
Express Misprediction Recovery

By

Vignyan Reddy Kothinti Naresh

A dissertation submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

(Electrical and Computer Engineering)

at the

UNIVERSITY OF WISCONSIN–MADISON

2014

Date of final oral examination: 07/11/14

The dissertation is approved by the following members of the Final Oral Committee:

Mikko H. Lipasti, Professor, Electrical and Computer Engineering
Kewal K. Saluja, Professor, Electrical and Computer Engineering
Gurindar S. Sohi, Professor, Computer Sciences
Nam Sung Kim, Associate Professor, Electrical and Computer Engineering
Katherine L. Morrow, Associate Professor, Electrical and Computer Engi-
neering

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

UMI 3635514
Published by ProQuest LLC (2014). Copyright in the Dissertation held by the Author.

UMI Number: 3635514

© Copyright by Vignyan Reddy Kothinti Naresh 2014

All Rights Reserved

i

This thesis is dedicated to my family for their endless love and support.

ii

acknowledgments
I would like to acknowledge my family, professors and friends for their

support and guidance that led to manifestation of this thesis.

I would like to thank my family for their immense love and support

by dedicating this work. My parents, Uma Maheswari and Satyanarayana

Reddy, who have incessantly prioritized me over themselves are my divine

incarnation. A limitless debt of gratitude for my brother, Karthikeya Reddy,

who took over my share of family responsibilities to facilitate my aspirations.

Words fail in expressing my appreciation for my loving wife, Samatha, for

her concern, care, motivation and support.

I am deeply indebted to my advisor, Prof. Mikko H. Lipasti, for his

constant guidance, care and help throughout my doctoral pursuit. His

passion for exploring novel and practical solutions for challenging problems

has been inductive and I feel fortunate to be his student.

I want to thank Professors Kewal K. Saluja, Nam Sung Kim and Michael

J. Schulte for collaborating with me on various projects through my grad-

uate school. Their validation and support of my ideas in teaching and

research boosted my skillset and confidence. I also want to acknowledge

my professors and colleagues associated with computer architecture at the

University of Wisconsin-Madison for sharing their knowledge and experience.

Their commitment to several events and productive discusions helped in

understanding some obscure concepts and kindled new ideas.

iii

I would also like to thank my friends and colleagues who have provided

me with insightful discussions and fellowship. Special acknowledgements to

Mitchell Hayenga, David Palframan, Arslan Zulfiqar, Dibakar Gope, Syed

Gilani, Sean Franey, Andrew Nere, Zhong Zheng, Atif Hashmi and Erika

Gunadi for their friendship, collaboration, discussions and support.

iv

contents

Contents iv

List of Tables vii

List of Figures viii

Abstract xii

1 Introduction 1

1.1 Performance and Power Opportunity 4

1.2 Processor Pipelines and CRIB Refresher 8

1.3 EMR Overview 11

1.4 Thesis Contributions 13

1.5 Thesis Organization 15

2 Prior Art 16

2.1 Background 16

2.2 Reducing Misprediction Penalty 21

2.3 Execution Localized Scheduling Engines 29

2.4 CRIB 35

2.5 Summary 40

3 Express Misprediction Recovery 41

3.1 Motivating Example 41

v

3.2 Architectural Overview 43

3.3 Partition Control Unit 45

3.4 Demand Fetch 49

3.5 Back-End Branch Prediction 54

3.6 In-place Fetch and Misprediction Recovery 55

3.7 Summary 57

4 Control Independence 58

4.1 Discovering Control Independence 58

4.2 Trade Offs in Control Independence 62

4.3 Case Study of Astar 63

4.4 Summary 65

5 Amplified Instruction Delivery 66

5.1 Relaxing the Flynn’s Bottleneck Limit 66

5.2 Case Study of Libquantum 71

5.3 Summary 73

6 Evaluation 74

6.1 Evaluation Setup 74

6.2 Performance 81

6.3 Performance Sensitivity Analysis 91

6.4 Instruction Sources 98

6.5 Energy Analysis101

vi

6.6 Summary106

7 Conclusion108

7.1 Future Work110

Bibliography114

vii

list of tables

5.1 Example contents of Next-index predictor which is used to amplify

instruction delivery. 70

6.1 Configurations of baseline machines and EMR. 76

6.2 Characteristics of simpoint regions of SPEC2006 benchmarks. . 79

6.3 Characteristics of MiBench and Graph500. 80

viii

list of figures

1.1 Power components of ARM A15 processor. 3

1.2 MPKI of CINT2006 and Graph 500. 4

1.3 MPKI of CFP2006. 5

1.4 MPKI of MiBench. 6

1.5 Performance effects of Ideal branch prediction and doubling the

front end bandwidth (_X2). 7

1.6 Pipeline diagrams of the baseline conventional OoO, CRIB and

the proposed EMR processors. 8

1.7 Block diagram of CRIB. 10

2.1 Some examples of control independence. 23

2.2 Squash and selective misprediction recovery techniques. 25

2.3 Top level view of CRIB unit. 35

2.4 Internals of a CRIB partition. 36

2.5 Internals of a CRIB execution station. 37

2.6 Comparison of baselines: Performance of CRIB with 64-entry

window is compared to a convention out-of-order processor with

192-entry window. 39

3.1 Example illustrating basic EMR functionality. The branch with

L1 as the target is the mispredicted branch. 42

3.2 Overview of EMR architecture. 44

ix

3.3 Control communication between the partition control unit. . . . 44

3.4 Internals of a partition control units. 45

3.5 Components of demand fetch unit. 49

3.6 Finite state machine at the demand fetch unit that indicates the

state of the front-end. 51

4.1 Example code with instruction address labels. 59

4.2 Examples of contents of select address table when two different

paths of a branch are selected. 60

5.1 An example 462.libquantum’s loop as captured in a four partition

EMR. The NIP entries are also shown. 72

6.1 Performance advantage of EMR when compared to baseline CRIB

when executing CINT2006 and Graph500 benchmarks. 82

6.2 Performance gains of EMR relative to the performance of baseline

CRIB when executing CFP2006. 84

6.3 Relative performance of EMR when compared with baseline

CRIB while evaluating MiBench. 85

6.4 Opportunity to amplify instruction delivery and the cumulative

accuracy of the next-index predictors in CINT2006 and Graph500

benchmarks. 87

6.5 AID opportunity and aggregated accuracy of the next-index

predictors when executing CFP2006 benchmarks. 88

x

6.6 Opportunity to amplify instruction delivery and the cumulative

accuracy of the next-index predictors for MiBench. 89

6.7 Performance CRIB and EMR when scaling the window size. . . 90

6.8 No-ops per partition in different configurations of EMR for

MiBench. 91

6.9 Performance CRIB and EMR when scaling the window size. . . 92

6.10 Performance gains of EMR relative to baseline CRIB when vary-

ing LOC$ sizes. IB stands for Instruction Bundle. 93

6.11 Performance of EMR using different sizes of ICU$ when compared

to baseline CRIB using a 4096 entry µop cache. 95

6.12 Split of instruction sources in EMR. 96

6.13 Performance gains of EMR over baseline CRIB when running

CINT2006 with varying ICU$ access time. 97

6.14 Split of instruction sources in EMR for CINT2006 and Graph500. 98

6.15 Split of instruction sources in EMR for CFP2006. 100

6.16 Split of instruction sources in EMR for MiBench. 101

6.17 Energy of EMR relative to CRIB baseline for CINT2006 and

Graph500. 102

6.18 Energy consumed by EMR as compared to baseline CRIB when

executing CFP2006 programs. 103

6.19 Relative Energy of EMR as compared to the CRIB baseline when

running MiBench programs. 104

xi

6.20 MIPS per Watt of EMR when compared to baseline CRIB when

executing CINT2006 programs. 105

6.21 MIPS per Watt of EMR when compared to baseline CRIB when

executing CFP2006 programs. 106

6.22 MIPS per Watt of EMR when compared to baseline CRIB when

executing MiBench programs. 107

xii

abstract
Continuing advances in branch prediction provide a promising avenue for

mitigating the impact of control dependences on extracting instruction-level

parallelism in high performance processors. However, the rate of improve-

ment in prediction rates has slowed significantly, and may be approaching

an asymptotic upper bound, particularly once practical constraints on the

predictor’s cycle time, energy, and area are taken into consideration. To

reach higher levels of performance, future processors must not just reduce

the number of mispredictions, but should employ mechanisms that reduce

the performance penalty of each misprediction.

This thesis presents EMR — an approach that boosts performance by

reducing the misprediction penalty and by amplifying instruction delivery

bandwidth to the execution core. EMR implements a novel in-place mis-

prediction recovery that minimizes latency to activate instructions from

the correct control path, while also utilizing control independence to avoid

unnecessary re-execution of instructions from beyond control flow joins.

Performance analysis shows that EMR outperforms the baseline by up to

81% with a mean performance gain of 23% in CINT2006. Additionally,

using EMR speeds up MiBench, Graph500 and CFP2006 by 20%, 10.5%

and 4% respectively. Energy analysis shows that EMR consumes 16% lower

energy than the baseline in CINT2006. As we scale up the window sizes,

xiii

EMR can, with its amplified instruction delivery, commit up to seven µops

per cycle without increasing front end bandwidth.

1

1 introduction
In the era of multi-core processors, single thread performance still remains

very desirable. The main reason is that most of the existing code is predom-

inantly serial, but even in parallel programs, single-thread performance has

significant impact on the overall performance [40]. However, with the end

of Dennard scaling, increased core count and the inclusion of uncore logic

constrain the budget for a single processor core. With this tightened budget,

scaling traditional out-of-order (OoO) cores can be limited due to the expo-

nential scaling of the architectural components. New paradigms in computer

architecture need to be explored to supply the performance demands of future

applications, while conforming to the allocated energy budget. Solutions to

this challenge may lie in the prior art on architectures that can be described

as execution localized scheduling engines (ELSE). General purpose ELSE

designs like LEVO [121], Ultrascalar [39] and CRIB [30], or compiler assisted

ELSEs like Multiscalar [109], RAW [115], Wavescalar [113] and TRIPS [93]

provide dramatic performance gains but also present significant design and

implementation challenges. In addition, a strong front end that delivers

large number of useful instructions is also required for high performance

machines.

Number of instructions delivered per cycle and the usefulness of those

instructions are two important metrics to evaluate a front end. The band-

width of instruction fetch, decode, rename, allocate and commit is typically

2

the same to prevent performance bottlenecks and over design. Increasing

the front end and commit bandwidths increases the theoretical limit on the

performance due to Flynn’s bottleneck [117]. However, there are energy and

performance costs associated with increasing front end bandwidths. The

L1-I cache might require larger capacity cache lines or more read ports.

More variable length decode and decode units would be required to support

increased fetch and decode bandwidths. In conventional processors, Rename

table and free lists would require more read ports. Other conventional units

like Rename table, reorder buffer, issue queue and load store queues might

require more write ports. The bypass network between the allocate and

rename also increases quadratically. Thus increasing front end bandwidth

increases power and delay of various units and limit cycle time.

Providing useful instructions is another desirable characteristic of a

processor front end and is largely dependent on the quality of the branch

predictor. Advances in branch prediction have been instrumental in allevi-

ating the control dependence limitation on instruction level parallelism. A

large body of research helped improve branch prediction accuracies over the

past few decades. However, the existence of hard to predict branches [79] and

complexity limits seem to saturate the branch prediction accuracies. This

trend can be observed from the slowing rate of improvement in prediction

accuracies of the champion branch predictors. The high cost of mispredic-

tions justify sophisticated branch predictors which can be expensive, e.g.the

ARM A15’s moderately complex Bimode predictor consumes about 15% of

3

Branch Predictor

(15%)

Fetch(12%)

Decode(14%)

Rename(4%)
Issue + Operand

delivery(16%)

ROB(6%)

D$(7%)

Integer(6%)

MSHR(5%)

Misc(15%)

Figure 1.1: Power components of ARM A15 processor.

its core power [57, 77]. Figure 1.1 shows the components of power for ARM

A15 core, as published by NVIDIA, when running SPEC2006 benchmark

suite [77]. As seen from the figure, front end consumes significant portion of

processor power. Since branch predictor is already consuming about 15%

of the allocated power budget, using complex branch predictors can be a

challenging task. The alternative way of improving processor performance

is to decrease misprediction penalty.

This thesis presents dissertation of Express Misprediction Recovery

(EMR) — a novel and practical OoO architecture that reduces misprediction

4

penalty to improve performance. EMR dramatically reduces execution-

resume delay and uses control independence to improve performance of

applications with high misprediction rates. In addition, EMR also amplifies

instruction delivery bandwidth that can improve performance further. This

is further discussed in Section 1.3.

1.1 Performance and Power Opportunity

0

10

20

30

40

50

60

70

4
0
0

.p
er

lb
en

ch

4
0
1

.b
zi

p
2

4
0
3

.g
cc

4
2
9

.m
cf

4
4
5

.g
o
b

m
k

4
5
6

.h
m

m
er

4
5
8

.s
je

n
g

4
6
2

.l
ib

q
u
an

tu
m

4
6
4

.h
2
6

4
re

f

4
7
1

.o
m

n
et

p
p

4
7
3

.a
st

ar

4
8
3

.x
al

an
cb

m
k

G
eo

m
ea

n

se
q

-c
sr

se
q

-l
is

t

CINT2006 Graph500

M
P

K
I

Figure 1.2: MPKI of CINT2006 and Graph 500.

Mispredictions per kilo instructions (MPKI) is a commonly used metric

to evaluate performance of branch predictor. This can be used to derive the

performance expectations from improving control dependence prediction.

Additionally, due to fetches and executions of instructions from the mis-

5

0

2

4

6

8

10

12

4
1
0

.b
w

av
es

4
1
6

.g
am

es
s

4
3
3

.m
il

c

4
3
4

.z
eu

sm
p

4
3
5

.g
ro

m
ac

s

4
3
6

.c
ac

tu
sA

D
M

4
3
7

.l
es

li
e3

d

4
4
4

.n
am

d

4
5
0

.s
o

p
le

x

4
5
3

.p
o
v

ra
y

4
5
4

.c
al

cu
li

x

4
5
9

.G
em

sF
D

T
D

4
6
5

.t
o

n
to

4
7
0

.l
b

m

4
8
1

.w
rf

G
eo

m
ea

n

M
P

K
I

Figure 1.3: MPKI of CFP2006.

prediction path, MPKI also affects the energy consumed by an application.

Figure 1.2 shows the MPKI of CINT2006 and Graph500 benchmarks when

using a state-of-the-art branch predictor, LTAGE [96], on the baseline

machine. The evaluation details are presented in Chapter 6. With 473.astar

having largest MPKI of 59, CINT2006 has a mean MPKI of five. The

MPKI for CFP2006 and MiBench are shown in Figure 1.3 and Figure 1.4

respectively. Although the overall MPKI of these benchmark suites is low,

there are a few programs with significant MPKI. 436.cactusADM of CFP2006

and qsort of MiBench have relatively high MPKIs of 11 and 17 respectively.

To estimate the upper bounds on performance, the baseline machine

is evaluated using CINT2006 with a perfect branch predictor. Figure 1.5

shows this evaluation comparing the performance benefits of ideal branch

6

0

2

4

6

8

10

12

14

16

18

b
it

cn
t

q
so

rt
su

sa
n
.c

..
su

sa
n
.e

..
su

sa
n
.s

..
cj

p
eg

d
jp

eg
la

m
e

m
ad

ti
ff

2
b
w

ti
ff

2
rg

b
a

ti
ff

d
it

h
er

ti
ff

m
ed

ia
n

d
ij

k
st

ra
p
at

ri
ci

a
rs

y
n
th

st
ri

n
g

s.
.

b
lo

w
fi

sh
ri

jn
d
ae

l
sh

a
ad

p
cm

.c
..

ad
p

cm
.d

..
cr

c
ff

t
g
sm

G
eo

m
ea

n

Automotive Consumer Net Offi Security Telecom O

M
P

K
I

Figure 1.4: MPKI of MiBench.

prediction over the LTAGE baseline. This figure also shows the baseline

performance when ideal prediction is used along with doubling the front

end bandwidth from four to eight micro-operations(µops) per cycle. Perfect

prediction alone can boost performance by 23% on average and a maximum

of 110% in case of 473.astar. This performance opportunity with ideal branch

prediction motivates two aspects of branch prediction research — improving

branch prediction accuracies and reducing the misprediction penalty. This

thesis aims to significantly reduce misprediction penalty. Doubling the front

end width, along with ideal prediction, provides a mean performance gain

of 38% with 473.astar gaining up to 129%. To harness this potential, this

work presents a technique to amplify instruction delivery bandwidth without

changing the front end width.

7

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

4
0
0

.p
er

lb
en

ch

4
0
1

.b
zi

p
2

4
0
3

.g
cc

4
2
9

.m
cf

4
4
5

.g
o
b

m
k

4
5
6

.h
m

m
er

4
5
8

.s
je

n
g

4
6
2

.l
ib

q
u
an

tu
m

4
6
4

.h
2
6

4
re

f

4
7
1

.o
m

n
et

p
p

4
7
3

.a
st

ar

4
8
3

.x
al

an
cb

m
k

G
eo

m
ea

n

IP
C

LTAGE Ideal Ideal_X2

Figure 1.5: Performance effects of Ideal branch prediction and doubling the
front end bandwidth (_X2).

When a branch mispredicts, the misprediction penalty can be attributed

to execution-resume (ER) delay, and lack of mechanisms for capturing

control independence. ER delay is the elapsed time between resolution

of a mispredicted branch and start of execution of the first correct path

instruction. This delay depends on availability of instruction in various levels

of cache, but is typically equal to the front end delay, as most instructions

are found in either micro-operation cache(µop$) or level-1 instruction cache

(L1-I$). Control independence refers to reusing or reinstating younger

instructions that are beyond the control flow convergence point of the

mispredicted branch.

8

Conventional OoO

CRIB OoO

EMR OoO

BPred I$ VLD
Deco-

de

Br

Check

Ren-

ame

µOp$
Br

Check

Alloc Issue

Redirect
R

ed
ir

ec
t Fill Exec

Com-

mit
PRF

BPred I$ VLD Decode
Branch

Check

Alloc

µOp$
Branch

Check

CRIB

Exec

CRIB

Commit

Redirect

R
ed

ir
ec

t

Fill

BPred I$ VLD Decode
Branch

Check
Alloc

EMR

Exec +

LOC$

EMR

Commit

ICU$
Stall

Redirect
F

il
l

Figure 1.6: Pipeline diagrams of the baseline conventional OoO, CRIB and
the proposed EMR processors.

1.2 Processor Pipelines and CRIB

Refresher

Figure 1.6 shows pipelines of a conventional out-of-order (COoO) processor

with contrasting pipelines of CRIB and EMR. The “BPred” stage generates

the address of next instruction. L1-I$ is looked up and the corresponding

9

bytes are supplied to variable length decode(VLD) for demarcation. The

decode unit converts the instruction bytes into one or more µops. After

decoding the instructions, the “branch check” unit detects if the target

address of a direct-branch is mispredicted and redirects the front end to the

correct path.

A µop$, if present, is looked up in parallel with the L1-I$ look up. If the

target instruction is found in the µop$, then the L1-I$ data is ignored. The

set of micro-ops generated by the L1-I$ part of the pipe are added to the

µop$. Another branch checker is associated with the µop$ part of the pipe.

In a COoO, both L1-I$ and µop$ parts of the pipe merge and supply

instructions to rename stage where source registers are renamed to physical

registers using a rename table. These renamed instructions are allocated

mandatory resources like reorder buffer and issue queue entries, and optional

resources like destination physical registers and a load-store queue entry.

In the Figure 1.6, the rename and allocate units are assumed to take three

clock cycles and hence allocate unit is shown to take two clock cycles. The

issue unit can be divided into two pipe stages — “wakeup” and “select”. In

the “wakeup” stage, broadcast from instructions completed in this cycle is

used to identify dependent instructions that are ready to issue. From the

instructions that are ready to issue, instructions that can be issued in the

current cycle are selected in the “select” stage. The criteria for selection

depends on issue policy and resource limitation. The issued instructions

read the physical register file, execute, and after completion send a broadcast

10

Part 2

Part 1

Part 0

Part 3

Complex

Int

FPU

LSQ

Figure 1.7: Block diagram of CRIB.

signal to wake up dependent instructions. The completed instructions are

marked as such in the reorder buffer. Once the oldest instructions in the

reorder buffer completes, it is committed to the architectural state.

Figure 1.7 shows top level block diagram of CRIB. CRIB is an ELSE

machine where partitions consist of a limited number of program-ordered

instructions and dependencies within them are resolved through data flow.

Each partition consists of a designed number of execution stations each of

which holds one instruction. The interconnect between execution stations,

and between partitions communicate positionally correct values of all the

architectural registers. A ready bit is associated with each architectural

register which indicates the positional readiness of the register. When an

11

instruction is allocated into an execution station, the ready bit associated

with destination registers is cleared and set only when the instruction finishes

execution. This is used by the dependent instructions to determine if they

can start execution.

A set of latches at the head of each partition hold the architectural state

of the machine. These values are latched when the partition is promoted as

the architected partition, which indicates that the partition holds the oldest

set of instructions in the machine. Once all instructions in the architected

partition are completed, it commits and the next partition is promoted as

the architected partition.

Each execution station has a simple integer ALU, simple floating point

ALU and an address generation unit. Load store queue, integer multiply and

divide, floating point add, floating point multiply and other such complex

units are shared across multiple partitions to limit area and static power. As

shown in the Figure 1.6, CRIB consolidates the Rename, Issue and Execute

stages of COoO into one stage. Allocate stage is also simplified as only

execution stations are allocated to the instructions in this stage.

1.3 EMR Overview

Although EMR can be based on many ELSE machines or Revolver [35], this

thesis presents an implementation based on CRIB. The pipeline diagram

of EMR is shown in Figure 1.6. EMR has similar pipe stages as CRIB,

12

but enhances the Execute stages and repositions the µop cache to be more

effective. EMR introduces various novel techniques to increase application

performance while saving processor energy.

EMR introduces a novel instruction delivery mechanism called “In-place

fetch”. To implement In-place fetch, each CRIB partition is augmented

with a modest instruction memory, called location-optimized control cache

(LOC$), that stores multiple sets of instructions previously executed on

the corresponding partition. A control network is added between these

augmented partitions to communicate the address of next instruction. Using

the incoming instruction address, partitions can now select a set of instruc-

tions from this cache for execution. If the instruction corresponding to the

incoming address is not available in a partition, it can be serviced from a

special µop cache called In-core µop (ICU) cache.

ICU cache, which is structurally similar to the conventional µop cache, is

used to provide robust performance. This cache is located in the execution

core of EMR as seen from Figure 1.6 and is optimized as a backup cache

to furnish any capacity misses in the LOC$. Due to the usage model

and placement of the ICU$, instructions from this cache go through lower

number of pipe-stages than a conventional µop cache. This results in

faster instruction delivery to the execution core, than the conventional µop$.

Additionally, since ICU$ is only looked up when LOC$ misses, unlike the µop

cache that is accessed every active fetch cycle, it consumes lower energy than

the conventional µop$. If a required instruction is not found in the LOC$,

13

front end is redirected to supply this instruction to the back end. Using

novel techniques, instruction fetch requests are filtered to avoid redundant

and taxing front end redirects when the required instructions are already en

route.

