
Power-Efficient Loop Execution Techniques

by

Mitchell Bryan Hayenga

A dissertation submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

(Electrical and Computer Engineering)

at the

UNIVERSITY OF WISCONSIN–MADISON

2013

© Copyright by Mitchell Bryan Hayenga 2013

All Rights Reserved

i

This thesis is dedicated to Aishwarya, my loving and patient wife.

ii

acknowledgments
Without the help of friends, family, and professors, this thesis work would

not have been possible. It is to these people I owe my deepest gratitude.

I would first like to thank my advisor, Mikko Lipasti, for his instruction

and guidance throughout my graduate school career. His passion to

explore new ideas as well as his vast knowledge on a wide variety of topics

is truly inspiring. I am thankful for having been given the opportunity to

be a member of his lab.

I would also like to thank Kewal Saluja, Michael Schulte, and Charles

Fischer. Each of these professors care greatly about teaching and benefited

me greatly through their courses. Additionally, I owe their sound advice

for keeping me on the right track in graduate school.

My fellow graduate students have also played a great role in motivating

and assisting with this thesis work. I would like to thank my PHARM lab

elders Natalie Enright Jerger, Eric Hill, Erika Gunadi, and Dana Vantrease

for welcoming me into their lab. I would also like to thank Jacob Adriaens,

Chris Jenkins, Kyle Rupnow, and Daniel Chang for their fellowship during

the early portion of my graduate life. Finally, I would like to express my

thanks to Andrew Nere, Syed Gilani, Arslan Zulfiqar, David Palframan, Vi-

gnyan Reddy, Dibakar Gope, Tony Gregerson, Amin Farmahini-Farahani,

Jie Liu, and Vinod Reddy.

iii

Finally, I would like to thank my wife Aishwarya Nagarajan. Without

her love and support, it would have taken me more time to finish this

work. She was also, undoubtedly, the greatest discovery I made during my

doctorate. I look forward to moving on and experiencing the next chapter

of my life with her.

