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ABSTRACT
Understanding and exploiting the dynamic behavior of pro-
grams is key to improving performance beyond what is pos-
sible using static techniques. We present an implementation
of a phase tracking algorithm and show that it can be suc-
cessfully applied to existing SPEC2000 benchmarks, many of
which show a consistent phase behavior.

We then show the application of phase information to op-
timize branch prediction. Our results indicate a reduction of
up to 44.35% in branch predicition misses, using simpler pre-
dictors based on per phase information. We also get an im-
provement of up to 4.70% in IPC for our target benchmarks.

1. INTRODUCTION
Previous research has shown that understanding and ex-

ploiting the dynamic behavior of programs is key to improving
performance beyond what is possible using static techniques.
A program’s control flow is one such aspect of its dynamic
behavior that has been extensively used to optimize program
execution, typically by identifying the various phases in which
a program executes.

A phase is defined as a period of execution during
which a given measured program metric is rela-
tively stable.

Phases can both be tracked (to detect what phase the execu-
tion is in) and predicted (to determine when another phase
is about to be entered). The phase behavior seen in any pro-
gram metric is directly a function of the way the code is being
executed. If this behavior can be captured accurately during
run time, then it can guide many optimizations specific to the
phase defining metric. For example, if our program metric is
based on memory references, then we can resize our cache
size across various phases. If we are able to efficiently deter-
mine the phases and apply the aforementioned optimization,
we can improve cache control and wire delay as only a part
of cache is active as per the requirements of that particular
phase. The most important attribute of a phase is that it
often captures many different metrics.

In this paper we analyze the phase tracking and phase pre-
diction schemes. We also look into the underlying predictor
models used by such phase prediction schemes and try to as-
sess the implications of varied predictor models.

Our most important contribution is the design and imple-
mentation of phase based adaptive branch predictor. Using the
ability to both determine phases and predict the next phase,
we use that information to control reconfigurable hardware.
Specifically, we determine, at runtime, the best branch pre-
dictor to use for each detected phase. Our results show a re-
duction of up to 44.35% in branch prediction misses which can
lead to reduction in power consumed by the processor in ex-
ecuting mis-speculated instructions and flushing the pipeline
thereafter. Further, with the increase in the number of pipeline
stages in the modern processors, the impact of reduction in
branch prediction misses on power consumption will become
more profound.

The remainder of this paper is organized as follows. In Sec-
tion 2 we discuss the implementation of our phase tracker.
Section 4 covers our methodology for applying phase infor-
mation to applications. Section 5 discusses the applications
of branch predictors. Our experimental results are presented
in Section 6, and Section 7 discusses the feasibility of imple-
menting our techniques in hardware. Section 8 surveys other
work in phase tracking and dynamic hardware configuration.
Finally, we draw conclusions in Section 9.

2. PHASE TRACKING
In this section we discuss how we track executing pro-

grams, and classify sections of the program into phases. Our
phase tracking is an implementation of Sherwood et al’s phase
tracker [15].

There are two stages to phase tracking. The first stage col-
lects profiling data as instructions execute. The second stage
takes a large scale view at the program. After one profiling
period, the data from the first stage is taken and classified by
the second stage.

2.1 Phase Profiling
When a branch instruction executes, its PC and the number

of instructions since the last branch are tracked. This captures
information about the basic blocks, as well as the weight of
the block in terms of the number of instructions executed.
This approach is different from the phase capture technique
used by Dhodapkar and Smith [7], where, in place of basic
block information, they keep track of lines that have been
touched in the instruction cache.

When a branch is detected, its PC is hashed into one of
the buckets in the Accumulator. The value in that bucket is
then incremented by the number of instructions since the last
branch. Each entry in the accumulator is a 24-bit counter. In



all of our experiments it was rare to see any entry saturate
during the ten million instruction window.

As with any hashing scheme, there are two important issues.
One is the number of buckets to include in the accumulator.
On one hand, if too few buckets are used aliases can occur
causing two different phases to have similar footprints and
on the other hand, too many buckets are a waste of memory.
Sherwood et al [15] have shown that 32 buckets are sufficient
for most workloads.