On resolution of a mispredicted branch, the correct address of the next

instruction is passed to the next partition. When possible, the next partition

finds the target instruction using In-place fetch and quickly deliver the

correct path to the execution units. This dramatically reduces the execution

resume delay and speeds up the application. This novel recovery technique,

called “In-place Misprediction Recovery”, also performs selective recovery by

squashing only the instructions that are not control independent. Control

independent instructions are discovered by performing a simple look up in

an table that holds address of selected instructions in the EMR back end.

Once discovered, the intermediate partitions are forced to select No-ops to

allow propagation of correct architectural state to the partition with control

independent instructions.

1.4 Thesis Contributions

The key novel features of EMR are:

1. In-Place Fetch (IPF): A very small µop cache known as LOC$ is

added to each partition. When required, these caches can quickly

supply instructions to the execution stations.

14

2. In-Place Misprediction Recovery: On a branch mispredict, in-

stead of conventional squash recovery, EMR combines selective recovery

with IPF to perform an In-place misprediction recovery. When possi-

ble, the correct path instructions are delivered by the In-place fetch

instead of the front end. This results in reducing front end energy and

misprediction penalty.

3. In-Place Control Independence: EMR relies on CRIB’s data-flow

orientation to propagate branch targets in place, preventing control

independent instructions from being squashed and replayed.

4. Amplified Instruction Delivery (AID): Increasing the committed

partitions per cycle is easy in CRIB, but is not useful without increasing

front end bandwidth. In EMR, the combination of In-place fetch and

a speculative instruction selection amplifies number of instructions

delivered per cycle. AID boosts performance of many applications

even when the misprediction rates are low.

5. In-Core µop (ICU) cache: The ICU$ backs up the LOC caches

and provides robust performance. Due to its placement, instruction

delivery time to the execution core is significantly lower than the

conventional µop$. In addition, ICU$ also has lower accesses than the

traditional µop cache, resulting in lower energy consumption.

6. Filtered Demand Fetch: The EMR back end, which now is equipped

with a control network, often finds that the required instructions are

15

missing in the expected partitions. So, a necessary demand fetch unit

redirects front end to provide the required instructions. Novel filtering

mechanisms are employed to avoid redundant and taxing front end

redirects when the required instructions are already en route.

1.5 Thesis Organization

This thesis is organized as follows. Chapter 2 presents a review of prior work

in reducing misprediction penalties, and in ELSE architectures. Following

that, basics of EMR architecture are detailed in Chapter 3. Chapter 4

presents EMR enhancements to utilize control independence. Technique to

amplify instruction delivery with EMR is explained in Chapter 5. Apparatus

and methodology for evaluating EMR along with a detailed analysis of EMR’s

performance and energy are furnished in Chapter 6. Finally, Chapter 7

concludes this thesis with a summary of key concepts, observations and

possible related future work.

16

2 prior art
A plethora of techniques have been proposed to reduce misprediction penal-

ties, mostly using control independence. Various ELSE machines have also

been proposed to address specific limitations of conventional out-of-order

processors. This chapter provides a detail overview of several related works

that have inspired the idea of EMR.

2.1 Background

The modern day processors are a result of a lot of innovation from many

researchers across the globe. In this section, a historical perspective of

processors and branch predictors is presented.

2.1.1 Instruction Level Parallelism

Instruction level parallelism (ILP) refers to the ability to process multiple

instructions at the same time. Higher utilization of ILP results in improved

performance of the applications.

Exploiting instruction level parallelism first started with pipelining the

processors back in 1950 [8, 54, 97, 99, 37, 112]. Pipelining allowed multiple

instructions going through various stages of processing. This increased the

throughput and operational frequency of computers.

17

The next epoch in computing has to be dynamic instruction scheduling.

Processors used the algorithm proposed by Tomasulo [119], later known

as Tomasulo’s algorithm, to dynamically generate instruction schedules [5]

and enable efficient utilization of resources. Later, superscalar processors

employed multiple ALUs and dynamic scheduling to improve performance

further [118, 94, 29, 78, 105, 107, 99]. Data parallel computing was another

important technique employed to improve performance [84, 91]. A single

instruction supplies the operation that has to be performed on multiple data

elements.

Till the introduction of out-of-order processing, instructions were sched-

uled for execution in the program order. Out-of-order processors identify

independent instructions in a finite instruction window and schedule them in

out-of-order fashion [82, 126, 51, 110, 55, 6, 32, 81, 99, 37, 112]. Exploiting

larger degree of instruction level parallelism and memory level parallelism,

these processors tend to have high performance and thus became popular

for commercial uses [28, 9, 102, 20, 33, 58, 50, 101, 34].

A different class of processors, called very long instruction word (VLIW)

processors, rely on compilers to specify parallelism [18, 90, 27, 45, 44, 22,

25, 24, 98]. Compilers can look at larger instruction windows to potentially

extract more parallelism. However, static scheduling can be limit the

opportunity due to dynamic control flow. The support from compilers

results in a simpler implementation and thus can be more energy efficient.

18

Control flow and data flow are two primary limitations to instruction

level parallelism. Data flow limitations refers to the restriction due to the

read-after-write, write-after-write and write-after-read dependencies on the

program instructions [99]. Read-after-write (RAW) is a true dependence that

will require the younger instruction to consume a value generated by the

older instruction. This will conventionally require the older instruction to

execute before the dependent younger instruction Rest are the dependencies

are commonly referred to as false dependencies.

Pipelining ALUs helps in executing multiple independent operations

in parallel. Register renaming in many out-of-order processors removes

the false dependencies by mapping the architectural registers to physical

registers or to reservation station entries [99]. Value prediction techniques

attack the true dependencies and exploit ILP beyond the data-flow limit [65,

64].

Control instructions like branch, call and return limit the ILP of a

program as these instructions can affect the consistent supply of instructions

by fetch unit to the rest of the pipeline [99]. Branch predictors are used to

circumvent these limitations on the ILP [114, 43]. The history and evolution

of branch predictors is presented in the next section.

2.1.2 Branch Predictors

Introduced in late 1960’s branch predictors were used to reduce interruptions

in instruction supply when a control instruction is encountered [19, 114,

19

43]. Later Smith presented dynamic branch prediction strategies which

could result in high prediction accuracies [106]. The bimodal predictor

proposed in this paper was used in many commercial processors [6, 110,

61]. While the bimodal predictor uses branch instruction address alone,

Yeh and Patt [127] propose inclusion of global branch history and local

histories in predicting branches. This two-level predictor improves prediction

accuracy by differentiating multiple instances of static branch by providing

context, and by correlating behaviour across multiple static branches. The

proposal in [127] also introduced the taxonomy of two-level branch predictors

depending on the possible combinations due to the types of branch history

registers, and the types of pattern history tables.

McFarling introduced a new way of looking up the branch predictors

using the XOR value of branch history register and the branch instruction

address [69]. The gshare branch predictor proposed in this paper was used in

IBM Power4 [116] and DEC Alpha 21264 [51]. Later, various hybrid predic-

tors were introduced by combining different types of branch predictors [10,

12, 76, 23]. Bi-Mode predictor introduced usage of two pattern history tables

and a choice predictor to reduce negative interference of branches in different

modes [59]. This predictor is used in the ARM A15 processor [57]. The

gskewed predictor proposed by Michaud et al., uses multiple pattern history

tables which are accessed using different hash functions [73]. The outcome

of the branch is determined by the majority vote of the predictions by these

history tables. Sprangle et al., proposed Agree predictor which uses the high

20

static predictability of branches and determines when to flip the prediction

outcome [111].

The YAGS predictor, introduced by Eden and Mudge, was derived from

bi-mode predictor, but introduced partial tags in the pattern history tables

to reduce negative interference [21]. Chang et al., introduced concept of

branch filtering by removing highly biased branches from the pattern history

table [11]. Alloyed history predictors, proposed by Skadron et al., fused

address of the branch instruction with local history and global history to

access the pattern history table [103].

Jimenez and Lin introduced perceptron branch predictor that computes

the outcome based on multiple weighted inputs [47, 48]. The perceptron

predictor learns that the correlations between the branch outcomes and uses

it to generate a prediction.

Overriding predictors use multiple predictors with ascending accuracies.

McFarling patented a predictor that uses a bimodal, local and global predic-

tor structures [68]. The bimodal predictor provides the default prediction for

every branch, but the local and global predictors have tag tables, similar to

ones proposed in [21], and provide predictions only when the tag matches in

their respective structures. The descending preference order of predictors is

global, local and bimodal. Michaud proposed a predictor that used multiple

tagged pattern history tables and used varying lengths of global history to

access different pattern history tables [72]. The pattern history table with

longest history that provides a prediction is used as the outcome. Seznec

21

proposed using geometric history lengths and other usability features to

further improve prediction accuracies [95, 96].

Instead of predicting the outcome of a branch, Jacobsen et al. proposed a

predictor to estimate the confidence of branch prediction [46]. This prediction

is useful in using control independence or to save energy by stalling fetch on

a low confidence estimation.

The target addresses of return instructions can be obtained by using a

return address stack [125, 49]. Due to out-of-order processing and precise

interrupts, the state of the return address stack can be corrupted and

Skadron et al. propose techniques to repair the same [104].

When an instruction is fetched, the target address is not known at least

till the branch instruction is decoded. In case of indirect branches, the

target address is available only after execution of the branch. Branch target

buffers are used to obtain the target address of the instructions at the fetch

stage [60].

2.2 Reducing Misprediction Penalty

The detrimental effect of traditional recovery from branch misprediction

is due to two primary reasons. First, all younger instructions are removed

from the machine and the front end has to fetch the correct path instruc-

tions. The delay in supplying the correct path instructions stalls execution

progress. Second, discarding these younger instructions that may have

22

already executed results in wasted work. Larger instruction windows and

deeper pipelines exacerbate the misprediction penalties.

2.2.1 Dual Path Execution

Multipath execution [36, 52, 124, 2, 120, 53] reduces misprediction penalties,

but can decrease performance and increases power consumption when both

paths of a correctly predicted branch are fetched/executed. Predication is

another common technique to avoid branches, but consumes excess resources

by fetching and executing multiple paths. Additionally, the forwarding of

correct speculative values outside of predicated blocks is delayed and can

affect performance.

2.2.2 Predication

Predication or Predicated execution is a technique to reduce short, hard-

to-predict branches. The boolean source operand, called predicate, is used

to conditionally execute an instruction [66, 42, 85]. It can be viewed as

software version of multi-path execution. While predication can prevent

mispredictions due to hard-to-predict branches, it can hurt performance

due to increased data dependencies. The multiple definition of a register

values which exist due to predication are partially addressed by predicting

the outcome of predicate and speculatively executing instructions dependent

instructions [17].

23

CI-1

?

CD-2 CD-1

CI-2

Y N

(a)

CI-1

?

CD-1

CI-2

Y N

(b)

Figure 2.1: Some examples of control independence.

Increasing accuracies of branch predictor and aggressive out-of-order

techniques discourage usage of predication in modern processors. This can

even be observed from the severe limitation on predication in new 64-bit

ARMv8 instruction set [63].

2.2.3 Control Independence

Control independence property stems from the observation that only a small

portion of code is dependent on the branch outcome. Often, after the short

control dependent path, the control flow of the program merges and executes

instructions irrespective of the branch outcome.

The control independence taxonomy [4] of instructions in the processor

pipeline, that are younger than the mispredicted branch is as follows:

24

• Control Dependent (CD) Instructions — These are the instruc-

tions that execute depending on the branch outcome. A branch can

have multiple CD paths, but only one of them is correct for the dy-

namic instance of the branch. In the Figure 2.1a, the instruction blocks

labeled as “CD-1” and “CD-2” are the control dependent instruction

blocks. An example of branch containing only one control dependent

path is shown in Figure 2.1b.

• Control Independent (CI) Instructions — Instructions that are

executed irrespective of branch outcome are classified as CI instructions.

These are the instruction blocks labeled as “CI-1” and “CI-2” in the

Figure 2.1a.

• Control Independent Data Independent (CIDI) Instructions

— CIDI instructions are CI instructions that have started or finished

their execution, and are not dependent on values generated by either

the incorrect or the correct CD instructions. Note that this dependency

refers to both register and memory dependencies.

• Control Independent Data Dependent (CIDD) instructions

— These are the CI instructions that are not CIDD instructions.

This classification of CD, CI, CIDI and CIDD instructions is associated with

the mispredicted branch. Prior research suggests significant performance

benefits from control independence techniques [92, 88, 86, 87, 14, 15, 13, 26,

4, 41, 83, 108, 70, 67, 80].

25

CD-1

BR

CI

BR

S
q
u

as
h

BR

CD-2

CI
F

et
ch

 &
 E

v
al

Squash Recovery

Br

CI

S
q
u

as
h

Br

CI

CD-2

F
et

ch
 &

 E
v
al

S
el

ec
ti

v
e

E
v
al

Selective Recovery

Figure 2.2: Squash and selective misprediction recovery techniques.

In order to benefit from the control independence property, the following

steps are typically employed.

1. Selective Recovery: Figure 2.2 illustrates the difference between

squash and selective recoveries. Unlike squash recovery, which re-

moves all instructions younger than the mispredicted branch from the

machine, selective recovery removes only CD instructions from the

machine. The convergence point, usually provided by a predictor, is

used to stop instruction squashing.

2. Smart Fetch Redirect: After selective recovery, FE is redirected

to bring the correct CD path instructions into the machine. When

26

CI instruction fetch is detected, FE is redirected to resume fetching

instructions from the end of CI path.

3. Dependency Fix: After selectively removing incorrect CD instruc-

tions and inserting correct CD instructions, register and memory

dependences have to be fixed to supply correct operands to CI path.

This, typically, is a tedious task and various approaches have been

used in prior proposals.

Lam and Wilson published the seminal work on control flow limitations

on parallelism where they identified control independence [56]. The first

processor to utilize control independence was the Multiscalar processors [109]

which is described further in Section 2.3.1.

In trace processors [89, 122], dynamic instruction stream is divided into

frequently executed sequences called “traces”. After squashing the trace

containing a mispredicted branch, other traces selectively squashed till the

new set of traces are already present in the processing elements.

Sodani and Sohi propose instruction reuse buffer [108] as a way to exploit

control independence. The outputs of an instruction corresponding to its

inputs are recorded in a buffer. If a recurring instruction, looked up using

inputs, has an entry in the reuse buffer, the output results are reused from

the buffer instead of computing them again. On a resolving a mispredicted

branch address, all the younger instructions are removed from the machine.

27

However, due to source equivalence check, control independent instructions

with unchanged input operands will not re-execute.

Rotenberg and Smith [88] augment the ISA to encode the branch conver-

gence point, so that software can furnish it. CIDI instructions are determined

by source equivalence check similar to the instruction reuse proposal [108].

Selective branch recovery [26] uses control independence of if-then type

branches only by using a recovery buffer suggested in [3].

In Transparent Control Independence [4], Al-Zawawi et al. execution of

CIDI instructions is decoupled from the CD and CIDD instructions when

executing the predicted path of a branch. A structure called the re-execution

buffer or RXB in short, is used to store the CIDD instructions along with a

copy of their source values that are generated by a CIDI instruction. After

a branch misprediction is resolved and the correct CD path is inserted into

the machine, the self-sufficient recovery program in the RXB is inserted into

the machine.

Hilton and Roth proposed Ginger [41], which uses register tags to track

CIDI instructions and fix dependences for CIDD instructions. A register

tag search-and-replace operation is done on the CI path. The replaced tag

is obtained from the check-pointed rename map which was captured after

the incorrect CD path. The current rename map provides the replacer tag.

Some proposals for control independence rely on squash recovery instead

of selective recovery [15, 13, 83, 108]. Chou et al. propose to defer execution

of the CD path of a hard-to-predict branch till the branch’s direction

28

is resolved [15]. Skipper [13], proposed by Cher and Vijaykumar uses a

similar technique. A predictor is trained to gather information about the

predictability of a branch, its convergence point, resource consumption of

its possible CD paths and its CIDI instructions. After fetching a branch

of interest, FE uses this predictor information to skip ahead to fetch and

execute the CIDI instructions. Sufficient resources are reserved for the CD

path during this out-of-order fetch process.

In SYRANT [83], Premillieu and Seznec suggest that, when CI instruc-

tions are fetched again, they are allocated with the same physical register,

LSQ entry and ROB entry as they were in the first instance. Since the

results of a CIDI instruction are already preserved in the their destination

register, these instructions complete immediately.

To summarize, numerous proposals have identified the importance of

decreasing branch misprediction penalty. Proposals like dual path execution,

eager execution and predication increase energy consumption and can poten-

tially hurt performance when branches are predictable. Utilizing the control

independence property shows significant potential, but previous proposals

have been limited in either usage or implementability. This dissertation

derives concepts from these prior proposals to formulate a practical processor

that minimizes misprediction penalty significantly.

29

2.3 Execution Localized Scheduling Engines

A study of processor evolution reveals the design choices followed by modern

processors. Originating from an era with expensive logic components, simple

multi-cycle processors evolved into pipelined scalar cores. As the logic

component cost decreased, processors evolved from in-order scalar processors

to in-order superscalar processors and now into wide-issue out-of-order

processors. In the modern processor, reservation station, bypass network,

physical register files, reorder buffer, checkpoint tables and load-store queues

are required to support the wide-issue and out-of-order techniques to achieve

higher performance. However, there are other ways of achieving wide-issue

and out-of-order processing which do not need most of these units. Starting

from a new base, ELSE machines have some very lucrative features with

feasible challenges.

Many ELSEs have been proposed in the past to address the scalability

of conventional out-of-order processors. These proposed ELSE machines

share some basic features.

1. Processing elements or cores, that execute all operations, are replicated.

2. Each processing element has a localized instruction scheduling logic.

3. Processing elements communicate data and control via an intercon-

nection network.

30

Details of Multiscalar [109], RAW [115], TRIPS [93], Ultrascalar [39],

LEVO [121] and CRIB [30] are discussed in this section.

2.3.1 Multiscalar

Multiscalar [109], proposed by Sohi, Breach and Vijaykumar, is designed to

extract large quantities of instruction-level parallelism from single-threaded

programs. A single-thread program is divided into multiple tasks where,

each task can contain multiple instructions corresponding to a contiguous

regions of the program’s control flow graph. These tasks, which need not be

fully independent, are distributed across various scalar cores to be executed

in parallel. The abstract unified logical register and sharing of the memory

dependence unit across all the scalar cores resolves dependences across tasks.

In Multiscalar, the scalar cores are connected using a unidirectional ring

network. Dependency resolution are communicated using the ring network

and is orchestrated by the compiler. When all the instructions of a task

complete, the corresponding core commits by advancing the commit pointer

to the next scalar core on the ring network.

This architectural paradigm provides many benefits over traditional

processor architectures.

• Due to the task-oriented structure, Multiscalar processors can perform

selective branch prediction. As long as the global control flow is not

disturbed by a mispredicted branch, all tasks can keep executing in

31

parallel. A mispredicted branch within a task need not have any impact

on the global control flow and would not invalidate the younger program

tasks, which is a form of control independence [87]. This property

abates the branch misprediction penalty on Multiscalar processors.

• Multiscalar can effectively extract parallelism in much larger portions

of a program. While conventional processors use a limited size issue

queue to search for parallel instructions, Multiscalar has only a subset

of instructions per scalar core that are under consideration for execution

.

2.3.2 RAW

RAW [115], proposed by Taylor et al. is a tiled architecture with processor

tiles connected via a two-dimensional mesh network. Conventionally, the

inter-core communication is done via coherent memory interfaces, which

can have higher area, delay and energy costs. Inter-core communication is

exposed to the software by ISA extensions the expectation that compiler

driven inter-core communication will be more efficient and effective. Due to

reduced costs, hardware is expected to be more scalable.

The RAW processor has 16 cores connected using four 32-bit interconnec-

tion networks — two statically routed and two dynamically routed. Static

routing is configured by the compiler and dynamic routing is configured

at runtime. The ISA extensions expose these interconnection networks

32

by mapping them as “network registers” which are constructed as FIFO

queues. A platform specific compiler makes use of these operand networks

to distribute and coordinate work between multiple simple cores. Both

instruction-level and thread-level parallelism are explored in this work.

2.3.3 TRIPS

Sankaralingam et al. proposed TRIPS [93] processor that uses ISA extensions

to explicitly communicate data flow dependencies between the processing

tiles. There are 16 processing tiles interconnected via a single cycle inter-

connection. The compiler generates 128-instruction blocks and distributes

them as group of eight instructions across the 16 tiles. Since the compiler

has complete control on the placement of instructions within the instruction

tiles, any exposed communication latencies can be minimized. However,

interconnection latencies still have significant effect on the performance of

TRIPS machines.

2.3.4 LEVO

Uht proposed a general purpose out-of-order ELSE machine called LEVO [121]

which does not need any specific compiler support for its operation. This

machine enables use of aggressive speculative techniques like disjoint eager

execution and hardware-based predication to extract maximum instruction

level parallelism. LEVO has a scalable resource flow execution model and is

33

implemented using an execution window that is organized as a matrix of

“Active Stations” that hold instructions. Instructions are committed as one

Active Station column at a time after all instructions in that column have

finished execution.

Multiple Active Stations, referred to as “sharing group”, can share a

processing element that can perform all the operations required by the ISA.

A sharing group also shares a set of buses, called spanning buses, that carry

packets consisting of time-tag, address and data corresponding to a register.

These spanning buses are used by the active stations to obtain the source

register values and to drive the destination register values. Full values of

specific architectural registers are stored at the end of each sharing group to

provide any register values to the next sharing group. Buses in the reverse

direction can be used by the active stations to request values of registers

that are no longer broadcast actively.

LEVO does not have any explicitly defined set of architectural register

file. All operands are communicated via the spanning buses and time-tags.

Time-tags are associated with all the register values broadcast on the buses.

Time-tags are used by the Active Stations to grab the youngest of the older

values of source registers from the spanning buses. To perform this each

Active Station has comparators to match the register address and time-tags

begin broadcast on the spanning buses. Every time an Active-Station grabs

a older register value that is not older than the current captured value, it

requests for and, if granted, triggers execution of that instruction.

34

LEVO also performs full explicit predication conversion of branches

if the branch target is already in the machine. After an eligible branch

is determined, the fetch logic brings instructions according to the actual

instruction layout in the memory and associates predicate bits to these

instructions in hardware. Disjoint eager execution [120], where both paths

of a branch can be executed before a branch actually resolved, is also

implemented in LEVO. In their evaluation, the authors found that scaling up

the instruction window sizes results in committing more than ten instructions

per clock.

2.3.5 Ultrascalar

Ultrascalar processor [39], proposed by Henry, Kaszmaul and Viswanath,

aims to dramatically reduce the asymptotic critical-path length of a super-

scalar processor from O(n2) to O(logn). The processor is implemented as

a large collection of execution stations, each of which contains an ALU and

a router. These execution stations are connected by a network of parallel-

prefix tree circuits. Allocated in program order, these networks provide

full functionality of superscalar execution including renaming, out-of-order

execution and speculative execution. When scaled up, ultrascalar is limited

by the network and latch delays to effectively awaken dependent instructions

that are far in program order.

35

Part 2

Part 1

Part 0

Part 3

Complex

Int

FPU

LSQ

Figure 2.3: Top level view of CRIB unit.