iv

contents

Contents iv

List of Tables vii

List of Figuresviii

Abstract xii

1 Introduction 1

1.1 Revolver Architectures 5

1.2 Thesis Contributions 9

1.3 Thesis Organization 10

2 Background 12

2.1 Loop Caching and Buffering 12

2.2 Prefetching Techniques 21

2.3 Out-of-Order Microarchitecture 28

2.4 CRIB Microarchitecture 33

2.5 Operand Networks 37

2.6 Summary 44

3 Loop Detection and Training 45

3.1 Identifiable Loops 45

3.2 Detection Operation 47

v

3.3 Detection Discussion 49

3.4 Training Feedback 49

3.5 Summary 51

4 Conventional Back-end Loop Execution 52

4.1 Overview 52

4.2 Scheduler Modifications 55

4.3 Wakeup Logic 56

4.4 Tag Propagation Unit 61

4.5 Load/Store Support 66

4.6 Summary 68

5 Load Pre-Execution 70

5.1 Optimization Insight 70

5.2 Supported Address Patterns 72

5.3 Scheduler Modification 75

5.4 Summary 76

6 CRIB Back-end Loop Execution 77

6.1 Overview 77

6.2 Datapath Modifications 78

6.3 Additional Loop Support 79

6.4 Load/Store Support 80

6.5 Conclusion 86

vi

7 Operand Network 87

7.1 Overview 87

7.2 Loop Carried Dependencies 88

7.3 Operand Latency 92

7.4 Summary 94

8 Evaluation 96

8.1 Methodology 96

8.2 Conventional Out-of-Order104

8.3 Loop Design Tradeoffs123

8.4 Load Pre-Execution141

8.5 CRIB Out-of-Order146

8.6 Summary151

9 Conclusion153

9.1 Future Work155

Bibliography158

vii

list of tables

8.1 Common Processor Configurations. 97

8.2 CRIB Processor Configuration 98

8.3 SD-VBS Benchmarks and Baseline Performance 99

8.4 MiBench Benchmarks and Baseline Performance 100

8.5 SPEC CPU2006 Benchmarks and Baseline Performance 101

8.6 Energy-Delay Improvement. 122

viii

list of figures

1.1 ARM Cortex-A15 Energy Consumption. 1

1.2 Ideal Loop Buffer Performance. 2

1.3 Instruction Reuse caching Methods. 3

2.1 Issue Queue Design from [40]. 18

2.2 Stride Prefetching Reference Prediction Table (RPT). 25

2.3 PRF-based Out-of-Order Structure. 31

2.4 CRIB Structures. 34

3.1 Loop Types . 46

3.2 Loop Detection Finite State Machine. 47

3.3 Loop Address Table (LAT) Structure. 47

4.1 Revolver Out-of-Order Back-end Example. 53

4.2 Revolver Out-of-Order Issue Queue Design. 55

4.3 Wakeup Overview . 57

4.4 Wakeup Array . 58

4.5 Wakeup Cell . 59

4.6 Revolver Wakeup Example . 60

4.7 Tag Propagation Unit. 63

4.8 Tag Propagation Unit Cell Design. 64

4.9 LSQ and Cache Interface. 67

ix

5.1 Strided Load Example. 72

5.2 Constant Load Example. 73

5.3 Pointer Load Example. 74

6.1 CRIB Overview . 78

6.2 Loop Continue Example . 79

6.3 Memory Ordering . 83

7.1 CRIB Alternative Operand Networks. 87

7.2 SD-VBS Dispatched Instructions vs. Bypass Dependencies. . . 89

7.3 MiBench Dispatched Instructions vs. Bypass Dependencies. . 90

7.4 SPEC CPU2006 Dispatched Instructions vs. Bypass Dependen-

cies. 91

7.5 SD-VBS Bypass Latency Sensitivity. 93

7.6 MiBench Bypass Latency Sensitivity. 94

7.7 SPEC CPU2006 Bypass Latency Sensitivity. 95

8.1 SD-VBS Dispatched Instructions 105

8.2 MiBench Dispatched Instructions 106

8.3 SPEC CPU2006 Dispatched Instructions 107

8.4 SD-VBS Normalized Execution Time 109

8.5 MiBench Normalized Execution Time 110

8.6 SPEC CPU2006 Normalized Execution Time 111

8.7 SD-VBS 2-Wide Normalized Energy 112

8.8 SD-VBS 4-Wide Normalized Energy 113

x

8.9 MiBench 2-Wide Normalized Energy 115

8.10 MiBench 4-Wide Normalized Energy 116

8.11 SPECINT CPU2006 2-Wide Normalized Energy 117

8.12 SPECINT CPU2006 4-Wide Normalized Energy 118

8.13 SPECFP CPU2006 2-Wide Normalized Energy 119

8.14 SPECFP CPU2006 4-Wide Normalized Energy 120

8.15 Overall 2-Wide Energy-Delay 121

8.16 Overall 4-Wide Energy-delay 122

8.17 SD-VBS Execution Slowdown Without Loop Unrolling 125

8.18 MiBench Execution Slowdown Without Loop Unrolling 126

8.19 SPEC CPU2006 Execution Slowdown Without Loop Unrolling 127

8.20 SD-VBS Normalized Dispatched Instructions Without Loop

Unrolling . 128

8.21 MiBench Normalized Dispatched Instructions Without Loop

Unrolling . 129

8.22 SPEC CPU2006 Normalized Dispatched Instructions Without

Loop Unrolling . 130

8.23 SD-VBS Loop Profitability Feedback - Dispatched Instructions. 132

8.24 SD-VBS Loop Profitability Feedback - Execution Time. 133

8.25 SD-VBS Loop Profitability Feedback - Execution Time. 134

8.26 MiBench Loop Profitability Feedback - Dispatched Instructions.135

8.27 MiBench Loop Profitability Feedback - Execution Time. 136

xi

8.28 SPEC CPU2006 Loop Profitability Feedback - Dispatched In-

structions. 137

8.29 SPEC CPU2006 Loop Profitability Feedback - Execution Time. 138

8.30 SD-VBS Local Branch Misprediction Rate. 139

8.31 SD-VBS Reduction in Branch Mispredicts. 139

8.32 MiBench Local Branch Misprediction Rate. 140

8.33 MiBench Reduction in Branch Mispredicts. 141

8.34 SPEC CPU2006 Local Branch Misprediction Rate. 142

8.35 SPEC CPU2006 Reduction in Branch Mispredicts. 142

8.36 Load Pre-Execution Speedup. 143

8.37 SD-VBS Load Pre-Execution Breakdown. 144

8.38 MiBench Load Pre-Execution Breakdown. 145

8.39 SPEC CPU2006 Load Pre-Execution Breakdown. 146

8.40 CRIB SD-VBS Normalized Execution Time 147

8.41 CRIB MiBench Normalized Execution Time 148

8.42 CRIB SPEC CPU2006 Normalized Execution Time 149

8.43 CRIB SD-VBS Normalized Energy. 150

8.44 CRIB MiBench Normalized Energy. 151

8.45 CRIB SPEC CPU2006 Normalized Energy. 152

xii

abstract
This dissertation is motivated the growing issue of power consumption in

modern processors. Historically, the advent of new process technology

resulted in improvements in transistor densities, functional latencies, and

operational voltages. However, improvements in voltage scaling have

stagnated, forcing architects to predominately focus on improving pro-

cessor energy-efficiency. To mitigate this energy problem, this thesis pro-

poses techniques to streamline processor activity during the execution of

program-based loops.

During program execution on modern out-of-order processors, sub-

stantial power is consumed by the processor front-end. Additionally, the

majority of executed instructions are contained within simple loop bodies.

We propose modifying modern processors to enable “in-place execution”

of loops within the out-of-order back-end. Essentially, a few static instances

of each loop instruction are dispatched to the out-of-order execution core

by the processor front-end. The static instruction instances may each be

executed multiple times in order to complete all necessary loop iterations.

During loop execution the processor front-end, including fetch, branch

prediction, decode, allocation, and dispatch logic are completely clock

gated to save energy.

Multiple techniques and structural modifications are performed in

order to enable in-place execution. To determine the efficacy of moving

xiii

loop execution into the processor back-end, we evaluate the necessary

modifications and benefits of in-place loop execution on traditional and

non-traditional out-of-order processor substrates. Additionally, we pro-

pose a performance enhancing load pre-execution mechanism that im-

proves performance during loop execution. Finally, we evaluate multiple

alternative interconnection networks for the non-traditional out-of-order

processor.

Overall we find in-place loop execution to be an attractive microchi-

tectural technique that results in a 5.3%-18.3% energy-delay benefit. This

benefit is observed through the successful elimination of 20, 55, and 84%

of all front-end instruction dispatches on the SPEC CPU2006, MiBench,

and SD-VBS benchmark suites.

1

1 introduction
Although transistor densities continue to scale, the associated per-transistor

energy benefit normally obtained from successive process generations is

rapidly disappearing. This phenomenon, known as the end of Dennard

scaling, forces architects to limit transistor switching by means of struc-

tural optimization, functional specialization, or clock regulation [22, 25].

Furthermore, the need for improved computational efficiency has been

highlighted by increased demand in the power conscious mobile and

server markets.

