
15

Systems-on-Chip with Strong Ordering

SOORAJ PUTHOOR, University of Wisconsin—Madison, AMD Research

MIKKO H. LIPASTI, University of Wisconsin—Madison

Sequential consistency (SC) is the most intuitive memory consistency model and the easiest for programmers

and hardware designers to reason about. However, the strict memory ordering restrictions imposed by SC

make it less attractive from a performance standpoint. Additionally, prior high-performance SC implemen-

tations required complex hardware structures to support speculation and recovery.

In this article, we introduce the lockstep SC consistency model (LSC), a new memory model based on SC

but carefully defined to accommodate the data parallel lockstep execution paradigm of GPUs. We also de-

scribe an efficient LSC implementation for an APU system-on-chip (SoC) and show that our implementation

performs close to the baseline relaxed model. Evaluation of our implementation shows that the geometric

mean performance cost for lockstep SC is just 0.76% for GPU execution and 6.11% for the entire APU SoC

compared to a baseline with a weaker memory consistency model. Adoption of LSC in future APU and SoC

designs will reduce the burden on programmers trying to write correct parallel programs, while also simpli-

fying the implementation and verification of systems with heterogeneous processing elements and complex

memory hierarchies.1

CCS Concepts: • Computer systems organization → Single instruction, multiple data; Heterogeneous (hy-

brid) systems;

Additional Key Words and Phrases: Consistency model, GPU, lockstep execution

ACM Reference format:

Sooraj Puthoor and Mikko H. Lipasti. 2021. Systems-on-Chip with Strong Ordering. ACM Trans. Archit. Code

Optim. 18, 1, Article 15 (January 2021), 27 pages.

https://doi.org/10.1145/3428153

1 INTRODUCTION

Memory consistency models define the order in which loads and stores should be visible to the
memory. A strong consistency model like sequential consistency (SC) [3, 48, 75] tightly cou-
ples this memory order to the program order of loads and stores whereas weaker consistency
models relax this program order constraint. As such, weaker consistency models provide better

1New paper, not an extension of a conference paper.

AMD, the AMD Arrow logo, and combinations thereof are trademarks of Advanced Micro Devices, Inc. Other product

names used in this publication are for identification purposes only and may be trademarks of their respective companies.

This work was supported in part by NSF award CCF-1628384, CCF-1813434, and CCF-2010830, and AFRL award FA9550-

18-1-0166.

Authors’ addresses: S. Puthoor, University of Wisconsin—Madison, Advanced Micro Devices, 7171 Southwest Pkwy, Austin,

TX 78735; email: puthoor@wisc.edu; M. H. Lipasti, University of Wisconsin Madison, Electrical and Computer Engineering,

1415 Engineering Dr, Madison, WI 53706; email: mikko@engr.wisc.edu.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2021 Copyright held by the owner/author(s).

1544-3566/2021/01-ART15

https://doi.org/10.1145/3428153

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 1, Article 15. Publication date: January 2021.

https://doi.org/10.1145/3428153
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3428153


15:2 S. Puthoor and M. H. Lipasti

opportunity for reordering memory operations and enable higher memory level parallelism, lead-
ing to better performance. This has resulted in both CPUs and GPUs adopting weaker models.
For example, many modern CPUs adhere to the total store order (TSO) memory model that al-
lows younger loads to bypass pending stores [68, 76], and many commercially available GPUs and
APUs adhere to the release consistency (RC) or heterogeneous-race-free (HRF) models that require
explicit synchronization operations to communicate between threads [24, 33, 38, 47].

However, there is a plethora of work showing weak models are notoriously difficult to program
and are extremely challenging to verify [8, 9, 21, 25–27, 45, 69, 80, 81]. The reordering permitted
by the weak models results in a non-intuitive sequence of memory operations, often resulting in
programming bugs that are hard to detect. Additionally, there has been a series of prior work at-
tempting to formalize the weak models of the POWER and ARM architectures, only to get it wrong
in their initial attempts [10, 20, 32, 56, 62, 67]. Alglave et al. observed that some implementations
of weak models violate programming guides and vendor documentation guarantees [7].

The complexity with weak models is even higher for APU programming where a programmer
is forced to reason about two different memory models of the CPU and GPU. This is further am-
plified with APU/GPU programming moving toward single source languages like C++ AMP [58]
and HC [14]; forcing a programmer to target different memory models with the same language
constructs. One prevalent memory model for APUs, HRF memory model of Heterogeneous Sys-
tem Architecture (HSA) [46], requires a programmer to (a) specify the scope of communication
and (b) explicitly initiate the communication. That means HRF goes one step further than RC,
demanding the programmer for explicitly managing the communication scope whereas RC only
demands for explicit synchronization operations. While it is true that most of these complexi-
ties can be abstracted away with synchronization routines, the low level software developer who
writes these synchronization routines will still have to deal with these intricacies. A strong model
like SC neither asks the programmer for visibility scopes nor demand the programmer to insert
explicit synchronization primitives.

Despite the clear programmability advantages with strong models, the major impediment for
their adoption has been their perceived performance and area overheads. Researchers have pro-
posed various techniques to implement SC on CPU cores without significant performance penalty
[22, 28, 29, 39–41, 51, 52, 64, 72, 78]. Recent academic research has also shown that enforcing SC
on a GPU has minimum hardware complexity and SC can match the performance of weaker mod-
els [44, 65, 71]. For example, Hechtman et al. [44] studied the characteristics of heavily threaded
applications and demonstrated that a simple SC implementation achieves performance comparable
to weaker models.

In this article, we ask the question: can a strong model be implemented on an APU SoC with
low overhead? While answering this question, we make the observation that a well-defined and
formal strong model does not exist for lockstep executing threads in a GPU. So, we first define and
formalize lockstep SC (LSC), a consistency model with strict ordering requirements for lockstep
executing threads. Then, we implement LSC across the entire APU SoC with low performance and
area overhead. The contributions of this article are as follows:

• We define and formalize the LSC memory model.
• We efficiently implement LSC on an APU SoC. The performance cost of our implementation

is just 0.76% for the GPU execution phase and 6.11% for the entire SoC. Our implementation
only adds simple direct mapped hardware components and requires minimum changes to
the baseline. As such, our implementation does not require expensive associative look ups,
does not need compiler support and does not interfere with the underlying cache coherence
implementation.

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 1, Article 15. Publication date: January 2021.



Systems-on-Chip with Strong Ordering 15:3

Fig. 1. Baseline APU system.

• We show that a strong model performs better than the baseline RC model for GPU bench-
marks with fine-grained data sharing.

2 BACKGROUND

2.1 Baseline APU System

Figure 1 shows our baseline APU system with integrated CPU and GPU. Each GPU core is called
a compute unit (CU) and hosts four 16-wide vector ALU units (VALUs) and one 16-wide address
generation unit (AGU). VALUs execute ALU instructions and AGU executes memory instructions.
Each CU can have up to 40 wavefronts in flight (10 per VALU unit) and a 64-wide wavefront takes
4 cycles to execute on 16-wide VALU or AGU unit. This GPU core is similar to the Graphics Core
Next architecture [16] of many commercially available GPUs and APUs [18, 24, 47]. The dynam-
ically scheduled out-of-order (OoO) CPU core has a split load/store queue design with separate
load queue and store queue per thread. The reorder buffer (ROB) commits instructions in program
order and the committed stores are taken out of store queue and moved into a store buffer. As such,
the CPU core adheres to TSO memory model. The core supports speculation and relies on invali-
dation messages forwarded from the cache subsystem for detecting and correcting mis-speculated
memory accesses. When a cacheline gets invalidated, the invalidation notification is forwarded to
the core and the core replays any speculative load that has read that cacheline. For the same reason,
an eviction notification is also forwarded to the core. This technique proposed by Gharachorloo
et al. [37] allows the core to do aggressive memory access speculation.

The CUs and CPU cores communicate over a single shared address space with the help of co-
herent caches. The GPU L2 cache (GL2) is shared by all CUs but the L1s (GL1) are private to a CU.
CPU cores have private L1 and L2 caches (CL1 and CL2) and a shared L3 (CL3). The private CL2 is
inclusive of CL1 but shared caches in both CPU and GPU are non-inclusive. To reduce the number
of requests issued to the memory hierarchy, our baseline GPU coalesces memory requests from a
wavefront to the same cacheline and only these coalesced requests are issued to the GL1 [16, 50].

The system directory acts as the ordering point between CPU and GPU coherence requests. It
also hosts an inclusive probe filter that keeps a 2-bit sharer vector indicating if a cache block is
in CPU caches or in GPU L2 or both. The probe filter also keeps track of the cache in ownership
states [75]. CPU caches are write-back and implement a read for ownership (RFO) protocol. This
RFO protocol preserves the single writer invariant of cache coherence protocol [75]. The GPU
caches are write-through and implement a simple valid-invalid coherence protocol. In our baseline
implementation, invalidation messages generated by a write request are not forwarded to the GL1.
The GL1 caches are made coherent by synchronization operations defined in the HRF memory
model [46]. Consequently, the probe filter is inclusive of only GL2 cachelines. This baseline APU
system is similar to many commercially available APUs [24, 47] and is used as baseline in many
recent APU publications [11, 43, 61].

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 1, Article 15. Publication date: January 2021.



15:4 S. Puthoor and M. H. Lipasti

Fig. 2. Command processor hooked up to the GPU cache hierarchy.

2.2 HRF Synchronization Operations

The baseline GPU adheres to HRF. HRF requires explicit synchronization instructions such as load-
acquire (ldAcq) and store-release (stRel) to communicate between threads [38, 43, 46]. A formal
definition of these synchronization operations can be found elsewhere [38, 46, 75].

GPU caches enforce HRF by invalidating the valid cachelines on a ldAcq operation and write
back all outstanding writes on a stRel operation [11, 46]. However, since our baseline GPU caches
are write-through, a stRel operation only needs to wait for all write-through completion acknowl-
edgements (cmplAcks) from directory. While a stRel waits for all cmplAcks, the GPU pipeline need
not wait for the cmplAck of individual stores, because HRF enforces memory fences only at syn-
chronization operations. Hence, from a GPU pipeline perspective, a store is completed when GL1
sees that store and responds with an acknowledgement. A ldAcq operation invalidates all valid
cachelines in the GL1 cache, which can be achieved by resetting their valid bits. A subsequent load
request to the GL1 after a ldAcq will find the cache in invalid state and will forward that load to
the GL2 for the most recent copy of the data.

GL2s are kept coherent by invalidation messages from system directory. Since GL1s are made
coherent with ldAcq operation, the GL2 need not forward invalidation messages from the direc-
tory to these GL1s. GL2s perform non-silent evictions to keep it inclusive with probe filter but
evictions from GL1s are silent. HSA [33] has adopted this model for HSA compliant GPUs. Several
commercially available GPUs also adhere to this memory model [24, 47].

2.3 Limitations of HRF

HRF is a well-defined memory model that allows work-items (threads in CUDA) to synchronize
through scopes [46]. A detailed discussion of scoped synchronization can be found elsewhere [46].
HRF defines scopes in terms of the execution hierarchy of GPUs. For example, work-items within
the same work-group (threadblock) synchronize through work-group scope, and work-items from
different work-groups synchronize through device scope (scopes are present in other models as
well [54]). While use of such scopes are well defined for synchronizing between work-items of a
GPU, the synchronization between work-items and threads running on other processing elements
on the same GPU is not clearly defined. For example, the Graphics Core Next (GCN) GPUs have a
command processor (CP) to launch work on the GPU [17] and since CP threads are not part of the
GPU execution hierarchy, the synchronization scope between them and work-items are not well
defined by HRF.