2.4 CRIB

CRIB [30], proposed by Gunadi and Lipasti, is an ELSE machine where

partitions consist of a limited number of program-ordered instructions and

dependencies within them are resolved through data flow. The partitions

themselves are connected to each other using a unidirectional ring network

that carries positionally correct values of all architected registers. Each

partition consist of a fixed set of execution stations where each execution

station can execute one instruction.

As shown in Figure 1.6, CRIB uses the same fetch and decode units as

a conventional out-of-order. The Allocate unit bundles instructions into

36

ES 0

ES 1

ES 2

ES 3

R0, R1, … … R7

R0, R1, … … R7

P
a
rt

it
io

n

Inst 3

Inst 2

Inst 1

Inst 0

Figure 2.4: Internals of a CRIB partition.

groups and assigns them to an appropriate partition, if it is available. The

rename table, reservation station, ALU, bypass network and the reorder

buffer are consolidated into a single structure called execution station (ES).

Physical register file is decentralized into sets of register latches at the head

of each partition.

Figure 2.3 shows the top level organization of of CRIB’s back-end, also

referred to as the execution-core. The execution core consists of multiple

partitions connected and managed in a circular queue fashion. Each partition,

as shown in Figure 2.4, consists of multiple ESs and the instruction bundle

allocated to the partition supply instructions for each ES. Each ES has

multiplexers to select the source operands, an ALU to perform operations on

these operands and an output router to drive the generated result. Internals

of an execution station are illustrated in Figure 2.5. When an instruction is

37

R0, R1, … … R7 R0, R1, … … R7

ALU

Done

Compute

R0, R1, … … R7

Input Select

Operation

Select

Output

Select

Done E
x
ec

u
ti

o
n

 S
ta

ti
o

n

Figure 2.5: Internals of a CRIB execution station.

portioned to an ES, the Done bit is cleared and the input multiplexers, ALU

and output router are configured accordingly. This done bit is set when the

allotted instruction finishes execution. The interconnect carries full value

and the readiness of all the architecturally visible registers.

Each incoming and outgoing register lanes have a ready bit that indicates

the spatial readiness of the architectural register. Each ES drives ready

bit of the allocated instruction’s destination register using the Done bit.

Dependence resolution is done by using the spatial readiness of architectural

registers. Instruction starts executing as soon as all the incoming register

sources are ready. After the execution is complete, the done bit of the

ES is set and the new destination values are propagated out. Dependent

38

instructions, subject to the readiness of other sources, may wakeup and

start execution using this newly generated operand. Since independent

instructions may have all their sources ready at the same time, they can

execute in out-of-order fashion.

When all the ESs have finished execution, the partition is ready to

commit. An architected partition holds the oldest instruction bundle in the

machine and since Commit is done in program order, only the architected

partition is eligible for Commit. When committing a partition, the LSQ

resources allocated to it are reclaimed and the next partition is made as the

architected partition. As a partition is promoted to architected partition

state, the set of register latches, present at the input of this partition, are

made opaque and block all incoming propagations on the interconnect.

Complex structures like multipliers, floating point units, load store

queues or any other units that are expensive are shared by all the CRIB

partitions. Request queues allow data transfer between these shared units

and execution. Squash recovery is implemented by a signal from mispredicted

ES and invalidation of the younger ES. On receiving the invalidate signal,

ES releases any held resources, like the LSQ entries. Exception recovery is

complete as the Allocate unit resets the allocating partition to the partition

following the mispredicted partition.

In CRIB, LSQ entries are requested and assigned at execution time, after

the address of a load or store is complete. This significantly reduces the de-

sign size of the LSQ. In addition to the ready signal, each architected register

39

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4
0
0

.p
er

lb
en

ch

4
0
1

.b
zi

p
2

4
0
3

.g
cc

4
2
9

.m
cf

4
4
5

.g
o
b

m
k

4
5
6

.h
m

m
er

4
5
8

.s
je

n
g

4
6
2

.l
ib

q
u
an

tu
m

4
6
4

.h
2
6

4
re

f

4
7
1

.o
m

n
et

p
p

4
7
3

.a
st

ar

4
8
3

.x
al

an
cb

m
k

G
eo

m
ea

n

se
q

-c
sr

se
q

-l
is

t

CINT2006 Graph500

IP
C

Conv.OoO192

CRIB64

Figure 2.6: Comparison of baselines: Performance of CRIB with 64-entry
window is compared to a convention out-of-order processor with 192-entry
window.

propagation on the interconnect carries a re-execute signal. While cleared

on allocating an instruction, this bit is set by mispredicted loads to enable

dependent instructions to just re-execute instead of performing a squash

recovery. So simple, yet aggressive memory-disambiguation techniques can

be used.

Figure 2.6 shows the instructions-per-clock (IPC) of the baseline 64-

entry CRIB and the baseline 192-entry conventional out-of-order. Table 6.1

provides configuration details for these processors. This figure is intended

to present an idea of EMR performance comparisons with CRIB baseline

40

and not to analyze various contributing factors of CRIB’s performance —

which is throughly done in [30].

In this dissertation, the implementation of CRIB differs from the proposed

and evaluated model in [30]. A µop cache is added to make CRIB as a

comparable baseline. Considering the process improvements from 65nm to

22nm, larger instruction window CRIB is also assumed.

2.5 Summary

This chapter presented a large subset of prior work related to the main

proposal of this thesis. Previously published work in branch misprediction

penalty reduction has been explored, with a special emphasis on control in-

dependence techniques. Alternate implementations of out-of-order machines,

that fall into the ELSE category, were studied. The CRIB microarchitecture

is explained in detail to help some of the fundamentals of the proposed EMR

architecture.

41

3 express misprediction

recovery
This thesis work is on reducing the misprediction penalty of branches by

using architectural enhancements to CRIB microarchitecture. Depending on

the criticality, architectural components of express misprediction recovery

(EMR) are segregated into core concepts and enhancements. Core concepts

of EMR are detailed in this chapter and enhancements to EMR are presented

in later chapters.

3.1 Motivating Example

EMR augments each CRIB execution partition with a localized instruction

cache(LOC$) that holds multiple instruction bundles. As the Allocate unit

inserts instruction bundles into appropriate partitions, branch instructions

along with their predicted control paths are cached in this local storage.

When a mispredicted branch completes execution, the resolved address is

sent to the next partition via the newly added control network. If the

instruction bundle corresponding to the incoming address is found in the

local instruction store of the next partition, it is selected for execution. In

steady state, these LOC$ hits are likely, which can dramatically reduce the

misprediction penalty.

42

Example Code

L3 R4 M[R0]

CMPS R4, 0

BEQ L1

R1 R1 + 1

JMP L2

L1 R2 R2 + 1

L2 R0 R0 + 1

CMPS R0, R3

BLT L3

(a) Example

LATCH

[Arch] LATCH

R4 M[R0]

CMPS R4, 0

BEQ L1

R1 R1 + 1

JMP L2

R0 R0 + 1

CMPS R0, R3

BLT L3

P
ar

ti
ti

o
n

-0
P

ar
ti

ti
o
n

-1

LOC$

LOC$

(b) Predicted path execution
and branch resolution

R2 R2 + 1

LATCH

[Arch] LATCH

R4 M[R0]

CMPS R4, 0

BEQ L1

No Op

R0 R0 + 1

CMPS R0, R3

BLT L3

P
ar

ti
ti

o
n

-0
P

ar
ti

ti
o
n

-1

LOC$

LOC$

(c) Recovering from mispre-
dict

Figure 3.1: Example illustrating basic EMR functionality. The branch with
L1 as the target is the mispredicted branch.

As an example, consider steady-state execution of the loop presented in

Figure 3.1a which has a branch, BEQ L1, that is hard to predict. Assume

that in this iteration, the branch was predicted as "not-taken" and the

execution in a two-partition EMR is as shown in Figure 3.1b. This figure

shows the localized storage at the execution station (ES) level to improve

comprehensibility of the example. Now when the branch resolves as "taken",

partition-0 sends out address L1 as the input instruction address for partition-

1. As shown in Figure 3.1c, due to steady-state assumption, partition-1

finds this instruction bundle in the localized cache, selects and starts its

execution, thus reducing the ER delay. The instructions in ES1, ES2 and

43

ES3 of partition-1 are CIDI instructions that may have finished execution

and will not re-execute to further improve performance.

In general, when a mispredicted branch resolves, the correct path, if

cached, is selected in the subsequent partitions. During this selection process,

if control independent instructions are found, control independence is utilized

by avoiding re-execution the CIDI instructions and quickly commiting such

instructions when possible.

3.2 Architectural Overview

EMR enhances CRIB by introducing new architectural components to

implement the target functionality. This section presents an overview of

new architectural components in EMR.

Figure 3.2 shows the top level diagram of EMR. Each partition gains a

partition control unit(PCU) that coordinates program control with adjacent

PCUs via the newly added control interconnect. When required, a PCU

can also request for specific instructions to be fetched and allocated into

its corresponding partition. A demand fetch unit, marked as FE DF in

the Figure 3.2, is used to aggregate the requests from all the PCUs, and

redirects the front-end only when required. The PCU and demand Fetch

units are further discussed in the future sections of this chapter. A local

sequence number (LSN) that corresponds to program order is assigned to

44

Part

0

Part

1

Part

2

Part

3

PCU

PCU

PCU

PCU

FE

DF

Complex

Int

FPU

LSQ

To

Fetch

Figure 3.2: Overview of EMR architecture.

Inst. address µOp Number Valid BMP token

Figure 3.3: Control communication between the partition control unit.

each instruction instance in an ES. The LSN is used to prioritize fetch

requests, and to order memory operations correctly.

As shown in the Figure 3.3, the interconnect between the PCUs carries

four different components. Instruction Address is used to communicate

the address of next instruction from one PCU to another. Some instructions

have multiple µops and µop Number communicates the µop number of the

next instruction. A Valid bit signifies the validity of the incoming address

and enables different actions in the destination PCU.

45

LOC$
Select

Propagate
FE Com

PCU

Figure 3.4: Internals of a partition control units.

Branch Mispredict(BMP) token enables instruction selection order

based on the oldest mispredict in the window and limits redundant operations

and redundant fetch requests. It is a value derived from the sequence number

of mispredicted branch and re-execution count of that branch instance. A

global BMP token also exists and can be set either by an older mispredicted

branch or by a branch that has its incoming BMP token matching the

current global BMP token. A partition is eligible to select an instruction

bundle when the incoming BMP token is equal to the global BMP token.

3.3 Partition Control Unit

PCU delivers an instruction bundle to the partition by using a novel In-place

fetch mechanism. As shown in the Figure 3.4, there are four different

units of PCU that implement the functionality of In-place fetch. A very

small µop cache, called location optimized control cache, is used to

46

store a trace of instruction bundles previously executed on the associated

partition. Based on the incoming address, the select unit looks up the

location optimized control cache and supplies instructions for execution.

The propagate unit generates the address of next instruction bundle based

on the incoming address. If an instruction bundle was not found in the

location optimized cache, the select unit generates a fetch request. This

fetch request is communicated to the demand fetch unit by the front end

communication interface.

3.3.1 Location Optimized Control Cache (LOC$):

LOC$ is envisioned as a small, associative µop cache that is written when

instruction bundles are allocated to the partition. This cache is envisioned

to typically hold four to 16 instruction bundles. Each entry is tagged by the

address of the first instruction in the instruction bundle.

As the name suggests, LOC$ is optimized for locality. Multiple LOC

caches are allowed to replicate instructions to quickly provide them to their

respective partitions. An alternative solution is to route the control path

back to the partition containing the required instructions. Such a solution

is most likely to increase the no-op filled partitions which can severely affect

performance due to decreased effective instruction window size.

The usage of LOC$ is a bit different than the normal caches. Normally,

a cache is looked up for an entry and data is filled into the cache only when

it is not present. In case of LOC$, instruction bundles can be speculatively

47

allocated which can result in multiple instances of an instruction bundle in a

LOC$. This lowers the effective capacity of a cache and is very undesirable.

Replication in the LOC$ can be avoided by checking if an instruction bundle

is already present in the LOC$ before inserting it. This requires a look up

preceding every write, which increases power consumption and, in some

cases, increases instruction delivery delay.

EMR employs three preventive measures to keep the power and delay in

check. First, the back end of EMR is conservatively marked as full when the

allocation pointer reaches the commit pointer. A more aggressive allocation

would have proceeded to allocate till all the LOC caches are full. This

conservative approach dramatically reduces LOC$ pollution and replication

while saving power. Second, each partition is provisioned with a separate

single-entry cache line, called fill buffer, that holds the allocated instructions.

When a partition needs to select an instruction bundle, both LOC$ and

the fill buffer are looked up. If the fill buffer has the instruction, its entries

are supplied for execution. Finally, the LOC$ is written with the entries

supplied for execution by the fill buffer, only if the LOC$ did not have

the corresponding instruction bundle. These three techniques increase the

effective capacity of the LOC caches. LOC$ replacement is managed by

pseudo-LRU policy.

48

3.3.2 Select Unit:

This unit performs an associative look up of the LOC$ using the incoming

instruction address and delivers the instruction bundle to the partition. If

the instruction bundle is not found in LOC$, this unit initiates a fetch

request by using the front end communication interface.

3.3.3 Propagate Unit:

Based on the incoming address and the type of instruction, this unit generates

the next instruction address, similar to the next address generator in the fetch

unit. When front end is turned off, this unit can use the branch predictor

to predict the outcome of branches supplied by the LOC$. Additional

discussion on branch prediction is presented in Section 3.5.

3.3.4 Front End Communication Interface:

On receiving a fetch request from the Select unit, this unit appends the

partition number and the LSN of the first ES to the received fetch request

before sending it to the demand fetch unit. Since only one instruction fetch

request is valid at a given time, the fetch communication interface could

interface with the demand fetch unit using a bus that is shared between

many PCUs. Bus master prioritization can be easily done on the basis of

the LSN of the requester.

49

ICU$FR FSM Arb
To

Fetch

Front-End Demand Fetch (FEDF)

Figure 3.5: Components of demand fetch unit.

3.4 Demand Fetch

If a target instruction bundle is not found in the LOC$, due to either a cold

or conflict miss, a request is placed with the demand fetch unit which selects

and services the oldest fetch request. Figure 3.5 presents the internals of the

demand fetch unit, which has three main sub-units. In presence of multiple

fetch requests, the Request Arbiter selects the fetch request with lowest

LSN. To reduce front end redirects, the oldest fetch request can be sent to

front end redirect unit only after determining that ICU$ can not service

the request. However, such serial process increases cycle count required for

front end redirect and can impede or even hurt performance. In order to

minimize the service delay, the oldest request is simultaneously sent to both

ICU$ and the front end redirect unit.

50

3.4.1 In-Core µop (ICU) Cache:

This cache is structurally similar to the µop cache in the baseline CRIB, but

supports both demand fetch, and speculative push to the LOC$. The selected

request from the arbiter looks up the ICU$ for the required instruction

bundle. If found, the request is serviced by the ICU$ and any front end

fetch triggers made simultaneously are cancelled. The serviced instruction

bundle is inserted into the requested partition.

In an effort to reduce the number of fetch requests, the ICU$ also

speculatively pushes subsequent instruction bundles in the following cycles.

Pushes continue till either a branch is encountered in the supplied stream or

the target bundle is not found in ICU$. These pushed instruction bundles

are inserted into LOC caches in consecutive partitions. The ICU$ and the

baseline µop cache are eight-way set-associative, managed with pseudo-LRU,

and hold an instruction bundle in every way of every set.

Since ICU$ is also a back end cache like LOC$, instruction bundles

can be inserted even when they are already present in the cache. Special

insertion policies are warranted to minimize data replication and maximize

effective cache capacity. Instruction bundles are looked up for presence

before insertion. Since ICU$ is written when it is not servicing any fetch

requests, delayed writes do not affect performance. Given that the number

of fetched instructions is low in most benchmarks, the energy increase due

to the additional look ups is lower. Since LOC and ICU caches are now

51

Idle

Normal

Service

In
it

ia
l

F
et

ch
Trigger Fetch

Cancel Service

F
o
rc

e
F

et
ch

 T
ri

g
g
er

Figure 3.6: Finite state machine at the demand fetch unit that indicates
the state of the front-end.

present in the back end of the pipeline, they are henceforth also referred to

as back end caches.

3.4.2 Front End Redirect:

This unit uses a finite state machine (FSM) and fetch filtering to determine

when to redirect the front end. The FSM, illustrated in Figure 3.6, has three

states reflecting the status of the front end — Idle, Service and Normal.

When the FSM is in the “Idle” state, the front end is turned off. Front

end is is active in the other two states of the FSM. “Idle” on reset, the

initial fetch transitions the FSM to “Normal” state. In “Normal” state,

52

the front end is supplying instructions to the execution core, just like in

the traditional instruction delivery mechanism in baseline conventional

out-of-order processor and CRIB. If in “Idle” mode, a fetch request from

the request arbiter can trigger transitions of the FSM to “Service” state and

the front end will be redirected.

In “Service” mode, the front end is expected to deliver the instructions

that were not found in the back end caches (LOC and ICU caches). A

record of the fetch request, that is currently under service, is maintained to

allocate the requested instruction bundle to the requested partition. The

FSM transitions to the “Normal” state as soon as the first instruction

bundle corresponding to the requested address is allocated. A fetch request,

currently under service, could be cancelled due to a ICU$ hit or due to an

older branch mispredict. In such cases, the FSM goes into the Idle mode till

a new fetch request is made. An older fetch request can override the fetch

request that is currently under service. If requested address is different, a

new redirection of the front end is triggered. Otherwise, the information

about requested partition is updated in the service record.

After reaching a threshold number of LOC$ hits for the allocated instruc-

tion bundles, the front end can be turned off to save energy. In this case,

the FSM transitions from “Normal” state to “Idle” state. Typically, fetch

requests that occur during “Normal” state are ignored with an assumption

that the requested instructions are en route and may be delayed due to

the front end latencies. However, some fetch requests can force the FSM

53

to change from “Normal” to “Service” state when the front end is not

fetching the requested instructions. This happens when a mispredicted

branch provided by front end, finds part of correct path in LOC caches

and the front end continues to fetch from an incorrect path. To detect

this scenarios, a front end address table (FEAT) is used to maintain the

addresses of instructions in flight in the front end.

FEAT can be looked up associatively to determine if the requested

address is already en route. If not, the FSM transitions from “Normal”

state to “Service” state and redirects the front end to fetch the requested

instruction. The number of entries in FEAT is equal to the number of pipe

stages in the front end. This table is maintained in a first-in first-out fashion

to reflect the precise state of the front end pipe.

Redirecting the front end is expensive in EMR due to the additional

accesses to the back end caches. SAT can also be checked to prevent any

front end redirects if the requested instruction is already in flight. The

Allocate unit is augmented to use the service record and start allocating

instructions only when the instruction corresponding to this address is

delivered by the front end. All other instructions supplied by the front end

are discarded by the Allocate unit.

54

3.5 Back-End Branch Prediction

When instructions are steadily supplied by the back end caches, the entire

front end, including the branch predictor, can be turned off. Even with the

low instruction delivery time from the back end caches, branches need to be

predicted to avoid performance losses. Simple static prediction techniques,

like "always taken" or "backward taken, forward Not-taken" or "use previous"

can be used to speculate the next address. In an experiment, it was observed

that "use previous" severely limits performance gains of some benchmarks.

So, branch prediction accuracies affect the performance of EMR, albeit in

a less dramatic way. A second branch predictor can be used to perform

dynamic branch prediction of branches supplied by the back end caches, but

this may have prohibitive hardware costs. Instead, the EMR execution core

shares the branch predictor with the front end and uses it only when the

front end is idle.

In an effort to minimize predictor pollution, an upgrade bit is added to

the speculative branch records. Only upgraded branch records are eligible

to update the predictor tables. Branches predicted at the front end create

branch records with a cleared upgrade bit. This record is upgraded when

the corresponding branch is delivered to an ES for execution. If this branch

was never selected for execution, then its upgrade bit is never set and thus

preventing invalid updates. If a branch predictor is used to predict the

55

outcome of a branch supplied by the back end caches, the created branch

record is immediately upgraded.

If an instruction bundle is supplied by the back end caches, the front end

typically is turned off or is fetching instructions from an incorrect path. If

such an event occurs and the front end FSM is in "Normal" state, the FSM

goes into "Idle" state to conserve energy and avoid pollution of the back end

caches. This also enables more opportunities for the execution core to use

the branch predictor.

3.6 In-place Fetch and Misprediction

Recovery

EMR’s novelty stems from the innovative instruction delivery mechanisms.

The concepts of In-place fetch and In-place misprediction recovery have

been explained in the previous sections as a part of architectural component

functionality. These terms are formally introduced as functional concepts in

this section.

3.6.1 In-Place Fetch

In-place fetch is the term coined to describe the novel instruction delivery

process. In this new delivery process, the front end is used rarely to

obtain instructions. The PCU at each partition is able to generate the

56

next instruction address and pass it to the subsequent partition. The next

partition’s PCU will receive this instruction address and is likely to find

those instructions in the LOC$. The term “In-place” derives from this

observation that the instruction, present in the LOC$, is delivered to the

execution station and later committed without moving it across any pipe

stages. In-place fetch is essential to support the novel recovery mechanism.

3.6.2 In-Place Misprediction Recovery

On a branch mispredict, EMR employs selective recovery, where only the

control dependent instructions are squashed. In CRIB, the only resources

held by the allocated instructions are the execution stations and possibly

load or store queue entries. On a mispredict, CRIB releases resources of all

partitions younger than the mispredicted partition. Recovery is complete

as new instructions are fetched and allocated starting from the partition

subsequent to the mispredicted partition.

The release of load and store queue entries is modified in EMR. In

addition to the traditional release of any load queue or store queue entries

on commit, these resources are released when a new instruction is selected

before commit. Dependences are automatically resolved because of the

data-flow nature of CRIB’s data path.

After resolving the mispredicted branch’s address, PCU of the mis-

predicted partition sends the correct address to the subsequent partition.

Assuming that the entire correct path is already cached in the subsequent

57

partitions, each of these partitions select the correct instruction bundle from

the LOC$ and generate new address for the next partition. This way, EMR

recovers from a misprediction without moving any instructions across any

pipe stages and thus the name In-place misprediction recovery.

3.7 Summary

The main proposal of this thesis, Express Misprediction Recovery architec-

ture, was presented in this chapter. The chapter started with providing

functional and architectural overviews of EMR and then delved deep into

architectural components and their respective functionalities. The effect

and impact of the need for back end branch predictors is also explained.

The chapter also formally defines the concepts of In-place fetch and In-place

misprediction recovery.

58

4 control independence
In-place-Fetch significantly reduces execution-resume delay. So, benefits

from control independence in EMR are predominantly from using the CIDI

instructions that have at least begun executing. The expected performance

gains from control independence are considerably lower than projections

from prior art. This chapter covers various aspects of utilizing control

independence in EMR.

4.1 Discovering Control Independence

Accurate discovery of control independent instructions is of critical impor-

tance to obtain performance gain from control independence. In previous

proposals, the merge point is predicted using a predictor, which is typically

70% accurate [4]. Instead, EMR, the merge point is precisely found by using

the properties of In-place fetch and control independence discovery.

A possible implementation of control independence discovery in EMR

would be to use two additional networks — one forward propagating network

for query, and a backward propagating network for response. To detect

control independence, EMR can issue a search for the control independent

instruction in the younger partitions using the forward propagating network.