To cope with these increasing energy constraints, future out-of-order

processors must further streamline common execution patterns, thereby

Scheduling and Operand Access
23%

Data Cache
7%

Interger
6%

Miss
Handling

5%

Miscellaneous
15%

Branch Prediction 15%

Instruction Fetch 12%

Instruction Decode 15%

Rename 4%

Frontend
45%

Figure 1.1: ARM Cortex-A15 Energy Consumption.

2

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

4 8 16 32 64 128 256 512 1024 2048To
ta

l D
yn

am
ic

 In
st

ru
ct

io
n

s
C

ap
tu

re
d

 (
%

)

Loop Buffer Capacity (instructions)

sd-vbs mibench spec_int spec_fp

Figure 1.2: Ideal Loop Buffer Performance.

eliminating unnecessary pipeline activity. For common applications on

modern processors, the energy required by instruction execution is rel-

atively small. Instead these applications expend the majority of energy

on control overheads, such as instruction fetch and scheduling [78]. This

energy distribution is particularly visible in recent mobile processors, such

as ARM’s Cortex-A15 [52]. Shown in Figure 1.1, the Cortex-A15 processor

only expends 6% of all power on integer execution, while the front-end

is capable of consuming 45% of all core energy [60]. Therefore microar-

chitectural optimizations to lessen front-end activity can have significant

impacts on overall power consumption.

To reduce these front-end energy overheads, architects have proposed

many pipeline-centric instruction caching mechanisms that capitalize on

3

Fetch Decode

IF1 IF2 IF3 D1 D2

Issue Retire

RTAR1 AR2 IS RF EX WB

Allocate/Rename

DI

Dispatch Regfile Execute Writeback

I-Cache

BPred

BTB

IL0-Loop

Fetch
Buffer

Decoder

µop Cache

D
ec

od
e

B
uf

fe
r Alloc /

Rename

1

2

3
4

5

1

2

AMD 29k BTB Target Inst Cache

AMD Jaguar L0 Loop I-Cache

3 Intel Core2 Streaming Loop Buffer

4 Intel Sandybridge µop Cache

5 Intel Silvermont / Nehalem
ARM Cortex A9 / A15
Decoded Loop Buffer

6 Revolver Modified
Issue / LSQ

Issue
Queue

LSQ

6

Reg
File

Execution Lanes

Execution Lanes

Execution Lanes

D-CacheAddr Calc

Reorder Buffer (ROB)

Figure 1.3: Instruction Reuse caching Methods.

temporal instruction locality [3, 11, 38, 49, 54]. The majority of these pro-

posals target capturing loop instructions, in a decoded or encoded form,

into a small buffer for inexpensive retreival on future iterations. Figure 1.2

shows the percentage of instruction accesses that can be serviced from

loop buffers of varying sizes across multiple benchmark suites. As seen,

loop buffers can be quite effective, with a common loop buffer size of 32

instructions able to capture 24-90% of all instruction accesses.

The observed effectiveness of loop buffers has resulted in their rapid

industrial adoption [4, 26, 46, 52, 72]. Shown in Figure 1.3, industry has

progressively implemented more deeply embedded loop buffers in proces-

sor pipelines as a means to reduce front-end activity. Notably, this trend

has created the ability to bypass not only fetch, but decode overheads as

well. Although early designs, like AMD’s 29k, only eliminated instruction

cache accesses and supported very small loops, more modern designs

from Intel and ARM bypass more pipeline stages and store significantly

4

larger loops.

However, despite potential energy savings, no commercial out-of-order

processor has attempted to bypass all front-end pipeline stages, including

allocation and dispatch, during loop execution. This boundary has not

been pushed because of obstacles related to program ordering, dependence

linking, and resource allocation.

In this thesis we propose the Revolver architectures, aggressive out-

of-order processors which obviate the complexities related to moving

loop buffering into the processor back-end. During loop execution, only a

few static instances of each loop instruction are dispatched to the out-of-

order back-end. After which, each instruction instance may be executed

in-place multiple times in order to complete all necessary loop iterations.

During subsequent executions, no additional resources are allocated and

no front-end structures are accessed. This operation is enabled through a

series of insights and modifications to the traditional processor pipeline.

We implement Revolver’s in-place loop execution on two out-of-order

architectures: A traditional physical register file (PRF) based out-of-order

and the CRIB [32] out-of-order architecture. Additionally we propose a

mechanism which enables the pre-execution of future loop iteration loads,

effectively increasing memory level parallelism and enabling single cycle

loads in many instances on future loop iterations. Finally, we evaluate

multiple interconnection networks to better enable loop-mode execution

on the CRIB-based architecture.

5

1.1 Revolver Architectures

To evaluate the effectiveness of in-place loop execution within a processor’s

out of order back-end, we propose extensions to two different out-of-order

architectures: A traditional PRF-based out-of-order architecture and the

CRIB architecture. These modified architectures are collectively referred

to as Revolver architectures, due to the cyclical nature of their in-place

loop execution.

Traditional Out-of-Order Based

Physical register file based out-of-order architectures are a predominant

design within microprocessor industry. The overall structure and opera-

tion of such out-of-orders remains largely unchanged from earlier designs

such as the MIPS R10000 [91].

Shown at the base of Figure 1.3, is a conventional pipeline structure

for such out-of-orders. In general, the pipeline is composed of an in-order

front-end, out-of-order execution, and in-order commit. To adapt such

an architecture for in-place loop execution, three primary modifications

are required: the addition of loop detection within the processor front-

end, specialized resource allocation and dependency linking logic, and

customized instruction issue logic.

During non-loop execution mode, instructions flow through the entire

processor pipeline as in a conventional out-of-order core. The key struc-

6

tural difference between Revolver and a traditional out-of-order core is

the lack of a register allocation table (RAT) within the processor front-end.