Another important issue is the choice of hash function.
Sherwood suggested using a random projection[14] based hash
function. In this function bits are randomly selected from the
PC and used to form the hash. We found however, that we
got as good if not better results from a simpler function. We
used the function:

hash = PC mod Number of Buckets

There are three important fallouts of using such an accumu-
lator structure. Firstly, since only thirty-two 24-bit counters
are required, the hardware cost is relatively cheap. Secondly,
the cost to update this structure is fairly low. Though it has
to be accessed on every branch instruction, such accesses can
be performed in parallel with other operations like branch
prediction. Thirdly, this structure is largely architecture in-
dependent and hence can be applied to any architecture with
a clear notion of branches.

2.2 Accumulator to Phase Footprint
After a profiling period has elapsed, the data in the accumu-

lator into a phase footprint. Since a fuzzy form of equivalence
is defined between the phase footprints, the full precision of
a 24-bit value for each accumulator is not required. Hence
a footprint vector is formed from the accumulator entries by
reducing the precision using the following equation:

(bucket[i] × Number of Buckets)/ (size of profiling period)

The above equation is implemented using the left and the
right shift operators for multiplication and division respec-
tively. For our parameters this reduces each bucket to size
6-bits, for a total of 24 bytes to store a footprint.

2.3 Classifying Footprints
A Past Footprint Table is used to keep track of past phases.

The table has a finite number of entries, and for reasons dis-
cussed in [15]
20 entries is sufficient for most programs. Each unique phase
footprint is stored in the table. This helps us determine if a
new phase is unique or not. Each time we see a new phase, a
new entry is allocated in the past footprint table.

Since phase footprints are not precise indicators of unique-
ness, a fuzzy equality is defined between phases. To com-
pare two phases, the Manhattan distance1 between the two
footprints is computed. If this distance is within a certain
threshold, then the phases are considered to be equal.

Though this operation is slightly expensive, this cost can
be justified by the low frequency at which it occurs.

2.4 The Whole Process
The first part of phase tracking is accumulating runtime

data. For every branch instruction, the number of instructions
since the last branch are stored in the accumulator.

1The sum of element-wise differences.

After 10 million instructions the data in the accumulator
is converted into a phase footprint. The footprint is then
compared with every phase in the past footprint table. If the
phase matches no entry in the table, then the footprint is
inserted into the table as a new phase.

Figure 1 shows an example of phased behavior in a pro-
gram. The top entry represents the data our accumulator
has collected at the end of each 10 million instruction period.
The shade of point in y axis is scaled based on the accumu-
lator count. One can see that repetitions in the phase data
we collect corresponds with the repeated behavior in other
performance metrics. This gives some intuition that we are
collecting the correct information, and this will be quantified
further when we discuss our applications.

3. PHASE PREDICTION
Phase tracking allows us to determine what phase of exe-

cution just happened. However, in order to reconfigure hard-
ware to target instructions that are currently executing, we
need to estimate with high accuracy the phase we are cur-
rently in. We compared three different phase predictors: last
seen, RLE Markov, and perceptron.

3.1 Last seen
The simplest of phase predictors simply predicts that the

next phase is the same as the last one.

3.2 RLE Markov
We have implemented the RLE Markov predictor of [15].

We have modified their hash function slightly. We combine
a 27 bit saturating counter representing the number of times
a phase is seen combined with a 5 bit counter representing
what phase it was. The paper [15] indicates that 20 phases
suffice for 80% of instructions.

3.3 Perceptron
We have also implemented a perceptron predictor. We were

guided initially by the perceptron branch predictor of [11].
Unlike a branch predictor, which must only differentiate be-
tween taken and not taken branches, we have more than two
possible outcomes: we must differentiate between several dif-
ferent phases.

3.4 Results
We found that after performing two key adjustments to the

phase tracker, last seen proved to be a very accurate predictor,
making the added complexity of RLE Markov or perceptrons
unnecessary. For example, on gcc, last seen was 96% accurate,
compared to 94% accurate for RLE Markov. So we used the
Last seen predictor with the following modifications. First,
we increased the minimum Manhattan distance necessary to
be considered a different phase. This reduced the number of
phases drastically. Second, we performed an averaging step
when a footprint is classified as a given phase. Instead of
keeping the first footprint as defining a phase, we allow a
phase to drift toward its most natural center. We found that
a weight of 1/16 of the new footprint combined with 15/16 of
the original footprint worked well.