If a younger partition responds on the backward propagating network,

control independence is discovered and all the intermediate partitions are

59

Example Code

L3 R4 M[R0]

C1 CMPS R4, 0

B1 BEQ L1

C2 R1 R1 + 1

B2 JMP L2

L1 R2 R2 + 1

L2 R0 R0 + 1

C3 CMPS R0, R3

B3 BLT L3

Figure 4.1: Example code with instruction address labels.

forced to select no-ops. However, due to the serial latencies of searching and

selecting of control independence can significantly diminish any performance

opportunity. Instead EMR uses a simple table structure called the Select

Address Table to perform the discovery in a single cycle.

4.1.1 Select Address Table

The select address table (SAT) holds the addresses of currently selected

instructions in the machine. This table helps in discovering the merge point

of a branch, and also in using the control independence property of a branch.

Figure 4.2 shows contents of an SAT for the corresponding example state

of a two-partition EMR and code example presented in Figure 4.1. To

simplify explanation, LOC caches are considered to be at the execution

60

LATCH

LATCH

R4 M[R0]

CMPS R4, 0

BEQ L1

R1 R1 + 1

JMP L2

R0 R0 + 1

CMPS R0, R3

BLT L3

SAT

L3

C1

B1

C2

B2

L2

C3

B3

LATCH

LATCH

R4 M[R0]

CMPS R4, 0

BEQ L1

R0 R0 + 1

CMPS R0, R3

BLT L3

SAT

L3

C1

B1

L1

L2

C3

B3

R2 R2 + 1

Figure 4.2: Examples of contents of select address table when two different
paths of a branch are selected.

station granularity rather than the proposed partition granularity. The two

parts of the example show different SAT states when the branch selects one

path or the other.

SAT is mainly used to detect the first control independent instruction,

and hence the merge point of a control flow divergence. The aggressiveness

of control independence detection can also be controlled by the way SAT is

populated.

61

4.1.2 Merge Point Detection

Discovery of CI instruction is enabled after a mispredicted branch resolves.

Each partition younger than the mispredicted branch, will look up the SAT

and its LOC$ with the incoming address. When SAT is looked up with an

address, an associative search is done to find the oldest younger partition

that has selected this instruction bundle. If SAT look up results in a match,

the current partition selects no-ops and propagates input values to outputs.

In case SAT look up did not yield a match, LOC$ might supply the required

instruction bundle using In-place fetch. Thresholding the distance of CI

instruction can be done to limit the no-op partitions.

Consider the example illustrated in the Figure 4.2. When the branch

BEQ L1 resolves as a taken branch, instead of the predicted not-taken

branch, control independence discovery is enabled. When execution station

3 of the first partition receives the address L1, the SAT is looked up for this

address in parallel to the LOC$ look up. Since the instruction corresponding

to the target address (L1) is currently not selected at any of the entries

in the machine, the LOC$ of execution station 3 would have provided this

instruction. Following an LOC$ miss at the execution station 3 of the first

partition, the same look up procedure is repeated at execution station 0 of

the second partition. Since the instruction corresponding to the address L1

is present in the LOC$ of the execution station 0 of the second partition, it

is selected and the next address corresponding to the control independent

instruction R0<—R0+1 is generated. As execution station 1 of the second

62

partition looks up the SAT, it finds that this instruction is actually being

selected by an entry in the close proximity — in this case the same execution

station. This marks the end of control independence discovery and since the

incoming addresses did not change, existing selected instructions retain their

execution state and results. In CRIB, instructions are re-executed when the

source value changes. These changes in source values are detected by the

toggling of ready bits associated with the source registers. This is done so

that a mispredicted load instruction, instead of causing a pipeline squash,

requires only its dependent instructions to replay. The same technique is used

to take care of reevaluating any control independent data dependent(CIDD)

instructions.

4.2 Trade Offs in Control Independence

Control independence trade offs have been studied earlier by Agarwal et al.

where critical instruction fetch can be delayed due to utilization of control

independence [1]. Additionally, the effects of control independence on branch

predictors was presented by Michael and Koppelman [71]. In EMR, the

detrimental effect of pursuing control independence is the decreased effective

instruction window size.

The aggressiveness of CI instruction discovery can be controlled by

thresholding the distance of CI instruction’s partition from the current

partition, and by the way the SAT is populated. The distance of a control

63

independent instruction’s partition from the current partition that is search-

ing for the control independent instruction is obtained as the measure of

number of intermediate partitions that have to select no-ops in order to

propagate the precise architectural state to the control independent parti-

tion. Thresholding this distance can limit the discovery range of a control

independent instruction. The SAT can be populated either aggressively

or conservatively. An aggressive way is to update the SAT entry when

instruction bundle is selected by the corresponding partition. Alternatively,

a more conservative approach would be to update the SAT entry when at

least one of the instructions in the corresponding partition starts to execute.

While aggressive CI instruction discovery results in more opportunities,

they tend to hurt performance in many benchmarks. As intermediate

partitions select no-ops, they decrease the effective window size and limit

instruction level parallelism. Additionally, since completed CIDI instructions

are the main benefactors to performance, the conservative approach is

observed to be a better choice. A trade off analysis also showed that limiting

threshold distance, used to find the CI instruction, results in best overall

performance. This analysis is presented in Section 6.3.4 of Chapter 6.

4.3 Case Study of Astar

A-star, or 473.astar, is a SPEC2006 benchmark that is derived from a

portable two-dimensional path-finding library that is used in artificial in-

64

telligence for games. This is an interesting benchmark for prior work on

control independence due to high misprediction rates and significant control

independent data independent instructions.

1 for(i=0; i<bound1l; i++){
2 index=bound1p[i];
3
4 /*14 instruction block -- BLOCK-1, 1 of 8 similar instances*/
5 index1=index-yoffset;
6 if(waymap[index1].fillnum!=fillnum){ /*LD1 and dependent BR1*/
7 if(maparp[index1]==0){ /*LD2 and dependent BR2*/
8 bound2p[bound2l]=index1;
9 bound2l++;

10 waymap[index1].fillnum=fillnum;
11 waymap[index1].num=step;
12 if(index1==endindex){ /*Predictable Taken BR*/
13 flend=true;
14 return bound2l;
15 }
16 }
17 }
18 /*CI Path for BR1 and BR2*/
19 /*14 instruction block -- BLOCK-2, 2 of 8 similar instances*/
20 index1=index-yoffset-1;
21 if(waymap[index1].fillnum!=fillnum){ /*LD3 and dependent BR3*/
22 if(maparp[index1]==0){ /*LD4 and dependent BR4*/
23 ...
24 ...
25 }

The code segment of the most executed loop in 473.astar is shown in

the example above. This loop has eight 14-instruction blocks and each one

is annotated as BLOCK-n. Each of the 14 BLOCKs is only dependent

on index1 which is dependent on index that changes once per iteration.

Studying the components of BLOCK further, BLOCK-1 has long latency

load operations LD1 and LD2. Branches BR1 and BR2 are dependent on

65

these load operations and are hard to predict. With presence of significant

ILP across different BLOCKs, there are considerable long-latency control

independent data independent instructions for both BR1 and BR2 within

an acceptable distance. When BR1 or BR2 mispredict, the completed CIDI

instructions, LD3 and LD4 and their dependents, are used to further enhance

EMR performance.

4.4 Summary

A novel way to discover and utilize control independence was presented as

an extension to EMR. A select address table is used to precisely discover the

control independent instructions, if they exist in the machine. A through

evaluation is presented in Chapter 6.

66

5 amplified instruction

delivery
Flynn’s bottleneck is an observation that the instructions committed per

clock (IPC) can not exceed the instructions fetched per clock [117]. Although

a nuance, a more accurate statement, to encompass µop caches, loop buffers

or other such instruction storage, would be to say that IPC can not exceed

the instructions supplied for processing in a clock cycle.

The in-place-fetch mechanism in EMR enables optimizations to increase

the number of instructions that are delivered for execution without changing

the front-end bandwidth. In this chapter, the technique to amplify instruc-

tion delivery bandwidth to the execution cores is explained. Henceforth,

this thesis refers to this technique as AID. Like the loop buffers or µop

caches, this technique can also improve the transient fetch bandwidth of the

machine and can increase the Flynn’s bottleneck limit on performance.

5.1 Relaxing the Flynn’s Bottleneck Limit

EMR uses a novel speculative technique to supply instructions from the

partition-local caches to increase the number of instructions that can be,

in conventional terms, fetched in a single cycle. AID is supplemented by

increased commit bandwidth to boost performance. In this section, the

67

necessary modifications to increase commit bandwidth is discussed first,

followed by a detailed explanation of the amplified instruction delivery

technique.

5.1.1 Increased Commit Width

Committing more than one partition in a cycle requires simple, yet non-trivial

change in the baseline CRIB. While it is simple, due to Flynn’s bottleneck,

committing more than one partition per cycle boosts performance only

if more than one partition can be allocated in a cycle. If the front-end

bandwidth does not change, CRIB does not need to commit more than one

partition at a time.

Since EMR is a derivative of CRIB, the changes required to commit

more than one partition still remains straight forward. Although multiple

partitions can be committed per cycle, this work limits the number of

committed partitions to two. All the explanations relating to AID will be

explained assuming that two partitions are committed in a cycle. Once two

partitions are committed, AID can supply instructions to both partitions

in a single cycle. Assuming that each partition can hold four instructions,

AID can increase the theoretical limit of IPC from four to eight.

With increased commit width, when a partition is ready to commit, the

commit logic checks if more than one partition is ready to commit. If both

partitions are ready, a check for presence of instruction execution faults

has to be handled. In absence of any instruction faults, both partitions

68

are committed and the partition following the second of the committed

partitions is made as the architected partition.

5.1.2 Amplified Instruction Delivery

When a partition commits, the incoming address from the previous partition,

which is no longer blocked, will be used to select an appropriate instruction

bundle. In steady state, the committed partition is likely to select a new

instruction bundle and generate the instruction address for the following

partition. The partition following the committed partition will become the

architected partition signifying that the partition is executing the oldest

instruction bundle in the instruction window. If the newly promoted archi-

tected partition does not commit in a cycle, it can receive the address of

the instruction bundle that it has to select after commit.

Assume a two-partition i.e., eight instruction commit in EMR with

front end delivering four instructions per cycle. When two partitions are

committed in a cycle, the first partition immediately selects an instruction

bundle from LOC$ based on incoming address and delivers the first set of four

instructions. Since the second partition would get a valid incoming address

only after a cycle, in-place fetch would deliver only four instructions per

clock. So, Flynn’s bottleneck would still limit the theoretical performance

to four instructions per cycle.

An observation can be made that once a partition is promoted to be the

architected partition, the incoming address will no longer change. So the

69

partition control unit can be used to generate the instruction address for

the partition following the architected partition. Now, when two partitions

commit in a cycle, the second partition would have a valid instruction

address to select from. This way, two instruction bundles or up to eight

instructions can be selected in a single clock cycle after committing two

partitions. This technique fails if EMR consistently commits more than one

partition in a cycle.

5.1.3 Next-Index Prediction

Next-index prediction is used as a simple alternative to provide an instruction

bundle to the second of the two partitions that committed in a cycle, given

that pre-computation was not possible. The second partition uses a simple

next-index predictor to speculatively select an instruction bundle in the

same cycle as the first partition. The next-index predictor, local to each

partition, is a simple table that is accessed by using the current index of

the LOC$ and the entry provides the next-index of the LOC$. Instead of

an associative lookup, LOC$ data array is directly looked up using this

index value to obtain the instruction bundle. The prediction is verified and

corrected, if necessary, in the next cycle as the partition gets the actual

address. With invalid initial values, this predictor is updated every time the

associated partition selects based on incoming address.

As an example, consider the entries of this next-index predictor as shown

in Table 5.1, assuming eight entries per LOC$. The first four indices show

70

Current Index Next Index
0 1
1 2
2 3
3 0
4 -
5 4
6 4
7 7

Table 5.1: Example contents of Next-index predictor which is used to amplify
instruction delivery.

a pattern of a long loop that is captured across multiple partitions across

multiple LOC$ entries. An entry, like the one at index four, can have an

invalid value to avoid predicting incorrectly. Entries at indices five and six

show a pattern of backward branches that can correspond to continue like

statements. There can be entries that have the same value as the select

index, implying that the loops are properly captured within the execution

window.

The performance impact of AID is dependent on factors other than the

accuracy of the next-index predictor. Program and machine characteristics

determine the scenarios where two partitions commit in a single cycle. Even

if such opportunities are frequent, long latency instructions and branch

mispredictions can limit the performance gains from AID. The performance

analysis of AID, double commit opportunity and the accuracy of next-index

predictor are presented in Section 6.2.3 in Chapter 6.

71

5.2 Case Study of Libquantum

Libquantum, or 462.libquantum is a library for simulating a quantum com-

puter, and is a part of the SPEC2006 benchmark suite. This benchmark has

a simple, predictable loop that executes for a large part of the program. Ad-

ditionally, due to 2MB access strides, a robust prefetcher is required for good

application performance. In this dissertation, all processor configurations,

baseline or otherwise, have a robust prefetcher to alleviate performance

limitations due to memory operations.

//highly executed loop in quantum_toffoli function of libquantum
//Part.Ent : Addr : {Cached instruction} Selected Instruction

p0.e0 : dc64 : ldrd.w r2, r3, [r1, #0]
p0.e1 : dc68 : and.w r6, r2, r4
p0.e2 : dc6c : and.w r7, r3, r5
p0.e3 : dc70 : cmps r5, r7

//------------------------Partition Boundary
p1.e0 : dc72 : it eq
p1.e1 : dc74 : cmpeqs r4, r6
p1.e2 : dc76 : eor.w r2, r2, r8
p1.e3 : dc7a : eor.w r3, r3, r9

//------------------------Partition Boundary
p2.e0 : dc7e : {@0xdc7e bne.n 0xdc84 } bne.n 0xdc84
p2.e1 : ____ : {@0xdc80 strd.w r2, r3, [r1]} no op
p2.e2 : ____ : {@0xdc84 adds r1, r1, #16 } no op
p2.e3 : ____ : {@0xdc86 cmps r1, r0 } no op

//------------------------Partition Boundary
p3.e0 : dc84 : {@0xdc88 bne.n 0xdc64 } adds r1, r1, #16
p3.e1 : dc86 : {@______ no op } cmps r1, r0
p3.e2 : dc88 : {@______ no op } bne.n 0xdc64
p3.e3 : ____ : (@______ no op } no op

Consider the example presented above which illustrates a capture of

instructions from the most executed loop in 462.libquantum, in a four

partition EMR. Each column entry is delimited by a colon(:). The first

72

dc64, dc68, dc6c, dc70

P
ar

t-
0 LOC$

dc72, dc74, dc76,dc7a
P

ar
t-

1 LOC$

dc76, dc80, dc84, dc86

P
ar

t-
2 LOC$

dc88, --, --, --
dc84, dc86, dc88, --P

ar
t-

3 LOC$

NIP
0
-

NIP
0
-

NIP
0
-

NIP
-
1

Figure 5.1: An example 462.libquantum’s loop as captured in a four partition
EMR. The NIP entries are also shown.

column shows the partition number and the entry number. The second

column shows the address of the instruction that is selected in this instance.

The third column shows alternate path of cached instructions in the curly

brackets and shows selected instructions outside the curly brackets.

As the example shows, all instructions of the loop are perfectly captured

in the 16 execution stations. Now, once partitions 0 and 1 are completed

and committed in the same cycle, partition-1 will select the same index

based on the incoming address. For partition-1, next-index predictor will

suggest selecting from the current index, i.e., to supply the same instruction

bundle to the execution station. The next-index predictor entry at the

current index offset will have the current index, similar to the entry seven in

73

example presented in Table 5.1. Figure 5.1 shows a sample capture of the

loop in a four partition EMR with two LOC$ entries. The figure also shows

an example state of next-index predictor, which is correct most of the times.

As the loops are tightly packed, there is significant opportunity available in

462.libquantum, resulting in sizeable performance gains from AID.

5.3 Summary

This chapter presented a novel extension idea to EMR, AID, to increase

the number of instructions delivered to the back end without increasing the

front end bandwidth. AID uses a combination of pre-computation of next

address and next-index predictor to help relax the performance limit placed

by Flynn’s bottleneck in the baseline processors.

74

6 evaluation
EMR has been thoroughly evaluated with a wide variety of benchmarks

using a cycle accurate simulator and energy estimation tool. Using these

tools, various characteristics of EMR, and various design trade offs have

been documented in this chapter. This chapter starts with the details on

the evaluation platform followed by presenting actual experiments and their

results.

In these evaluations, it is observed that EMR outperforms CRIB by

23%, 20%, 10.5% and 4% in CINT2006, MiBench, Graph500 and CFP2006

respectively. Additionally, on an average, EMR saves 16%, 17%, 13% and

25% of the baseline energy when running CINT2006, MiBench, Graph500

and CFP2006 respectively.

6.1 Evaluation Setup

The evaluation platform consists of a cycle accurate simulator, an energy

estimation tool, configurations of baseline and EMR machines and bench-

marks.

6.1.1 Cycle Accurate Simulator

A new cycle-accurate, execute-at-execute CRIB CPU model is implemented

in gem5 [7] and is thoroughly validated using SPEC 2006 [38], MiBench [31],

75

SDVBS [123] and Graph500 [75] benchmarks. Execute-at-execute enforces

tighter implementation requirements for functional correctness and provides

realistic scenarios when predictions are involved. Numerous parametric

studies with sanity, statistical and manual verifications boost confidence in

the accuracy of the implemented CRIB model. Some inconsistencies in the

O3 model of gem5, like the presence of unnecessary "bubbles" in the pipeline

are fixed to make a fair comparison in Figure 2.6. The LTAGE branch

predictor is implemented and verified against the LTAGE from the branch

predictor championships. Ideal branch prediction is achieved by dumping

the trace of actual outcomes and using them as predictions in a subsequent

run of the benchmark.

6.1.2 Machine Configurations

Table 6.1 shows configurations of different machines considered in this paper.

In various experiments, the execution window size, LOC$ and ICU$ sizes

are modified to observe the performance impact of these variables.

In CRIB, the instruction window size is determined by the number

of execution stations. The baseline conventional out-of-order processor is

modeled using the architectural parameters from Intel’s Haswell microarchi-

tecture [34]. To match the performance of this processor, the baseline CRIB

is configured to have 64 execution stations.

The issue queue entries in conventional out-of-order is assumed to be

a unified issue queue and is modelled using the state-of-the-art processors

76

Parameter COoO CRIB EMR
Instr. Window 192 64 64
PRF 168 NA NA
IQ Entries 60 64 64
LQ/SQ Entries 72/42 42/42 42/42
INT ALUs 4 64 64

Functional units

Int ALU (1-cycle), 1 Int Mult/Div (3-cycle/20-
cycle), 2 LD/cycle (1-cycle AGU), 1 ST/cycle
(1-cycle), 2 SIMD units (1-cycle), 2 FP Add/-
Mult (5-cycle), 1 FP Div/Sqrt (10-cycle)

FE Width 4
Branch Predictor 256Kb LTAGE
Max. Issue Width 8 64 64
Commit Width 4 4 8
Pipe Stages 13 8 8
Frequency 2 GHz
µop$ 4K-entry, 8-way SA
LOC$ - - 8-entry assoc
L1 I$ 64KB 4-way SA, 1 cy
I$ prefetcher 2-ahead seq. prefetch
L1 D$ 64KB 4-way SA, 2 cy
D$ prefetcher 2-ahead stride prefetch
Unified L2$ 256KB 8-way SA, 12 cy
L2 prefetcher 2-ahead combined prefetch
Unified L3$ 4MB 16-way SA, 24 cy
L3 prefetcher 4-ahead combined prefetch
Memory 2GB DDR3-1600

Table 6.1: Configurations of baseline machines and EMR.

at the time of this thesis. Similarly, the maximum issue width in the

conventional out-of-order processor is also determined in a similar way. In

CRIB, since the execution stations act as distributed issue queue entries,

the issue queue size is equal to the number of execution stations. Although

the theoretical maximum issue width of CRIB is same as the number of

77

execution station entries, it is unlikely that all the instructions in a window

are ready to execute at the same time. The typical issue width of CRIB is

much lower than the theoretical maximum but higher than the typical issue

widths of the conventional out-of-order baseline.

In CRIB, load or store queue entries can be allocated after the address

of a load or a store are available. This reduces the required number of load

and store queue entries in CRIB. Additionally, load and store queues can be

banked based on the memory address resulting in reduced area, power and

access delays for these structures. Due to the consolidation of rename, issue

queue, bypass, ALUs, and reorder buffer into a single stage, the number of

pipelines in baseline CRIB are much lower than the baseline conventional

out-of-order processor.

Compared to CRIB presented in [30], the baseline CRIB modelled here

uses larger instruction window, larger number of load store queue entries

and unified integer and floating point CRIB. Additionally, the component

delays have been recalibrated to increase the propagation from four to eight.

The load queue and store queue sizes are appropriately sized for the 64 entry

instruction window and are two-way banked instead of four-way banked

assumption in Erika’s evaluation [30]. The Table 6.1 shows the cumulative

number of load and store queue entries for CRIB and EMR.

78

6.1.3 Energy Model

The power model of McPat [62] is modified to correlate to the CRIB power

numbers as presented in [30]. The energy savings due to µop cache are

also incorporated into McPat model to provide the power estimates of the

baseline CRIB processor. The µop$ is accessed in every active fetch cycle

and is written when the instruction bundle is not found in the µop cache.

The main energy savings in µop$ comes by reducing partial I$ energy and

full energies of variable length decode and decode units.

For the LOC$ access energy, the access energy obtained from Fabmem [16]

is correlated with the Cacti [74] model used in McPat. The LOC$ access

energy is doubled as a conservative estimate of additional component power

and incorporated these metrics into the McPat model. In addition, leakage

power of the LOC and ICU caches are considered for energy calculation. All

FE provided instructions, in addition to the FE energy, also consume energy

for writes into ICU$ and LOC$. However, when the FE is turned off, all of

I$, variable length decode and Decode energies are saved. Instead of looking

up on every fetch cycle, ICU$ is looked up only when LOC$ misses. When

ICU$ supplies an instruction to LOC$, in addition to the ICU$ read energy,

LOC$ write energy is also consumed. Irrespective of hit or miss, each LOC$

lookup consumes read energy. The power estimates from McPat and the

execution time of each program are used to generate energy estimates. It can

be observed from these static components that availability of instructions in

LOC$ will have a significant impact on energy consumption in EMR.

79

Suite/Name #ops #loads #stores #branches IPC
CINT2006 (SPECint2006)

400.perlbench 128205949 35311144 21804673 15741588 2.2
401.bzip2 104110190 33179975 12280675 13921247 2.0
403.gcc 126752039 21525989 20490860 14172701 2.3
429.mcf 100000001 26511058 23127702 13062934 0.6

445.gobmk 111670095 27871920 10346391 12907320 1.6
456.hmmer 104281128 34614259 16776322 3256350 3.7
458.sjeng 111830079 25073748 9799264 13838789 2.3

462.libquantum 104080619 10154741 4694125 16331969 3.0
464.h264ref 103406683 45099418 16456356 3880218 3.3
471.omnetpp 132975077 35290203 21945358 13987298 2.0

473.astar 101662342 27410281 7386091 14579797 1.0
483.xalancbmk 138741187 37909772 19693279 11955282 2.1

CFP2006 (SPECfp2006)
410.bwaves 101742742 41303063 4563287 3194959 1.7
416.gamess 101303006 29194663 6040908 2808479 2.6
433.milc 106006021 42007896 19775970 684203 0.5

434.zeusmp 115382472 19970715 11277045 1690347 1.6
435.gromacs 100454582 26471631 11880438 2432885 2.2

436.cactusADM 107713848 32047283 12229096 7946384 1.0
437.leslie3d 119271048 32145647 17049856 5575434 1.8
444.namd 101700046 29076694 13092509 2376315 2.0
450.soplex 104384097 22219882 3774241 15287895 1.1
453.povray 137757242 42846981 22299068 9015237 2.1
454.calculix 104072646 30665981 17521836 4481939 2.3

459.GemsFDTD 101001920 48814841 13762280 581500 1.3
465.tonto 123537519 24751349 23379512 10148857 2.7
470.lbm 100000002 29888489 22138449 989225 0.9
481.wrf 108061228 6338808 20637289 18890538 1.4

Table 6.2: Characteristics of simpoint regions of SPEC2006 benchmarks.