Instead, dependence linking between instructions is performed in the

processor back-end by a simple structure called the Tag Propagation Unit

(TPU) that is accessed in parallel with issue select. Other than this struc-

tural modification, which is detailed further in Chapter 4, the Revolver

back-end operates like a normal out-of-order processor during non-loop

mode.

To enable loop mode, additional loop detection logic is placed at decode.

Once a loop’s starting address and number of required resources1 have

been calculated, a subsequent decoding of the first loop instruction initiates

loop mode. During loop mode, the loop body is unrolled as many times

as allowed by the resources present within the out-of-order back-end.

Fundamental to Revolver’s operation is its ability to eliminate the need for

any additional resource allocation once a loop has been dispatched. With

respect to the front-end, allocation of most resources proceeds normally.

However, allocation of destination registers requires special handling.

With respect to Revolver’s back-end, the primary innovation is the

ability to allow loop instructions to maintain their provided resources

across multiple executions. Instructions retain issue queue entries after

issue select and reuse them immediately for the next loop iteration upon

commit. The load/store queue is also modified to enable reuse of entries
1Resources being physical registers as well as issue queue, load queue, and store

queue entries.

7

while properly maintaining program order. Finally, as detailed in Chap-

ter 4, each result-producing loop instruction simply alternates writing

one of two pre-allocated physical registers. Revolver’s TPU is designed

to allow dependent instructions to properly access source registers even

with alternating register dependencies.

On loop exit, all instructions are removed from the out-of-order back-

end and the loop fall through path is immediately dispatched. Immediate

dispatch is possible since, before clock-gating, the processor front-end

redirects to the fall through path after successful loop dispatch.

CRIB-Based Revolver

The CRIB architecture, which stands for Consolidating Rename, Issue,

and Bypass, was introduced in [32] by Gunadi et al. This architecture

represents a novel out-of-order design that eschews traditional register re-

naming and issue logic for spacial dataflow and distributed logic whereby

each instruction is allocated an ALU and self-schedules. The primary

motivation behind the CRIB architecture is that traditional out-of-order

processors originated from a resource-constrained era where power con-

sumption was a secondary design constraint. Thus CRIB is a fundamental

redesign of a traditional out-of-order architecture with power efficiency,

rather than resource utilization, as its primary objective.

The CRIB architecture was selected as a baseline for in-place execution

due to its focus on power efficiency as well as its suitability for modification

8

to support in-place loop execution. To support in-place loop execution

on the CRIB design, the primary modifications are the addition of loop

detection logic and a redesign of the load-store queue. Full details of mod-

ifications are presented in Chapter 6. Chapter 7 investigates the potential

benefit of alternative operand networks.

Load Pre-Execution

For both baseline architectures, we evaluate a novel extension that enables

the pre-execution of future loop iteration loads during loop exection. This

performance optimization originates from the observation that static load

instructions within loops frequently exhibit predictable access patterns.

Once a supported access pattern is detected, the load is triggered for

pre-execution. Essentially, a future instance of the load is speculatively

performed and the result is stored in a special buffer. Later, once the

load is actually issued, it executes within a single cycle and returns the

previously buffered value. If the load reads from a different address,

single cycle operation is aborted and the load is re-issued normally. Load

pre-execution enables performance beyond traditional prefetching, as it is

capable of hiding even the latencies of L1 caches. Full details are presented

within Chapter 5.

9

1.2 Thesis Contributions

The research presented in this thesis makes the following contributions:

• Amortizing the energy from fetch, decoding, allocation, and dis-

patch of a single instruction across multiple loop iterations: As

single static instructions are dynamically re-executed multiple times

in the out-of-order back-end, many front-end energy costs relating

to allocation and instruction routing are eliminated.

• Moving operand dependence linking into the out-of-order back-

end: Traditional out-of-orders establish program dependencies be-

tween instructions within the in-order processor front-end. To facili-

tate loop-mode operation and register reuse, Revolver architectures

introduce novel dependence linking within the out-of-order back-

end.

• Eliminating the need to re-allocate resources between instruction

re-executions: Through allocation policies and structural modifi-

cations, in-place execution is enabled in such a manner that load

queue, store queue, issue queue, and physical register can be reused

through multiple iterations’ executions of loop instructions.

• Reducing the branch misprediction penalty for variable iteration

count loops: After completing loop dispatch, the processor front-

end immediately redirects to the loop’s predicted fall through path.

10

The loop end is effectively no longer predicted. This enables loops

with unpredictable or variable iteration counts to immediately redi-

rect to the fall through path upon loop exit.

• Enabling the pre-execution of loads from future loop iterations:

Through the observation that most static loads within loops follow

regular and predictable access patterns, we develop a pre-execution

method that effectively enables single-cycle load execution in many

instances.

• Evaluating the bypass requirements and potential benefits of al-

ternative interconnection substracts for the loop-enabled and base-

line CRIB processor: We evaluate the impact of interconnection

network latency and bypass connectivity for enabling loop-mode

execution within our CRIB-based design.

1.3 Thesis Organization

This thesis is organized as follows: Chapter 2 provides a detailed overview

of prior work on loop optimizations within processors, the baseline CRIB

out-of-order architecture, and processor-based operand networks. Chap-

ter 3 details how loop detection and dispatch are handled within modern

processors. Chapter 4 details our implementation if in-place loop execution

on a traditional out-of-order processor architecture. Chapter 5 introduces

11

our novel load pre-execution method and the structural modifications

required to take advantage of it. Chapter 6 details the implementation

of in-place loop execution on the baseline CRIB architecture. Chapter 7

evaluates the potential benefit of alternative operand networks for loop-

mode execution on the CRIB-based architecture. Chapter 8 contains the

evaluation methodology and results for all thesis contributions. Finally,

Chapter 9 concludes the thesis and summarizes key observations and

results.