4. PHASE BASED OPTIMIZATIONS

Generality is a special case needed. Special Cases
are more generally needed.
– Kent M. Pitman
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Figure 1: Phased Behavior of gcc This graph shows the accumulator data that our phase tracker collects, as well
as several performance metrics collected in SimpleScalar. Each point of the x-axis is at a scale of 10 million
instructions.

This quote succinctly summarizes the motivation for our
phase based optimizations presented in this section. Micro-
processors are designed to provide good average performance
over a variety of workloads. This can lead to inefficiencies in
both power and performance for individual program and dur-
ing individual phases within the same program [7]. However,
microarchitectures with multi configuration units(e.g. caches,
predictors, instruction windows) are able to adapt dynami-
cally to program behavior. This is typically done by tuning
when a phase change is detected or predicted-i.e. sequencing
through a series of trial configurations and selecting the best.

Due to continuous progress in microarchitecture and chip
technology, the trade-offs involving performance, power, and
complexity become increasingly difficult and warrant increas-
ingly sophisticated optimization methods. One promising
optimization approach is to configure microarchitecture fea-
tures dynamically to adapt to changing program character-
istics ([7],[1],[4],[2],[12],[17],[6], [10]). As the program runs,
it passes through phases of execution where its performance
characteristics and its hardware requirements may vary [14],[18].
Performance and/or power consumption can be optimized
on-the-fly if significant phase changes can be detected and
dynamic microarchitecture configurations can be invoked in
response to the phase changes.

In most of the proposed implementations, configurable units
are designed to have a number of fixed configurations e.g. four
different cache sizes or a configurable cache whose portions
can be turned off dynamically. Then, the runtime configu-
ration algorithm selects from one of the multiple available

configurations.
The approach taken here is primarily directed towards de-

velopment of dynamic configuration algorithms to improve
performance (power, IPC). The goal is to use the underly-
ing phase information provided by the phase predictor to se-
lect the best configuration for the next phase. So basically a
change in phase acts a trigger for the configuration algorithm
to tune the configuration for the new phase.

4.1 Dynamically Configurable Hardware
A number of proposals have been made for adaptive hard-

ware mechanisms targeted at performance/power optimiza-
tion. A few examples of configurable hardware is as follows:

Configurable Caches and TLBs - sizes and associativity
are adjusted in response to program referencing behav-
ior [17],[2].

Allocation of memory hierarchy resources -cache mem-
ory resources are divided among levels in the cache hi-
erarchy [4] or configured for other uses, e.g instruction
reuse.

Configurable Branch Predictor -the length of the history
for a single predictors can be varied [12] or different pre-
dictors can be selected for different phases.

Configurable Instruction Windows -sections of the issue
window are disabled when there is low instruction level
parallelism [6].



Configurable Pipelines -portions of clustered microarchi-
tectures can be disabled, or a pipeline can vary between
inorder, out-of-order, and pipeline gating [8].

Of course, these various methods can be combined together
in one system. Balakrisan et al [3] present the design of a com-
pletely adaptive microarchitecture. Huang et al [9], describe
a general framework and algorithms that are intended to deal
with processors containing several configurable units.

4.2 Dynamic Reconfiguration Algorithm using
Phase information

Methods for controlling multi configuration hardware gen-
erally involve a form of feedback where some performance
characteristics (e.g. (IPC) or miss rate) is measured for a
fixed interval (also called a ”window”, ”period”, ”step”, etc.)
and reconfiguration decisions are based on current and past
measurements.

The phase predictor provides the trigger by providing the
next phase information to the algorithm. If there has been a
phase change, the dynamic reconfiguration algorithm starts a
tuning sequence, where different configurations are tried and
the best configuration is chosen for the newly started phase.
The reconfiguration algorithm is run only once per phase, and
the best configuration is stored in a special data structure. If
the same phase reoccurs, the best configuration for the reoc-
curring phase can be identified by indexing into the statistics
table without undergoing the tuning sequence again. This is a
good optimization as program behavior remains same within
a phase and saves the overhead of tuning sequence for the
recurring phases.

5. PHASE-BASED ADAPTIVE BRANCH PRE-
DICTORS

Previous work in adaptive branch predictors has been in
combining branch predictors [13]. In this case, there is a
meta-level predictor, which chooses from among a set of pre-
dictors(typically 2 in number), one which has the highest ac-
curacy at any point of time. This choice is made at every
branch instruction. Here we apply phase-based optimizations
to branch predictor selection.