6.1.4 Benchmarks

SPEC2006, MiBench and Graph500 benchmarks have been used to observe

the characteristics of various EMR designs. SPEC2006 consists of compute-

80

Suite/Name #ops #loads #stores # br IPC
MiBench

auto.bitcnt 50560084 2480863 603897 4629619 2.5
auto.qsort 71986654 13509620 10318829 9898641 2.1
auto.susan.corners 22182996 8419240 2363952 1065980 2.8
auto.susan.edges 64474732 25702689 8391782 2871161 2.9
auto.susan.smoothing 263040999 76172718 502928 27005516 2.5
cons.cjpeg 104434305 28750469 15563063 10196961 2.9
cons.djpeg 23433699 6949167 3447864 1221973 3.4
cons.lame 1129184352 331114418 133009996 70304970 1.9
cons.mad 294506143 105603280 42671651 11333355 2.7
cons.tiff2bw 147256337 39663390 19258287 10940661 3.9
cons.tiff2rgba 386852520 116697880 56504695 63221593 2.5
cons.tiffdither 606240672 68635779 54483073 35117089 3.0
cons.tiffmedian 613275741 149526153 95415416 24917042 3.4
net.dijkstra 190278062 37600689 19194753 42801675 1.8
net.patricia 749955544 134358190 91376348 81983497 2.7
off.rsynth 544214956 199957636 75818846 38322153 1.6
off.stringsearch 5582534 727926 776150 1006129 3.0
sec.blowfish 299822680 71262678 27229038 20100983 2.4
sec.rijndael 457089776 138675069 70459927 16057901 3.4
sec. sha 116469923 16464187 9049205 5646925 3.7
tele.adpcm.compress 719189229 53355825 6692975 66629877 2.5
tele.adpcm.decompress 519562195 33410731 13345775 46656613 3.5
tele.crc 234766152 61162535 6958882 27693685 1.3
tele.fft 14740146 1641187 1050285 868903 2.6
tele.gsm 1171687816 366425136 149423693 67613735 2.0

Graph500
seq-csr 441146604 34375030 26064063 20909240 2.7
seq-list 440364969 33946970 24117953 24027246 2.1

Table 6.3: Characteristics of MiBench and Graph500.

intensive programs developed from real user applications, and are used

widely in evaluating various processor designs. For SPEC 2006 benchmarks,

Simpoint [100] analysis is done to determine the best performance correlating

81

dynamic instruction window of 100 Million instructions. All results for

SPEC2006 are made on these 100 million instructions. Table 6.2 lists some

characteristics of these benchmarks in the selected Simpoint window. Also

shown in the table are the instructions committed per clock on a 64-entry

CRIB.

MiBench is a freely available benchmark suite that reflects compute

intensive portions of embedded programs. Graph500 is a new benchmark

to evaluate machines designed for big-data processing. Since the focus of

this dissertation is primarily on single thread performance, the sequential

benchmarks from Graph500 are used in this evaluation. Both MiBench

and Graph500 are run to completion. While MiBench uses the standard

benchmark parameters, Graph500 is run with custom inputs with scale

set to 10 and edgefactor set to 16. All benchmarks used in this paper are

compiled for ARMv7-a ISA with gcc-4.7.2 with full optimizations (-O3 flag),

vectorization and link-time optimizations (-flto flag).

6.2 Performance

In-place fetch, control independence and amplified instruction delivery(AID)

contribute to the performance gains in EMR. This section will focus on

attributing performance to individual techniques. Figure 6.1, Figure 6.2 and

Figure 6.3 show performance of EMR using CINT2006 (integer benchmarks

of SPEC2006), Graph500, CFP2006(floating point benchmarks of SPEC2006)

82

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

4
0

0
.p

er
lb

en
ch

4
0

1
.b

zi
p
2

4
0

3
.g

cc

4
2
9
.m

cf

4
4

5
.g

o
b
m

k

4
5

6
.h

m
m

er

4
5
8
.s

je
n
g

4
6
2

.l
ib

q
u

an
tu

m

4
6

4
.h

2
6
4
re

f

4
7
1

.o
m

n
et

p
p

4
7
3

.a
st

ar

4
8
3

.x
al

an
cb

m
k

G
eo

m
ea

n

se
q

-c
sr

se
q
-l

is
t

CINT2006 Graph500

R
E

L
A

T
IV

E
 P

E
R

F
O

R
M

A
N

C
E

 G
A

IN
EMR64_noAID_noCI EMR64_noAID EMR64_noCI EMR64

Figure 6.1: Performance advantage of EMR when compared to baseline
CRIB when executing CINT2006 and Graph500 benchmarks.

and MiBench. Each bar shows performance graphs corresponding to combi-

nations of enabling control independence and AID techniques. The ’noAID’

annotation implies that AID is turned off and ’noCI’ annotation implies

that control independence is turned off. In each subsection, related statistics

are presented to provide further insight.

6.2.1 In-place Fetch

To isolate the performance benefits due to the In-place fetch mechanism, con-

trol independence and AID are turned off. The first bar of each benchmark

shown in the Figure 6.1, marked as EMR64_noAID_noCI, corresponds

to performance gains in EMR due to In-place fetch mechanism only, for

83

CINT2006 and Graph500. These performance gains are largely attributed to

reduced execution-resume delay. Other benefits from In-place fetch include

reduced pipeline stalls and front end squashes. These front end stalls can be

caused due to I$ access stalls. Branch check at the decode stage can squash

the front end to correct mispredicted targets of direct branches.

Benchmarks with significant branch mispredictions benefit a lot from

the reduced the ER delay. 471.astar leads the performance curve with a

massive 60% performance gain with a geometric mean performance gain of

14% in CINT2006 and 9.5% in Graph500. Most of the benchmarks have

this performance gain correlated to the branch predictor MPKI, as shown in

Figure 1.2. 429.mcf, due to high cache miss rate, has a low 4% benefit even

with significant branch predictor MPKI of 9.2. In contrast, 462.libquantum

and 464.h264ref have small performance gains even without any significant

branch predictor MPKI. This is because EMR, even without AID, can

remove many pipeline bubbles when delivering instructions from back end

caches.

The In-place fetch benefits in CFP2006 are shown in the first bar of the

Figure 6.2. The moderate to trivial performance gains are due to the fact that

most programs in the CFP2006 have much lesser opportunity, as observed

from Figure 1.3. In cases like 436.cactusADM, where sizeable opportunity

exists, high-latency floating point operations and long dependence chains

limit performance. Like 462.libquantum, 437.leslie3d and 465.tonto have

small performance gains as a result of reduced pipeline bubbles in the

84

0%

2%

4%

6%

8%

10%

12%

4
1
0

.b
w

av
es

4
1

6
.g

am
es

s

4
3

3
.m

il
c

4
3
4
.z

eu
sm

p

4
3

5
.g

ro
m

ac
s

4
3

6
.c

ac
tu

sA
D

M

4
3
7

.l
es

li
e3

d

4
4

4
.n

am
d

4
5
0
.s

o
p
le

x

4
5

3
.p

o
v
ra

y

4
5

4
.c

al
cu

li
x

4
5

9
.G

em
sF

D
T

D

4
6
5

.t
o
n

to

4
7
0
.l

b
m

4
8
1
.w

rf

G
eo

m
ea

n

R
E

L
A

T
IV

E
 P

E
R

F
O

R
M

A
N

C
E

 G
A

IN
EMR_noCI_noAID EMR_noAID EMR_noCI EMR

Figure 6.2: Performance gains of EMR relative to the performance of baseline
CRIB when executing CFP2006.

front end. Overall, EMR, with in-place fetch alone, provides a 2% mean

performance boost to CFP2006 applications.

The first bar of Figure 6.3 shows the speedups in MiBench when only In-

place fetch mechanism is used in EMR. In MiBench, qsort, in the automotive

category executes 44% faster on EMR over the baseline. As Figure 1.4

shows, the 17 branch predictor MPKI provides substantial opportunity to

gain performance in this benchmark. With the exception of tiffbw, all other

benchmarks in the consumer category gain substantially from in-place fetch

mechanism. patricia in the network category frequently misses the back end

caches, resulting in lower performance gain than what can be expected from

7.5 branch predictor MPKI. As a benchmark suite, MiBench runs 8% faster

85

0%

10%

20%

30%

40%

50%

60%

70%

b
it

cn
t

q
so

rt
su

sa
n
.c

..
su

sa
n
.e

..
su

sa
n
.s

..
cj

p
eg

d
jp

eg
la

m
e

m
ad

ti
ff

2
b

w
ti

ff
2
rg

b
a

ti
ff

d
it

h
er

ti
ff

m
ed

ia
n

d
ij

k
st

ra
p
at

ri
ci

a
rs

y
n
th

st
ri

n
g

s.
.

b
lo

w
fi

sh
ri

jn
d
ae

l
sh

a
ad

p
cm

.c
..

ad
p

cm
.d

..
cr

c
ff

t
g
sm

G
eo

m
ea

n

Automotive Consumer Net Offi Security Telecom O

R
E

L
A

T
IV

E
 P

E
R

F
O

R
M

A
N

C
E

 G
A

IN
EMR_noCI_noAID EMR_noAID EMR_noCI EMR

Figure 6.3: Relative performance of EMR when compared with baseline
CRIB while evaluating MiBench.

on EMR than the CRIB baseline, when control independence and AID are

disabled.

6.2.2 Control Independence

The second bar in the Figure 6.1 shows the CINT2006 performance gains

when control independence is enabled in EMR. AID is still disabled for this

evaluation.

As observed from the figure, there are mixed performance trends. On

the upside, 471.astar gains an additional 21% performance, resulting in a

phenomenal 81% performance boost over the baseline. This performance

lines up with the expectation from the case study presented in Section 4.3

86

of Chapter 4. Graph500 benchmarks also gain marginally from enabling

control independence. On the flip side, some benchmarks, like 445.gobmk

loose about 2% performance when control independence is enabled. Such

losses are observed due to the trade offs discussed in Section 4.2 of Chapter 4.

As can be seen from the Figure 6.2 and Figure 6.3, control independence

does not help any of these benchmarks and hurts performance in some cases.

A point to note here is that control independence in EMR does not include

the benefits due to the reduced execution-resume time. Benefits, where

present, are mainly from eliminating re-execution of CIDI instructions.

6.2.3 Amplified Instruction Delivery

In the Figure 6.1, the third bar reports performance gains of EMR when

control independence is disabled and AID is enabled. As discussed in

Section 5.1.2 of Chapter 5, the performance expectation from AID can be

partially influenced by the number of times two partitions commit in a

cycle. The percentage of double partition commits reflects the opportunity

to amplify instruction delivery. Additionally, the accuracy of the next-index

predictor influences the ability to exploit the available opportunity. The first

bar in Figure 6.4 shows the percentage of double partition commits in each

program. The second bar in this figure shows the accuracy of the next-index

predictor(annotated as NIP in the graph). It is interesting to note that

the accuracy of the next-index predictor shows an inversely proportional

relationship with branch predictor MPKI of a benchmark.

87

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

4
0
0
.p

er
lb

en
ch

4
0

1
.b

zi
p
2

4
0
3
.g

cc

4
2

9
.m

cf

4
4

5
.g

o
b
m

k

4
5
6

.h
m

m
er

4
5

8
.s

je
n
g

4
6
2
.l

ib
q
u

an
tu

m

4
6
4
.h

2
6
4
re

f

4
7
1
.o

m
n
et

p
p

4
7
3
.a

st
ar

4
8
3
.x

al
an

cb
m

k

G
eo

m
ea

n

se
q
-c

sr

se
q
-l

is
t

CINT2006 Graph500

O
P

P
O

R
T

U
N

IT
Y

/A
C

C
U

R
A

C
Y

 Double Partition Commit

NIP_Accuracy

Figure 6.4: Opportunity to amplify instruction delivery and the cumu-
lative accuracy of the next-index predictors in CINT2006 and Graph500
benchmarks.

While most benchmarks benefit from AID, 462.libquantum has a domi-

nant 38% performance gain. As can be seen from Figure 6.4, 462.libquantum

has both opportunity and high accuracy of the next-index predictor. The

underpinnings of this behavior is explained in Section 5.2 of Chapter 5.

429.mcf, 471.astar and seq-list have almost no benefits from AID due to a

combination of load misses and next-index prediction misses. EMR, when

using AID, boosts performance of CINT2006 by 22% over the baseline.

Although most benchmarks do not hit Flynn’s bottleneck limit when con-

sidered over the entire run of a program, transient bursts provide significant

boost in performance.

88

0%

20%

40%

60%

80%

100%

120%

4
1
0

.b
w

av
es

4
1

6
.g

am
es

s

4
3

3
.m

il
c

4
3
4
.z

eu
sm

p

4
3

5
.g

ro
m

ac
s

4
3

6
.c

ac
tu

sA
D

M

4
3
7

.l
es

li
e3

d

4
4

4
.n

am
d

4
5
0
.s

o
p
le

x

4
5

3
.p

o
v
ra

y

4
5
4
.c

al
cu

li
x

4
5

9
.G

em
sF

D
T

D

4
6

5
.t

o
n

to

4
7

0
.l

b
m

4
8

1
.w

rf

G
eo

m
ea

n

O
P

P
O

R
T

U
N

IT
Y

/A
C

C
U

R
A

C
Y Double Partition Commit NIP_Accuracy

Figure 6.5: AID opportunity and aggregated accuracy of the next-index
predictors when executing CFP2006 benchmarks.

The opportunity to commit two partitions in a cycle and the cumulative

accuracy of the next-index predictors for CFP2006 is shown in Figure 6.5.

With low branch predictor MPKI in the CFP2006 applications, next-index

predictor accuracies are high for most benchmarks. In addition, the high

AID opportunity results in moderate speedups for most benchmarks. The

performance results of AID are shown by the third bar in each benchmark

presented in the Figure 6.2. However, CFP2006 does contain large numbers

of long latency operations which limit performance to a maximum benefit

of 11% in 454.calculix. On average, when using AID, CFP2006 programs

are 4% quicker on EMR than on the baseline CRIB.

89

0%

20%

40%

60%

80%

100%

120%

b
it

cn
t

q
so

rt
su

sa
n
.c

..
su

sa
n
.e

..
su

sa
n
.s

..
cj

p
eg

d
jp

eg
la

m
e

m
ad

ti
ff

2
b

w
ti

ff
2
rg

b
a

ti
ff

d
it

h
er

ti
ff

m
ed

ia
n

d
ij

k
st

ra
p
at

ri
ci

a
rs

y
n
th

st
ri

n
g

s.
.

b
lo

w
fi

sh
ri

jn
d
ae

l
sh

a
ad

p
cm

.c
..

ad
p

cm
.d

..
cr

c
ff

t
g
sm

G
eo

m
ea

n

Automotive Consumer Net Offi Security Telecom O

O
P

P
O

R
T

U
N

IT
Y

/A
C

C
U

R
A

C
Y Double Partition Commit NIP_Accuracy

Figure 6.6: Opportunity to amplify instruction delivery and the cumulative
accuracy of the next-index predictors for MiBench.

As shown in the Figure 6.3, with the exception of susan.smoothing and

crc, all the benchmarks in MiBench benefit from AID. This is due to the

coupling of large percentage of double partition commits and relatively high

prediction accuracies of the next-index predictors. This can be observed

from Figure 6.6. tiff2rgba benchmark gains 43% additional performance

when AID is enabled on EMR, thus achieving a large 62% performance

boost over the baseline. Overall, AID improves the performance gains of

EMR from 8% to 19% when executing MiBench.

90

0

1

2

3

4

5

6

7

8

4
5

6
.h

m
m

er

4
6
2

.l
ib

q
u

an
tu

m

4
6

4
.h

2
6
4
re

f

4
1

6
.g

am
es

s

4
3
5

.g
ro

m
ac

s

4
4

4
.n

am
d

4
6
5
.t

o
n
to

S
P

E
C

2
k
6
_

m
ea

n

4
5

6
.h

m
m

er

4
6
2

.l
ib

q
u

an
tu

m

4
6

4
.h

2
6
4

re
f

4
1
6

.g
am

es
s

4
3
5

.g
ro

m
ac

s

4
4

4
.n

am
d

4
6
5
.t

o
n
to

S
P

E
C

2
k
6
_

m
ea

n

CRIB EMR

IP
C

32 64 128 256 512

Figure 6.7: Performance CRIB and EMR when scaling the window size.

6.2.4 Overall Performance

The fourth bars in Figure 6.1, Figure 6.2 and Figure 6.3 show the performance

of EMR as a whole, with both control independence and AID enabled. Across

all three benchmark suites, there are many benchmarks with significant

performance gains. 473.astar achieves a superb speedup of 81% due to high

opportunities in branch mispredictions and control independence.

tiff2rgba gains 62% performance over baseline CRIB mainly due to AID.

Interestingly, this benchmark has reduced performance when enabling control

independence without AID, but enabling control independence with AID

improves performance. Such a behavior is due to the improved usage of

execution stations by reducing number of no-ops in the instruction bundles

91

0%

5%

10%

15%

20%

25%

30%

b
it

cn
t

q
so

rt

su
sa

n
.c

..

su
sa

n
.e

..

su
sa

n
.s

..

cj
p

eg

d
jp

eg

la
m

e

m
ad

ti
ff

2
b
w

ti
ff

2
rg

b
a

ti
ff

d
it

h
er

ti
ff

m
ed

ia
n

d
ij

k
st

ra

p
at

ri
ci

a

rs
y

n
th

st
ri

n
g

s.
.

b
lo

w
fi

sh

ri
jn

d
ae

l

sh
a

ad
p
cm

.c
..

ad
p
cm

.d
..

cr
c

ff
t

g
sm

Automotive Consumer Net Offi Security Telecom

N
O

-O
P

S
 /

 P
A

R
T

IT
IO

N
EMR_noCI_noAID EMR_noAID EMR_noCI EMR

Figure 6.8: No-ops per partition in different configurations of EMR for
MiBench.

when both AID and control independence are enabled and can be observed

from Figure 6.8.

Overall, when compared to the baseline, EMR has performance gain of

23% in CINT2006 and 12.5% in Graph500. Additional evaluations with

CFP2006 and MiBench show that EMR outperforms the baseline by 4%

and 20% respectively.

6.3 Performance Sensitivity Analysis

Various experiments were conducted to find the limitations and explore the

design space. In this section, a selected set of experiments and their results

on reduced set of benchmarks are presented.

92

0

1

2

3

4

5

6

7

8

4
5

6
.h

m
m

er

4
6
2

.l
ib

q
u

an
tu

m

4
6

4
.h

2
6
4
re

f

4
1

6
.g

am
es

s

4
3
5

.g
ro

m
ac

s

4
4

4
.n

am
d

4
6
5
.t

o
n
to

S
P

E
C

2
k
6
_

m
ea

n

4
5

6
.h

m
m

er

4
6
2

.l
ib

q
u

an
tu

m

4
6

4
.h

2
6
4

re
f

4
1
6

.g
am

es
s

4
3
5

.g
ro

m
ac

s

4
4

4
.n

am
d

4
6
5
.t

o
n
to

S
P

E
C

2
k
6
_

m
ea

n

CRIB EMR

IP
C

32 64 128 256 512

Figure 6.9: Performance CRIB and EMR when scaling the window size.

6.3.1 Relaxing Flynn’s Bottleneck Limit

In this experiment, performance of EMR and CRIB is observed by varying

the instruction window sizes while keeping the front end width to a constant

four. The Figure 6.9 shows the IPC of CRIB and EMR when using window

sizes of 32, 64, 128, 256 and 512 for SPEC2006 benchmarks. To be relevant,

an interesting subset of SPEC2006 benchmarks is presented along with the

geometric mean of overall SPEC2006 performance. In CRIB results, a clear

saturating effect can be observed as the IPC gets closer to four as it is

constrained by Flynn’s bottleneck limit of four IPC.

In EMR, AID helps relax this Flynn’s bottleneck limit to eight in transient

periods resulting in performance improvements with various window sizes.

93

0%

20%

40%

60%

80%

100%

120%

4
0
0

.p
er

lb
en

ch

4
0
1
.b

zi
p

2

4
0
3

.g
cc

4
2
9

.m
cf

4
4

5
.g

o
b
m

k

4
5

6
.h

m
m

er

4
5

8
.s

je
n
g

4
6

2
.l

ib
q

u
an

tu
m

4
6
4
.h

2
6
4

re
f

4
7

1
.o

m
n
e
tp

p

4
7

3
.a

st
ar

4
8

3
.x

al
an

cb
m

k

G
eo

m
ea

n

R
L

E
A

T
IV

E
 P

E
R

F
O

R
M

A
N

C
E

 G
A

IN
4 IB 8 IB 16 IB 32 IB

Figure 6.10: Performance gains of EMR relative to baseline CRIB when
varying LOC$ sizes. IB stands for Instruction Bundle.

A 512 entry EMR achieves IPCs of 7 and 6.5 in 416.games and 456.hmmer

respectively. Even with a smaller 128-entry window, EMR achieves IPCs of

5.8, 5 and 4.8 in 456.hmmer, 462.libquantum and 464.h264ref benchmarks

respectively. The geometric mean of EMR’s performance gains in SPEC2006

are 7%, 12%, 20%, 22% and 25% for window sizes of 32, 64, 128, 256 and

512 respectively.

6.3.2 LOC$ Size

In this experiment, the LOC$ capacity is varied starting from four instruction

bundles to 32 instruction bundles. Figure 6.10 shows the performance of

EMR machines with different LOC$ sizes. With the exception of 473.astar,

94

all other benchmarks in CINT2006 do not benefit from cache sizes beyond

capacity of eight instruction bundles. This indicates that most loops in the

evaluated programs either fit inside the smaller, eight-entry LOC$ or are too

big to fit in even the larger 64-entry LOC$. This warrants a performance

sensitivity study with the ICU$ size.

473.astar, with many branch mispredicts, causes replication of instruction

bundles that can overwhelm some of the LOC caches. LOC$ sizes beyond 64

may yield more performance gains, but have limited feasibility due to power

constraints. In this work, LOC$ size of eight was selected unless explicitly

specified to be of a different value.

6.3.3 ICU$ Size

This experiment aims to study the performance sensitivity of EMR to the

size of the ICU$. The cache sizes of 1024, 2048, 4096 and 8192 are checked

against the baseline machine that has a 4096 entry µop cache. Results of

this experiment are shown in Figure 6.11. As seen from the figure, capturing

larger loop bodies helps many benchmarks in CINT2006. While there is a

possibility of utilizing larger micro-op caches, this study limits the cache

sizes to the L1-I cache size. In this thesis, ICU$ size of 4096 entries is

assumed by default, unless explicitly specified otherwise.