12

2 background
This chapter explores related work and background material that is central

to this thesis. Background material is divided into five primary sections.

Section 2.1 covers previous loop buffering methods explored by academia

and industry. Section 2.2 details multiple prefetching techniques and is

provided as background for our load pre-execution technique. Section 2.3

surveys the development and current status of out-of-order processing

cores. Section 2.4 provides an in-depth description of the CRIB microarchi-

tecture, which is used as one of our baseline designs. Finally, section 2.5

provides an overview of operand networks.

2.1 Loop Caching and Buffering

The “von Neumann bottleneck”, specifically the separation of instruction

memory from processing elements, is often cited as the key limiter of

performance and power efficiency in processor architecture [8, 89]. In

modern out-of-order processors, loop bodies are speculatively unrolled in

hardware to extract parallelism. Due to the temporal and spacial locality

of instructions during loop execution, architects have devised multiple

methods to make loop instruction retrieval fast and inexpensive.

The methods proposed by architects span a wide variety of designs,

from general purpose to deeply embedded and highly specialized loop

13

caching methods. The remainder of this section details these methods,

starting with general purpose and progressing to the more advanced

techniques.

General Purpose Caching

It is widely known that most program execution patterns follow the Pareto

Principle, where the majority of execution time is expended within a small

subset of code [88]. Following this principle and the results from Figure 1.2,

it is evident that the majority of execution is spent within compact loop

bodies.

Introduced by Kin et al. [49], the Filter Cache is a general purpose

cache aimed at minimizing instruction fetch energy. Effectively the Filter

Cache serves as an L0 instruction cache, where the energies and latencies

of instruction accesses are less than a common L1 cache size. Filter Caches

effectively add an additional level of cache hierarchy to conventional pro-

cessing systems. Additional system complexity is justified through the

high hit rate and low access cost of such caches. Qualcomm’s Krait CPU ar-

chitecture is a modern example of a design that utilizes a Filter Cache [65].

The Krait CPU architecture utilizes a 4KB direct mapped L0 instruction

cache in conjunction with a traditional 16KB, 4-way associative L1 cache.

As most loops are small in size, Filter Caches successfully capture most

loop bodies at significantly less cost than a traditional L1 cache. It should

be noted that the original Filter Cache design primarily targeted instruc-

14

tion fetch energy costs while negatively impacting performance when

instructions were sourced from the L1 cache. Later Filter Cache proposals

introduced speculative loading techniques to lessen the frequency of Filter

Cache misses [83].

AMD’s 29000 microprocessor provides another historical example of

instruction caching that successfully reduces the latency and energy con-

sumption of cache access [26]. This processor utilizes a customized Branch

Target Buffer (BTB) that, in addition to supplying a branch target address,

provides up to the next four instructions. The customized BTB was added

as a means to eliminate pipeline stalls due to long cache access latencies

on taken branches. The byproduct of such a design is that for codes with

frequently taken jumps, it is possible to completely execute out of the BTB

without ever accessing the L1 cache. Thus, for small or branchy loops, the

29000’s BTB effectively resulted in great energy and performance gains.

Amongst the earliest of designs utilizing caching of instructions for

the purpose of loop reuse are the CDC-6600 and CRAY-1 [53]. These

machines maintained small, contiguous buffers of program instructions

for the purpose of loop caching1

1We do not consider these to be general “loop buffers” due to the requirement that
all instructions be sequential.

15

Pre-Decode Loop Buffers

Although general purpose caching techniques provide some benefits for

loop execution, significantly greater energy gains can be obtained by de-

signing specialized instruction buffers that explicitly target loops. Special-

ized loop buffers provide significant energy and performance gains over

caches by utilizing significantly smaller SRAM structures and frequently

eliminating the energy costs of address tag verification.

Loop buffers as an instruction caching technique have a long history

within both industry and academia. Shown in Figure 1.3, loop buffers

are placed alongside or after the L1 instruction cache. Once a loop is

successfully buffered, all instruction accesses are serviced from this buffer

until the loop exits or an unpredicted execution path is followed.

Initially utilized within the embedded area, Lucent Technologies’ DSP16000

is the first industry example of a loop buffer [3]. The DSP16000, as an

embedded processor, relied upon programmer specified loop-caching

instructions. These loop-caching instructions allowed DSP programmers

to explicitly identify loop bodies and initiate control circuitry’s buffering

of given loops. Once loop bodies were fully captured, loops could iterate

up to 65,535 times without any dispatch overheads.

In the realm of general purpose processors, multiple concurrent aca-

demic efforts for fully automated loop buffers exist. Fully automated loop

buffers rely on dynamic loop detection and buffering without the necessity

of programmer specification. In [11], Bellas et al. describe a loop cache

16

as a logical extension of Filter Caches. In this design the Filter Cache is

replaced by a customized buffer for holding loop bodies. Additionally,

hardware/software codesign is utilized to customize loop size and code

placement for effective loop cache utilization. Lee et al. [54], expand upon

the work of [11] by explicitly defining the mechanism that loop bodies are

dynamically detected and placed into loop buffers.

Within industry, loop buffers placed before decode are widely used and

present within many designs. Examples of designs containing pre-decode

loop buffers are ARM’s Cortex A9, Intel’s Core 2, and AMD’s Jaguar [6, 4,

72]. The A9 and Core 2 are more specialized than the AMD Jaguar, capable

of buffering 16-32 general instructions. The AMD Jaguar loop buffer acts

as a subset of the L1 cache, effectively buffering instructions from up to

two 64 byte cache lines.