Figure 2(a) shows the CP and CUs sharing the same shared L2 in a GCN GPU [17]. Recent stud-
ies have suggested using the CP for GPU initiated networking [49] and for enabling fine-grained
task scheduling [60]. Enabling both these capabilities require CP threads and work-items to syn-
chronize frequently. In the absence of a clearly defined scope for such synchronization in the HRF,

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 1, Article 15. Publication date: January 2021.



Systems-on-Chip with Strong Ordering 15:5

Fig. 3. Program order.

in practice, programmers choose the level of the memory hierarchy where the synchronization
should occur as the scope. In this case, the shared L2 is the scope of the synchronization, which is
the same as device scoped synchronization. This scenario thus exposes HRF’s drawback of forcing
a programmer to think about the underlying cache hierarchy design while writing synchronizing
programs, an observation made by Sinclair et al. in their work [70] as well.

While the above-mentioned scenario is a programmability drawback of HRF, the implications
go far beyond that. Figure 2(b) shows an alternative implementation of hooking the CP into the
cache hierarchy of an APU. In this scenario, the CP is hooked to the system directory. Hence,
synchronization between CP threads and work-items through device scope is no longer possible.
This scenario exposes a portability issue with HRF. While HRF can still guarantee synchronization
with system scope in this scenario, the synchronization code has to be manually modified based
on this new cache hierarchy.

The 3p criteria—programmability, performance, and portability—was introduced by Adve [2] to
evaluate memory models. As discussed above, HRF has limitations with both programmability and
portability. We also show that fine-grained data sharing applications perform poorly with HRF in
the result section.

3 LOCKSTEP SC

In this section, we first argue that the program order should be defined for a wavefront in a GPU.
Then we formally define lockstep SC. Lockstep SC allows SC’s ordering rules to be enforced on a
group of threads executing in lockstep.

3.1 GPU Program Order

In a CPU, the program order (PO) is defined for individual threads. However, since a GPU executes
work-items of a wavefront in lockstep fashion, it is unclear if the PO should be defined for indi-
vidual work-items or for the lockstep-executing wavefront. To understand the subtle difference,
consider the synchronizing code in Figure 3(a). Here, thread 0 and thread 1 have their own PO
and they synchronize with the Flag synchronization variable enabling the load of thread 0 to see
the value updated by thread 1. However, if the same synchronization is attempted between two
work-items of the same wavefront, the assumption of them having independent PO can lead a pro-
grammer to write the code in Figure 3(b). Since the threads of a wavefront execute in lockstep, the
thread 0 will spin on the Flag variable without reaching the release operation by thread 1 resulting

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 1, Article 15. Publication date: January 2021.



15:6 S. Puthoor and M. H. Lipasti

in a deadlock in current commercially available GPU architectures. The reason for this deadlock is
the incorrect assumption of independent PO for work-items within a wavefront. Independent PO
based reasoning does not work with lockstep execution. Additionally, the same code may avoid
deadlock on some GPU architectures with dynamic wavefront creation capability proposed in the
literature [34]. This capability enables some work-items to execute a different basic block than its
peers. This may sometimes avoid deadlock, which makes it even harder to find bugs and reason
about correctness.

Furthermore, modern GPUs have scalar cores that execute scalar instructions of a wavefront [17,
19, 42]. The scalar instructions perform operations common to a wavefront, such as handling con-
trol flow. These scalar instructions are inserted by the compiler and their correct execution relies
on a wavefront PO. It is also important to note that the scalar instructions cannot be even defined
within the scope of a work-item PO.

Because of these reasons, we argue that the PO should be defined for a wavefront in a GPU.
Figure 3(c) shows the code rewritten with the assumption of a per-wavefront PO. This code will
not deadlock on the current architectures and the synchronization mechanism is easy to reason
about.

ElTantawy and Aamodt also discussed the possibility of deadlock under branch divergence be-
cause of the diverged threads sharing the same program order [31]. While their work attempted
to mitigate this deadlock by inspecting the application control flow graph, we demonstrated this
deadlock to establish that GPUs have a wavefront program order. The lockstep SC model intro-
duced in next section will define ordering rules for wavefront program order.

3.2 Lockstep SC

SC ordering rules are defined for individual threads [75]. But GPUs execute work-items in lockstep
and ordering memory operations from a lockstep executed instruction is unnecessary. Toward this,
we propose LSC that allows threads executing in lockstep in a wavefront to share the SC ordering
rules.

For defining LSC, we use the same naming convention used in the Primer [75]: op1 <p op2
implies that op1 precedes op2 in that core’s PO and op1 <m op2 implies that op1 precedes op2 in
global memory order. To formalize LSC, in addition to <p and <m , we define =p and <m>. op1 =p

op2 implies that op1 and op2 are logically executed simultaneously in the program order and op1
<m> op2 implies op1 and op2 are unordered in global memory order. MOp(X) denotes a memory
operation that reads and/or modify the state of address X in memory. Any execution is LSC if it
adheres to the following conditions:

• If MOp(a) <p MOp(b)⇒MOp(a) <m Mop(b); a == b or a � b
• If MOp(a) =p MOp(b)⇒MOp(a) <m> Mop(b); a == b or a � b
• Ld(a) = Value of MAX_m {St(a) | St(a) <m Ld(a)}

The first condition states that all older memory operations to same or different addresses (a == b
or a � b) in PO should be made visible to the memory before any younger memory operation(s).
The third condition specifies that a load to a memory location a should see the value of the last
store in memory order to that location. These two conditions are same as SC but LSC relaxes the
ordering constraints on operations that are logically executed simultaneously by adding another
condition (second condition). As such, memory requests originating from the same wavefront
instruction and logically executed simultaneously need not be ordered in LSC.

LSC is a seemingly straightforward extension of SC. But there is clearly value in formalizing the
model to prevent undefined behaviors, and the model is useful as it makes a strong memory model
practical in GPUs. We demonstrate that a seemingly intuitive idea of extending SC to GPUs is really

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 1, Article 15. Publication date: January 2021.



Systems-on-Chip with Strong Ordering 15:7

Fig. 4. (a) Program order of wavefront 0 and wavefront 1. (b) The valid outcomes for different models.

subtle and can result in many complex, non-intuitive behaviors. To explain this, we introduce a
strictly lockstep SC (SLSC) model by changing the second condition added by LSC to have a strict
ordering among lockstep memory requests as follows:

• If MOp(a) =p MOp(b)⇒MOp(a) =m Mop(b); a == b or a � b

With this change, we have three candidate models for SC on GPUs: (a) SC that treats each GPU
thread as a separate independent entity, (b) LSC that completely relaxes the memory ordering
among lockstep requests, and (c) SLSC that requires lockstep requests to be visible to memory
atomically. To understand the subtleties, let us consider the execution of two wavefronts shown
in Figure 4(a). Threads t0 and t1 belong to wavefront 0 and threads t2 and t3 belong to wavefront
1. Figure 4(b) shows the valid outcomes of SC, LSC, and SLSC for the PO shown in Figure 4(a).
Since SC treats GPU threads as independent entities, SC allows the outcomes (0,0), (1,0), and (0,1)
for threads t0 and t1. However, LSC and SLSC only allow (0,0) outcome, because they enforce
ordering among lockstep executing instructions. Both SC and LSC have the same valid outcomes
for threads t2 and t3. However, SLSC presents the stores from a lockstep execution as an atomic
update to the memory and hence restricts the valid outcome to just (0,0) or (1,1).

We highlight few non-intuitive behaviors from the previous example. Although LSC relaxed
the ordering constraints for lockstep executing instructions, the valid outcomes are fewer with
LSC than SC. LSC assigns program order to an entire wavefront as opposed to individual work-
items and with this wavefront PO, MOp(a) <p MOp(b) means that the memory operations from
all lockstep executing threads are ordered by the PO thus reducing the number of valid outcomes.
Additionally, naively extending SC to GPUs with the notion that a wavefront in a GPU is equivalent

to a thread in a CPU will result in SLSC. Clearly, all these subtleties cannot be captured without a
formal definition. In fact, the phrase extending SC to GPUs is too vague for one to even understand
which among the three models (and possibly others not shown here) is actually implemented.

Figure 4(b) shows that SC does not provide a simple intuitive ordering for threads within a
wavefront. Although SLSC provides a stricter global ordering both within and across wavefronts,
implementing SLSC requires all wavefront memory accesses to complete atomically at the memory
(or appear to complete atomically at the memory to an outside observer). This is prohibitively
expensive. For example, if a lockstep execution is writing to multiple cachelines, then the individual
writes cannot be made visible until all writes are completed. Such an implementation will require
locking the modified cachelines to prevent an individual write from being visible to other cores
until all writes from that lockstep execution are completed. A global ordering can also be achieved

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 1, Article 15. Publication date: January 2021.



15:8 S. Puthoor and M. H. Lipasti

Fig. 5. LSC and synchronization flag.

by forcing instructions executing in lockstep be consecutive within the per-wavefront PO and the
same order to be exposed to all threads in the system creating a total order. This is more difficult
to achieve than even SLSC. For example, this will require the lockstep executing operations to
complete in some order, that is in some serial order (if grouped together, then we will have to make
the grouped operations appear atomically, which is SLSC), which in turn will force serialization
of lockstep memory operations, taking away all the benefits of lockstep execution model of GPU.
Hence, we chose LSC for our implementation. LSC is simple for programmers to reason about,
and is agnostic to hardware or memory hierarchy organization unlike HRF. This makes an LSC
program more portable than HRF and relieves a programmer from knowing the details of memory
hierarchy organization of the targeted system.

3.3 Lockstep SC and SC

Flag Synchronization: Figure 5(a) shows two threads of the same wavefront executing a store
followed by a load. Thread t1 is trying to read (Ld X) the store from thread t0 (St X). Since SC treats
these two threads as independent entities, the Ld X is not guaranteed to see value 1. However,
with LSC, the ordering constraints are applied across all threads in a wavefront and hence Ld X
from t1 is guaranteed to see value 1. Figure 5(b) shows the code we discussed earlier in Section 3.1
(Figure 3(c)). In the absence of LSC, the code needed a synchronization variable Flag to synchronize
between two threads of the same wavefront. However, with LSC, the same code can be rewritten
without any synchronization variable as shown in Figure 5(c). Since LSC defines program order
to an entire wavefront and consequently its ordering rules are applied to all threads executing in
lockstep, LSC provides synchronization without explicit synchronization flags for threads in the
same wavefront.

4 IMPLICATIONS

While SC defines the ordering rules for an individual CPU thread, LSC treats an entire wavefront
as a single entity and defines the ordering rules for the entire wavefront. Although this difference
may seem trivial, it has both programming and hardware design implications. The programming
implications are further divided to programming implications for the application developer and
for the low-level system software developer.