95

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

4
0
0

.p
er

lb
en

ch

4
0
1
.b

zi
p

2

4
0
3

.g
cc

4
2
9

.m
cf

4
4

5
.g

o
b
m

k

4
5

6
.h

m
m

er

4
5

8
.s

je
n
g

4
6

2
.l

ib
q

u
an

tu
m

4
6

4
.h

2
6
4

re
f

4
7

1
.o

m
n
e
tp

p

4
7

3
.a

st
ar

4
8

3
.x

al
an

cb
m

k

G
eo

m
ea

n

R
E

L
A

T
IV

E
 P

E
R

F
O

R
M

A
N

C
E

 G
A

IN
1K entry 2K entry 4K entry 8K entry

Figure 6.11: Performance of EMR using different sizes of ICU$ when com-
pared to baseline CRIB using a 4096 entry µop cache.

6.3.4 Control Independence Thresholding

As discussed in Section 4.2, the aggressiveness of control independence dis-

covery can be controlled by thresholding the distance of control independent

instruction’s partition from the current partition. In this experiment, this

threshold value is varied from four to 24 by incrementing in steps of four.

The results, as shown in Figure 6.12, reassert the observation from the

Figure 6.1 that 473.astar is the only benchmark that is significantly affected

by control independence. In accordance to the trade off analysis, 473.astar

gains performance when the threshold distance is increased from four to

eight, then holds the performance gain with the threshold value of 12, and

finally starts losing performance with threshold values of 16 and beyond.

96

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

4
0
0

.p
er

lb
en

ch

4
0
1
.b

zi
p

2

4
0
3

.g
cc

4
2
9

.m
cf

4
4

5
.g

o
b
m

k

4
5

6
.h

m
m

er

4
5

8
.s

je
n
g

4
6

2
.l

ib
q

u
an

tu
m

4
6
4
.h

2
6
4

re
f

4
7

1
.o

m
n
e
tp

p

4
7

3
.a

st
ar

4
8

3
.x

al
an

cb
m

k

R
E

L
A

T
IV

E
 P

E
R

F
O

R
M

A
N

C
E

 G
A

IN
CI4 CI8 CI12 CI16 CI24

Figure 6.12: Split of instruction sources in EMR.

One of the main reasons that the negative performance trend is not

observed when increasing the threshold distance is due to the conservative

fill of the select address table as discussed in Section 4.2 of Chapter 4.

Irrespective of the threshold distance, if the target instruction is not found

in the select address table, it can not be selected. Throughout this thesis,

default assumption of the threshold value is 12.

6.3.5 ICU$ Access Delay

In most evaluations of EMR, ICU$ is assumed to be accessed in one cycle.

Note that this is just the ICU$ access time and not the ICU$ instruction

service time, which includes additional request and allocate latencies. ICU$

97

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

4
0
0

.p
er

lb
en

ch

4
0
1
.b

zi
p

2

4
0
3

.g
cc

4
2
9

.m
cf

4
4

5
.g

o
b
m

k

4
5

6
.h

m
m

er

4
5

8
.s

je
n
g

4
6

2
.l

ib
q

u
an

tu
m

4
6

4
.h

2
6
4

re
f

4
7

1
.o

m
n
e
tp

p

4
7

3
.a

st
ar

4
8

3
.x

al
an

cb
m

k

G
eo

m
ea

n

R
E

L
A

T
IV

E
 P

E
R

F
O

R
M

A
N

C
E

 G
A

IN
EMR_ICU$_d1 EMR_ICU$_d2 EMR_ICU$_d3

Figure 6.13: Performance gains of EMR over baseline CRIB when running
CINT2006 with varying ICU$ access time.

access of one cycle can be challenging in some processor designs as it can

limit clock speeds and reduce energy efficiency. In this experiment, the

performance of EMR is recorded when increasing the access delay of the

ICU$ from one to two, and to three cycles. Figure 6.13 shows the results

of this experiment. Note that in this experiment, the baseline CRIB’s µop

cache is still accessed in a single cycle across all the configurations.

Referring to the previous experiments, benchmarks like 471.omentpp,

483.xalancbmk and others that have high sensitivity to the LOC$ size are

impacted by the increased ICU$ delay. At the access delay of three, the

instruction service time from the ICU$ matches the instruction service time

from the µop cache in the baseline and thus the ICU$ has no advantage of

98

0%

20%

40%

60%

80%

100%

4
0
0
.p

er
lb

en
ch

4
0

1
.b

zi
p
2

4
0
3
.g

cc

4
2

9
.m

cf

4
4

5
.g

o
b
m

k

4
5
6

.h
m

m
er

4
5

8
.s

je
n
g

4
6
2
.l

ib
q
u

an
tu

m

4
6
4
.h

2
6
4
re

f

4
7
1
.o

m
n
et

p
p

4
7
3
.a

st
ar

4
8
3
.x

al
an

cb
m

k

A
v

er
ag

e

se
q
-c

sr

se
q
-l

is
t

CINT2006 Graph500

IN
S

T
R

U
C

T
IO

N
 S

O
U

R
C

E
 S

P
L

IT
LOC$ ICU$ S.S. ICU$ Requested FE

Figure 6.14: Split of instruction sources in EMR for CINT2006 and
Graph500.

being a back end cache. However, the benefits due to LOC$ still providing

significant performance gains over baseline CRIB.

6.4 Instruction Sources

Dynamic instance of an instruction can be delivered to an execution station

from one of the three sources — front end(FE), ICU$ or LOC$. Figure 6.14

shows the source split of total dynamic instructions delivered to the execution

core, and gives power and performance insights. LOC$ instructions are

highly preferred to conserve energy and improve performance. 456.hmmer

and 462.libquantum show this very desirable characteristic and thus benefit

99

considerably from AID. ICU$ instructions take more energy for delivery

than the LOC$, but consume lower energy and deliver instructions faster

than front end instructions. Noticeably, most programs have large number

of instructions delivered from the back-end caches.

ICU$ accesses are broken down into two categories — ICU$ speculative

supply (annotated as ICU$ S.S. in the figure) and ICU$ requested. These

instructions are a "hit" in LOC$, but were speculatively inserted by the

ICU$. This classification helps understand the performance of benchmarks

like 464.h264ref, where the typical basic-block size is eight to 12 instructions

and multiple instruction bundles are speculatively serviced by the ICU$.

Though the graph in Figure 6.14 suggests poor LOC$ locality, the speculative

supplied instructions actually improve this locality and benefit AID. The

ICU$ requested instructions are the ones that are supplied to a partition on

an explicit request.

A few benchmarks, like 483.xalancbmk need instructions to be delivered

from the FE due to either cold, capacity or conflict misses in ICU$. Due to

the high penalty of redirecting the FE, it is only turned off when there is

significant confidence that it is not required.

Figure 6.15 shows the split of instruction sources for CFP2006 programs.

453.povray is the only benchmark with non-trivial number of front-end

instructions. All the programs seem to be captured well within the LOC

and ICU caches. 470.lbm is particularly interesting with almost a half way

100

0%

20%

40%

60%

80%

100%

4
1

0
.b

w
av

e
s

4
1

6
.g

am
es

s

4
3

3
.m

il
c

4
3
4

.z
eu

sm
p

4
3

5
.g

ro
m

ac
s

4
3

6
.c

ac
tu

sA
D

M

4
3
7
.l

es
li

e3
d

4
4
4
.n

am
d

4
5
0

.s
o
p
le

x

4
5

3
.p

o
v
ra

y

4
5

4
.c

al
cu

li
x

4
5

9
.G

em
sF

D
T

D

4
6
5

.t
o
n

to

4
7
0

.l
b
m

4
8

1
.w

rf

IN
S

T
R

U
C

T
IO

N
 S

O
O

U
R

C
E

 S
P

L
IT

LOC$ ICU$ S.S. ICU$ Requested FE

Figure 6.15: Split of instruction sources in EMR for CFP2006.

split between the speculatively supplied ICU$ instructions and explicitly

requested ICU$ instructions.

As shown in the Figure 6.16, MiBench has a variety of programs receiv-

ing their dynamic instructions from different sources. Most benchmarks

that exhibit good performance gains to AID, like the Consumer group of

applications, have high LOC$ locality. patricia and rijndael have relatively

large number of front-end fetches. Even with high branch predictor MPKI in

patricia, the high FE activity partly limits the possible performance gains.

101

0%

20%

40%

60%

80%

100%

b
it

cn
t

q
so

rt

su
sa

n
.c

..

su
sa

n
.e

..

su
sa

n
.s

..

cj
p
eg

d
jp

eg

la
m

e

m
ad

ti
ff

2
b

w

ti
ff

2
rg

b
a

ti
ff

d
it

h
er

ti
ff

m
ed

ia
n

d
ij

k
st

ra

p
at

ri
ci

a

rs
y
n
th

st
ri

n
g
s.

.

b
lo

w
fi

sh

ri
jn

d
ae

l

sh
a

ad
p

cm
.c

..

ad
p

cm
.d

..

cr
c

ff
t

g
sm

Automotive Consumer Net Offi Security Telecom

IN
S

T
R

U
C

T
IO

N
 S

O
U

R
C

E
 S

P
L

IT
LOC$ ICU$ S.S. ICU$ Requested FE

Figure 6.16: Split of instruction sources in EMR for MiBench.

6.5 Energy Analysis

Figure 6.17 shows that relative energy of EMR compared to the baseline

CRIB for CINT2006 and Graph500. On an average, in the CINT2006

benchmarks, EMR reduces energy consumption by 16%. Graph500 programs

consume about 12% lower energy on EMR than on the baseline. The majority

of the savings come from not accessing the I$ and µop$ on every fetch cycle.

Due to the additional ICU$ and LOC$ energies, instructions provided by the

FE consume more energy than they do in the baseline. Thus, benchmarks

like in 483.xalacbmk and 458.sjeng, which have significant instructions from

FE, have slightly higher relative energy. This is because each FE instruction,

in addition to the FE energy also consumes energy for ICU$ and LOC$ writes.

102

0%

20%

40%

60%

80%

100%

120%

4
0
0
.p

er
lb

en
ch

4
0

1
.b

zi
p
2

4
0
3
.g

cc

4
2

9
.m

cf

4
4

5
.g

o
b
m

k

4
5
6

.h
m

m
er

4
5

8
.s

je
n
g

4
6
2
.l

ib
q
u

an
tu

m

4
6
4
.h

2
6
4
re

f

4
7
1
.o

m
n
et

p
p

4
7
3
.a

st
ar

4
8
3
.x

al
an

cb
m

k

G
eo

m
ea

n

se
q
-c

sr

se
q
-l

is
t

CINT2006 Graph500

R
E

L
A

T
IV

E
 E

N
E

R
G

Y

Figure 6.17: Energy of EMR relative to CRIB baseline for CINT2006 and
Graph500.

Benchmarks like 462.libquantum are completely serviced out of the LOC$

and dramatically reduce the FE energy. 471.astar has fair LOC$ locality

and significant reduction in execution counts, resulting in lowest relative

energy. The correlation of LOC$ and ICU$ localities from Figure 6.14 and

the energy graph in Figure 6.17 is evident.

Due to the fast instruction delivery, EMR can reach deeper in speculative

paths and can thus increase instruction execution count. Depending on the

speculative path’s instructions and available control independence, different

energies can be consumed. For example, 483.xalacbmk has increased load

operations on EMR when compared to baseline CRIB. This causes slightly

103

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

4
1
0

.b
w

av
es

4
1

6
.g

am
es

s

4
3

3
.m

il
c

4
3
4
.z

eu
sm

p

4
3

5
.g

ro
m

ac
s

4
3

6
.c

ac
tu

sA
D

M

4
3
7

.l
es

li
e3

d

4
4

4
.n

am
d

4
5
0
.s

o
p
le

x

4
5

3
.p

o
v
ra

y

4
5

4
.c

al
cu

li
x

4
5

9
.G

em
sF

D
T

D

4
6
5

.t
o
n

to

4
7
0
.l

b
m

4
8
1
.w

rf

G
eo

m
ea

n

R
E

L
A

T
IV

E
 E

N
E

R
G

Y

Figure 6.18: Energy consumed by EMR as compared to baseline CRIB when
executing CFP2006 programs.

higher L1-D$ accesses which has significant impact on the consumed energy.

The high locality of instructions in the back end caches, as observed from

Figure 6.15, should result in energy savings for running CFP2006 benchmarks

on EMR. The results of the energy estimation tool, shown in Figure 6.18,

match this expectation. On an average, EMR uses only 75% of the energy

required by baseline CRIB to run CFP2006 benchmarks. 450.soplex uses

the lowest relative energy of 58% with 436.cactusADM following closely at

62%. Owing to high front end supplied instructions, energy savings from

executing 453.povray are lower on EMR. For benchmarks like 470.lbm, high

ICU$ accesses decrease the amount of energy that can be saved.

104

0%

20%

40%

60%

80%

100%

120%

b
it

cn
t

q
so

rt
su

sa
n
.c

..
su

sa
n
.e

..
su

sa
n
.s

..
cj

p
eg

d
jp

eg
la

m
e

m
ad

ti
ff

2
b

w
ti

ff
2
rg

b
a

ti
ff

d
it

h
er

ti
ff

m
ed

ia
n

d
ij

k
st

ra
p
at

ri
ci

a
rs

y
n
th

st
ri

n
g

s.
.

b
lo

w
fi

sh
ri

jn
d
ae

l
sh

a
ad

p
cm

.c
..

ad
p

cm
.d

..
cr

c
ff

t
g
sm

G
eo

m
ea

n

Automotive Consumer Net Offi Security Telecom O

R
E

L
A

T
IV

E
 E

N
E

R
G

Y

Figure 6.19: Relative Energy of EMR as compared to the CRIB baseline
when running MiBench programs.

As noted in the previous section, patricia and rijndael consume most

energy amongst the MiBench applications running on EMR. EMR consumes

4% and 9% more energy than the baseline crib to execute these programs.

However, there are many other programs in MiBench that offset this increase

with significant savings, leading to a geometric mean energy savings of 17%.

When run on EMR instead of baseline CRIB, tiff2rgba cuts down the energy

consumption by half.

Millions of instructions per second (MIPS) per watt, or millions of

instructions per joule, is a composite metric for evaluating performance and

energy consumption of a design. Figure 6.20, Figure 6.21 and Figure 6.22

show this metric for EMR relative to the baseline CRIB design for CINT2006,

105

0%

20%

40%

60%

80%

100%

120%

140%

160%

180%

4
0
0

.p
er

lb
en

ch

4
0
1

.b
zi

p
2

4
0
3

.g
cc

4
2
9

.m
cf

4
4
5

.g
o
b

m
k

4
5
6

.h
m

m
er

4
5
8

.s
je

n
g

4
6
2

.l
ib

q
u
an

tu
m

4
6
4

.h
2
6

4
re

f

4
7
1

.o
m

n
et

p
p

4
7
3

.a
st

ar

4
8
3

.x
al

an
cb

m
k

G
eo

m
ea

n

se
q

-c
sr

se
q

-l
is

t

G
eo

m
ea

n

CINT2006 Graph500

R
E

L
A

T
IV

E
 M

IP
S

/W
A

T
T

T

Figure 6.20: MIPS per Watt of EMR when compared to baseline CRIB
when executing CINT2006 programs.

Graph500, CFP2006 and MiBench benchmark suites. A 100% indicates

that EMR is as efficient as the baseline CRIB and higher quantitative

numbers are desirable. As seen from the figures, EMR is significantly more

efficient than the baseline CRIB by processing 18%, 15%, 34% and 21%

more instructions per joule in CINT2006, Graph500, CFP2006 and MiBench

benchmark suites. The benchmarks 458.sjeng, 483.xalancbmk,patricia and

rjindael have reduced composite metric due to the disproportionality in

their energy consumptions and their respective performance gains.

106

0%

20%

40%

60%

80%

100%

120%

140%

160%

180%

4
1
0

.b
w

av
es

4
1
6

.g
am

es
s

4
3
3

.m
il

c

4
3
4

.z
eu

sm
p

4
3
5

.g
ro

m
ac

s

4
3
6

.c
ac

tu
sA

D
M

4
3
7

.l
es

li
e3

d

4
4
4

.n
am

d

4
5
0

.s
o

p
le

x

4
5
3

.p
o
v

ra
y

4
5
4

.c
al

cu
li

x

4
5
9

.G
em

sF
D

T
D

4
6
5

.t
o

n
to

4
7
0

.l
b

m

4
8
1

.w
rf

G
eo

m
ea

n

R
E

L
A

T
IV

E
 M

IP
S

/W
A

T
T

Figure 6.21: MIPS per Watt of EMR when compared to baseline CRIB
when executing CFP2006 programs.

6.6 Summary

In this chapter, the evaluation methodology for EMR was presented as

a combination of cycle accurate simulator, energy analysis tools, physical

modeling and various benchmarks from different domains. Through a variety

of experimental data and correlation examples, this chapter explained how

and why EMR consistently outperforms baseline CRIB in both performance

and energy consumption.

In the evaluations by Gunadi and Lipasti in [30], CRIB saves about 40%

to 60% of the back end energy when compared to conventional out-of-order

processor. That leaves front end energy as a significant contributor to

CRIB’s energy consumption. EMR aims at reducing this front end energy

107

0%

20%

40%

60%

80%

100%

120%

140%

160%

180%

200%

b
it

cn
t

q
so

rt
su

sa
n
.c

..
su

sa
n
.e

..
su

sa
n
.s

..
cj

p
eg

d
jp

eg
la

m
e

m
ad

ti
ff

2
b
w

ti
ff

2
rg

b
a

ti
ff

d
it

h
er

ti
ff

m
ed

ia
n

d
ij

k
st

ra
p

at
ri

ci
a

rs
y

n
th

st
ri

n
g

s.
.

b
lo

w
fi

sh
ri

jn
d
ae

l
sh

a
ad

p
cm

.c
..

ad
p
cm

.d
..

cr
c

ff
t

g
sm

G
eo

m
ea

n

Automotive Consumer Net Offi Security Telecom O

R
E

L
A

T
IV

E
 M

IP
S

/W
A

T
T

Figure 6.22: MIPS per Watt of EMR when compared to baseline CRIB
when executing MiBench programs.

while improving the performance over baseline CRIB. In comparison with

conventional out-of-order processors, EMR marks another epoch by achieving

significant lead in energy efficiency over CRIB. Evaluations showed that

moderate increases in instruction window sizes resulted in high IPCs —

five to seven instructions per clock. Since EMR is also a practical design,

achieving high levels of instruction level parallelism can now be realized.

108

7 conclusion
With the end of Dennard scaling, increased core count and the inclusion

of uncore logic constrain the budget for a single processor core. With this

tightened budget, scaling traditional out-of-order cores can be limited due

to the exponential scaling of the architectural components. New paradigms

in computer architecture need to be explored to supply the performance

demands of future applications, while conforming to the allocated energy

budget. This dissertation work started with CRIB as the baseline with

an assumption that this practical architecture will see success in the near

future.

Advances in branch prediction have been instrumental in alleviating the

control dependence limitation on instruction level parallelism. However, the

existence of hard to predict branches and complexity limits seem to saturate

branch prediction accuracies. Additional performance from alleviating

control dependences can be achieved by either improving branch prediction

accuracies or by reducing the misprediction penalty. This thesis presented a

novel architecture, Express Misprediction Recovery, to reduce performance

and energy penalties associated with branch mispredictions.

EMR uses novel instruction delivery techniques to improve performance.

First, EMR dramatically reduces the execution-resume delay after a mispre-

diction by quickly providing the correct path instructions. Further more,

EMR uses a speculative next-index prediction to deliver more instructions

109

per cycle to the execution core and thus increases the Flynn’s bottleneck

limit on performance.

Program characteristics that are desirable for EMR are as follows:

1. Loops that can be captured within the location optimized caches of

EMR will reduce front end energy.

2. Low confidence branches in such loops can dramatically decrease the

execution resume delay.

3. Small, equally sized control dependent path of a low confidence branch

can improve the chances of exploiting control independence.

4. Since control independence in EMR does not affect the execution

resume delay, performance is impacted by the number of long latency

control independent instructions that are also data independent.

5. High instruction level parallelism provides more opportunities to utilize

amplified instruction delivery.

6. Loops with significant direct branches can result in wasteful pipeline

bubbles in the baseline and benefit EMR.

EMR is evaluated across multiple benchmarks using cycle accurate

simulators to observe the machine characteristics and explore the design

space. Overall, EMR outperforms baseline CRIB by 23%, 20%, 10.5% and

4% in CINT2006, MiBench, Graph500 and CFP2006 respectively. This

110

performance gains are due to a combination of In-place fetch, In-place

control independence and amplified instruction delivery. In-place fetch

boosts performance by reducing the execution resume delay after a branch

mispredict. The long latency control independent data independent opera-

tions are utilized by the In-place control independence to provide additional

performance gains. Amplified instruction delivery increases the theoretical

limits on the instructions committed per clock, thus providing additional

performance.

In addition to boosting performance, EMR also saves 16%, 17%, 13% and

25% of the baseline energy when running CINT2006, MiBench, Graph500

and CFP2006 respectively. As we scale up the window sizes, EMR can, with

its amplified instruction delivery, commit up to seven µops per cycle.

7.1 Future Work

During the course of this research, new frontiers seemed worthwhile of

exploration in the future. Hardware specific compiler optimizations have

traditionally improved usage of certain processor features and EMR may

also benefit from such compiler optimizations. Other research ideas included

extending the EMR architecture to enable eager execution, architectural

changes to CRIB to make it implementable and value based architectural

techniques.

111

7.1.1 Compiler Support for EMR

Compiler support can improve energy and performance of EMR. Knowledge

of the back end caches can be used to optimize loops in a way to minimize

front end activity. In the presented version of EMR, control independence can

be realized only when the incorrectly predicted path is longer than the correct

path. By balancing the number of instructions between pre-dominator and

post-dominator instructions, such a restriction can be avoided to enable

more control independence opportunities.

Knowledge of LOC$ size can be used by a compiler to optimize code

for high LOC$ locality. Effective capacities of back end caches and EMR

partitions can be optimized by generating code that can be dispatched as

groups of four.

7.1.2 Eager Execution

Eager execution in EMR would require an additional set of latches across

each partition to hold the speculative state. If a branch is not resolved and

the next partition has finished executing all the instructions, it can latch its

speculative state and start executing the alternate path. A special ability

with EMR is that eager execution can proceed at partition granularity and it

is likely that alternate path instructions are delivered from the LOC caches.

Possibly the biggest challenge is the performance expectation from eager

execution. Given that EMR already benefits from reducing execution-resume

112

time, and utilizes control independence, an accurate estimation has to be

made for the expected performance gains due to eager execution.

Other challenges are to look out for cases when the unresolved branch

is in the middle of a partition with younger data-generating instructions

within the same partition. Policies need to be explored on the course of

action when required instructions are not available in the back end caches.

To abide by the power constraints, eager execution is probably done for a

select set of branches [53]. Detection of such branches can be done by some

form of prediction.

7.1.3 Impediments to CRIB’s Implementation

Discussions with different computer architects and engineers have surfaced

some practical issues with CRIB. One major complaint is that the existing

data path can not scale well with increasing architectural registers. The

latest ARM 64-bit ISA has 32 architectural registers. This requires 2048

interconnection wires between each execution station.