Phase-based Branch predictors. The performance of branch
predictors is not uniform across the entire execution of the
program. In this particular application, we try to exploit the
phase behavior of programs to choose an appropriate branch
predictor for one entire phase. We try to choose a branch pre-
dictor that is best for a phase by using the fact that program
execution is uniform throughout a phase. Once a branch pre-
dictor is chosen for a phase, it would be used for the rest of
the phase and any other recurrences of the phase. This is
achieved in the following way:

• A set of branch predictors, with sizes smaller or compa-
rable to that of a baseline two level predictor is chosen.

• At the beginning of each new phase, the branch pre-
dictors from the selected set are used, one by one for a
profiling period.

• The number of branch predictor misses and the miss
rate are stored for each predictor profiled.

• After all the predictors are profiled, the best predictor
is chosen based on the following criterion:

Choose the predictor with the least miss rate as the best.
If two predictors differ in miss rates by less than 1%
then chose the simpler one.

So the number of instructions executed before a stable pre-
dictor is chosen is profiling period × number of predictors.

The following figure summarizes the technique used:

The rationale behind this rule is that if the number of misses
that a predictor has is lesser, then its accuracy is higher.
Moreover since the accuracy is higher, the number of mis-
speculated instructions are lesser, and consequently the power
consumption is also reduced. But, in case the predictors have
close miss rates, then the simpler predictor is chosen, keeping
in mind lower power consumption.

Once a branch predictor is chosen for a phase, it is associ-
ated which that phase. So, if that phase re-occurs, the pro-
filing need not be repeated. The information about when the
phase is going to change is provided by the phase predictor.
Though there may be more misses during the profiling peri-
ods, these are out-balanced by the reduction in the number
of misses for the rest of the phase.

6. EXPERIMENTATION
Here we present results of adapting the branch predictor

to phase-specific behavior. SimpleScalar v3.0d [5] was mod-
ified to incorporate phase prediction and reconfiguration al-
gorithms. We evaluated our scheme using SPEC2000 bench-
marks.

6.1 Phase-based branch predictor
We have used a profiling period of 10 million instructions.

We have tested our multiple branch predictor scheme using
the following set of candidate predictors:

2 Level [1:1024:8 ] 2Level predictor [19] with 1 shift reg-
ister in the first level and 1024 counters in the second
level. It uses a shift register of width 8 bits. This is the
default 2Level predictor configuration for SimpleScalar
and the baseline predictor for our experiments.

Bimodal [1024 ] BiModal predictor [16] with 1024 coun-
ters.

2 Level [8:512:8 ] 2Level predictor with 8 shift register in
the first level and 512 counters in the second level. It
uses a shift register of width 8 bits.

2 Level [1:512:8 ] 2Level predictor with 1 shift register in
the first level and 512 counters in the second level. It
uses a shift register of width 8 bits.

We choose 2 Level [1:1024:8] as the baseline predictor for
our experiments as it has the maximum complexity (in terms
of size) amongst all the candidate predictors. Please note
that this is important because if our reconfiguration algorithm
chooses any other candidate predictor (apart from the base-
line) for any particular phase of the experimental workload,
we can deduce that a simpler branch predictor outperforms
a more complex one and hence shows the efficacy of phase
behavior in reconfiguration.
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Figure 2: IPC comparison for gcc. This graph pro-
vides a comparison of IPC in the phase-based branch
predictor scheme with the IPC in the baseline case for
the gcc benchmark. The second part of the graph shows
the phases predicted by the phase predictor and the
corresponding branch predictor chosen for that phase.
The third part of the graph shows the scaled values of
the accumulators used in the phase tracking scheme.

6.2 Results
We have tested our multiple branch predictor scheme on

gcc, mpr, vcf integer benchmarks. We have evaluated the
effect of our scheme on Instructions Per Cycle (IPC) and
Branch Prediction misses. Figure 2 and 3 depict the IPC and
branch prediction misses for our phase based multiple branch
predictor scheme for the gcc benchmark. The gcc benchmark
was run for 46 billion instructions (till completion). The bot-
tommost image in Figures 2,3 depicts the accumulator fre-
quency for the gcc benchmark and clearly outlines the re-
peating phase behavior of gcc over long execution times. The
middle portion of Figures 2,3 show the phase information as
predicted by our phase predictor and also the corresponding
branch predictor used in that phase.

