

An Architectural Evaluation of Java TPC-W

Harold "Trey" Cain, Ravi Rajwar, Morris Marden, Mikko Lipasti

University of Wisconsin at Madison http://www.ece.wisc.edu/~pharm

Seventh International Symposium on High Performance Computer Architecture

January 2001

- Why do workload characterization?
 - Java: gaining widespread use in server-side middleware applications
 - Very little known about the architectural requirements server-side Java
- TPC-W: a mixed transaction processing/web serving benchmark
 - Web application middleware implemented in Java

Outline

- TPC-W Overview
- Our Java-based implementation of TPC-W
- Native Execution Results
 - Memory System Characterization
 - Collected using performance counters on an IBM RS/6000 S80 Server
 - Results for TPC-W, SPECjbb2000, SPECweb99
- Simulation Results
 - Coarse Grained Multithreading Evaluation

What is TPC-W?

- New benchmark specified by the Transaction Processing Council (in February 2000), targeting transactional web systems
 - Web Serving of static and dynamic content
 - On-line transaction processing (OLTP)
 - Some decision support (DSS)
- Models an on-line bookstore
- Consists of 14 browser/web server interactions

3-Tier Application

TPC-W System Under Test Web Browsing Users Web Server(s) Database Server(s)

Web Interaction Characteristics

- Dynamic HTML required: 11/14 interactions
- DB connectivity required: 11/14 interactions
 - Query complexity varies
 - Read-only and Read/Write
- Number of images per page:
 - Varies from 3 to 9, 6 on average
- Maximum response time:
 - Varies from 3 to 20 seconds

Web Interaction Mixes

- Different web sites have different usage patterns
- TPC-W models variance using three different transaction mixes
 - Browsing Mix
 - 95% browsing, 5% ordering
 - Shopping Mix (Primary performance metric)
 - 80% browsing, 20% ordering
 - Ordering Mix (business to business)
 - 50% browsing, 50% ordering

Java Implementation of TPC-W

- All 14 TPC-W web interactions implemented as Java Servlets
- JDBC used to communicate to a database back-end (DB2)
- Did not implement
 - Secure Transactions using secure sockets layer (SSL)
 - Communication with payment gateway authority

- TPC-W Specification
- Our implementation of TPC-W

Native Execution Results

- Memory System Characterization
- Collected using performance counters on an IBM RS/6000 S80 Server
- TPC-W, SPECweb99, SPECjbb2000
- Simulation Results
 - Coarse Grained Multithreading Evaluation

System Parameters

Hardware

- 6 processor IBM RS/6000 S80, AIX 4.3
- RS-64 III (Pulsar) PowerPC processors
- 8 GB memory
- 8 MB 4-way set associative L2 caches
- 128 KB I-Cache, 128 KB D-Cache, 2-way set associative

Software:

- Zeus Web Server v. 3.3.7
- Apache JServ Servlet Engine 1.0, Java 1.1.8 w/ JIT
- DB2 Universal Database 6.1
- Database Size: 205 MB
- Image Set Size: 250 MB

CPU Time by Application Component

Java Servlet Engine Dominates CPU Usage

CPI Breakdown

Most stalls due to L2 cache misses

L2 Miss Breakdown

Load misses dominate, except in DB2

Cache-to-Cache Transfers

Coherence Protocols: To E or not to E

 Removing E state would necessitate an extra bus transaction for 9%-28% of all L2 Misses.

Outline

- TPC-W Specification
- Our implementation of TPC-W
- Native Execution Results
 - Memory System Characterization
 - Collected using performance counters on an IBM RS/6000 S80 Server
 - TPC-W, SPECweb99, SPECjbb2000

Simulation Results

Coarse Grained Multithreading Evaluation

Full System Simulation

- Due to the large amount of time spent in system code, full system simulation is necessary.
- SimOS-PowerPC
 - Runs modified version of AIX 4.3.1
 - System configuration occurs on real system, then a disk snapshot is created
 - Snapshot used by SimOS-PPC
- We simulate a three second snapshot of steady-state behavior

Simulated Machine Parameters

Single-issue, in-order 500 MHZ processor

■ L1 I-Cache: 128 KB, 2-way associative

L1 D-Cache: 128 KB, 2-way associative

L2 Cache: 8 MB, 4-way associative

Memory: 1 GB

Bus models the Sun Gigaplane-XB

 System configuration is considerably different from IBM S80

Coarse Grained Multithreading

- Processor contains logic for switching among several threads of execution and maintaining multiple thread contexts.
- Switch thread when:
 - Cache miss occurs in primary thread, and a suspended thread is in the ready state.
 - The primary thread is in a spin loop or the idle loop, and a suspended thread in the ready state.
 - A suspended thread has a pending interrupt or exception.
 - A suspended ready thread has not retired an instruction in the last 1000 cycles.
- 3 cycle thread switch penalty

CGMT Results

2 threads: increases throughput as much as 41%

4 threads: increases throughput as much as 60%

Conclusions

- Java servlet engine is performance critical
 - L2 cache miss stalls to unshared data are primary contributor to memory system stalls
- The exclusive state successfully reduces memory bus traffic for these commercial workloads.
- Coarse grained multithreading:
 - Decreases cache hit rates
 - Decreases branch prediction accuracy
- However, total system throughput improves due to CGMT's memory latency tolerance.

Questions?

Web Interaction Characteristics

Name	Dynamic Html?	DB Complexity	# Images	Max Resp Time	Browsing Mix	Shopping Mix	Ordering Mix
Admin Confirm	Yes	O(n⁴)	5	20	0.09 %	0.09 %	0.11 %
Admin Request	Yes	O(n ²)	6	3	0.10 %	0.10 %	0.12 %
Best Seller	Yes	O(n ³)	9	5	11.00 %	5.00 %	0.46 %
Buy Confirm	Yes	O(n)	2	5	0.69 %	1.20 %	10.18 %
Buy Request	Yes	O(n)	3	3	0.75 %	2.60 %	12.73 %
Customer Registration	No	N/A	4	3	0.82 %	3.00 %	12.86 %
Home	Yes	O(n)	9	3	29.00 %	16.00 %	9.12 %
New Product	Yes	O(n ²)	9	5	11.00 %	5.00 %	0.46 %
Order Display	Yes	O(n)	2	3	0.25 %	0.66 %	0.22 %
Order Inquiry	No	N/A	3	3	0.30 %	0.75 %	0.25 %
Product Detail	Yes	O(n ²)	6	3	21.00 %	17.00 %	12.35 %
Search Request	No	N/A	9	3	12.00 %	20.00 %	14.54 %
Search Result	Yes	O(n ²)	9	10	11.00 %	17.00 %	13.08 %
Shopping Cart	Yes	O(n)	9	3	2.00 %	11.60 %	13.53 %

Online Bookstore

Functionality:

- Searching
- Browsing
- Shopping carts and secure purchasing
- Rotating advertisements
- Best seller and new product lists
- Customer registration
- Administrative updates

Remote Browser Emulator

- Emulates web users interacting through browsers
- Non-deterministic walk over web pages
 - Send HTTP request
 - Parse HTTP response for images and other URLs
 - Wait for think time (~7 seconds)
 - Repeat

Database Scaling

- Database size depends on two factors:
 - Number of items in bookstore inventory
 - Number of bookstore customers
- ~5MB in DB Tables per active user (like TPC-C)
- ~1 KB per item in DB tables (like TPC-D)
- Also ~25KB of static images per item
 - Images may be stored in database or standard file system