4.1 Implications for Application Development

We encourage the application developer to rely on underlying low-level software implementation
to abstract out hardware specific details. For example, AMD GCN cross-lane operations [53]
and CUDA warp-level intrinsics [66] expose hardware details like wavefront (or warp) size to
the programmers. While an application programmer can write code with these intrinsics, those

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 1, Article 15. Publication date: January 2021.



Systems-on-Chip with Strong Ordering 15:9

Fig. 6. Coalescer adhering to SC.

applications will not be portable across platforms with a different assumption about the wavefront
size. However, with the low-level software abstracting out hardware details, the application writer
can develop code without burdening themselves with the hardware specifics. With this envisioned
model, synchronization primitives are also provided by the low-level software and hence the
application developers need not concern themselves with the underlying consistency model.
Thus LSC has limited impact on the application developer.

4.2 Implications for Low-level Software Development

Low-level software acts as the interface between application and hardware by providing hardware
independent API calls and converting them to hardware dependent operations. For example, this
layer can be used to implement common algorithms like shuffle or reduction using hardware de-
pendent CUDA warp-level intrinsics [53] or AMD GCN cross-lane operations [66]. This layer also
provides synchronization APIs that abstract out the behavior of the underlying hardware consis-
tency model. As such, LSC formalization impacts the programmability of this layer of software. For
example, if synchronization is needed between two threads, with LSC, this layer can take advan-
tage of the implicit synchronization flag if these threads are from the same wavefront (discussed
earlier in Section 3.3). Naturally, this implementation needs to know the wavefront size of the
underlying hardware to provide the correct implementation.

4.3 Hardware Design Implications

A GPU coalescer coalesces accesses to the same cacheline from a wavefront instruction into a
single access [63]. Suppose a wavefront instruction is generating multiple stores but to the same
address and the coalescer is coalescing these requests. If the stores are storing different values, then
the coalescer will have to select one store over the other to write to that address. The selection
logic will be extremely complex for writes when one store partially overlaps with another. Since
SC treats these threads as independent threads, a coalescer design adhering to SC will be forced
to mimic an interleaving such that these stores are issued in some sequential order to the memory
subsystem.

Figure 6(a) shows an example in which three partially overlapping four-byte stores from the
same wavefront instruction are issued by threads t0, t1 and t2 to byte offsets 0, 2, and 4, respectively.
Figure 6(b) shows a valid SC interleaving in which the thread with a higher thread ID is treated as
the younger store and thus overwrite the bytes written by older stores. From that figure, it can be
seen that the final value comprises of bytes from all three stores. That means a coalescer adhering
to SC will have to be implemented in such a way that there should be selection logic for each byte
that is written. Prior work has shown that even address comparison to identify coalescable accesses
is resource intensive [63]. The byte selection logic to determine the correct store values imposed

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 1, Article 15. Publication date: January 2021.



15:10 S. Puthoor and M. H. Lipasti

by SC significantly adds to this overhead. LSC, however, allows these accesses to be unordered and
thus does not impose such strict byte selection restriction on the coalescer design.

Irrespective of the actual order, assigning some order to the visibility of lockstep accesses in the
memory will complicate the coalescer design. LSC resolves this issue by making these accesses
unordered (<m> memory order), thus facilitating a simple coalescer design. Specifically, if there
are two or more stores to overlapping locations from a lockstep execution, a determination as to
which one was the last store to that location is not possible and hence the value of the subsequent
load to that location is undefined. This is similar to the reasoning provided in prior works where the
outcome of racey accesses that “occur at the same time” are undefined [5, 23, 36, 46, 55]. As a result,
LSC does not impose any restriction on the value of overlapping stores from a lockstep execution.
Thus LSC facilitates simple coalescing logic. Additionally, since LSC implements a strong model,
the coalesced requests from the same wavefront are to be issued in program order to the memory
hierarchy and hence coalescing requests across wavefront instructions is not allowed. However,
prior work has shown that coalescing across wavefront instructions is incredibly expensive and
even existing designs do not implement it [63].

5 IMPLEMENTATION CONSIDERATIONS

LSC implementation across an entire APU SoC involves implementing strong ordering between
dynamically scheduled OoO CPU cores and simple in-order but lockstep executing GPU cores.
Since these diverse processing elements represent two ends of the processor architecture spec-
trum, arriving at a solution that works for both is challenging. Many existing solutions to support
strong ordering rely on the speculation capability of CPU cores [39, 40, 64] or on the underlying
cache coherency mechanism [4, 65, 73, 77]. However, the GPU cores lack speculation support mak-
ing them unimplementable on a GPU, and the CPUs and GPUs have significantly different cache
hierarchies making the coherency based methods unattractive as a common solution [11, 33, 43,
61, 74].

Lin et al. [52] made the observation that strong ordering can be enforced by preventing reorder-
ing of conflicting accesses. In this article, we leverage this observation for implementing LSC. For
preventing the reordering of conflicting access, we leverage the mutex acquisition mechanism pro-
posed by Gope and Lipasti [41]. This mutex mechanism does not require speculation support and
does not interfere with the underlying coherence mechanism. Hence, this mechanism can be easily
adopted to implement strong ordering on both CPUs and GPUs.

In this section, we first discuss the implementation of strong ordering with mutex mechanism
proposed by Gope and Lipasti [41]. Then, we provide a discussion of our proposed mechanisms
to implement strong ordering using mutexes on both dynamically scheduled OoO cores and GPU
cores.
Strong Ordering with Mutexes: Gope and Lipasti [41] proposed atomic SC (ASC) for imple-
menting sequential consistency on a simple in-order multicore system. ASC allows reordering of
memory operations but protects the reordered requests with mutexes making the reordering invis-
ible to other cores. Figure 7 provides a simple demonstration of ASC enforcing SC with reordered
memory operations. Figure 7(a) shows the program order of memory operations. We assume the
stores missed in the cache and loads hit in the cache. Under these assumptions, if cores C0 and
C1 allow reordering of younger loads, the loads bypassing the store will create a memory order as
shown in Figure 7(b). The outcome (0,0) is forbidden in SC and violates SC.

ASC avoids SC violations by allowing the reordering of operations iff the pending operations
have acquired a mutex. So, in the previous example, the loads are allowed to bypass stores iff both
the older store and younger load has acquired a mutex for the addresses they are trying to access.
Forcing the reordered instructions to acquire mutexes create a mutex ordering (<Mu) at the mutex

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 1, Article 15. Publication date: January 2021.



Systems-on-Chip with Strong Ordering 15:11

Fig. 7. (a) Program order of memory operations. (b) Memory order of memory operations. (c) Mutex ordering

when LdB beats StB. (d) Memory order with ASC for LdB beats StB. (e) Mutex ordering when StB beats LdB.

(f) Memory order with ASC for StB beats LdB.

pool as shown in Figure 7(c). In Figure 7(c), the mutex request from C0 to address B (MuReq-LdB)
beats the mutex request from C1 to the same location (MuReq-StB) forcing MuReq-StB to acquire
the mutex only after LdB releases the mutex (MuRel-LdB). Since C0 has acquired mutexes for both
the pending store and the younger load under the shadow of that store miss, C0 can now reorder
memory operations. Acquired mutexes are released only after the older store (StA) from the same
core is retired (StA). Thus, MuRel-LdB is a guarantee that Store A has retired and the load A (load
A from C1 will not be a cache hit, because StA will invalidate all stale copies) from C1 will see that
store. The memory order forced by ASC is shown in the Figure 7(d) and the outcome (0, 1) is SC.

Figure 7(e) shows a scenario in which MuReq-StB beats MuReq-LdB to the mutex pool and the
MuReq-LdB is delayed at the mutex pool. In this situation, since LdB has not acquired its mutex,
it cannot bypass StA creating a memory order given in Figure 7(f). The outcome(1,1) from this
execution is still SC. Since ASC allows reordering iff all the participating operations have acquired
a mutex, the reordering is not visible to other cores, because all the reordered instructions become
visible as if they have executed atomically. A formal proof showing that ASC enforces SC can be
found elsewhere [41].
Extending Mutex Mechanism to OoO Cores: Dynamically scheduled OoO cores buffer stores
that are completed (committed) but waiting for retirement in store buffers. From the memory sys-
tem perspective, a store is not completed until it is retired. So, for implementing strong ordering
with the mutex mechanism, all stores that are waiting in the store buffer and all younger memory
operations that are under the shadow of these stores should acquire mutexes before allowing them
to be reordered. However, OoO cores issue memory operations out of order to the memory sys-
tem. But since those operations are considered speculative until they are committed in program
order by ROB, enforcing the mutex acquisition requirement at the time of issuing a speculative
memory operation is not necessary. The mutex acquisition requirement need to be enforced only
for allowing a memory operation to be moved from speculative to non-speculative state, that is at
the instruction commit.

As such, when a memory operation reaches the ROB head and there are pending stores in the
store buffer, that instruction is allowed to commit only when that instruction and all the pending
stores in the store buffer have acquired a mutex. Since mutexes are released only after the store
miss is serviced, just verifying that the youngest store in the store buffer has its mutex guarantees
that all pending stores in the store buffer have acquired mutexes.

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 1, Article 15. Publication date: January 2021.



15:12 S. Puthoor and M. H. Lipasti

Fig. 8. APU system with changes to support LSC. The blocks added to the baseline are shown in gray. The

dotted lines are the extra messages needed for LSC.

Extending Mutex Mechanism to GPU: LSC does not enforce ordering among the requests gen-
erated by the same wavefront instruction. With this ordering relaxation, extending mutex mecha-
nism to GPU is straightforward. When there are pending stores from a wavefront, those pending
store requests and all younger memory requests from that wavefront should acquire mutexes be-
fore issuing these younger requests to the memory subsystem. However, since all modern GPUs
coalesce requests to the same cacheline, the mutex requirement is often drastically reduced. In the
best case, when all requests can be coalesced to the same cacheline, just one mutex can satisfy this
requirement for all memory requests from the same wavefront instruction.

6 IMPLEMENTATION

6.1 Changes to GPU Memory System

The baseline GL1 is made coherent with HRF synchronization operations. Since LSC does not
have these synchronization operations, GL2 forwards the invalidation messages from the directory
to GL1 to make it coherent 1© as shown in Figure 8. To avoid broadcasting these invalidation
messages to all GL1s in the GPU, the GL2 keeps track of the sharers with a tagless coherence
directory (TCD) [79]. TCD is not required for LSC (any conventional directory will work), but it
is an appealing solution for scalability and other reasons [79].
Non-silent Evictions: Since TCD is tracking GL1 sharers, eviction notification should be sent to
TCD from GL1s. However, since TCD keep sharer information as hashes stored in sharing vectors,
the evicted address alone is not sufficient to reset the appropriate bits in the sharing vector. After
each eviction, the hash functions for all remaining blocks in the set are calculated in a typical
TCD [79]. This recalculation is relatively simple if the GL2 is inclusive, because an inclusive GL2
can track the entries of a sharer from which the hash can be recalculated [79]. However, since GL2
in our implementation is non-inclusive, the GL1 on evicting a block calculates the hash functions
for all remaining blocks in that set and sends the recalculated sharing vectors with the eviction
messages. The recalculation of the hash requires reading the entire tag array of a set after an
eviction and generating a 320 bit (five 64-bit sharing vectors) eviction message. Since we read the
entire tag array of a cache set as part of normal cache operation before evicting a cache line, the tag
array read to recalculate hash can be amortized. However, sending 320 bits per eviction message is

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 1, Article 15. Publication date: January 2021.