Moving the complex router logic up to the partition level can largely

address this problem. Other solutions may exist to achieve this goal, like

exploring novel layout techniques using multiple metal layers.

113

7.1.4 Value Based Architectural Techniques

Many architectural optimizations are very simple with CRIB as the data is

available during the schedule time. Long latency instructions, like floating

point adds, can be avoided if one of the inputs results in elimination. Other

architectural techniques using partial instruction and data memoization

are also practical in CRIB due its inherent ability to repair dependencies

in-place.

114

bibliography
[1] M. Agarwal et al. “Fetch-Criticality Reduction through Control

Independence”. In: Computer Architecture, 2008. ISCA ’08. 35th
International Symposium on. 2008, pp. 13–24. doi: 10.1109/ISCA.
2008.39.

[2] Pritpal S. Ahuja et al. “Multipath Execution: Opportunities and
Limits”. In: Proceedings of the 12th International Conference on
Supercomputing. ICS ’98. Melbourne, Australia: ACM, 1998, pp. 101–
108. isbn: 0-89791-998-X. doi: 10.1145/277830.277854. url: http:
//doi.acm.org/10.1145/277830.277854.

[3] Haitham Akkary and Michael A. Driscoll. “A Dynamic Multithread-
ing Processor”. In: Proceedings of the 31st Annual ACM/IEEE In-
ternational Symposium on Microarchitecture. MICRO 31. Dallas,
Texas, USA: IEEE Computer Society Press, 1998, pp. 226–236. isbn:
1-58113-016-3. url: http : / / dl . acm . org / citation . cfm ? id =
290940.290988.

[4] Ahmed S. Al-Zawawi et al. “Transparent Control Independence
(TCI)”. In: Proceedings of the 34th Annual International Symposium
on Computer Architecture. ISCA ’07. San Diego, California, USA:
ACM, 2007, pp. 448–459. isbn: 978-1-59593-706-3. doi: 10.1145/
1250662.1250717. url: http://doi.acm.org/10.1145/1250662.
1250717.

[5] D. W. Anderson, F. J. Sparacio, and R. M. Tomasulo. “The IBM Sys-
tem/360 Model 91: Machine Philosophy and Instruction-Handling”.
In: IBM Journal of Research and Development 11.1 (1967), pp. 8–24.
issn: 0018-8646. doi: 10.1147/rd.111.0008.

[6] D. Bhandarkar and J. Ding. “Performance characterization of the
Pentium Pro processor”. In: High-Performance Computer Architec-
ture, 1997., Third International Symposium on. 1997, pp. 288–297.
doi: 10.1109/HPCA.1997.569689.

[7] Nathan Binkert et al. “The Gem5 Simulator”. In: SIGARCH Comput.
Archit. News 39.2 (Aug. 2011), pp. 1–7. issn: 0163-5964. doi: 10.
1145/2024716.2024718. url: http://doi.acm.org/10.1145/
2024716.2024718.

http://dx.doi.org/10.1109/ISCA.2008.39
http://dx.doi.org/10.1109/ISCA.2008.39
http://dx.doi.org/10.1145/277830.277854
http://doi.acm.org/10.1145/277830.277854
http://doi.acm.org/10.1145/277830.277854
http://dl.acm.org/citation.cfm?id=290940.290988
http://dl.acm.org/citation.cfm?id=290940.290988
http://dx.doi.org/10.1145/1250662.1250717
http://dx.doi.org/10.1145/1250662.1250717
http://doi.acm.org/10.1145/1250662.1250717
http://doi.acm.org/10.1145/1250662.1250717
http://dx.doi.org/10.1147/rd.111.0008
http://dx.doi.org/10.1109/HPCA.1997.569689
http://dx.doi.org/10.1145/2024716.2024718
http://dx.doi.org/10.1145/2024716.2024718
http://doi.acm.org/10.1145/2024716.2024718
http://doi.acm.org/10.1145/2024716.2024718

115

[8] Werner Buchholz. Planning a Computer System: Project Stretch.
Hightstown, NJ, USA: McGraw-Hill, Inc., 1962. isbn: B0000CLCYO.

[9] Mike Butler. “AMD "Bulldozer" Core-a new approach to multi-
threaded compute performance for maximum efficiency and through-
put”. In: IEEE HotChips Symposium on High-Performance Chips
(HotChips 2010). 2010.

[10] B. Calder and D. Grunwald. “Fast and accurate instruction fetch and
branch prediction”. In: Computer Architecture, 1994., Proceedings
the 21st Annual International Symposium on. 1994, pp. 2–11. doi:
10.1109/ISCA.1994.288166.

[11] Po-Yung Chang, Marius Evers, and YaleN. Patt. “Improving branch
prediction accuracy by reducing pattern history table interference”.
English. In: International Journal of Parallel Programming 25.5
(1997), pp. 339–362. issn: 0885-7458. doi: 10.1007/BF02699882.
url: http://dx.doi.org/10.1007/BF02699882.

[12] Po-Yung Chang et al. “Branch Classification: A New Mechanism for
Improving Branch Predictor Performance”. In: Proceedings of the
27th Annual International Symposium on Microarchitecture. MICRO
27. San Jose, California, USA: ACM, 1994, pp. 22–31. isbn: 0-89791-
707-3. doi: 10.1145/192724.192727. url: http://doi.acm.org/
10.1145/192724.192727.

[13] Chen-Yong Cher and T. N. Vijaykumar. “Skipper: A Microarchitec-
ture for Exploiting Control-flow Independence”. In: Proceedings of
the 34th Annual ACM/IEEE International Symposium on Microar-
chitecture. MICRO 34. Austin, Texas: IEEE Computer Society, 2001,
pp. 4–15. isbn: 0-7695-1369-7. url: http://dl.acm.org/citation.
cfm?id=563998.564002.

[14] Yuan Chou, Jason Fung, and John Paul Shen. “Reducing Branch
Misprediction Penalties via Dynamic Control Independence Detec-
tion”. In: Proceedings of the 13th International Conference on Su-
percomputing. ICS ’99. Rhodes, Greece: ACM, 1999, pp. 109–118.
isbn: 1-58113-164-X. doi: 10.1145/305138.305175. url: http:
//doi.acm.org/10.1145/305138.305175.

http://dx.doi.org/10.1109/ISCA.1994.288166
http://dx.doi.org/10.1007/BF02699882
http://dx.doi.org/10.1007/BF02699882
http://dx.doi.org/10.1145/192724.192727
http://doi.acm.org/10.1145/192724.192727
http://doi.acm.org/10.1145/192724.192727
http://dl.acm.org/citation.cfm?id=563998.564002
http://dl.acm.org/citation.cfm?id=563998.564002
http://dx.doi.org/10.1145/305138.305175
http://doi.acm.org/10.1145/305138.305175
http://doi.acm.org/10.1145/305138.305175

116

[15] Yuan Chou, Jason Fung, and John Paul Shen. “Reducing Branch
Misprediction Penalties via Dynamic Control Independence Detec-
tion”. In: Proceedings of the 13th International Conference on Su-
percomputing. ICS ’99. Rhodes, Greece: ACM, 1999, pp. 109–118.
isbn: 1-58113-164-X. doi: 10.1145/305138.305175. url: http:
//doi.acm.org/10.1145/305138.305175.

[16] Niket K. Choudhary et al. “FabScalar: Composing Synthesizable RTL
Designs of Arbitrary Cores Within a Canonical Superscalar Tem-
plate”. In: Proceedings of the 38th Annual International Symposium
on Computer Architecture. ISCA ’11. San Jose, California, USA: ACM,
2011, pp. 11–22. isbn: 978-1-4503-0472-6. doi: 10.1145/2000064.
2000067. url: http://doi.acm.org/10.1145/2000064.2000067.

[17] Weihaw Chuang and Brad Calder. “Predicate Prediction for Effi-
cient Out-of-order Execution”. In: Proceedings of the 17th Annual
International Conference on Supercomputing. ICS ’03. San Fran-
cisco, CA, USA: ACM, 2003, pp. 183–192. isbn: 1-58113-733-8. doi:
10.1145/782814.782840. url: http://doi.acm.org/10.1145/
782814.782840.

[18] L. Codrescu et al. “Qualcomm Hexagon DSP: An Architecture Opti-
mized for Mobile Multimedia and Communications”. In: Hot Chips,
2013.

[19] Lynn Conway. IBM-ACS: Reminiscences and Lessons Learned from
a 1960’s Supercomputer Project. Springer, 2011.

[20] ARM Cortex. “a9 processor”. In: URL: http://www. arm. com/products/processors/cortex-
a/cortex-a9. php.[Accessed 6 January 2014] (2011).

[21] A. N. Eden and T. Mudge. “The YAGS Branch Prediction Scheme”.
In: Proceedings of the 31st Annual ACM/IEEE International Sympo-
sium on Microarchitecture. MICRO 31. Dallas, Texas, USA: IEEE
Computer Society Press, 1998, pp. 69–77. isbn: 1-58113-016-3. url:
http://dl.acm.org/citation.cfm?id=290940.290962.

[22] Equator. “MAP1000 unfolds at Equator”. In: Microprocessor Report.
1998.

http://dx.doi.org/10.1145/305138.305175
http://doi.acm.org/10.1145/305138.305175
http://doi.acm.org/10.1145/305138.305175
http://dx.doi.org/10.1145/2000064.2000067
http://dx.doi.org/10.1145/2000064.2000067
http://doi.acm.org/10.1145/2000064.2000067
http://dx.doi.org/10.1145/782814.782840
http://doi.acm.org/10.1145/782814.782840
http://doi.acm.org/10.1145/782814.782840
http://dl.acm.org/citation.cfm?id=290940.290962

117

[23] Marius Evers, Po-Yung Chang, and Yale N. Patt. “Using Hybrid
Branch Predictors to Improve Branch Prediction Accuracy in the
Presence of Context Switches”. In: Proceedings of the 23rd Annual In-
ternational Symposium on Computer Architecture. ISCA ’96. Philadel-
phia, Pennsylvania, USA: ACM, 1996, pp. 3–11. isbn: 0-89791-786-3.
doi: 10.1145/232973.232975. url: http://doi.acm.org/10.
1145/232973.232975.

[24] Paolo Faraboschi et al. “Lx: a technology platform for customizable
VLIW embedded processing”. In: ISCA-27. 2000.

[25] Jose Fridman and Zvi Greenfield. “The TigerSHARC DSP Architec-
ture”. In: IEEE Micro (2000).

[26] Amit Gandhi, Haitham Akkary, and Srikanth T. Srinivasan. “Reduc-
ing Branch Misprediction Penalty via Selective Branch Recovery”.
In: Proceedings of the 10th International Symposium on High Perfor-
mance Computer Architecture. HPCA ’04. Washington, DC, USA:
IEEE Computer Society, 2004, pp. 254–. isbn: 0-7695-2053-7. doi:
10.1109/HPCA.2004.10004. url: http://dx.doi.org/10.1109/
HPCA.2004.10004.

[27] J.S. Gardner. “CEVA Exposes DSP Six Pack”. In: Microprocessor
Report, March 2012.

[28] Simcha Gochman et al. “Introduction to Intel Core Duo Processor
Architecture.” In: Intel Technology Journal 10.2 (2006).

[29] G. F. Grohoski. “Machine organization of the IBM RISC System/6000
processor”. In: IBM Journal of Research and Development 34.1 (1990),
pp. 37–58. issn: 0018-8646. doi: 10.1147/rd.341.0037.

[30] Erika Gunadi and Mikko H. Lipasti. “CRIB: Consolidated Rename,
Issue, and Bypass”. In: Proceedings of the 38th Annual International
Symposium on Computer Architecture. ISCA ’11. San Jose, California,
USA: ACM, 2011, pp. 23–32. isbn: 978-1-4503-0472-6. doi: 10.1145/
2000064.2000068. url: http://doi.acm.org/10.1145/2000064.
2000068.

[31] M. R. Guthaus et al. “MiBench: A Free, Commercially Representa-
tive Embedded Benchmark Suite”. In: Proceedings of the Workload
Characterization, 2001. WWC-4. 2001 IEEE International Workshop.
WWC ’01. Washington, DC, USA: IEEE Computer Society, 2001,

http://dx.doi.org/10.1145/232973.232975
http://doi.acm.org/10.1145/232973.232975
http://doi.acm.org/10.1145/232973.232975
http://dx.doi.org/10.1109/HPCA.2004.10004
http://dx.doi.org/10.1109/HPCA.2004.10004
http://dx.doi.org/10.1109/HPCA.2004.10004
http://dx.doi.org/10.1147/rd.341.0037
http://dx.doi.org/10.1145/2000064.2000068
http://dx.doi.org/10.1145/2000064.2000068
http://doi.acm.org/10.1145/2000064.2000068
http://doi.acm.org/10.1145/2000064.2000068

118

pp. 3–14. isbn: 0-7803-7315-4. doi: 10.1109/WWC.2001.15. url:
http://dx.doi.org/10.1109/WWC.2001.15.

[32] Linley Gwennap. “Hal reveals multichip SPARC processor”. In: Mi-
croprocessor Report 9.3 (1995), pp. 1–11.

[33] Linley Gwennap. “Sandy Bridge spans generations”. In: Microproces-
sor Report 9.27 (2010), pp. 10–01.

[34] Per Hammarlund et al. “Haswell: The Fourth-Generation Intel Core
Processor”. In: Micro, IEEE 34.2 (2014), pp. 6–20. issn: 0272-1732.
doi: 10.1109/MM.2014.10.

[35] Mitchell Hayenga, Vignyan Reddy Kothinti Naresh, and Mikko H
Lipasti. “Revolver: Processor Architecture for Power Efficient Loop
Execution”. In: HPCA-20. 2014.

[36] Timothy H. Heil and James. E. Smith. Selective Dual Path Execution.
Tech. rep. University of Wisconsin — Madison, 1996.

[37] John L Hennessy and David A Patterson. Computer architecture: a
quantitative approach. Elsevier, 2012.

[38] John L. Henning. “SPEC CPU2006 Benchmark Descriptions”. In:
SIGARCH Comput. Archit. News 34.4 (Sept. 2006), pp. 1–17. issn:
0163-5964. doi: 10.1145/1186736.1186737. url: http://doi.acm.
org/10.1145/1186736.1186737.

[39] D.S. Henry, B.C. Kuszmaul, and V. Viswanath. “The Ultrascalar
processor-an asymptotically scalable superscalar microarchitecture”.
In: Advanced Research in VLSI, 1999. Proceedings. 20th Anniversary
Conference on. 1999, pp. 256–273. doi: 10.1109/ARVLSI.1999.
756053.

[40] M.D. Hill and M.R. Marty. “Amdahl’s Law in the Multicore Era”.
In: Computer 41.7 (2008), pp. 33 –38.

[41] Andrew D. Hilton and Amir Roth. “Ginger: Control Independence
Using Tag Rewriting”. In: Proceedings of the 34th Annual Interna-
tional Symposium on Computer Architecture. ISCA ’07. San Diego,
California, USA: ACM, 2007, pp. 436–447. isbn: 978-1-59593-706-3.
doi: 10.1145/1250662.1250716. url: http://doi.acm.org/10.
1145/1250662.1250716.

http://dx.doi.org/10.1109/WWC.2001.15
http://dx.doi.org/10.1109/WWC.2001.15
http://dx.doi.org/10.1109/MM.2014.10
http://dx.doi.org/10.1145/1186736.1186737
http://doi.acm.org/10.1145/1186736.1186737
http://doi.acm.org/10.1145/1186736.1186737
http://dx.doi.org/10.1109/ARVLSI.1999.756053
http://dx.doi.org/10.1109/ARVLSI.1999.756053
http://dx.doi.org/10.1145/1250662.1250716
http://doi.acm.org/10.1145/1250662.1250716
http://doi.acm.org/10.1145/1250662.1250716

119

[42] P. Y T Hsu and E. S. Davidson. “Highly Concurrent Scalar Process-
ing”. In: Proceedings of the 13th Annual International Symposium
on Computer Architecture. ISCA ’86. Tokyo, Japan: IEEE Computer
Society Press, 1986, pp. 386–395. isbn: 0-8186-0719-X. url: http:
//dl.acm.org/citation.cfm?id=17407.17401.

[43] Roland N. Ibbett. “The MU5 instruction pipeline”. In: The Computer
Journal 15 (1 1972), pp. 42–50.

[44] Texas Instrucments Inc. “TMS320C62x/67x CPU and Instruction
Set Reference Guide”. In: 1998.

[45] Texas Instruments. “TMS320C6745/C6747 Fixed/Floating- point
digital signal processors (Rev.D)”. In: (2010).

[46] E. Jacobsen, E. Rotenberg, and J.E. Smith. “Assigning confidence to
conditional branch predictions”. In: Microarchitecture, 1996. MICRO-
29.Proceedings of the 29th Annual IEEE/ACM International Sympo-
sium on. 1996, pp. 142–152. doi: 10.1109/MICRO.1996.566457.

[47] D.A Jimenez and C. Lin. “Dynamic branch prediction with percep-
trons”. In: High-Performance Computer Architecture, 2001. HPCA.
The Seventh International Symposium on. 2001, pp. 197–206. doi:
10.1109/HPCA.2001.903263.

[48] Daniel A. Jiménez and Calvin Lin. “Neural Methods for Dynamic
Branch Prediction”. In: ACM Trans. Comput. Syst. 20.4 (Nov. 2002),
pp. 369–397. issn: 0734-2071. doi: 10.1145/571637.571639. url:
http://doi.acm.org/10.1145/571637.571639.

[49] David R. Kaeli and Philip G. Emma. “Branch History Table Pre-
diction of Moving Target Branches Due to Subroutine Returns”. In:
Proceedings of the 18th Annual International Symposium on Com-
puter Architecture. ISCA ’91. Toronto, Ontario, Canada: ACM, 1991,
pp. 34–42. isbn: 0-89791-394-9. doi: 10.1145/115952.115957. url:
http://doi.acm.org/10.1145/115952.115957.

[50] David Kanter. “Silvermont, Intel’s Low Power Architecture”. In:
URL:http://www.realworldtech.com/silvermont (2013).

[51] R. E. Kessler. “The Alpha 21264 microprocessor”. In: Micro, IEEE
19.2 (1999), pp. 24–36. issn: 0272-1732. doi: 10.1109/40.755465.

http://dl.acm.org/citation.cfm?id=17407.17401
http://dl.acm.org/citation.cfm?id=17407.17401
http://dx.doi.org/10.1109/MICRO.1996.566457
http://dx.doi.org/10.1109/HPCA.2001.903263
http://dx.doi.org/10.1145/571637.571639
http://doi.acm.org/10.1145/571637.571639
http://dx.doi.org/10.1145/115952.115957
http://doi.acm.org/10.1145/115952.115957
http://dx.doi.org/10.1109/40.755465

120

[52] Artur Klauser, Abhijit Paithankar, and Dirk Grunwald. “Selective
Eager Execution on the PolyPath Architecture”. In: Proceedings of
the 25th Annual International Symposium on Computer Architecture.
ISCA ’98. Barcelona, Spain: IEEE Computer Society, 1998, pp. 250–
259. isbn: 0-8186-8491-7. doi: 10.1145/279358.279393. url: http:
//dx.doi.org/10.1145/279358.279393.

[53] Artur Klauser, Abhijit Paithankar, and Dirk Grunwald. “Selective
Eager Execution on the PolyPath Architecture”. In: Proceedings of
the 25th Annual International Symposium on Computer Architecture.
ISCA ’98. Barcelona, Spain: IEEE Computer Society, 1998, pp. 250–
259. isbn: 0-8186-8491-7. doi: 10.1145/279358.279393. url: http:
//dx.doi.org/10.1145/279358.279393.

[54] Peter M Kogge. The architecture of pipelined computers. CRC Press,
1981.

[55] Ashok Kumar. “The HP PA-8000 RISC CPU”. In: IEEE Micro 17.2
(Mar. 1997), pp. 27–32. issn: 0272-1732. doi: 10.1109/40.592310.
url: http://dx.doi.org/10.1109/40.592310.

[56] Monica S. Lam and Robert P. Wilson. “Limits of Control Flow on Par-
allelism”. In: Proceedings of the 19th Annual International Symposium
on Computer Architecture. ISCA ’92. Queensland, Australia: ACM,
1992, pp. 46–57. isbn: 0-89791-509-7. doi: 10.1145/139669.139702.
url: http://doi.acm.org/10.1145/139669.139702.

[57] Travis Lanier. “Exploring the design of the cortex-a15 processor”. In:
URL: http://www. arm. com/files/pdf/atexploring the design of the
cortex-a15.pdf (visited on 12/11/2013) (2011).

[58] Travis Lanier. “Exploring The Design Of The Cortex-A15 Processor”.
In: www.arm.com (2012).

[59] Chih-Chieh Lee, I-C.K. Chen, and T.N. Mudge. “The bi-mode branch
predictor”. In: Microarchitecture, 1997. Proceedings., Thirtieth An-
nual IEEE/ACM International Symposium on. 1997, pp. 4–13. doi:
10.1109/MICRO.1997.645792.

[60] J.K.F. Lee and AJ. Smith. “Branch Prediction Strategies and Branch
Target Buffer Design”. In: Computer 17.1 (1984), pp. 6–22. issn:
0018-9162. doi: 10.1109/MC.1984.1658927.

http://dx.doi.org/10.1145/279358.279393
http://dx.doi.org/10.1145/279358.279393
http://dx.doi.org/10.1145/279358.279393
http://dx.doi.org/10.1145/279358.279393
http://dx.doi.org/10.1145/279358.279393
http://dx.doi.org/10.1145/279358.279393
http://dx.doi.org/10.1109/40.592310
http://dx.doi.org/10.1109/40.592310
http://dx.doi.org/10.1145/139669.139702
http://doi.acm.org/10.1145/139669.139702
http://dx.doi.org/10.1109/MICRO.1997.645792
http://dx.doi.org/10.1109/MC.1984.1658927

121

[61] David Levitan, Thomas Thomas, and Paul Tu. “The PowerPC 620
microprocessor: a high performance superscalar RISC microproces-
sor”. In: Compcon’95.’Technologies for the Information Superhighway’,
Digest of Papers. IEEE. 1995, pp. 285–291.

[62] Sheng Li et al. “McPAT: an integrated power, area, and timing
modeling framework for multicore and manycore architectures”. In:
Microarchitecture, 2009. MICRO-42. 42nd Annual IEEE/ACM In-
ternational Symposium on. IEEE. 2009, pp. 469–480.

[63] ARM Limited. “ARMv8 Instruction Set Overview”. In: www.arm.com
(2011).

[64] Mikko H Lipasti and John Paul Shen. “Exceeding the dataflow limit
via value prediction”. In: Proceedings of the 29th annual ACM/IEEE
international symposium on Microarchitecture. IEEE Computer Soci-
ety. 1996, pp. 226–237.

[65] Mikko H Lipasti, Christopher B Wilkerson, and John Paul Shen.
“Value locality and load value prediction”. In: ACM SIGOPS Operat-
ing Systems Review 30.5 (1996), pp. 138–147.

[66] Scott A. Mahlke et al. “A Comparison of Full and Partial Predicated
Execution Support for ILP Processors”. In: Proceedings of the 22Nd
Annual International Symposium on Computer Architecture. ISCA
’95. S. Margherita Ligure, Italy: ACM, 1995, pp. 138–150. isbn:
0-89791-698-0. doi: 10.1145/223982.225965. url: http://doi.
acm.org/10.1145/223982.225965.

