long steady state execution phase where it executed 
a full table scan, where each row of a database table is read 
from disk into memory.  This query showed higher cache 
miss rates and a higher I/O bandwidth requirement than 
other long running TPC-D queries at the time, which made 
it a good candidate for study. 

As time passed during NUMA-Q development, the nature 
of the TPC-D benchmark behavior changed rapidly.  Once 
the benchmark was introduced, it stimulated a lot of work 
by DBMS architects and engineers to improve query-
optimizers and their execution plans.  It also resulted in new 
options for parallelization and optimization, including pre-
computation of results during the database load phase, 
which did not exist while we were collecting data for Query 
6.  The end result was that, once a TPC-D benchmark was 
run on a complete NUMA-Q implementation, the behavior 

of Query 6 did not at all resemble the behavior of what we 
originally measured.  For that reason, we have selected 
Query 5 from the set that was measured to compare results 
against, based on the fact that it did have a long running 
steady-state phase of execution.  We could not compare 
these results to older results for Query 5, as it was not 
processor-bound in the early investigation of TPC-D 
behavior that occurred prior to NUMA-Q development. 

 

Table 2: Workload Profiles for Simulated and Measured 
Benchmarks. 

3.3 Workload Profiles 
Table 2 shows the “workload profiles” for the simulation 

experiments and what was measured in the lab.  The 
columns where System is labeled STiNG refer to the 
simulation inputs whereas the columns where System is 
labeled NUMA-Q (I or II) refer to the lab configurations 
and measured results.3  The columns labeled TPC-B and 
TPC-C show what was used or measured for OLTP 
benchmarks, while the columns labeled TPC-D (Q06 or 
Q05) refer to the DSS benchmarks.  For comparisons 
between the simulated results and the measured results for 
each workload type, the processor count and number of 
protocol sequencers were the same.  The processor L2 cache 
sizes differed, and the effect is shown in the variation of L2 
cache misses per instruction for each experiment.  We can 
see from this data that the larger L2 cache reduced misses 

                                                 
3 Recall that the differences between NUMA-Q I and II are shown in 

Table 1. 

Event TPC-B TPC-C TPC-D 
Q6 

TPC-D 
Q5 

System STiNG NUMA-Q 
II STiNG NUMA-Q 

I 

Processor 
Count 16 16 32 32 

Protocol 
Sequencers 2 2 1 1 

Processor L2 
Cache Size 512K 2M 512K 1M 

L2 Cache 
Miss per inst 0.0223 0.0073 0.0018 0.0031 

Remote 
Memory 
Access Rate 
per L2 miss 

35% 24% 35% 27% 

Remote 
Cache Size 
(MB) 

32 128 32 32 

RC Miss Rate 
per ref 11% 24% 15% 43% 

I/O cache line 
per inst 0.0014 0.0003 0.0019 0.0017 

I/O bits per 
inst 0.36 0.08 0.49 0.44 



 

greatly for the OLTP benchmark as expected.  The DSS 
benchmarks have lower miss rates in general, and in the 
case of our experiments, Q05 had a larger miss rate per 
instruction than Q06 despite a larger L2 cache. 

The next 3 rows in the table show the remote memory 
access characteristics of the benchmarks.  For the simulation 
studies, there was no hard data on how the memory footprint 
would be partitioned across quads in the NUMA system.  
During development, the DYNIX/ptx team was adding 
NUMA awareness to the OS and developing an API to 
enable application developers to leverage this capability.  As 
a result, we made what we thought was a conservative 
assumption of a 35% rate of reference to remote memory for 
lines that were not modified elsewhere, and a uniform 
distribution for references to dirty lines.  What we observed 
was a lower rate of remote reference that grew as more 
quads were added to the system.   

In Table 2 we show the measured results for TPC-C at 4 
quads and TPC-D Q05 at 8 quads which were both below 
35% including references to dirty lines.  It is interesting to 
note that TPC-C has a lower remote reference rate that what 
we assumed despite its much lower rate of L2 cache misses 
per instruction, while TPC-D Q05 has a lower rate despite 
its higher rate of L2 misses.   