Systems-on-Chip with Strong Ordering 15:13

expensive. So, to reduce the number of eviction messages transmitted between GL1s and GL2, we
only send the recalculated hash once every N evictions from that set. A higher value of N increases
the false positives, whereas a lower value of N will result in high eviction message bandwidth. To
count the number of evictions since the last hash recalculation, a log2N-bit counter is added per
set to the GL1. This counter is incremented each time a cacheline is evicted from that set and the
Nth eviction will generate an eviction message with the recalculated hash. The GL2 on receiving
this recalculated hash will update the corresponding TCD entry.

Figure 8 illustrates the operation of this GPU memory system implementation. On receiving a
write-through request from GL1 or an invalidation request from SD, GL2 consults the TCD to see
if there are any sharers for that cacheline and forwards invalidation message to the sharer GL1s
1©. The GL1s invalidate the data and respond to the invalidation message with an invalidation ack
2©. In the event of a false positive by TCD, the GL1 will receive the invalidation request in I state

but it still responds with an ack. By making the GL1s coherent with invalidation messages, the
entire APU system now preserves the single-writer invariant. Finally, when GL1 evicts a block,
the eviction message is forwarded to the GL2 3©. If the eviction resulted in removing that block
from all GL1s, then the eviction message is forwarded to the SD 4© and the probe filter in SD is
made inclusive of all caches in the APU.

6.2 Changes to CPU Pipeline

LSC requires minimal changes to the CPU pipeline. On a store miss, the CPU mutex manager
(CMM) notifies the ROB about this store miss. A memory instruction under the shadow of a store
miss is allowed to commit only after (a) the missed store has acquired a mutex and (b) the com-
mitting memory instruction has acquired a mutex. So, ROB commits an instruction only after all
pending stores in the store buffer and the memory instruction at the head of ROB have acquired a
mutex. Since mutexes are released only after a pending store is retired, ROB has to only check if
the youngest store in the store buffer and the committing instruction have acquired mutexes.

If the store buffer has pending stores, then the ROB issues a mutex request for the memory
instruction at the ROB head. The CMM forwards the mutex acquisition ack to ROB. On receiving
a mutex ack, the ROB commits that memory instruction if the youngest pending store and the head
instruction has acquired mutexes. With this implementation, a younger store under the shadow of
a store miss is moved into the store buffer only after acquiring a mutex. The changes to the ROB
are trivial. A 2-bit flag to indicate waiting on mutex ack (one bit for the head instruction and one
bit for the store) and a check to see if there are pending stores in the store buffer. Next, we discuss
the implementation of CMM.

6.3 CPU Mutex Manager

The CMM is responsible for requesting mutexes, storing the acquired mutexes and releasing mu-
texes. Figure 9(a) shows the components inside a CMM. CMM has a mutex vector to keep track
of the requested and acquired mutexes. This mutex vector is indexed by a hash function gener-
ated from the cacheline address of memory requests. In our implementation, we use log2 (mutex
pool size) lower bits of the cacheline address as the hash function. Each entry in the mutex vec-
tor has 2-bits indicating the status of that mutex. The status of a mutex can be mutex-requested,
mutex-acquired or mutex-invalid. A mutex-requested state indicates that a request to that mutex is
pending. A mutex-acquired indicates that this core has exclusive lock on that mutex and mutex-

invalid is the default state. Each mutex vector entry also has a request count field that keeps track
of the number of pending mutex requests to that mutex.

The operation of CMM is shown in Figure 10. The store buffer issues a store to cache 1© and
the cache notifies if the store is a miss. If the store is a miss and there are no pending store misses,

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 1, Article 15. Publication date: January 2021.



15:14 S. Puthoor and M. H. Lipasti

Fig. 9. (a) CMM interacting with other CPU core components. (b) GMM interacting with CPU components.

(c) Mutex pool with mutex vector and address buffers.

Fig. 10. CMM operation.

then that store is added to the Mutex Request FIFO (MRF) 2© and the MRF issues a mutex request
to mutex vector 3©. The Mutex vector indexes into the mutex entry corresponding to the store
address and issues a mutex request to the mutex pool (mutex pool is described in detail in Sec-
tion 6.5) if the status of that mutex is mutex-invalid 4© 5©. After issuing the request, this status is
changed to mutex-requested and the mutex request count is incremented. Since there are stores
pending in the store buffer, the ROB now issues a mutex request to MRF for all younger memory
requests reaching ROB head 6© and does not allow that instruction to commit until it receives an
acknowledgement for that mutex request. The MRF forwards this request to mutex vector 3©. The
requested mutex may be already available in the mutex vector. If not, then a new mutex request is
issued following steps 4© 5©. If the requested mutex is available in the mutex vector or when the
CMM receives the mutex acknowledgement for these mutex request at a later time 7©, then the
mutex acknowledgement is forwarded to ROB 8©. The mutex status is also set to mutex-acquired

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 1, Article 15. Publication date: January 2021.



Systems-on-Chip with Strong Ordering 15:15

when a new mutex acknowledgement is received. If ROB receives mutexes for both the youngest
pending store and the instruction at ROB head, then it commits the instruction 9©.

When the oldest store returns 10©, the MRF pops its head entry and forwards the mutex release
request to mutex vector ©11 . Mutex vector decrements the request count and checks if the status
is mutex-acquired and request count is 0. If this check passes, then the mutex is released ©12 after
changing the mutex status to mutex-invalid. After popping the store©13 , the MRF checks if the next
instruction at FIFO head is a store. If the head is not a store, then the process of popping requests
and releasing mutexes continues©14 . If the head is a store©15 , then the store buffer is consulted to see
if that store is retired. If that store is retired©16 , then the process of popping requests and releasing
mutexes continue until the MRF is completely drained or the head is a store that has not retired
yet. When MRF is completely drained, there will be no pending store in the store buffer and ROB
resumes its normal operation.

Apart from simple condition checking hardware, CMM just adds a FIFO (MRF) and a di-
rect mapped mutex vector. Thus, this implementation of CMM avoids any expensive associative
structures.

6.4 GPU Mutex Manager

Similarly to CMM, GPU Mutex Manager (GMM) manages the mutexes for CUs. However, GMM
manages mutexes per wavefront. Figure 9(b) shows the per wavefront structures in a GMM. The
GMM has a pending-store counter that keeps track of the outstanding store requests from that
wavefront. A pending-mutex counter keeps track of the outstanding mutex requests from that
wavefront. The mutex vector in GMM only has a 2-bit status field. When stores from a wavefront
instruction reach the GMM, these stores are issued to the L1 cache. Since the GPU cache is write-
through, all stores are considered to be store misses and a mutex request is issued for every store.
Both pending-mutex and pending-store counters are incremented to keep track of the outstand-
ing mutex and stores, respectively. However, before issuing a mutex request, the mutex vector is
consulted and a request is issued only when the status is mutex-invalid.

Unlike CPU mutex requests, the mutex pool (mutex pool is described in detail in Section 6.5)
does not buffer GPU mutex requests because of the limited buffering space available with it. So,
the mutex pool can send back a GPU mutex response with a negative acknowledgement (nack)
indicating that the request did not acquire a mutex. When pending-mutex reaches zero and all
these mutex requests have acquired their mutex, the next wavefront instruction is serviced by
GMM. The acquired mutexes are released when the pending-store counter reaches zero.

Section 4.3 discusses implications of LSC on coalescer design. The coalescer issues coalesced
requests from the same wavefront in program order to the L1 cache. The mutex acquisition mech-
anism discussed above allows younger requests to be issued under pending stores without making
reordering of conflicting accesses visible to a wavefront. However, for the implicit flag synchro-
nization discussed in Section 3.3, the younger loads should see the value of older stores from the
same wavefront. Unlike CPUs, GPUs do not employ a store buffer. Also, the L1 cache in our imple-
mentation blocks a younger load under a pending store to the same address. Thus, a younger load
sees the value of older store from the same wavefront and LSC’s implicit synchronization flag for
lockstep threads is guaranteed by our implementation.

6.5 Mutex Pool

The mutex pool keeps track of the mutexes acquired by a CU or a CPU core with a direct-mapped
mutex vector. The direct mapped mutex vector enables the mutex pool to be implemented as an
address interleaved, distributed structure making it extremely scalable. It is indexed similar to the
mutex vectors in CMM and GMM. It has a single bit to store the mutex status and an address

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 1, Article 15. Publication date: January 2021.



15:16 S. Puthoor and M. H. Lipasti

buffer to buffer pending requests to that mutex as shown in Figure 9(c). If the bit is set, then
it indicates that mutex is already acquired by a core in the APU. If a mutex request arrives at
mutex pool, then the mutex pool checks if that mutex is available by checking the status bit. If
the status bit is not set, then that mutex is available and the mutex request is acknowledged by
mutex pool after setting the status bit. If the status bit is set, then the mutex pool buffers the
request into a per mutex address buffer only if that mutex request is from a CPU. If the mutex
request is from a GPU core, then the mutex pool responds with a negative acknowledgement
(nack) indicating the requester did not acquire that mutex. Since a CPU core does not issue multiple
outstanding requests to the same mutex, the address buffering needed per mutex vector entry is
bounded by the number of CPU cores in the system. However, since GPU cores keep track of
requests at wavefront granularity and there are 320 wavefronts (40 wavefronts per CU and eight
CUs) in our implementation, the buffering space needed to buffer mutex requests from the GPU
makes GPU mutex buffering unattractive. Additionally, CPUs are latency sensitive and this design
avoids CPU requests waiting behind GPU requests. Since GPUs are inherently latency tolerant, the
nacking of its requests will have little impact on its performance. When a mutex release request
reaches the mutex pool, the pending address buffer is consulted and mutex is transferred to the
next requester waiting in the pending address buffer. If the pending buffer is empty, then the mutex
status bit is unset and that mutex becomes available for future requests.
Scalability of the Mutex Pool: To increase the scalability, the mutex pool can be implemented
as an address-interleaved distributed structure. Each address will still have a unique mutex vector
entry in this distributed structure and thus the conflicting accesses will map to the same unique
entry providing exclusion. Thus distributed mutex pool functions identically to a centralized mutex
pool but with better scalability.

7 DISCUSSION

The implementation of LSC has a number of implications on the system, which are discussed here.
Interaction with Explicit Synchronization: Our implementation treats explicit synchroniza-

tion operations as regular memory operations. For example, a read-modified-write operation from
a CPU core or an atomic-compare-and-swap access from GPU is treated as a write operation in
our implementation. Since atomic SC allows reordering of instructions only after acquiring mu-
texes for all instructions involved in reordering under the shadow of a store miss, any reordering
requirement imposed by synchronization operations is preserved, because that reordering will not
be visible to other cores.
Alternative Design Considerations: All design decisions we made for our implementation were
aimed at reducing the hardware cost and complexity. Toward this goal, we avoided using associa-
tive hardware structures in our implementation and implemented LSC with minimum modifica-
tions to the baseline APU system. However, there are many design choices available for imple-
menting LSC. For example, in a GPU with small number of CUs, an inclusive directory at GL2 to
keep track of sharers will not incur a significant overhead. Also, timestamp coherence can be used
for reducing coherence traffic overhead [73] and private-shared memory access classification [71,
72] can be used for reducing mutex requirements but we leave these explorations to future work.
LSC and Previous GPU SC Implementations: Singh et al. [71] proposed efficient SC imple-
mentation for GPUs by extending the work of Singh et al. [72] for CPUs. This work implemented
SC for wavefront instructions (warp instructions) and argued that SC ordering need not be pre-
served across per-work-item (per-thread) instructions that execute in lockstep fashion. Similar
implementations were proposed by other researchers as well but with timestamp based coherence
protocols [65, 77]. Some of these implementations were in fact adhering to the LSC consistency
model on GPUs [65, 71], not SC.