Post-Decode Loop Buffers

To eliminate additional front-end power architects have designed even

further embedded loop buffers. Placing loop buffers after decode enables

architects to eliminate the energy resulting from more pipeline stages as

well as eliminating repetitive work done by decode. Due to their post-

decode placement, structure and instruction retrieval differs significantly

from pre-decode loop buffers. Primarily, these buffers provide µOps in-

stead instructions and bundle instructions across predicted branch bound-

aries. A side effect of these methods is that the buffers must be flushed

17

and reloaded on any branch misprediction. However, loop detection and

buffering circuitry is identical to that of pre-decode loop buffers.

Decoded loop buffers were initially proposed by Bajwa and Hiraki [10,

38]. Referred to as the Decoded Instruction Buffer (DIB), outside of loop

execution instructions simply flow from the decoder to the execution back-

end. After a loop has been identified, during the first iteration, decoded

instructions are queued into the DIB at the rate of dispatch. For all subse-

quent executions the DIB provides all decoded instructions. Testing across

DSP and RISC processors showed the DIB capable of saving up to 40% of

dynamic energy.

Within industry, the majority of recently introduced high performance

microprocessors support decoded loop buffers. Predominate examples

include the Intel Nehalem, Intel Silvermont, and ARM Cortex A15 micro-

processors [46, 52, 72]. With the Intel Sandybridge [45] processor, Intel

introduced a µop cache instead of a loop buffer. µop caches tradeoff some

of the power efficiency of loop caches in exchange for capturing more

instructions and behaviors. Thus codes which frequent and simple loops

may be better served by a traditional loop cache, however µop caches are

more robust and able to derive benefit more irregular codes. Essentially,

µop caches operate as traditional caches which hold decoded instructions.

However, they share some characteristics with loop caches. In current

commercial implementations, µop caches encode predicted branch paths.

If branch paths differ from previously predicted paths, like loop caches,

18

6263 1 0

scan direction
reuse pointer

loopheadR

Rlooptail

rs
rt

rd rdrd

rtrt

rsrsrsrsrs

rtrtrt
rd rd rd

Logical Register List 15 bits

2

10

Original Issue Queue

0

Index

Classification Bit 1 11111 1 bit
1 bit0 1 0Issue State Bit

Figure 2.1: Issue Queue Design from [40].

the µop cache must be flushed and refilled.

Back-end Loop Buffering

Although no commercial attempt has been made to buffer loops within an

out-of-order processor’s execution back-end, multiple academic proposals

have been made to perform such an operation [40, 63, 90]. However, it

should be noted that unlike our Revolver architectures, all previous designs

require front-end communication for resource allocation and renaming.

Of all proposals, the earliest work by Hu et al. [40], is the most sim-

ilar to our proposed in-place execution method. This design works by

dynamically detecting loops and buffering them within the processor’s

issue queue. To achieve this, significant modifications to the issue queue

and resource allocation logic are required. Recreated from [40], Figure 2.1

shows the modified issue queue for buffering loops within the processor

19

back-end. Essentially, loops of suitable size are placed within the issue

queue and will be executed multiple times in order to satisfy all necessary

loop iterations. To enable the dynamic reuse of issue queue entries, [40]

utilizes additional pointers and information storage. The two additional

pointers, Rloophead and Rlooptail, enable the commit pointer to wrap upon

loop commit. Additionally, in addition to physical renaming information,

each issue queue entry holds the instruction’s logical register identifiers.

As issue queue entries execute, they retain their entries until commit. Upon

commit, if the finished instruction belonged to a loop, the logical register

identifiers would be used to communicate with the front-end renaming

and allocation hardware. Using the logical register identifiers, new physi-

cal register identifiers are obtained and the issue queue entry is reused

for the next iteration’s instance of the given instruction. It is unspecified

in [40] how loads and stores are handled during loop execution.

In [90], rather than sourcing all instructions from decode or a post-

decode buffer, the reorder buffer (ROB) is used as an instruction buffering

resource. Rather than fetching and decoding all instructions, the ROB

is speculatively searched to identify prior occurrences of newly required

instructions. To enable this, the ROB is scanned for instructions matching

those currently being fetched. Upon locating a match, the contents of the

corresponding ROB entry are copied to a new entry. However, traditional

resource allocation and renaming must take place for physical registers and

load/store queue entries. This optimization primarily works to save fetch

20

and decode energy relating to instruction opcodes and control. However

the feasibility of such a design is unclear given the design complexity and

power consumed in order to dynamically detect instruction reuse in such

a way.

Finally in terms of buffering instructions within the out-of-order back-

end, Pratas et al. [63] propose an alternative method to reuse reorder

buffer entries during loop execution. In this design loops are dynamically

detected and ROB entries for a given loop body are cyclically reused to

execute all all necessary iterations. An additional structure is appended

to track the physical register instances of all loop instructions. Unlike [40,

90] and our own work, [63] disallows dynamically unrolling loops in

hardware. Instead physical resources are held until loop commit for all

loop instructions. Upon loop commit, resources are freed and registers

for the next iteration are allocated. Thus no speculative register allocation

or parallelism across loop iterations are allowed. [63] notes no significant

impact on performance due to this limitation, however our own results

presented in Chapters 4 and 6 significantly differ.

Miscellaneous Loop Techniques

In addition to techniques that buffer loop instructions within the processor

pipeline, other optimizations for bettering loop performance have been

proposed.

VEAL, proposed by Clark et al. [20], is a special purpose accelerator

21

that targets frequently executed loops. In VEAL, loops are dynamically de-

tected at runtime through a just-in-time (JIT) compilation process. During

the JIT process, suitable loops are translated for later offloading to a special

purpose accelerator. This custom accelerator breaks loops into memory

access streams and computation, allowing loads to be streamed far in

advance of execution without the complexity of traditional out-of-order

processing cores. Through this translation and offloading, great perfor-

mance and energy gains are demonstrated on a variety of application

codes in comparison to a conventional dual-issue in-order processor.

