

Power Efficient Cache Coherence

Craig Saldanha Mikko Lipasti

Motivation

- Power consumption becoming a serious design constraint.
- Market demand for faster and more complex servers.
- Complex coherence protocol and interconnect.
- f_{clock} + Complexity = $P_{interconnect}$

Motivation

- Traditional power saving methodologies ineffective.
- Minimize number of transaction packets.
- At the end-points: Jetty.
- At the source: Serial Snoop.

OUTLINE

- Overview of Snoop based protocols and opportunity for power savings
- Latency and Power consumption of parallel snooping techniques
- Serial Snooping
- Results
- Conclusions
- Future Work

Snoop Based Coherence

Local Node

- → Tag Lookup
- → Bus Arbitration
- → Snoop Transmission

Remote Node

- → Tag Lookup
- Snoop Response
- Combination of Responses
- Data Fetch
- → Data Transmit

Degrees of Speculation

3 Degrees of Freedom to Speculate

Snooping Data Fetch Data Transmit

Latency and Power assumptions

- Consider only load misses
- Tree of point-point connections.
- Latency to traverse a link: 1Bus cycle (7ns)
- Tag Look up :1 bus cycle (7ns)
- D-Fetch: 2 bus cycles (14ns)
- DRAM access: 10 bus cycles (70ns)

Snoop Broadcast

Power

Plink

Snoop Broadcast

Latency

Power

Plink+Pswitch

Snoop Broadcast

Latency

Power

2Plink+Pswitch

Snoop Broadcast

Latency

Power

2Plink+2Pswitch

Snoop Broadcast

Latency

Power

5Plink+2Pswitch

Snoop Broadcast

Latency

Power

5Plink+4Pswitch

Snoop Broadcast

Latency

Power

8Plink+4Pswitch

Memory Access: Data Fetch

Power

Pmem

Memory Access : Data Transmit

Power

Pmem+3Plink+2Pswitch

Remote Node: Tag Lookup

Latency

Power

3Ptag

Remote Node : Snoop Response

Power

3Ptag+3*(Pswitch+2Plink)+Plink+2Pswitch+2Plink

Remote Node: Data Fetch

Latency

Power

3Pcache

Remote Node: Data Transmit

Power

3Ptag+3*(4Plink+3Pswitch)

Latency

Power

Remote Node supplies the data

29Plink+18Pswitch+3Ptag+3Pcache+Pmem

Memory supplies the data

20Plink+11Pswitch+3Ptag+3Pcache+Pmem

Latency

Power

Remote Node supplies the data

21Plink+12Pswitch+3Ptag+Pcache+Pmem

Memory supplies the data

20Plink+11Pswitch+3Ptag+3Pcache+Pmem

Remote Node supplies the data

Memory supplies the data

21Plink+12Pswitch+3Ptag+Pcache

20Plink+11Pswitch+3Ptag+Pmem

 Avoids Speculative transmission of Snoop packets.

- Avoids Speculative transmission of Snoop packets.
- Check the nearest neighbor
- Data supplied with minimum latency and power

Forward snoop to next level

Forward snoop to next level

Search other half of tree

- Search other half of tree
- Search leaf nodes serially

- Search other half of tree
- Search leaf nodes serially

Serial Snooping: Features

- Latency to satisfy a request dependent on distance from requestor.
- Data resident at the nearest neighbor supplied with the lowest latency and power.
- Requests visible to memory controller only at root node.
- Latency is adversely affected when requested data present at the farthest node
- Worst case power consumption is still less than the parallel snooping.

Request satisfied by Nearest Node

Latency

Power

Xmit Snoop: 2Plink + Pswitch

P2 Tag access and snoop response: Ptag + 2Plink + Pswitch

P2 Data Fetch and Xmit: Pcache +2Plink + Pswitch

Ptotal= 6Plink+3Pswitch+Ptag+Pcache

Request satisfied by Next-Nearest Neighbor

Power

16Plink+10Pswitch+2Ptag+Pcache

Request satisfied by farthest node

Latency

Power

Remote Node supplies the data

If Memory supplies the data

18Plink+11Pswitch+3Ptag+Pcache
17Plink+10Pswitch+3Ptag+Pmem

RESULTS: Load Miss Distributions

Load Miss Distribution

RESULTS: Average Latencies to satisfy load misses

Average Latencies to satisfy load misses

RESULTS: Relative Power Savings

Factors contributing to power consumption

CONCLUSIONS

- Reducing degree of speculation has potential for significant power savings
- Performance degradation is minimal for the set of benchmarks studied.
- Serial Snooping with speculative memory fetch provides optimal latency and power consumption.

Future Work

- Develop detailed execution-driven
 Power Model
- Explore different interconnect topologies.
- Examine the viability of adaptive mechanisms for protocol policy.

Nearest Neighbor

Latency

Power

2Plink+Pswitch

Questions