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 1, Article 15. Publication date: January 2021.



Systems-on-Chip with Strong Ordering 15:17

LSC and Interaction with GPU Execution Model: A wavefront can diverge in a GPU when
the work-items diverge in their conditional branch outcome. However, since LSC assigns program
order to an entire wavefront, diverged execution can be simply treated as an execution phase
in which only a subset of work-items issue memory accesses. These accesses still follow all LSC
rules but the number of accesses that are ordered by <m> memory order will be less than the
wavefront width.

GPUs with independent thread scheduling support [1] schedule threads independently. Conse-
quently, there are no lockstep execution assumptions/guarantees in these GPUs [59] and LSC’s
ordering rule for lockstep execution is not applicable. Since LSC without lockstep execution rule
is the same as SC, LSC naturally devolves to enforcing SC at work-item or thread level granularity
with independent thread scheduling. Thus, LSC is well defined for these GPU architectures as well.
This property of LSC also makes it applicable to future SoCs featuring accelerators without the
same lockstep execution model.
Ease of Verification: A strong model has fewer valid outcomes than a weak model. Hence, per-
missible updates to architectural states are lesser in strong models, making the hardware easier to
verify. Program verification also follows similar reasoning [9] and thus, LSC programs are easier to
verify than programs running on a weak model. Moreover, since our implementation does not rely
on speculation and rollback support to implement strong ordering, the speculative state updates
are also avoided further aiding the hardware verification of our implementation.
Deadlocks and Mutex Acquisition: The mutexes are acquired in program order by both the
CPU and GPU. For the GPU, the younger memory operations are allowed to request a mutex only
after all memory operations from an older wavefront instruction has acquired a mutex. Thus, the
mutex acquisition is in program order in a GPU. In a CPU, although the instructions are executed
out-of-order, the mutex acquisition itself is delayed to the commit stage and hence the mutex ac-
quisition is in program order. This in-order acquisition of mutexes prevent any younger instruction
from holding on to a mutex while an older instruction is waiting for the same mutex. Thus, cyclic
mutex dependencies never occur with this design avoiding any possibility of deadlock. Hence, our
implementation is deadlock free.
LSC and Disjoint Address Space: The CPU-GPU ordering rules are not applicable to a system
where CPUs and GPUs exist in disjoint address spaces (example, discrete GPU system). However,
LSC rules are well defined for a GPU operating in its own address space and hence is applicable
to discrete GPUs as well.

8 METHODOLOGY

Simulator: We used the AMD gem5 APU simulator [42] that models a GCN GPU architecture
[16]. This version of the simulator simulates the GCN3 ISA [17]. The simulator models an OoO
cycle level CPU core. The memory subsystem is modeled in Ruby [57].

The simulation parameters are given in Table 1. The mutex managers and the mutex pool mod-
ules are added to this baseline APU system to implement LSC. The mutex requests and responses
travel through dedicated virtual channels and do not interfere with coherence traffic. Decoupling
ordering (consistency) from coherence simplifies the implementation of both and was one of the
original arguments made in favor of Atomic SC [41].

The TCD uses five hash functions with 64-bit hashing vectors as suggested by Zebchuk
et al. [79]. Like previously discussed in Section 6, we recalculate the hash only after N evictions.
We compared the bandwidth increase with N = 4,8,16 and N = 16 generated only 2.7% extra in-
validation bandwidth than the best possible case of N = 1. So, we decided to use N = 16 in our
implementation.

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 1, Article 15. Publication date: January 2021.



15:18 S. Puthoor and M. H. Lipasti

Table 1. Simulation Parameters

CPU 2 x86 cores @ 3 GHz
ROB Size 192
CPU L1 Data Cache 64 KB (2-way associative)
CPU L1 Instruction Cache 32 KB (2-way associative)
CPU L2 Cache 2 MB (8-way associative)
CPU Shared L3 Cache 8 MB (16-way associative)
GPU 8 GCN CUs @ 1GHz
GPU L1 Data Cache 16 KB (64-way associative)
GPU L1 Instruction Cache 16 KB (16-way associative)
GPU Shared L2 Cache 512 KB (16-way associative)
MRF 100 entries
Mutex Pool 1,024 entries, 30 cycles away
Tagless Directory 5 hash functions, 64-bit sharing vector

Table 2. Benchmarks

AMD Compute App Description
Data shared between CPU and

GPU (in MB and in %)

comd Molecular dynamics simulation 80.14 (11.24%)

lulesh Hydrodynamics calculation 64.73 (74.84%)

hpgmg Linear solvers 17.43 (42.24%)

HCC Example App

array Streaming write to an array 1.64 (6.36%)

bitonic Bitonic sort 415.63 (66.68%)

fft Fast Fourier transform 17.16 (96.69%)

spmv Sparse matrix-vector mulitply 6.24 (16.32%)

Rodinia

backprop Back propogation 3.09 (61.54%)

bfs Breadth first search 27.26 (33.19%)

nn Nearest neighbour 1.3 (44.47%)

Hand written

dgemm Double precision matrix multiplication 3.13 (26.86%)

Workloads: We used benchmarks from AMD Compute App suite [13], HCC example app
suite [15] and Rodinia benchmark suite [30] to evaluate LSC. application that was reported All
these benchmarks use a shared virtual address space to share data between CPU and GPU with-
out any explicit data copy. In addition to these benchmarks, we use two benchmarks; hashtable

and ATM; from Fung et al. [35] to demonstrate the performance advantage of a strong model
for fine-grained synchronizing and data sharing GPU applications. Each GPU thread in hashtable

benchmark inserts a key–value pair to a hash table slot necessitating fine-grained synchroniza-
tion of threads trying to insert value to the same slot and fine-grained data sharing to get the most
updated copy of the hash table after a new element is inserted. The ATM benchmark simulates
GPU threads doing transactions between two accounts and similar to hashtable, requires fine-
grained synchronization and fine-grained data sharing between GPU threads. We only simulate
the GPU phase of these two benchmarks. Table 2 lists these benchmarks. That table also provides

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 1, Article 15. Publication date: January 2021.



Systems-on-Chip with Strong Ordering 15:19

Fig. 11. Normalized application execution time.

Fig. 12. Fraction of memory instructions committed by each benchmark. The load-store split is also shown.

the amount of data (in MB) coherently shared between CPU and GPU by each benchmark. This
coherently shared data as a fraction of the total data accessed by GPU (in %) is also provided. We
evaluate LSC with these benchmarks in the next section.

9 RESULTS

9.1 Application Performance Evaluation

We compare the performance of LSC system against the baseline. Since the baseline adheres to a
weaker model than LSC, our aim is to show that a strong consistency model like LSC can achieve
performance comparable to this baseline.

Figure 11 shows the execution time of LSC compared to baseline for various benchmarks. The
LSC was slower than a weaker consistency model by 6.11%. However, from that figure, it can be
seen that LSC was performing within the 5% range for more than half of the evaluated benchmarks.
The figure shows that two benchmarks lulesh and fft slowed down by more than 10% with weaker
models.

To understand this performance difference, we first looked into the CPU execution of these
applications and analyzed their instruction composition. Figure 12 shows the fraction of memory
instructions committed by each benchmark. It can be seen that most of these benchmarks have
more than 50% memory reference instructions. That figure also shows the percentage of loads and
stores. Although LSC adds mutex acquisition latency to the commit stage of a memory instruction,
an OoO execution pipeline is usually not affected by it because of its ability to extract ILP over a
wide instruction window. As such, LSC will stall the execution pipeline only if the ROB becomes
full. However, for memory intensive applications, LSC will frequently stall commit preventing
the memory instruction at the head of ROB from committing and freeing up ROB entries and
potentially hurting application performance after the ROB gets full.

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 1, Article 15. Publication date: January 2021.



15:20 S. Puthoor and M. H. Lipasti

Fig. 13. Increase in zero commit cycles. This measures the commit stage stalls introduced by LSC.

Fig. 14. Mutex hit rate quantify the reuse of mutexes by a CPU core.

Figure 13 shows the increase in number of zero commit cycles with LSC. Zero commit cycle
indicates the number of cycles in which no instruction was committed. It is a measure of the
commit stage stall cycles. However, it should be noted that the commit stage stalls did not directly
translate to performance loss, because the OoO execution pipeline will be stalled only if ROB gets
full.

Even if an application is memory intensive, the mutex acquisition latency will affect the critical
path in the commit stage only if the head instruction has not acquired a mutex. Typically, the
memory instructions of an application have high spatial and temporal locality, so the mutexes
acquired by the core can be reused by multiple memory instructions. Figure 14 shows the mutex
hit rate of different benchmarks. While most of the applications have high hit rate, fft had relatively
low hit rate and as such did not benefit from mutex reuse. It can be also seen from that figure that
lulesh observed a very high mutex hit rate and that helped lulesh to perform better than fft although
it has a larger fraction of memory instructions than fft. hashtable and ATM only have their GPU
phases simulated, and the CPU phase hardly had any work to do other than launching kernels;
hence the low mutex reuse.

Our implementation is quite conservative: For example, we do not attempt to prefetch mutexes
in the OoO core (analogous to exclusive prefetching of write permission [37]). Another possible
optimization is caching of mutexes for reducing the mutex acquisition latency overhead. Adding
these optimizations would complicate implementation, but is likely to recover these performance
losses. We leave exploration of these opportunities to future work.
GPU Performance Comparison: Figure 15 compares GPU execution time of LSC against base-
line HRF model. Across the spectrum of benchmarks, LSC performs very close to the HRF baseline
with benchmarks slowing down by only 0.76% with LSC. The latency tolerant GPUs can hide
the mutex acquisition latency by overlapping execution with context switching between multiple
wavefront contexts. Because of this, mutex acquisition latency will not show up on the critical
path of GPU execution, and a strong model like LSC performs well on a GPU.

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 1, Article 15. Publication date: January 2021.



Systems-on-Chip with Strong Ordering 15:21

Fig. 15. Normalized GPU execution time.

Fig. 16. Performance penalty of implementing HRF with hardware coherence.

Figure 15 also shows that hashtable and ATM performed better with LSC. Since these bench-
marks have fine-grained data sharing, an HRF model does an acquire operation (that is invali-
dating GPU L1 cache lines) before attempting each insertion (for hashtable) or transaction (for
ATM) to get the latest updates. The LSC model maintains data updates with invalidation messages
provided by the underlying hardware coherence mechanism and as such does not encounter the
performance penalty of invalidating the entire GPU L1 cache. Consequently, the GPU L1 hit rate
of hashtable increased from 10.12% to 40.50% and that of ATM increased from 40.40% to 66.37%
with LSC compared to the baseline. This resulted in hashtable and ATM achieving a speedup of
12.81% and 12.14%, respectively.