[67] K. Malik et al. “Branch-mispredict level parallelism (BLP) for control
independence”. In: High Performance Computer Architecture, 2008.
HPCA 2008. IEEE 14th International Symposium on. 2008, pp. 62–73.
doi: 10.1109/HPCA.2008.4658628.

[68] S. McFarling. Branch predictor with serially connected predictor stages
for improving branch prediction accuracy. US Patent 6,374,349. 2002.
url: http://www.google.com/patents/US6374349.

[69] Scott McFarling. Combining branch predictors. Tech. rep. Technical
Report TN-36, Digital Western Research Laboratory, 1993.

[70] Lin Meng and S. Oyanagi. “Control Independence Using Dual Renam-
ing”. In: Networking and Computing (ICNC), 2010 First International
Conference on. 2010, pp. 264–267. doi: 10.1109/IC-NC.2010.16.

http://dx.doi.org/10.1145/223982.225965
http://doi.acm.org/10.1145/223982.225965
http://doi.acm.org/10.1145/223982.225965
http://dx.doi.org/10.1109/HPCA.2008.4658628
http://www.google.com/patents/US6374349
http://dx.doi.org/10.1109/IC-NC.2010.16

122

[71] C.J. Michael and D.M. Koppelman. “The effects on branch prediction
when utilizing control independence”. In: Parallel Distributed Process-
ing, Workshops and Phd Forum (IPDPSW), 2010 IEEE International
Symposium on. 2010, pp. 1–4. doi: 10.1109/IPDPSW.2010.5470794.

[72] Pierre Michaud. “A PPM-like, tag-based branch predictor”. In: Jour-
nal of Instruction Level Parallelism 7.1 (2005), pp. 1–10.

[73] Pierre Michaud, André Seznec, and Richard Uhlig. “Trading Con-
flict and Capacity Aliasing in Conditional Branch Predictors”. In:
Proceedings of the 24th Annual International Symposium on Com-
puter Architecture. ISCA ’97. Denver, Colorado, USA: ACM, 1997,
pp. 292–303. isbn: 0-89791-901-7. doi: 10.1145/264107.264211.
url: http://doi.acm.org/10.1145/264107.264211.

[74] Naveen Muralimanohar, Rajeev Balasubramonian, and Norman P
Jouppi. “CACTI 6.0: A tool to understand large caches”. In: Univer-
sity of Utah and Hewlett Packard Laboratories, Tech. Rep (2009).

[75] Richard C Murphy et al. “Introducing the graph 500”. In: Cray User‘s
Group (CUG) (2010).

[76] Ravi Nair. “Dynamic Path-based Branch Correlation”. In: Proceedings
of the 28th Annual International Symposium on Microarchitecture.
MICRO 28. Ann Arbor, Michigan, USA: IEEE Computer Society
Press, 1995, pp. 15–23. isbn: 0-8186-7349-4. url: http://dl.acm.
org/citation.cfm?id=225160.225168.

[77] NVIDIA. “NVIDIA Tegra 4 Family CPU Architecture”. In: (2013).
url: http://www.nvidia.com/object/white-papers.html.

[78] R. R. Oehler and R. D. Groves. “IBM RISC System/6000 Processor
Architecture”. In: IBM J. Res. Dev. 34.1 (Jan. 1990), pp. 23–36. issn:
0018-8646. doi: 10.1147/rd.341.0023. url: http://dx.doi.org/
10.1147/rd.341.0023.

[79] C. Ozturk and R. Sendag. “An analysis of hard to predict branches”.
In: Performance Analysis of Systems Software (ISPASS), 2010 IEEE
International Symposium on. 2010, pp. 213–222. doi: 10.1109/
ISPASS.2010.5452016.

http://dx.doi.org/10.1109/IPDPSW.2010.5470794
http://dx.doi.org/10.1145/264107.264211
http://doi.acm.org/10.1145/264107.264211
http://dl.acm.org/citation.cfm?id=225160.225168
http://dl.acm.org/citation.cfm?id=225160.225168
http://www.nvidia.com/object/white-papers.html
http://dx.doi.org/10.1147/rd.341.0023
http://dx.doi.org/10.1147/rd.341.0023
http://dx.doi.org/10.1147/rd.341.0023
http://dx.doi.org/10.1109/ISPASS.2010.5452016
http://dx.doi.org/10.1109/ISPASS.2010.5452016

123

[80] A Pajuelo, A Gonzalez, and M. Valero. “Control-Flow Independence
Reuse via Dynamic Vectorization”. In: Parallel and Distributed Pro-
cessing Symposium, 2005. Proceedings. 19th IEEE International. 2005,
21a–21a. doi: 10.1109/IPDPS.2005.154.

[81] S. Palacharla, N.P. Jouppi, and J.E. Smith. “Complexity-Effective
Superscalar Processors”. In: Computer Architecture, 1997. Conference
Proceedings. The 24th Annual International Symposium on. 1997,
pp. 206–218. doi: 10.1109/ISCA.1997.604689.

[82] Y. N. Patt, W. M. Hwu, and M. Shebanow. “HPS, a New Microar-
chitecture: Rationale and Introduction”. In: SIGMICRO Newsl. 16.4
(Dec. 1985), pp. 103–108. issn: 1050-916X. doi: 10.1145/18906.
18916. url: http://doi.acm.org/10.1145/18906.18916.

[83] Nathanael Premillieu and Andre Seznec. “SYRANT: SYmmetric
Resource Allocation on Not-taken and Taken Paths”. In: ACM Trans.
Archit. Code Optim. (2012), 43:1–43:20. url: http://doi.acm.org/
10.1145/2086696.2086722.

[84] Charles J. Purcell. “The Control Data STAR-100: Performance Mea-
surements”. In: Proceedings of the May 6-10, 1974, National Com-
puter Conference and Exposition. AFIPS ’74. Chicago, Illinois: ACM,
1974, pp. 385–387. doi: 10.1145/1500175.1500257. url: http:
//doi.acm.org/10.1145/1500175.1500257.

[85] B. Ramakrishna Rau et al. “The Cydra 5 Departmental Supercom-
puter: Design Philosophies, Decisions, and Trade-Offs”. In: Computer
22.1 (Jan. 1989), pp. 12–26, 28–30, 32–35. issn: 0018-9162. doi:
10.1109/2.19820. url: http://dx.doi.org/10.1109/2.19820.

[86] E. Rotenberg, Q. Jacobson, and J. Smith. “A study of control inde-
pendence in superscalar processors”. In: High-Performance Computer
Architecture, 1999. Proceedings. Fifth International Symposium On.
1999, pp. 115–124. doi: 10.1109/HPCA.1999.744346.

[87] E. Rotenberg, Q. Jacobson, and J. Smith. “A Study of Control
Independence in Superscalar Processors”. In: Proceedings of the 5th
International Symposium on High Performance Computer Architec-
ture. HPCA ’99. Washington, DC, USA: IEEE Computer Society,
1999, pp. 115–. isbn: 0-7695-0004-8. url: http://dl.acm.org/
citation.cfm?id=520549.822775.

http://dx.doi.org/10.1109/IPDPS.2005.154
http://dx.doi.org/10.1109/ISCA.1997.604689
http://dx.doi.org/10.1145/18906.18916
http://dx.doi.org/10.1145/18906.18916
http://doi.acm.org/10.1145/18906.18916
http://doi.acm.org/10.1145/2086696.2086722
http://doi.acm.org/10.1145/2086696.2086722
http://dx.doi.org/10.1145/1500175.1500257
http://doi.acm.org/10.1145/1500175.1500257
http://doi.acm.org/10.1145/1500175.1500257
http://dx.doi.org/10.1109/2.19820
http://dx.doi.org/10.1109/2.19820
http://dx.doi.org/10.1109/HPCA.1999.744346
http://dl.acm.org/citation.cfm?id=520549.822775
http://dl.acm.org/citation.cfm?id=520549.822775

124

[88] Eric Rotenberg and Jim Smith. “Control Independence in Trace
Processors”. In: Proceedings of the 32Nd Annual ACM/IEEE Inter-
national Symposium on Microarchitecture. MICRO 32. Haifa, Israel:
IEEE Computer Society, 1999, pp. 4–15. isbn: 0-7695-0437-X. url:
http://dl.acm.org/citation.cfm?id=320080.320084.

[89] Eric Rotenberg et al. “Trace Processors”. In: Proceedings of the 30th
Annual ACM/IEEE International Symposium on Microarchitecture.
MICRO 30. Research Triangle Park, North Carolina, USA: IEEE
Computer Society, 1997, pp. 138–148. isbn: 0-8186-7977-8. url:
http://dl.acm.org/citation.cfm?id=266800.266814.

[90] C. Rowen et al. “The World’s Fastest DSP Core:Breaking the 100
GMAC/s Barrier”. In: Hot Chips, 2011.

[91] Richard M. Russell. “The CRAY-1 Computer System”. In: Commun.
ACM 21.1 (Jan. 1978), pp. 63–72. issn: 0001-0782. doi: 10.1145/
359327.359336. url: http://doi.acm.org/10.1145/359327.
359336.

[92] F. Samie and A Baniasadi. “Power and frequency analysis for data and
control independence in embedded processors”. In: Green Computing
Conference and Workshops (IGCC), 2011 International. 2011, pp. 1–6.
doi: 10.1109/IGCC.2011.6008593.

[93] Karthikeyan Sankaralingam et al. “TRIPS: A Polymorphous Ar-
chitecture for Exploiting ILP, TLP, and DLP”. In: ACM Trans.
Archit. Code Optim. 1.1 (Mar. 2004), pp. 62–93. issn: 1544-3566. doi:
10.1145/980152.980156. url: http://doi.acm.org/10.1145/
980152.980156.

[94] Herbert Schorr. “Design principles for a high-performance system”.
In: Symp. on Computers and Automata, Polytechnic Institute of
Brooklyn,(April 1971). 1971.

[95] A Seznec. “Analysis of the O-GEometric history length branch predic-
tor”. In: Computer Architecture, 2005. ISCA ’05. Proceedings. 32nd
International Symposium on. 2005, pp. 394–405. doi: 10.1109/ISCA.
2005.13.

[96] André Seznec. “The l-tage predictor”. In: Journal of Instruction Level
Parallelism 9 (2007).

http://dl.acm.org/citation.cfm?id=320080.320084
http://dl.acm.org/citation.cfm?id=266800.266814
http://dx.doi.org/10.1145/359327.359336
http://dx.doi.org/10.1145/359327.359336
http://doi.acm.org/10.1145/359327.359336
http://doi.acm.org/10.1145/359327.359336
http://dx.doi.org/10.1109/IGCC.2011.6008593
http://dx.doi.org/10.1145/980152.980156
http://doi.acm.org/10.1145/980152.980156
http://doi.acm.org/10.1145/980152.980156
http://dx.doi.org/10.1109/ISCA.2005.13
http://dx.doi.org/10.1109/ISCA.2005.13

125

[97] Leonard E. Shar and Edward S. Davidson. “A multiminiprocessor
system implemented through pipelining”. In: Computer 7.2 (1974),
pp. 42–51. issn: 0018-9162. doi: 10.1109/MC.1974.6323457.

[98] Harsh Sharangpani. “Intel® Itanium™ processor microarchitecture
overview”. In: Microprocessor Forum. 1999.

[99] John Paul Shen and Mikko H Lipasti. Modern processor design:
fundamentals of superscalar processors. Waveland Press, 2013.

[100] Timothy Sherwood et al. “Automatically Characterizing Large Scale
Program Behavior”. In: SIGOPS Oper. Syst. Rev. 36.5 (Oct. 2002),
pp. 45–57. issn: 0163-5980. doi: 10.1145/635508.605403. url:
http://doi.acm.org/10.1145/635508.605403.

[101] T. Singh, J. Bell, and S. Southard. “Jaguar: A next-generation low-
power x86-64 core”. In: Solid-State Circuits Conference Digest of
Technical Papers (ISSCC), 2013 IEEE International. 2013, pp. 52–53.
doi: 10.1109/ISSCC.2013.6487633.

[102] Ronak Singhal. “Inside Intel next generation Nehalem microarchitec-
ture”. In: Hot Chips. Vol. 20. 2008.

[103] Kevin Skadron, Margaret Martonosi, and Douglas W Clark. “Alloyed
global and local branch history: a robust solution to wrong-history
mispredictions”. In: Proceedings of the International Conference on
Parallel Architectures and Compilation Techniques. Citeseer. 1999,
pp. 199–206.

[104] Kevin Skadron et al. “Improving Prediction for Procedure Returns
with Return-address-stack Repair Mechanisms”. In: Proceedings of
the 31st Annual ACM/IEEE International Symposium on Microar-
chitecture. MICRO 31. Dallas, Texas, USA: IEEE Computer Society
Press, 1998, pp. 259–271. isbn: 1-58113-016-3. url: http://dl.acm.
org/citation.cfm?id=290940.290994.

[105] J. E. Smith et al. “The ZS-1 Central Processor”. In: SIGPLAN Not.
22.10 (Oct. 1987), pp. 199–204. issn: 0362-1340. doi: 10.1145/
36205.36203. url: http://doi.acm.org/10.1145/36205.36203.

http://dx.doi.org/10.1109/MC.1974.6323457
http://dx.doi.org/10.1145/635508.605403
http://doi.acm.org/10.1145/635508.605403
http://dx.doi.org/10.1109/ISSCC.2013.6487633
http://dl.acm.org/citation.cfm?id=290940.290994
http://dl.acm.org/citation.cfm?id=290940.290994
http://dx.doi.org/10.1145/36205.36203
http://dx.doi.org/10.1145/36205.36203
http://doi.acm.org/10.1145/36205.36203

126

[106] James E. Smith. “A Study of Branch Prediction Strategies”. In:
Proceedings of the 8th Annual Symposium on Computer Architecture.
ISCA ’81. Minneapolis, Minnesota, USA: IEEE Computer Society
Press, 1981, pp. 135–148. url: http://dl.acm.org/citation.cfm?
id=800052.801871.

[107] J.E. Smith and G.S. Sohi. “The microarchitecture of superscalar
processors”. In: Proceedings of the IEEE 83.12 (1995), pp. 1609–1624.
issn: 0018-9219. doi: 10.1109/5.476078.

[108] Avinash Sodani and Gurindar S. Sohi. “Dynamic Instruction Reuse”.
In: Proceedings of the 24th Annual International Symposium on Com-
puter Architecture. ISCA ’97. Denver, Colorado, USA: ACM, 1997,
pp. 194–205. isbn: 0-89791-901-7. doi: 10.1145/264107.264200.
url: http://doi.acm.org/10.1145/264107.264200.

[109] Gurindar S. Sohi, Scott E. Breach, and T. N. Vijaykumar. “Multi-
scalar Processors”. In: ACM Sigarch Computer Architecture News 23
(2 1995), pp. 414–425. doi: 10.1145/223982.224451.

[110] S. Peter Song, Marvin Denman, and Joe Chang. “The PowerPC
604 RISC Microprocessor”. In: IEEE Micro 14.5 (Oct. 1994), pp. 8–
17. issn: 0272-1732. doi: 10.1109/MM.1994.363071. url: http:
//dx.doi.org/10.1109/MM.1994.363071.

[111] Eric Sprangle et al. “The Agree Predictor: A Mechanism for Reducing
Negative Branch History Interference”. In: Proceedings of the 24th
Annual International Symposium on Computer Architecture. ISCA
’97. Denver, Colorado, USA: ACM, 1997, pp. 284–291. isbn: 0-89791-
901-7. doi: 10.1145/264107.264210. url: http://doi.acm.org/
10.1145/264107.264210.

[112] William Stallings. Computer organization and architecture: designing
for performance. Pearson Education India, 1993.

[113] Steven Swanson et al. “The WaveScalar Architecture”. In: ACM
Trans. Comput. Syst. 25.2 (May 2007), 4:1–4:54. issn: 0734-2071.
doi: 10.1145/1233307.1233308. url: http://doi.acm.org/10.
1145/1233307.1233308.

http://dl.acm.org/citation.cfm?id=800052.801871
http://dl.acm.org/citation.cfm?id=800052.801871
http://dx.doi.org/10.1109/5.476078
http://dx.doi.org/10.1145/264107.264200
http://doi.acm.org/10.1145/264107.264200
http://dx.doi.org/10.1145/223982.224451
http://dx.doi.org/10.1109/MM.1994.363071
http://dx.doi.org/10.1109/MM.1994.363071
http://dx.doi.org/10.1109/MM.1994.363071
http://dx.doi.org/10.1145/264107.264210
http://doi.acm.org/10.1145/264107.264210
http://doi.acm.org/10.1145/264107.264210
http://dx.doi.org/10.1145/1233307.1233308
http://doi.acm.org/10.1145/1233307.1233308
http://doi.acm.org/10.1145/1233307.1233308

127

[114] L.A. Taylor and University of Manchester. Department of Computer
Science. Instruction accessing in high speed computers. University
of Manchester, 1969. url: http://books.google.com/books?id=
ZjwdcgAACAAJ.

[115] Michael Bedford Taylor et al. “The Raw Microprocessor: A Computa-
tional Fabric for Software Circuits and General Purpose Programs”.
In: IEEE Micro 22 (2 2002), pp. 25–35. doi: 10.1109/MM.2002.
997877.

[116] Joel M Tendler et al. “POWER4 system microarchitecture”. In: IBM
Journal of Research and Development 46.1 (2002), pp. 5–25.

[117] G. S. Tjaden and M. J. Flynn. “Detection and Parallel Execution
of Independent Instructions”. In: IEEE Trans. Comput. 19.10 (Oct.
1970), pp. 889–895. issn: 0018-9340. doi: 10 . 1109 / T - C . 1970 .
222795. url: http://dx.doi.org/10.1109/T-C.1970.222795.

[118] G. S. Tjaden and M. J. Flynn. “Detection and Parallel Execution
of Independent Instructions”. In: IEEE Trans. Comput. 19.10 (Oct.
1970), pp. 889–895. issn: 0018-9340. doi: 10 . 1109 / T - C . 1970 .
222795. url: http://dx.doi.org/10.1109/T-C.1970.222795.

[119] R. M. Tomasulo. “An Efficient Algorithm for Exploiting Multiple
Arithmetic Units”. In: IBM Journal of Research and Development
11.1 (1967), pp. 25–33. issn: 0018-8646. doi: 10.1147/rd.111.0025.

[120] Augustus K. Uht. “Disjoint Eager Execution: What It is / What
It is Not”. In: SIGARCH Comput. Archit. News 30.1 (Mar. 2002),
pp. 12–14. issn: 0163-5964. doi: 10.1145/511120.511124. url:
http://doi.acm.org/10.1145/511120.511124.

[121] Augustus K. Uht et al. “Levo A Scalable Processor With High IPC”.
In: Journal of Instruction-level Parallelism 5 (2003).

[122] Sriram Vajapeyam and Tulika Mitra. “Improving Superscalar Instruc-
tion Dispatch and Issue by Exploiting Dynamic Code Sequences”. In:
Proceedings of the 24th Annual International Symposium on Com-
puter Architecture. ISCA ’97. Denver, Colorado, USA: ACM, 1997,
pp. 1–12. isbn: 0-89791-901-7. doi: 10.1145/264107.264119. url:
http://doi.acm.org/10.1145/264107.264119.

http://books.google.com/books?id=ZjwdcgAACAAJ
http://books.google.com/books?id=ZjwdcgAACAAJ
http://dx.doi.org/10.1109/MM.2002.997877
http://dx.doi.org/10.1109/MM.2002.997877
http://dx.doi.org/10.1109/T-C.1970.222795
http://dx.doi.org/10.1109/T-C.1970.222795
http://dx.doi.org/10.1109/T-C.1970.222795
http://dx.doi.org/10.1109/T-C.1970.222795
http://dx.doi.org/10.1109/T-C.1970.222795
http://dx.doi.org/10.1109/T-C.1970.222795
http://dx.doi.org/10.1147/rd.111.0025
http://dx.doi.org/10.1145/511120.511124
http://doi.acm.org/10.1145/511120.511124
http://dx.doi.org/10.1145/264107.264119
http://doi.acm.org/10.1145/264107.264119

128

[123] Sravanthi Kota Venkata et al. “SD-VBS: The San Diego Vision Bench-
mark Suite”. In: Proceedings of the 2009 IEEE International Sym-
posium on Workload Characterization (IISWC). IISWC ’09. Wash-
ington, DC, USA: IEEE Computer Society, 2009, pp. 55–64. isbn:
978-1-4244-5156-2. doi: 10.1109/IISWC.2009.5306794. url: http:
//dx.doi.org/10.1109/IISWC.2009.5306794.

[124] Steven Wallace, Dean M. Tullsen, and Brad Calder. “Instruction
Recycling on a Multiple-Path Processor”. In: Proceedings of the 5th
International Symposium on High Performance Computer Architec-
ture. HPCA ’99. Washington, DC, USA: IEEE Computer Society,
1999, pp. 44–. isbn: 0-7695-0004-8. url: http://dl.acm.org/
citation.cfm?id=520549.822788.

[125] Charles F Webb. “Subroutine call/return stack”. In: IBM Technical
Disclosure Bulletin 30.11 (1988), pp. 221–225.

[126] K.C. Yeager. “The Mips R10000 superscalar microprocessor”. In:
Micro, IEEE 16.2 (1996), pp. 28–41. issn: 0272-1732. doi: 10.1109/
40.491460.

[127] Tse-Yu Yeh and Yale N. Patt. “Two-level Adaptive Training Branch
Prediction”. In: Proceedings of the 24th Annual International Sym-
posium on Microarchitecture. MICRO 24. Albuquerque, New Mex-
ico, Puerto Rico: ACM, 1991, pp. 51–61. isbn: 0-89791-460-0. doi:
10.1145/123465.123475. url: http://doi.acm.org/10.1145/
123465.123475.

http://dx.doi.org/10.1109/IISWC.2009.5306794
http://dx.doi.org/10.1109/IISWC.2009.5306794
http://dx.doi.org/10.1109/IISWC.2009.5306794
http://dl.acm.org/citation.cfm?id=520549.822788
http://dl.acm.org/citation.cfm?id=520549.822788
http://dx.doi.org/10.1109/40.491460
http://dx.doi.org/10.1109/40.491460
http://dx.doi.org/10.1145/123465.123475
http://doi.acm.org/10.1145/123465.123475
http://doi.acm.org/10.1145/123465.123475

	Contents
	List of Tables
	List of Figures
	Abstract
	Introduction
	Performance and Power Opportunity
	Processor Pipelines and CRIB Refresher
	EMR Overview
	Thesis Contributions
	Thesis Organization

	Prior Art
	Background
	Reducing Misprediction Penalty
	Execution Localized Scheduling Engines
	CRIB
	Summary

	Express Misprediction Recovery
	Motivating Example
	Architectural Overview
	Partition Control Unit
	Demand Fetch
	Back-End Branch Prediction
	In-place Fetch and Misprediction Recovery
	Summary

	Control Independence
	Discovering Control Independence
	Trade Offs in Control Independence
	Case Study of Astar
	Summary

	Amplified Instruction Delivery
	Relaxing the Flynn's Bottleneck Limit
	Case Study of Libquantum
	Summary

	Evaluation
	Evaluation Setup
	Performance
	Performance Sensitivity Analysis
	Instruction Sources
	Energy Analysis
	Summary

	Conclusion
	Future Work

	Bibliography