The remote cache miss rates measured in the lab were 
higher than what we assumed in our simulation model.  For 
the simulation studies, we assumed that the remote cache 
would be sized large enough to avoid capacity and conflict 
misses.  This proved largely to be true for OLTP, 
particularly when a 128MB remote cache was used, as was 
the case for TPC-C.  Remote cache misses are dominated by 
the communication miss rate.  As communication misses 
can not be prevented by the use of larger L2 caches, the 
number is significant for TPC-C even though the L2 miss 
per instruction is much lower than it was for TPC-B.  Thus, 
the remote cache miss rate must be higher as fewer L2 
capacity misses that reference remote memory are present 
for the TPC-C.  However, a measure of the remote 
bandwidth requirement per instruction (as determined by 
multiplying the L2 misses by the remote memory reference 
rate by the remote cache miss rate) for both workloads 
shows that TPC-C has a much lower rate despite its higher 
remote cache miss rate.  The actual remote bandwidth 
consumed was much closer however, as TPC-C had a lower  

CPI than TPC-B.  This is discussed further in Sec. 4.4. 
For TPC-D, the remote cache miss rate varies largely from 
query to query, as compulsory misses can be large when 
performing a join operation across large data sets held in 
memories on remote quads, as is the case for Q05.  As a 
result, Q05 had a much higher remote memory bandwidth 
requirement than Q06. 

While the I/O bandwidth consumption did not directly 
affect the performance and scaling of a processor-bound 
system, it is interesting to note how it varies between 
workloads.  OLTP consumes much less I/O bandwidth, as it 
is typically configured with small disk blocks due to a lack 

of spatial locality.  TPC-C also has a much lower rate of I/O 
bandwidth consumption than TPC-B, due to the 
effectiveness of the disk block buffer cache in memory.  
TPC-B was much less sensitive to memory size, as one very 
large table typically forced a disk access on nearly every 
transaction.  For TPC-D, I/O bandwidth consumed was 
much higher, as complex queries typically require access to 
large amounts of data.  In this case, the database is 
configured to use large disk blocks as spatial locality is 
present.  Still, even for the DSS benchmarks where large 
amounts of I/O bandwidth is consumed, it is interesting to 
note that, when measured as bits of I/O per instruction, the 
amount is less than one-half of the traditional rule of thumb 
of 1 bit. 

3.4 Review of Simulation Methodology 
As described in [1], the simulation model used is 

straightforward.  Given the workload profiles, the model 
determines instruction throughput for each processor and 
thus the entire system by determining the average processor 
clocks-per-instruction (CPI).  It does this by issuing 
instructions at the rate of the internal CPI, and then 
generating cache misses for a subset of instructions 
according to the workload profile.  Internal CPI is the time 
spent in the instruction execution pipeline as well as any 
stall time related to access of on-processor caches. This 
value is determined by a separate architectural simulation of 
the processor.  The time the processor spends stalled4 
waiting on average for cache misses to be serviced is the 
external CPI.  The STiNG simulation model determines the 
average cache miss latency and thus the external CPI by 
modeling all address and data traffic on all control and data 
paths in the system.  The model is instrumented to provide 
detailed latency and bandwidth information for the 
workloads modeled. These results are presented in [1] and 
in this paper. 

As stated above, the model generates events to be 
modeled according to the workload profile.  The model is 
driven by these profile probabilities instead of using address 
trace-driven or execution-driven techniques.  As a result, the 
model is unable to uncover software bottlenecks due to lock 
contention as higher levels of throughput are achieved.   As 
stated in [1], more sophisticated modeling approaches are 
possible that should enable better accuracy and precision, 
but what we have observed is that our simpler model is 
indeed an accurate indicator of system performance.  This is 
discussed further in the next section. 

4. Experimental Results 

4.1 Locality Rates 
Figure 3 shows the L2 cache miss service distribution for 

the OLTP benchmarks.  The distribution on the top 

                                                 
4 Not all cache misses cause the processor to stall due to architectural 

techniques that allow the execution of multiple instructions in parallel. 



 

represents what was simulated for TPC-B on the STiNG 
architecture.  This distribution was derived from analysis of 
benchmark data collected on Sequent Symmetry [18] 
systems combined with expectations for STiNG’s CC-
NUMA architecture.  The distribution is determined in part 
by the assumption for remote memory access rate and the 
expectation that all remote cache misses be communication 
misses.  The distribution on the bottom shows what was 
measured for TPC-C.  Because of the lower remote 
reference rate for TPC-C, many more L2 misses were 
satisfied with an access to local memory.  There were also 
fewer misses that hit in the remote cache due to this effect.  
Overall, locality was higher for the TPC-C, with over 90% 
of the L2 misses being completed within the referencing 
quad as determined by adding the local memory hit, remote 
cache hit, and local cache-to-cache transfer categories. 