Wish Loops, proposed by Kim et al. [48], represent an attempt to dy-

namically predicate extraneous loop iterations. In the event of loops with

variable trip counts, Wish Loops enable the processor to dynamically pred-

icate extra iterations without having to perform a full squash operation. By

buffering loops in-place in our Revolver architectures, we obtain similar

benefits on variable iteration loops as the loop termination is no longer

predicted and the fall through path is immediately available on loop exit.

2.2 Prefetching Techniques

As processor performance outpaces improvements in memory technology,

the fraction of time modern processors remain stalled awaiting in memory

data has dramatically increased [89]. Additionally, with the advent of chip

multiprocessors (CMPs), contention and latency for main memory are

22

only likely to worsen [61]. To obviate the disparity between processor and

memory performance, architects have investigated many techniques to

address the growing problem of data latency. While caches and memory

hierarchies greatly reduce the latency of spatial and temporal data reuse,

prefetching techniques serve the purpose of reducing or eliminating the

penalty of compulsory cache misses [37].

In this thesis we introduce a new microarchitectural technique known

as Load Pre-Execution. Load Pre-Execution has many similarities to tradi-

tional prefetching, however extends the prefetching benefit beyond the

systems caches and into the processor execution core. In this section we

survey the history and state of data prefetching mechanisms.

Cache Prefetching

Prefetching within the memory system has long been viewed as a sim-

ple and straightforward means to increase system performance. Early

cache designs noted the benefit from spatially prefetching multiple con-

tiguous words from memory [5]. Prefetching of adjacent cache lines was

later implemented in the commercial IBM 370/168 and Amdhal 470V

systems [74].

Sequential Prefetching

Taking advantage of spatial locality, multiple methods exist to perform

sequential prefetching of cache lines. In sequential prefetch methods,

23

during the processing of a current cache line, the fetching of additional,

contiguous cache lines are speculatively performed.

The simplest form of sequential prefetch is one block lookahead (OBL).

In OBL schemes, cache line b + 1 is speculatively prefetched during

the processing of cache line b. In [75], Smith defines multiple imple-

mentations of OBL prefetching. In the prefetch-on-miss implementation,

speculative prefetchs for contiguous cache lines are only generated on

cache misses. This results in simple hardware that initiates two cache

line fetches on every cache miss. However, prefetch-on-miss does not pre-

vent demand misses to contiguous cache lines of currently cached data.

Tagged prefetch exists as an extension of prefetch-on-miss. In tagged prefetch-

ing, every cacheblock has an associated bit that identifies the given block

as demand fetched or prefetched. In addition to generating sequential

prefetches on cache misses, tagged prefetching generates prefetches for con-

tiguous lines whenever prefetched cache lines are accessed. For streaming

access patterns, tagged prefetching has the potential to eliminate almost all

cache misses whereas the prefetch-on-miss technique would only eliminate

approximately half of all demand cache misses.

Although sequential prefetch recognizes a common memory access

pattern, OBL prefetching may not generate cache accesses in a timely man-

ner in order to completely hide main memory latency. To combat the issue

of prefetch timeliness, architects have investigated increasing the distance

and number of prefetches generated on cache access. Known as the degree

24

of prefetch, a cache of degree Nwill intiate the prefetch of N sequential

cache lines from memory at a time. It should be noted that OBL is a special

case where the prefetch degree N equals one. In [64], Przybylski noted

that prefetching degree beyond N = 1 frequently lead to performance

degradations and excessive power consumption due to cache pollution.

To address this issue, adaptive sequential prefetching was proposed to only

initiate high degree prefetches when profitable [21]. In adaptive sequential

prefetch, the utility of prefetches are periodically measured and impact the

allowed degree of prefetching. When prefetched cache lines utilized the

allowed degree of prefetching is increased. In the event that prefetched

cache lines go utilized, the allowed prefetching degree is reduced and

prefetching may even be disabled entirely. Such schemes can be found

even in modern processors such as ARM’s Cortex A15 [52].

To enable high degrees of prefetching, without adaptivity, Jouppi pro-

poses the use of stream buffers [42]. Stream buffers exist as FIFO buffers

alongside caches. By placing prefetched cache lines into a stream buffer

instead of directly into a cache, potential cache pollution is avoided even

with high degrees of prefetch.

Stride and Table-based Prefetching

In addition to sequential prefetching, architects have designed prefetches

to identify and service regular memory access patterns that exhibit stride-

based or otherwise predictable memory access patterns.

25

Figure 2.2: Stride Prefetching Reference Prediction Table (RPT).

In [9] Baer and Chen introduce what has become known as conven-

tional stride-based prefetching. The predictor in [9] identifies memory

patterns where static load or store instructions within loops exhibit a

fixed-sized stride through memory over the course of execution. This

is achieved by looking up a given load/store address in the Reference

Prediction Table (RPT). Shown in Figure 2.2, the RPT is indexed by the

load/store instruction address and contains fields for the last address

accessed, currently predicted stride, and state of the given RPT entry. For

a given load/store the prediction table can be in one of three primary

states: untrained, training, or trained. Initially untrained, on the initial ac-

cess by a memory instructions program counter, the address is recorded

in the corresponding RPT entry and the state transitions to training. On

subsequent accesses, the address-delta between prior and current memory

accesses are computed and stored wthin the RPT. If the previous access

plus the predicted stride match the current stride, the entry transitions

26

to the trained state. On future access, the RPT is used to speculatively

prefetch ahead by the predicted stride.