The topmost graph in Figure 2 compares the IPC mea-
surements for our scheme (in red) as compared to the base-
line 2 Level [1:1024:8] predictor (in blue)2. As evident from
the graphs, our scheme consistently performs equal or better
than the base scheme and switches between various predictors
depending on the phase information. For example, in the win-
dow between 10billion and 15billion instructions, our scheme
chooses a 2 Level predictor with a configuration of [8:512:8],
that has half the number of counters (512) as compared to
the baseline scheme (1024) but still achieves 3.2% more IPC
than the base case.

The topmost graph in Figure 3 compares the branch pre-

2Color codes have been used since it is otherwise difficult to
show the improvement and the overall picture at the same
time.
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Figure 3: Branch predictor misses comparison for gcc.
This graph provides a comparison of branch predictor
misses in the phase-based branch predictor scheme with
those in the baseline case for the gcc benchmark. The
second part of the graph shows the phases predicted
by the phase predictor and the corresponding branch
predictor chosen for that phase. The third part of the
graph shows the scaled values of the accumulators used
in the phase tracking scheme.

diction misses for our scheme (in red) as compared to the
baseline 2 Level [1:1024:8] predictor (in blue). As the graph
shows, our scheme clearly outperforms the baseline scheme
by dynamically choosing simpler predictors based on phase
information provided by the phase predictor (as shown in the
middle graph). Our scheme achieves 44.35% less branch pre-
diction misses than the baseline scheme. Similarly, Figures 4
and 5 provide a comparison of IPC and branch prediction
misses for mcf benchmark.

The total number of instructions for mcf benchmark was
35billion. As the Figure 5 shows, our scheme is able to achieve
comprehensive reductions in branch prediction misses by al-
ternating between a BiModal predictor with 1024 counters
and 2 Level predictor with 512 counters and 8 first level shift
registers. Again as in gcc, our scheme achieves 43.48% less
branch prediction misses as compared to the larger baseline
predictor.

Figures 6 and 7 provide similar comparisons for the vpr
benchmark. The total number of instructions executed were
3.14billion. As clear from the figures, vpr has only two phases
and our scheme chooses BiModal with 1024 entries over the
baseline predictor and achieves 28.98% lower miss rate as
compared to the baseline. So as this benchmark illustrates,
our scheme is useful even in scenarios where there is not much
change of phases.

So the above results clearly establish the efficacy of phase
based multiple branch predictors in reducing branch predic-
tion misses. Figure 8 summarizes the IPC improvements of
our scheme over the baseline scheme. We perform better than
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Figure 4: IPC comparison for mcf. This graph pro-
vides a comparison of IPC in the phase-based branch
predictor scheme with the IPC in the baseline case for
the mcf benchmark. The second part of the graph shows
the phases predicted by the phase predictor and the
corresponding branch predictor chosen for that phase.
The third part of the graph shows the scaled values of
the accumulators used in the phase tracking scheme.

the baseline on all the tested benchmarks and the gain varies
between (2.24%- 4.70%). The reduction in branch prediction
misses achieved by our scheme is shown in Figure 9. As ev-
ident from the figure, we achieve comprehensive reductions
in the branch prediction misses (28.98%-44.35%), which can
definitely lead to power savings as discussed in Section 7.

7. DISCUSSION
The results from multiple branch predictor scheme show

that we can comprehensively reduce the branch prediction
misses by dynamically choosing the branch predictor config-
uration on the basis of phase information. Branch prediction
misses can be directly correlated with the number of mis-
speculated instructions.

Our scheme also empirically illustrates that choosing a sim-
ple branch predictor is a good strategy for many phases. We
used a baseline 2 Level predictor with 8 entries in the first level
and 1024 entries in the second level and show that choosing a
predictor of half the size of the baseline predictor (with just
512 entries in the second level), gives us considerable reduc-
tions in branch prediction misses for some phases.

Implementing our scheme in hardware is also feasible with
minimal effort. We propose a scheme where the baseline pre-
dictor with the largest configuration can be instantiated in
the processor and our dynamic reconfiguration algorithm can
selectively switch on/off portions of the baseline predictor to
convert it into simpler predictors depending on the phase re-
quirements. We believe that our scheme provides a neat strat-
egy for power savings in a modern out-of-order processor.
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Figure 5: Branch predictor misses comparison for
mcf. This graph provides a comparison of branch
predictor misses in the phase-based branch predictor
scheme with those in the baseline case for the mcf
benchmark. The second part of the graph shows the
phases predicted by the phase predictor and the corre-
sponding branch predictor chosen for that phase. The
third part of the graph shows the scaled values of the
accumulators used in the phase tracking scheme.