The other three categories show the breakdown for the 
various types of remote operations.  A “2 hop” remote 
reference refers to either a remote cache miss to a line which 
can be retrieved from the home quad or local memory 
reference to a line which is modified remotely.  A “4 hop” 
reference refers to a remote cache miss to a line that is 

modified on a quad separate from the home quad.5   “Local 
Hit/Remote Invalidate” refers to the case where a processor 
requests ownership for a line where the data is available on 
the requesting quad but a shared copy resides on a remote 
quad and must be invalidated.  The fact that 2 hop and 4 hop 
are equivalent at 16 processors indicates that remote cache 
misses are indeed entirely for communication misses, and 
that these misses are equally likely to be on any quad in the 
system.  This can be shown by multiplying the remote 
memory reference rate for modified lines by two-thirds (for 
a 4 quad system) to determine the rate of 4 hop 
communication misses.  For TPC-B, this is 75% multiplied 
by 67%, which is about 50%.  The fact that TPC-C showed 
almost the same breakdown suggests that our assumptions 
about communication misses were correct.  We should also 
mention that the rate of communication misses overall for 
TPC-C is higher than that for TPC-B because the L2 cache 
size was larger (2MB vs. 1MB) in the TPC-C testbed. 

The interesting departure between the remote traffic rates 
for TPC-B and TPC-C is the rate of remote invalidations 
and the relative rates of local and remote communication 
misses.  There were three software effects that enabled 
greater locality for the TPC-C for communication misses 
and invalidations.  The first was multipath I/O, which 
enabled communication misses and invalidations related to 
kernel I/O activity to stay local to a given quad.  The second 
was lowest priority processor interrupt servicing on a quad 
basis, which kept interrupts local to a given quad, but also 
created some additional communication misses within a 
quad.  The third was a “buddy locking” scheme, which gave 
lock acquisition priority to processors on the same quad as 
the previous holder of a lock.  This reduced migrations of 
lock lines and critical section data for highly contested 
locks. 

Figure 4 shows the L2 cache miss service distribution for 
the DSS benchmarks.  The diagram on the left of the figure 
represents what we simulated for Query 6 on the STiNG 
architecture, while the diagram on the right shows what was 
measured for Query 5 on the NUMA-Q implementation.  
Again, we see higher rates of requests satisfied by local 
memory on the measured system as well as higher rates of 
overall locality.  There is also a higher rate of locality of 
communication misses and invalidations in the measured 
data for Query 5 as there was for TPC-C.  The interesting 
departure here is the relative ratio of 2 hop and 4 hop remote 
operations.  The assumptions for Query 6 were the same as 
for TPC-B, with the rate of 4 hop requests for an eight quad 
system becoming 7/8 * 6/7 = 75%, assuming all remote 
misses are communication misses whose addresses are 
uniformly distributed across quads.  For Query 5, the 
majority of remote cache misses are not communication 
misses, as evidenced by the high rate of 2 hop misses.  

                                                 
5 We call this “4 Hop” as the home quad responds to the requestor with 

the identity of the quad where the modified line resides, i.e. there was no 
request forwarding for NUMA-Q. 
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Figure 3: L2 Cache Miss Service Distribution for OLTP 
Benchmarks. 



 

Again, this is caused by a high rate of compulsory misses 
caused by processing a join operation using memory from 
all quads in the system. 

4.2 Latency 
Figure 5 shows the average cache miss service penalty for 

all simulated and executed benchmarks, normalized to bus 
clocks to make the different implementations more 
comparable.  The figure shows that, for both workload 
types, the actual measured latency was lower than what was 
expected.  This follows from the previous figures that 
showed that quad locality was higher overall than expected.  
The other thing to note on this diagram is the shape of the 
curve.  The simulation model predicted that the rate of 
increase in average miss latency would decline as more 
quads were added to the system.  This occurs because the 
rate of remote operations increases dramatically from zero 
as the second quad is added, but much less than that as each 
additional quad is added.  This was shown to be true in the 
measured results.  It is interesting to note that this is in sharp 
contrast to average miss penalty curves for SMP systems, 
where latency increases slowly at first as the bandwidth 
consumption increase, and then escalates very rapidly as the 

memory resource saturates under heavy load.  NUMA 
systems add additional memory subsystems with each quad, 
so this saturation effect can be avoided, provided there is 
sufficient bandwidth in the node-to-node interconnect.  