Finally, Figure 16 shows the performance penalty of implementing HRF with hardware coher-
ence mechanism. To measure this overhead, we created an intermediate baseline by modifying
the baseline APU system that broadcasts invalidation messages to the GL1 to make it read coher-
ent. Thus, an acquire operation does not need to invalidate the entire GL1 in this implementation.
From that figure, it can be seen that making GL1 coherent incurred a performance penalty for
all evaluated benchmarks except hashtable and ATM. For these two benchmarks, the performance
improved by 17.82% and 21.20%, respectively.

9.2 Increase in Bandwidth Consumption

LSC modifies the GPU memory subsystem to send invalidation and eviction messages between GL1
and GL2. The bandwidth increase by this extra traffic is given in Figure 17. The mutex acquisition
and release traffic is given as Mutex in that figure. The traffic generated by eviction messages
and its acknowledgement is given as Eviction. Invalidation measures the bandwidth generated by
the invalidation messages and its acknowledgement. The recalculated hash generated every 16th
eviction is shown as Rehash. For benchmarks like bitonic sort that shares data across CUs, the
extra bandwidth is dominated by Invalidation traffic. The streaming nature of GPU applications
lead to Eviction messages and most of the benchmarks contributed to eviction traffic as shown

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 1, Article 15. Publication date: January 2021.



15:22 S. Puthoor and M. H. Lipasti

Fig. 17. Bandwidth increase with LSC.

Table 3. Hardware Cost

Mutex vector 1024 entries; 5 bits (CPU core) or 2 bits (CU) per entry
MRF 100 entries per CPU core
Mutex pool 1024 entries; 1-bit and one address buffer per entry
TCD 5 64-bit hash functions per set per core
GPU L1 4 bits per set to count 16 evictions

in Figure 17. The figure also shows that Rehash traffic has contributed little to the bandwidth
consumption. Overall, the GPU bandwidth requirement increased by an average of 22.35% with
eviction, invalidation and mutex traffic contributing 9.70%, 7.51%, and 3.73%, respectively.

LSC implementation did not modify baseline CPU memory subsystem and the only addition to
the CPU traffic was the mutex acquisition and release traffic. Since CPU has a very high mutex hit
rate (Figure 14), only few memory operations had to request mutexes and the mutex traffic only
contributed 0.42% to the CPU bandwidth consumption.

9.3 Sensitivity to Mutex Request FIFO Size

We ran experiments with 400 entry MRF and did not see any noticeable performance improvement
indicating that a 100 entry MRF (default MRF size in our experiments) captures all the reordering
opportunity for memory accesses.

9.4 Hardware Cost

Table 3 lists the hardware cost of implementing LSC. All structures added by our implementation
are direct-mapped and do not require expensive associative lookups, and these structures are ex-
tremely small compared to other CPU or CU resources. For example, the direct-mapped mutex
vector at CMM is only 640 bytes (5 * 1,024 bits). Compared to our baseline 64 KB set-associative
CPU L1, CMM mutex vector is only a fraction of its size and adds negligible area overhead to the
baseline.

10 RELATED WORK

Numerous researchers have investigated efficient support for SC such that it matches the perfor-
mance of weaker models on a CPU [4, 22, 28, 29, 39–41, 51, 52, 64, 72, 78]. These approaches can be
classified as speculative approaches and non-speculative approaches. The speculative approaches
require expensive hardware mechanisms to speculate beyond consistency model imposed bound-
ary and to rollback when mis-speculated. The non-speculative approaches [4, 41, 52, 72] enforce

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 1, Article 15. Publication date: January 2021.



Systems-on-Chip with Strong Ordering 15:23

SC by ordering only conflicting accesses and significantly reduce the hardware overhead. These
non-speculative approaches differ in the way they detect conflicts and order conflicting accesses.
For example, Singh et al. [72] rely on complier techniques to identify conflicting accesses whereas
Adve et al. [4] rely on underlying cache coherence mechanism to detect and serialize conflicting
accesses. Conflict ordering proposed by Lin et al. [52] uses an augmented write buffer to keep track
of active memory operations (memory operations retired from the ROB, but whose predecessors
are pending in the global memory order) and uses tagged coherence messages to detect and order
conflicting active memory operations. Our implementation is an extension of Atomic SC proposed
by Gope and Lipasti [41] and relies on mutexes to detect and serialize conflicting accesses. Hence,
it does not require expensive associative look ups or compiler support, and does not interfere with
the underlying coherence implementation.

Academic researchers have proposed implementing SC on GPUs in the past [44, 65, 71]. While all
these implementations produced promising results, they differed in their underlying assumptions.
For example, Singh et al. [71] implemented SC on a baseline that has a MESI cache coherence
protocol while Ren and Lis [65] and Singh et al. [73] has demonstrated that a CPU like coherence
read-for-ownership protocol is not suitable for GPUs. To this end, we use a realistic baseline GPU
cache coherence and evaluate our implementation against this realistic baseline. We also show the
bandwidth overhead of maintaining coherence using invalidation messages in GPU caches.

While most past proposals implemented SC on either the CPU or GPU, the Alsop et al. [12]
proposed Spandex that implemented SC-for-DRF [6] on a heterogeneous system. However, SC-
for-DRF requires a programmer to insert synchronization primitives similar to HRF, but LSC does
not.

11 CONCLUSION

In this article, we introduce lockstep SC, a consistency model that is as strong as SC but formally
defined to accommodate the GPU lockstep execution model. We also demonstrate that LSC can
be efficiently implemented in an SoC without expensive hardware structures. The performance
cost of enforcing LSC was just 0.76% for the GPU and 6.11% for the entire SoC. The proposed
LSC is simple for programmers to reason about and is portable across different memory hierarchy
organizations because of its memory hierarchy agnostic nature.

REFERENCES

[1] 2017. Inside Volta: The World’s Most Advanced Data Center GPU. Retrieved from https://devblogs.nvidia.com/inside-

volta/.

[2] Sarita Vikram Adve. 1993. Designing Memory Consistency Models for Shared-memory Multiprocessors. Ph.D. disserta-

tion. Madison, WI.

[3] Sarita V. Adve and Kourosh Gharachorloo. 1996. Shared memory consistency models: A tutorial. Computer 29, 12

(Dec. 1996), 66–76. DOI:https://doi.org/10.1109/2.546611

[4] Sarita V. Adve and Mark D. Hill. 1990. Implementing sequential consistency in cache-based systems. In Proceedings

of the 1990 International Conference on Parallel Processing. 47–50.

[5] S. V. Adve and M. D. Hill. 1990. Weak ordering-a new definition. In Proceedings of the 17th Annual International

Symposium on Computer Architecture. 2–14.

[6] S. V. Adve and M. D. Hill. 1990. Weak ordering-a new definition. In Proceedings of the 17th Annual International

Symposium on Computer Architecture. 2–14. DOI:https://doi.org/10.1109/ISCA.1990.134502

[7] Jade Alglave, Mark Batty, Alastair F. Donaldson, Ganesh Gopalakrishnan, Jeroen Ketema, Daniel Poetzl, Tyler

Sorensen, and John Wickerson. 2015. GPU concurrency: Weak behaviours and programming assumptions. SIGPLAN

Not. 50, 4 (March 2015), 577–591. DOI:https://doi.org/10.1145/2775054.2694391

[8] Jade Alglave, Daniel Kroening, Vincent Nimal, and Michael Tautschnig. 2012. Software verification for weak memory

via program transformation. arxiv:1207.7264. Retrieved from http://arxiv.org/abs/1207.7264.

[9] Jade Alglave and Luc Maranget. 2011. Stability in weak memory models. In Proceedings of the International Conference

on Computer Aided Verification (CAV’11).

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 1, Article 15. Publication date: January 2021.

https://devblogs.nvidia.com/inside-volta/
https://devblogs.nvidia.com/inside-volta/
https://doi.org/10.1109/2.546611
https://doi.org/10.1109/ISCA.1990.134502
https://doi.org/10.1145/2775054.2694391
http://arxiv.org/abs/1207.7264.


15:24 S. Puthoor and M. H. Lipasti

[10] Jade Alglave, Luc Maranget, and Michael Tautschnig. 2014. Herding cats: Modelling, simulation, testing, and data

mining for weak memory. ACM Trans. Program. Lang. Syst. 36, 2, Article 7 (July 2014), 74 pages. DOI:https://doi.org/

10.1145/2627752

[11] Johnathan Alsop, Marc S. Orr, Bradford M. Beckmann, and David A. Wood. 2016. Lazy release consistency for GPUs.

In Proceedings of the 49th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO-49). IEEE Press,

Piscataway, NJ, Article 26, 13 pages.

[12] J. Alsop, M. Sinclair, and S. Adve. 2018. Spandex: A flexible interface for efficient heterogeneous coherence. In Pro-

ceedings of the 2018 ACM/IEEE 45th Annual International Symposium on Computer Architecture (ISCA’18). 261–274.

DOI:https://doi.org/10.1109/ISCA.2018.00031

[13] AMD. [n.d.]. Compute Apps. Retrieved from https://github.com/AMDComputeLibraries/ComputeApps.

[14] AMD. [n.d.]. HC. Retrieved from https://rocm.github.io/languages.html.

[15] AMD. [n.d.]. HCC Example Apps. Retrieved from https://github.com/ROCm-Developer-Tools/HCC-Example-

Application.

[16] AMD. 2012. AMD Graphics Cores NEXT (GCN) Architecture. Retrieved from https://goo.gl/GPvy8R.

[17] AMD. 2016. AMD GCN3 ISA Architecture Manual. Retrieved from https://gpuopen.com/compute-product/amd-

gcn3-isa-architecture-manual.

[18] AMD. 2016. Dissecting the Polaris Architecture. Retrieved from https://goo.gl/hNrZZo.

[19] AMD. 2019. User Guide for AMDGPU Backend. Retrieved from https://llvm.org/docs/AMDGPUUsage.html.

[20] ARM. [n.d.]. ARM Architecture Reference Manual ARMv8, for ARMv8-A architecture profile. Retrieved

from https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-

architecture-profile.

[21] Mohamed Faouzi Atig, Ahmed Bouajjani, Sebastian Burckhardt, and Madanlal Musuvathi. 2010. On the verifica-

tion problem for weak memory models. In Proceedings of the 37th Annual ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages (POPL’10). ACM, New York, NY, 7–18. DOI:https://doi.org/10.1145/1706299.

1706303

[22] Colin Blundell, Milo M. K. Martin, and Thomas F. Wenisch. 2009. InvisiFence: Performance-transparent memory

ordering in conventional multiprocessors. In Proceedings of the 36th Annual International Symposium on Computer

Architecture (ISCA’09). ACM, New York, NY, 233–244. DOI:https://doi.org/10.1145/1555754.1555785

[23] Hans-J. Boehm and Sarita V. Adve. 2008. Foundations of the C++ concurrency memory model. In Proceedings of

the 29th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI’08). Association for

Computing Machinery, New York, NY, 68–78. DOI:https://doi.org/10.1145/1375581.1375591

[24] D. Bouvier and B. Sander. 2014. Applying AMD’s Kaveri APU for heterogeneous computing. In Proceedings of the

2014 IEEE Hot Chips 26 Symposium (HCS’14).

[25] Sebastian Burckhardt, Rajeev Alur, and Milo M. K. Martin. 2007. CheckFence: Checking consistency of concurrent

data types on relaxed memory models. In Proceedings of the 28th ACM SIGPLAN Conference on Programming Language

Design and Implementation (PLDI’07). ACM, New York, NY, 12–21. DOI:https://doi.org/10.1145/1250734.1250737

[26] Sebastian Burckhardt and Madanlal Musuvathi. 2008. Effective program verification for relaxed memory models.