Power Savings. Modern processor have a large number of
pipeline stages. Whenever a branch is mis-predicted, a large
number of instructions are fetched from the wrong path, which
then have to be flushed. So the penalty associated with fetch-
ing and later flushing these instructions is high in terms of
power and hence makes the reduction in branch prediction
misses an important factor for saving power in a modern pro-
cessor. As the branch prediction misses reduce, the number
of mis-speculated instructions in the pipeline will also reduce,
thereby reducing the power consumption.

We also achieve marginal gains in IPC for our tested bench-
marks. So we believe our scheme can provide good power
savings without any loss in performance (IPC).

8. RELATED WORK
The phase tracking work by Sherwood et al [15] has formed

the starting point of much of our work.
Dhodapkar and Smith [7] implemented a phase tracking

scheme. In their scheme, phases are identified by which cache
lines are touched in an instruction window.

Albonesi et al [3] have presented the design of an adaptive
microprocessor based on feedback that leads to considerable
power savings on their benchmarks reported. Also, they make
use of Smith’s [7] phase tracker mechanism to identify phase
changes to trigger their adaptations. However we make use
of the phase prediction mechanism proposed by Sherwood et
al [15].

Huang et al [9] proposed positional adaptations, which uses
program structure to identify major program phases. Specifi-
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Figure 6: IPC comparison for vpr. This graph pro-
vides a comparison of IPC in the phase-based branch
predictor scheme with the IPC in the baseline case for
the vpr benchmark. The second part of the graph shows
the phases predicted by the phase predictor and the
corresponding branch predictor chosen for that phase.
The third part of the graph shows the scaled values of
the accumulators used in the phase tracking scheme.

cally, as the “Managing Multiple Low-Power Adaptation Tech-
niques: The Positional Approach” sidebar describes, this ap-
proach uses either compile-time or run-time profiling to select
an appropriate configuration for long-running subroutines. In
the static approach, a profiling run measures the total execu-
tion time per invocation of each subroutine. Developers iden-
tify phases as subroutines with values for those quantities that
exceed preset thresholds, then they instrument the entry and
exit points of these subroutines to trigger a reconfiguration
decision.

McFarling [13] proposed the idea of combining the advan-
tages of multiple branch predictor by using a selector to choose
the best branch predictor for the current branch. The differ-
ent branch predictors take advantage of different observed
patterns in branch behavior. They achieve an accuracy of
98.1% for their benchmarks but increase the complexity of
branch prediction mechanism that might become a bottle-
neck for IPC as a complex procedure is to be followed in the
fetch stage to predict a particular branch. They do not take
into account any phase behavior for choosing the predictor
and the predictor selection needs to take place for every sin-
gle branch prediction. In contrast, our scheme incurs small
overheads at the beginning of a new phase but then run the
chosen one for that entire phase. As our experiments vali-
date, applications often choose simple predictors depending
on the phase of execution.

9. CONCLUSIONS
In this paper, we have demonstrated that a variety of work-

loads depict large scale repetitive behavior and that the char-
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Figure 7: Branch predictor misses comparison for
vpr. This graph provides a comparison of branch
predictor misses in the phase-based branch predictor
scheme with those in the baseline case for the vpr
benchmark. The second part of the graph shows the
phases predicted by the phase predictor and the corre-
sponding branch predictor chosen for that phase. The
third part of the graph shows the scaled values of the
accumulators used in the phase tracking scheme.

acteristics of the program remains fairly uniform within single
phase. This uniform behavior within a phase can be exploited
to both reduce the power consumption and increase the ac-
curacy, as the hardware is specifically suited to a particular
phase. We have tried to exploit this feature in selecting an
appropriate branch predictor configuration. In the case of
branch predictor selection, there is significant reduction in
the number of branch prediction misses (up to 44.35%) and
up to 4.7% increase in IPC. As discussed earlier in Section
7, power consumption due to execution of mis-speculated in-
structions and flushing multi-stage pipelines can be reduced
by using the adaptive phase-based branch predictor.
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