Figure 6 shows the average latency for end-to-end 
operations that require access to at least one remote quad.  
Again, the curves show the rate of increase in remote 
latency declining as quads are added to the system.  The 
figure also shows that, for OLTP, the measured remote 
latency was somewhat higher than what was predicted in 
simulation using the TPC-B workload, but less than 10%.  
This can be explained in part by the differences in the 
hardware configuration. Each system used the same speed 
SCI ring, but the measured result used a 90 MHz quad bus 
and Lynx while the simulation used a 66 MHz quad bus and 
Lynx.  This made the relative contribution of the SCI ring to 
the overall remote latency greater for the measured result.  
Interestingly, the measured result for the 32-way TPC-D 
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Query 5 matched the simulated result for Query 6, despite 
higher bandwidth consumption for Query 5.  This can be 
explained by the SCI ring being relatively faster in this case 
as the measured system used a 60 MHz quad bus and Lynx 
as compared to 66 MHz for the simulation.  This difference 
overcomes the small increase in remote latency for the 
measured result caused by queuing in the Lynx due to 
increased occupancy in the SCLIC instruction sequencer 
caused by higher bandwidth consumption. 

Figure 7 and Figure 8 show the breakdown of remote 
access latency for the OLTP benchmarks into 3 main 
categories.  The first is percentage of time spent on or 
waiting for the quad bus, the second is the time spent on the 
Lynx, and the third is the time spent on the SCI ring.  For 
both workload types, the breakdowns are similar between 
what the simulator predicted and what was measured.  There 
is a greater discrepancy for OLTP, but this is due to the 
greater speed differential between the SCI ring and the Lynx 
and quad bus for the measured case versus the simulated 
case as mentioned earlier.  The percentage of time spent on 
the Lynx is greater for OLTP, given its higher quad-to-quad 
bandwidth requirement and thus increased queuing delays.  
These results show that the model of the system was indeed 
accurate, and with modest bandwidth consumption on a 
latency-limited system, the variations between workloads 
were fairly small. 

4.3 Bandwidth 
Figure 9 shows the data bandwidth utilization of the quad 

bus.  For OLTP, the measured results track the simulated 
results quite closely, despite the much lower cache miss rate 
for TPC-C.  The rate of bandwidth consumption is higher 
than expected given the lower miss rate for TPC-C due to a 
combination of lower relative CPI and a higher core 
processor speed.  This lower relative CPI results from a 
lower L2 cache miss penalty for TPC-C when compared to 
the simulation results for TPC-B as shown in Figure 5, and 
is the result of greater degree of locality as shown in Figure 

3.  It is also interesting to note that the quad bus bandwidth 
consumption decreases as quads are added to the system, as 
predicted.  Although an increase in remote traffic causes 
additional bus transactions to occur, this is more than offset 
by the increased latency of remote operations, which 
increases the CPI and reduces the processor’s ability to 
consume bandwidth.   

In the case of DSS, the bandwidth consumption is not 
following this regular pattern.  The CPI for DSS is lower 
than for OLTP, and it increases at a much slower rate as 
quads are added.  Most of the bus bandwidth for DSS is also 
consumed for I/O transfers, and small percentage of that 
bandwidth is assumed to require remote transfers in the 
simulation.  This causes offsetting effects for quad bus 
bandwidth consumption.  Unfortunately, the scaling results 
for Query 5 were not available for comparison.  However, 
we can see that the quad bus bandwidth consumed for 32 
processors for Query 5 is much higher than for Query 6.  
This is due to the much higher miss rate for Query 5 
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compared to Query 6 that is not offset by a much higher 
CPI.  More details on the CPI for the workloads are 
provided in Sec. 4.4. 

Figure 10 shows the data bandwidth utilization on the 
SCI ring.  There are two measured results shown for OLTP, 
one labeled “No NOOPs”.  A NOOP response is essentially 
an SCI “retry” response that is sent to a requestor when the 
requested line is in a transition state.  These responses were 
assumed to occur very infrequently, and were not part of the 
simulation model.  However, the number of NOOPs can be 
noticeable, especially in the case of lock contention, where 
many processors are trying to access the same cache line 
simultaneously.  Due to the high rate of locking in TPC-C, 
we measured the SCI ring bandwidth consumption with and 
without NOOPs, as we were surprised that the measured 
SCI ring bandwidth consumption was higher than what the 
simulation predicted, especially given the higher locality 
rate for TPC-C.  The “No NOOPs” measurement showed 
good correlation with the simulated results, which we would 
expect given that the quad bus bandwidth consumption was 
very similar between TPC-C and TPC-B.  As the effective 
bandwidth of the ring did not increase as quads were added 
to the system, the utilization increased steadily.  Still, in this 
range, the SCI ring was not close to becoming a system 
bottleneck.  The same trend was observed for TPC-D Query 
6, but the bandwidth consumption was much lower.  Query 
5 on the other hand had remote bandwidth consumption 
closer to TPC-B, again due its higher L2 and remote cache 
miss rates as described above in Sec. 3.3. 