In Proceedings of the 20th International Conference on Computer Aided Verification (CAV’08). Springer-Verlag, Berlin,

107–120. DOI:https://doi.org/10.1007/978-3-540-70545-1_12

[27] Jacob Burnim, Koushik Sen, and Christos Stergiou. 2011. Testing concurrent programs on relaxed memory models.

In Proceedings of the 2011 International Symposium on Software Testing and Analysis (ISSTA’11). ACM, New York, NY,

122–132. DOI:https://doi.org/10.1145/2001420.2001436

[28] H. W. Cain and M. H. Lipasti. 2004. Memory ordering: A value-based approach. IEEE Micro 24, 6 (Nov. 2004), 110–117.

DOI:https://doi.org/10.1109/MM.2004.81

[29] Luis Ceze, James Tuck, Pablo Montesinos, and Josep Torrellas. 2007. BulkSC: Bulk enforcement of sequential con-

sistency. In Proceedings of the 34th Annual International Symposium on Computer Architecture (ISCA’07). ACM, New

York, NY, 278–289. DOI:https://doi.org/10.1145/1250662.1250697

[30] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W. Sheaffer, Sang-Ha Lee, and Kevin Skadron. 2009.

Rodinia: A benchmark suite for heterogeneous computing. In Proceedings of the 2009 IEEE International Symposium

on Workload Characterization (IISWC’09).

[31] A. ElTantawy and T. M. Aamodt. 2016. MIMD synchronization on SIMT architectures. In Proceedings of the 2016 49th

Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’16). 1–14.

[32] Shaked Flur, Kathryn E. Gray, Christopher Pulte, Susmit Sarkar, Ali Sezgin, Luc Maranget, Will Deacon, and Peter

Sewell. 2016. Modelling the ARMv8 architecture, operationally: Concurrency and ISA. In Proceedings of the 43rd

Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL’16). ACM, New York, NY,

608–621. DOI:https://doi.org/10.1145/2837614.2837615

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 1, Article 15. Publication date: January 2021.

https://doi.org/10.1145/2627752
https://doi.org/10.1145/2627752
https://doi.org/10.1109/ISCA.2018.00031
https://github.com/AMDComputeLibraries/ComputeApps
https://rocm.github.io/languages.html
https://github.com/ROCm-Developer-Tools/HCC-Example-Application
https://github.com/ROCm-Developer-Tools/HCC-Example-Application
https://goo.gl/GPvy8R
https://gpuopen.com/compute-product/amd-gcn3-isa-architecture-manual
https://gpuopen.com/compute-product/amd-gcn3-isa-architecture-manual
https://goo.gl/hNrZZo
https://llvm.org/docs/AMDGPUUsage.html
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://doi.org/10.1145/1706299.1706303
https://doi.org/10.1145/1706299.1706303
https://doi.org/10.1145/1555754.1555785
https://doi.org/10.1145/1375581.1375591
https://doi.org/10.1145/1250734.1250737
https://doi.org/10.1007/978-3-540-70545-1_12
https://doi.org/10.1145/2001420.2001436
https://doi.org/10.1109/MM.2004.81
https://doi.org/10.1145/1250662.1250697
https://doi.org/10.1145/2837614.2837615


Systems-on-Chip with Strong Ordering 15:25

[33] HSA Foundation. 2016. HSA Platform System Architecture Specification 1.1. Retrieved from http://www.

hsafoundation.com/?ddownload=5114.

[34] W. W. L. Fung, I. Sham, G. Yuan, and T. M. Aamodt. 2007. Dynamic warp formation and scheduling for efficient GPU

control flow. In Proceedings of the 40th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’07).

407–420. DOI:https://doi.org/10.1109/MICRO.2007.30

[35] W. W. L. Fung, I. Singh, A. Brownsword, and T. M. Aamodt. 2011. Hardware transactional memory for GPU archi-

tectures. In Proceedings of the 2011 44th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’11).

296–307.

[36] Benedict R. Gaster, Derek Hower, and Lee Howes. 2015. HRF-Relaxed: Adapting HRF to the complexities of industrial

heterogeneous memory models. ACM Trans. Archit. Code Optim. 12, 1, Article 7 (April 2015), 26 pages. DOI:https:

//doi.org/10.1145/2701618

[37] Kourosh Gharachorloo, Anoop Gupta, and John Hennessy. 1991. Two techniques to enhance the performance of

memory consistency models. In Proceedings of the 1991 International Conference on Parallel Processing. 355–364.

[38] Kourosh Gharachorloo, Daniel Lenoski, James Laudon, Phillip Gibbons, Anoop Gupta, and John Hennessy. 1990.

Memory consistency and event ordering in scalable shared-memory multiprocessors. In Proceedings of the 17th Annual

International Symposium on Computer Architecture (ISCA’90). ACM, New York, NY, 15–26. DOI:https://doi.org/10.

1145/325164.325102

[39] C. Gniady and B. Falsafi. 2002. Speculative sequential consistency with little custom storage. In Proceedings of the

International Conference on Parallel Architectures and Compilation Techniques. 179–188. DOI:https://doi.org/10.1109/

PACT.2002.1106016

[40] Chris Gniady, Babak Falsafi, and T. N. Vijaykumar. 1999. Is SC + ILP = RC? In Proceedings of the 26th Annual

International Symposium on Computer Architecture (ISCA’99). IEEE Computer Society, Washington, DC, 162–171.

DOI:https://doi.org/10.1145/300979.300993

[41] D. Gope and M. H. Lipasti. 2014. Atomic SC for simple in-order processors. In Proceedings of the 2014 IEEE 20th In-

ternational Symposium on High Performance Computer Architecture (HPCA’14). 404–415. DOI:https://doi.org/10.1109/

HPCA.2014.6835950

[42] A. Gutierrez, B. M. Beckmann, A. Dutu, J. Gross, M. LeBeane, J. Kalamatianos, O. Kayiran, M. Poremba, B. Potter,

S. Puthoor, M. D. Sinclair, M. Wyse, J. Yin, X. Zhang, A. Jain, and T. Rogers. 2018. Lost in abstraction: Pitfalls of

analyzing GPUs at the intermediate language level. In Proceedings of the 2018 IEEE International Symposium on High

Performance Computer Architecture (HPCA’18). 608–619. DOI:https://doi.org/10.1109/HPCA.2018.00058

[43] B. A. Hechtman, S. Che, D. R. Hower, Y. Tian, B. M. Beckmann, M. D. Hill, S. K. Reinhardt, and D. A. Wood.

2014. QuickRelease: A throughput-oriented approach to release consistency on GPUs. In Proceedings of the 2014

IEEE 20th International Symposium on High Performance Computer Architecture (HPCA’14). 189–200. DOI:https:

//doi.org/10.1109/HPCA.2014.6835930

[44] Blake A. Hechtman and Daniel J. Sorin. 2013. Exploring memory consistency for massively-threaded throughput-

oriented processors. In Proceedings of the 40th Annual International Symposium on Computer Architecture (ISCA’13).

ACM, New York, NY, 201–212. DOI:https://doi.org/10.1145/2485922.2485940

[45] Mark D. Hill. 1998. Multiprocessors should support simple memory-consistency models. Computer 31, 8 (Aug. 1998),

28–34. DOI:https://doi.org/10.1109/2.707614

[46] Derek R. Hower, Blake A. Hechtman, Bradford M. Beckmann, Benedict R. Gaster, Mark D. Hill, Steven K. Reinhardt,

and David A. Wood. 2014. Heterogeneous-race-free memory models. In Proceedings of the 19th International Confer-

ence on Architectural Support for Programming Languages and Operating Systems (ASPLOS’14). ACM, New York, NY,

427–440. DOI:https://doi.org/10.1145/2541940.2541981

[47] G. Krishnan, D. Bouvier, and S. Naffziger. 2016. Energy-efficient graphics and multimedia in 28-nm Carrizo acceler-

ated processing unit. IEEE Micro 36, 2 (2016), 22–33. DOI:10.1109/MM.2016.24

[48] L. Lamport. 1979. How to make a multiprocessor computer that correctly executes multiprocess programs. IEEE Trans.

Comput. C28, 9 (Sept. 1979), 690–691. DOI:https://doi.org/10.1109/TC.1979.1675439

[49] Michael LeBeane, Khaled Hamidouche, Brad Benton, Mauricio Breternitz, Steven K. Reinhardt, and Lizy K. John.

2018. ComP-net: Command processor networking for efficient intra-kernel communications on GPUs. In Proceedings

of the 27th International Conference on Parallel Architectures and Compilation Techniques (PACT’18). ACM, New York,

NY, Article 29, 13 pages. DOI:https://doi.org/10.1145/3243176.3243179

[50] Jingwen Leng, Tayler Hetherington, Ahmed ElTantawy, Syed Gilani, Nam Sung Kim, Tor M. Aamodt, and Vijay

Janapa Reddi. 2013. GPUWattch: Enabling energy optimizations in GPGPUs. In Proceedings of the 40th Annual Inter-

national Symposium on Computer Architecture.

[51] C. Lin, V. Nagarajan, and R. Gupta. 2010. Efficient sequential consistency using conditional fences. In Proceed-

ings of the 2010 19th International Conference on Parallel Architectures and Compilation Techniques (PACT’10).

295–306.

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 1, Article 15. Publication date: January 2021.

http://www.hsafoundation.com/?ddownload=5114
http://www.hsafoundation.com/?ddownload=5114
https://doi.org/10.1109/MICRO.2007.30
https://doi.org/10.1145/2701618
https://doi.org/10.1145/2701618
https://doi.org/10.1145/325164.325102
https://doi.org/10.1145/325164.325102
https://doi.org/10.1109/PACT.2002.1106016
https://doi.org/10.1109/PACT.2002.1106016
https://doi.org/10.1145/300979.300993
https://doi.org/10.1109/HPCA.2014.6835950
https://doi.org/10.1109/HPCA.2014.6835950
https://doi.org/10.1109/HPCA.2018.00058
https://doi.org/10.1109/HPCA.2014.6835930
https://doi.org/10.1109/HPCA.2014.6835930
https://doi.org/10.1145/2485922.2485940
https://doi.org/10.1109/2.707614
https://doi.org/10.1145/2541940.2541981
https://doi.org/10.1109/MM.2016.24
https://doi.org/10.1109/TC.1979.1675439
https://doi.org/10.1145/3243176.3243179


15:26 S. Puthoor and M. H. Lipasti

[52] Changhui Lin, Vijay Nagarajan, Rajiv Gupta, and Bharghava Rajaram. 2012. Efficient sequential consistency via con-

flict ordering. In Proceedings of the 17th International Conference on Architectural Support for Programming Languages

and Operating Systems (ASPLOS XVII). ACM, New York, NY, 273–286. DOI:https://doi.org/10.1145/2150976.2151006

[53] Yuan Lin and Vinod Grover. 2018. Using CUDA Warp-Level Primitives. Retrieved from https://developer.nvidia.com/

blog/using-cuda-warp-level-primitives/.

[54] Daniel Lustig, Sameer Sahasrabuddhe, and Olivier Giroux. 2019. A formal analysis of the NVIDIA PTX memory

consistency model. In Proceedings of the 24th International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS’19). ACM, New York, NY, 257–270. DOI:https://doi.org/10.1145/3297858.

3304043

[55] Daniel Lustig, Sameer Sahasrabuddhe, and Olivier Giroux. 2019. A formal analysis of the NVIDIA PTX memory

consistency model. In Proceedings of the 24th International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS’19). Association for Computing Machinery, New York, NY, 257–270.

DOI:https://doi.org/10.1145/3297858.3304043

[56] Sela Mador-Haim, Luc Maranget, Susmit Sarkar, Kayvan Memarian, Jade Alglave, Scott Owens, Rajeev Alur, Milo

M. K. Martin, Peter Sewell, and Derek Williams. 2012. An axiomatic memory model for POWER multiprocessors.

In Proceedings of the 24th International Conference on Computer Aided Verification (CAV’12). Springer-Verlag, Berlin,

495–512. DOI:https://doi.org/10.1007/978-3-642-31424-7_36

[57] Milo M. K. Martin, Daniel J. Sorin, Bradford M. Beckmann, Michael R. Marty, Min Xu, Alaa R. Alameldeen, Kevin

E. Moore, Mark D. Hill, and David A. Wood. 2005. Multifacet’s general execution-driven multiprocessor simulator

(GEMS) toolset. SIGARCH Comput. Archit. News 33, 4 (Nov. 2005), 92–99. DOI:https://doi.org/10.1145/1105734.1105747

[58] Microsoft. [n.d.]. C++ AMP : Language and Programming Model. Retrieved from http://download.microsoft.com/

download/2/2/9/22972859-15c2-4d96-97ae-93344241d56c/cppampopenspecificationv12.pdf.

[59] NVIDIA. 2020. CUDA C++ Programming Guide. Retrieved from https://docs.nvidia.com/cuda/cuda-c-programming-

guide/index.html.

[60] Marc S. Orr, Bradford M. Beckmann, Steven K. Reinhardt, and David A. Wood. 2014. Fine-grain task aggregation

and coordination on GPUs. SIGARCH Comput. Archit. News 42, 3 (June 2014), 181–192. DOI:https://doi.org/10.1145/

2678373.2665701

[61] Jason Power, Arkaprava Basu, Junli Gu, Sooraj Puthoor, Bradford M. Beckmann, Mark D. Hill, Steven K. Reinhardt,

and David A. Wood. 2013. Heterogeneous system coherence for integrated CPU-GPU systems. In Proceedings of the

46th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO-46). ACM, New York, NY, 457–467.

DOI:https://doi.org/10.1145/2540708.2540747

[62] Christopher Pulte, Shaked Flur, Will Deacon, Jon French, Susmit Sarkar, and Peter Sewell. 2017. Simplifying ARM

concurrency: Multicopy-atomic axiomatic and operational models for ARMv8. Proc. ACM Program. Lang. 2, POPL,

Article 19 (Dec. 2017), 29 pages. DOI:https://doi.org/10.1145/3158107

[63] Sooraj Puthoor and Mikko H. Lipasti. 2018. Compiler assisted coalescing. In Proceedings of the 27th International

Conference on Parallel Architectures and Compilation Techniques (PACT’18). Association for Computing Machinery,

New York, NY, Article 11, 11 pages. DOI:https://doi.org/10.1145/3243176.3243203

[64] Parthasarathy Ranganathan, Vijay S. Pai, and Sarita V. Adve. 1997. Using speculative retirement and larger instruction

windows to narrow the performance gap between memory consistency models. In Proceedings of the 9th Annual ACM

Symposium on Parallel Algorithms and Architectures (SPAA’97). ACM, New York, NY, 199–210. DOI:https://doi.org/

10.1145/258492.258512

[65] X. Ren and M. Lis. 2017. Efficient sequential consistency in GPUs via relativistic cache coherence. In Proceedings of

the 2017 IEEE International Symposium on High Performance Computer Architecture (HPCA’17). 625–636. DOI:https:

//doi.org/10.1109/HPCA.2017.40

[66] Ben Sander. 2016. AMD GCN Assembly: Cross-Lane Operations. Retrieved from https://gpuopen.com/learn/amd-

gcn-assembly-cross-lane-operations/.

[67] Susmit Sarkar, Peter Sewell, Jade Alglave, Luc Maranget, and Derek Williams. 2011. Understanding POWER multipro-

cessors. In Proceedings of the 32nd ACM SIGPLAN Conference on Programming Language Design and Implementation

(PLDI’11). ACM, New York, NY, 175–186. DOI:https://doi.org/10.1145/1993498.1993520

[68] Peter Sewell, Susmit Sarkar, Scott Owens, Francesco Zappa Nardelli, and Magnus O. Myreen. 2010. X86-TSO: A

rigorous and usable programmer’s model for x86 multiprocessors. Commun. ACM 53, 7 (July 2010), 89–97. DOI:https:

//doi.org/10.1145/1785414.1785443

[69] Matthew D. Sinclair, Johnathan Alsop, and Sarita V. Adve. 2015. Efficient GPU synchronization without scopes: Saying

no to complex consistency models. In Proceedings of the 48th International Symposium on Microarchitecture (MICRO-

48). ACM, New York, NY, 647–659. DOI:https://doi.org/10.1145/2830772.2830821

[70] M. D. Sinclair, J. Alsop, and S. V. Adve. 2015. Efficient GPU synchronization without scopes: Saying no to complex

consistency models. In Proceedings of the 2015 48th Annual IEEE/ACM International Symposium on Microarchitecture

(MICRO’15). 647–659. DOI:https://doi.org/10.1145/2830772.2830821

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 1, Article 15. Publication date: January 2021.

https://doi.org/10.1145/2150976.2151006
https://developer.nvidia.com/blog/using-cuda-warp-level-primitives/
https://developer.nvidia.com/blog/using-cuda-warp-level-primitives/
https://doi.org/10.1145/3297858.3304043
https://doi.org/10.1145/3297858.3304043
https://doi.org/10.1145/3297858.3304043
https://doi.org/10.1007/978-3-642-31424-7_36
https://doi.org/10.1145/1105734.1105747
http://download.microsoft.com/download/2/2/9/22972859-15c2-4d96-97ae-93344241d56c/cppampopenspecificationv12.pdf
http://download.microsoft.com/download/2/2/9/22972859-15c2-4d96-97ae-93344241d56c/cppampopenspecificationv12.pdf
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://doi.org/10.1145/2678373.2665701
https://doi.org/10.1145/2678373.2665701
https://doi.org/10.1145/2540708.2540747
https://doi.org/10.1145/3158107
https://doi.org/10.1145/3243176.3243203
https://doi.org/10.1145/258492.258512
https://doi.org/10.1145/258492.258512
https://doi.org/10.1109/HPCA.2017.40
https://doi.org/10.1109/HPCA.2017.40
https://gpuopen.com/learn/amd-gcn-assembly-cross-lane-operations/
https://gpuopen.com/learn/amd-gcn-assembly-cross-lane-operations/
https://doi.org/10.1145/1993498.1993520
https://doi.org/10.1145/1785414.1785443
https://doi.org/10.1145/1785414.1785443
https://doi.org/10.1145/2830772.2830821
https://doi.org/10.1145/2830772.2830821


Systems-on-Chip with Strong Ordering 15:27

[71] A. Singh, S. Aga, and S. Narayanasamy. 2015. Efficiently enforcing strong memory ordering in GPUs. In Proceed-

ings of the 2015 48th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’15). 699–712. DOI:
https://doi.org/10.1145/2830772.2830778

[72] Abhayendra Singh, Satish Narayanasamy, Daniel Marino, Todd Millstein, and Madanlal Musuvathi. 2012. End-to-end

sequential consistency. In Proceedings of the 39th Annual International Symposium on Computer Architecture (ISCA’12).

IEEE Computer Society, Washington, DC, 524–535.

[73] I. Singh, A. Shriraman, W. W. L. Fung, M. O’Connor, and T. M. Aamodt. 2013. Cache coherence for GPU architectures.

In Proceedings of the 2013 IEEE 19th International Symposium on High Performance Computer Architecture (HPCA’13).

578–590. DOI:https://doi.org/10.1109/HPCA.2013.6522351

[74] I. Singh, A. Shriraman, W. W. L. Fung, M. O’Connor, and T. M. Aamodt. 2013. Cache coherence for GPU architectures.

In Proceedings of the 2013 IEEE 19th International Symposium on High Performance Computer Architecture (HPCA’13).

578–590. DOI:https://doi.org/10.1109/HPCA.2013.6522351

[75] Daniel J. Sorin, Mark D. Hill, and David A. Wood. 2011. A Primer on Memory Consistency and Cache Coherence (1st ed.).

Morgan & Claypool Publishers.

[76] SPARC International, Inc. 1994. The SPARC Architecture Manual (Version 9). Prentice-Hall, Upper Saddle River, NJ.

[77] Abdulaziz Tabbakh, Xuehai Qian, and Murali Annavaram. 2018. G-TSC: Timestamp based coherence for GPUs. In

Proceedings of the 2018 IEEE International Symposium on High Performance Computer Architecture (HPCA’18). IEEE,

403–415.

[78] Thomas F. Wenisch, Anastasia Ailamaki, Babak Falsafi, and Andreas Moshovos. 2007. Mechanisms for store-wait-

free multiprocessors. SIGARCH Comput. Archit. News 35, 2 (June 2007), 266–277. DOI:https://doi.org/10.1145/1273440.

1250696

[79] Jason Zebchuk, Vijayalakshmi Srinivasan, Moinuddin K. Qureshi, and Andreas Moshovos. 2009. A tagless coherence

directory. In Proceedings of the 42nd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO 42).

ACM, New York, NY, 423–434. DOI:https://doi.org/10.1145/1669112.1669166

[80] Sizhuo Zhang, Arvind, and Muralidaran Vijayaraghavan. 2016. Taming weak memory models. arxiv:1606.05416. Re-

trieved from http://arxiv.org/abs/1606.05416.

[81] Sizhuo Zhang, Muralidaran Vijayaraghavan, Andrew Wright, Mehdi Alipour, and Arvind. 2018. Constructing a weak

memory model. In Proceedings of the 45th Annual International Symposium on Computer Architecture (ISCA’18). IEEE

Press, Piscataway, NJ, 124–137. DOI:https://doi.org/10.1109/ISCA.2018.00021

Received May 2020; revised September 2020; accepted October 2020

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 1, Article 15. Publication date: January 2021.

https://doi.org/10.1145/2830772.2830778
https://doi.org/10.1109/HPCA.2013.6522351
https://doi.org/10.1109/HPCA.2013.6522351
https://doi.org/10.1145/1273440.1250696
https://doi.org/10.1145/1273440.1250696
https://doi.org/10.1145/1669112.1669166
http://arxiv.org/abs/1606.05416.
https://doi.org/10.1109/ISCA.2018.00021