4.4 Processor Clocks per Instruction (CPI) 
Figure 11 shows the breakdown of the processor CPI into 

internal and external components for the OLTP benchmarks.  
The total CPI is time required on average to execute each 
instruction as measured in processor core clock cycles.  The 
figure shows the relative contribution to this execution of 
the time for several categories.  As stated above, internal 

CPI is the time spent in the instruction execution pipeline as 
well as any stall time related to access of on- processor 
caches.  All of the other categories combine to add up to the 
external CPI, or that amount of time per instruction that the 
processor is stalled waiting for data from an external source.  
The figure shows that the breakdown between internal and 
external CPI was very similar for TPC-B and TPC-C, and 
that the relative contribution from external sources was also 
very similar.  Despite the higher core speed for the 
measured TPC-C result compared to the simulated TPC-B 
result (495 MHz vs. 133 MHz), the CPI was actually very 
similar.  This shows that the internal component of CPI was 
nearly the same between the two workloads, and its 
throughput scaled with processor cycle time.  The external 
component was similar as the lower miss rates for TPC-C 
were offset by the increased processor cycle time, as 
described earlier in Sec. 3.3.  The breakdown in the various 
external components was nearly the same due to the high 
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rate of locality predicted and measured, as well as the 
similarity between predicted and measured local and remote 
access latencies.  

Figure 12 shows the relative breakdown of CPI for the 
DSS benchmarks.  Unlike the OLTP results, the DSS 
workloads had much different CPIs as well as different 
breakdowns, although the CPIs were much lower than what 
was observed for OLTP.  Query 5 had a much higher CPI 
(67% higher) due to its higher L2 cache miss rate.  The 
internal component of CPI, however, was almost the same 
between the Query 5 and Query 6.  Again, this shows great 
similarity between the benchmarks as well as scaling of the 
internal CPI with processor core speed.  The external CPI 
showed a different relative breakdown between remote and 
local misses and invalidates for the measured results when 
compared to simulation.  This is caused by differing locality 
rates as shown in Figure 4.  

4.5 System Throughput 
Figure 13 shows the predicted scaling efficiency in 

throughput for TPC-B and TPC-D Query 6, as well the 
measured scaling for TPC-C.  This chart captures the net 
effect of the miss rates, locality rates, and access latencies 
on system level performance for the latency-limited 
processor bound system.  The scaling efficiency for TPC-C 
was very similar although somewhat better than what was 
predicted for TPC-B.  A higher locality rate enabled better 
scaling initially, but this begins to be offset at 4 quads due 
to increased spinning on locks.  The simulation model did 
not account for spinning on locks, and thus the scaling 
efficiency curve maintained its trend for 4 quads and 
beyond.  With a lower CPI and very low external CPI, the 
TPC-D Query 6 curve shows very good scaling, as it is less 
sensitive to the average L2 cache miss penalty.  
Unfortunately, scaling results for Query 5 were unavailable 
for comparison.  Although the scaling efficiency for OLTP 
is much lower, this has been demonstrated previously as an 
acceptable result for large-scale systems. 

5. Summary and Conclusion 
This paper analyzed the detailed performance aspects of 

the NUMA-Q implementation of the STiNG architecture 
and compared measured results to expectations determined 
by simulation studies.  We have shown that, despite 
significant workload differences between what was 
simulated and what was measured, it is still possible to 
make sense of the data and draw meaningful conclusions.   

In particular, we conclude that the simulated results for 
STiNG were accurate, despite known shortcomings in the 
model.  The model predicted system throughput scaling 
within 15% of measured results, despite differences in 
workload characteristics and component speeds.  This 
suggests that more precise simulation approaches based on 
trace or execution-driven methods may not be worth the 
significantly higher effort, especially when considering the 

reduced flexibility and increase in simulation turnaround 
time. 

Furthermore, we have shown both in simulation and with 
measured data that the system level performance is 
determined by the rate of locality and the remote and local 
access latencies, and is not data bandwidth limited.  Because 
of this, the behavior of the measured workloads is very 
similar, despite differences in miss rates and CPI.  For this 
reason, our approach in using this simulation model to 
assess design trade-offs is valid, despite the inevitable 
evolution in benchmarks between the time a system is 
designed and the time it is deployed in the field.   

Another conclusion we can offer is that CC-NUMA is a 
viable architecture from a systems performance standpoint.  
With reasonable locality, scaling of performance with 
processor count is achievable, as we have shown.  Although 
some may argue that the remote access latencies of this 
system are too high, our conclusion on scaling performance 
still holds.  As more aggressive designs have come to 
market with more to follow, we will undoubtedly see an 
increase in scaling efficiency for CC-NUMA systems 
running commercial workloads. 
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