Markov prefetching [41] is a type of correlated prefetching. In Markov

prefetching, a history table records consecutive address pairs. In the event

of a cache miss, the history table is probed using the miss address. Each

entry in the Markov correlation table holds a list of addresses previously

accessed following the current miss address. This address list is used as a

source of potential prefetch targets.

Distance prefetching [43] is a generalization of Markov prefetching.

In distance prefetching, the history table is accessed by the address delta

between two consecutive global misses. Instead of identifying potential

target addresses, the history table contains a list of previosuly observed

address strides to use for the generation of prefetch addresses.

Finally, Nesbit et al [59] propose using a Global History Buffer to iden-

tify and initiate data cache prefetching. Using a linked-list structure, [59]

demonstrates how the prefetch effectiveness of stride, markov, and dis-

tance prefetching can be obtained using an alternative structure.

Software Prefetching

In addition to hardware mechanisms designed to prefetch data from mem-

ory, architects have proposed mechanisms to enable programmer or com-

piler driven prefetch mechanisms [12, 17, 50].

For later reference it is improtant to note that software prefetch mech-

27

anisms exist in one of two forms: binding and non-binding. In binding

prefetch mechanisms, prefetches are performed to a named register [30].

After access from memory the obtained value exists outside of conven-

tional cache coherence mechanisms and will not be invalidated. Alterna-

tively, non-binding software prefetch instructions load instructions from

memory, likely resulting in their caching or otherwise buffering, but do

not specifically name a destination register.

Microarchitectural Load Acceleration

Although most architectural prefetching mechanisms exist at the cache or

software level, multiple microarchitctures effectively prefetch the required

address stream of programs. In decoupled architectures, such as the As-

tronautics ZS-1 [77], two instruction streams for computation and memory

access are processed in parallel. The independent memory access stream

allows the queueing of required load data without the complexities of con-

ventional out-of-order architectures, essentially resulting in single-cycle

loads like our Load Pre-Execution technique.

Runahead execution [24] exists as a microarchtiectural mechanism that

enables processor cores to generate data prefetches under the shadow

of a cache miss. Runahead execution works by evaluating the predicted

execution path with speculative values during a cache miss stall. As all

work performed during the cache stall is discarded, the sole objective

of runahead execution is to generate data prefetches. Although runa-

28

head execution has been used in many academic works, recent industry

publications [16] have observed that well tuned conventional hardware

and software prefetching can obtain almost all the benefits of runahead

execution with few overheads.

Additionally, work to speculatively accelerate load address calculation

within a processor core has been performed. With zero-cycle loads [7],

fast address calculation, pre-decode information, and register caching are

used in conjunction to eliminate load pipeline latencies relating to effective

address calculation.

2.3 Out-of-Order Microarchitecture

Out-of-order execution has become ubiquitous within the microproces-

sor industry. Today out-of-order processors can be found in all market

segments from deeply embedded mobile processors to high performance

servers and workstations. This section provides an overview of the history

of out-of-order processors as well as their current structural design.

Register Renaming

Foremost to enabling out-of-order execution is the ability to of a microar-

chitecture to eliminate false register dependencies while maintaining true

data dependencies between instructions. Examples of false dependencies

29

include anti-dependencies2 and output dependencies3. True dependen-

cies are read-after-write (RAW) dependencies where results produced by

one instruction are directly consumed by a later instruction. Historically,

register renaming has served the purpose of eliminating false dependen-

cies and linking operand dependencies between instructions. Register

renaming was first introduced by Robert Tomasulo in what has become

known as Tomasulo’s algorithm [86].

Tomasulo’s algorithm works by dividing a processor design into two

halves: An in-order front-end and an out-order back-end. As instructions

progress through the in-order front-end, their logical source identifiers

are used to look up the corresponding physical locations of sources. The

structure preforming this mapping of logical sources to physical destina-

tions is commonly known as the register allocation table (RAT) in modern

out-of-order processors. After having been allocated a storage resource in

the out-of-order back-end, this mapping table is updated and the instruc-

tion is allowed to proceed to execution. The back-end storage resource for

instructions awaiting dependencies for execution is commonly known as

a reservation station. After allocation into the reservation station, instruc-

tions await for the broadcast of their source operands. In addition to data,

source operands are broadcast with the associated physical identifier tag.

The use of the physical identification tag enables dependent instructions

only source true dependents. After all source dependencies are satisfied,
2Also known as write-after-read (WAR) dependencies.
3Also known as write-after-write (WAW) dependencies.

30

instructions proceed to execution. After execution, the result is broadcast

on a common data bus (CDB) for dependent instructions to utilize.

Although Tomasulo’s design embodies the central ideas of register

renaming and out-of-order execution, much progress has been made in

refining the structure and functionality of out-of-order processors. A pri-

mary functional extension to this is then enablement of precise interrupts

and exceptions. In [79], Sohi and Vajapeyam introduce the Register Up-

date Unit (RUU), to enable the elimination of false dependencies while

maintaining precise microarchitectural state. With the RUU, age-based

resolution of register results is performed by associating version numbers

with each logical register. Through such ordering, instructions can execute

in an out-of-order fashion while still accessing the appropriate version

of source operands. The RUU operates as a combination of a reservation

station and a reorder buffer (ROB). Instructions are maintained within

the RUU until commit. At commit results are written in-order to the

architectural register file. As results are written in an in-order manner

after commit, designs utilizing an RUU are able to maintain a precise

microarchitectural state.

Since [79], multiple different structural ways to maintain a precise

architectural state have been proposed. In [76], Smith and Pleszkun detail

the reorder buffer, history buffer, and future file methods of maintaining or

restoring precise microarchitectural state in the presence of interrupts or

exceptions. Over the years many refinements have been made, although

31

Front End

Rename / Alloc

Scheduler ROB

PRF

Execution Units

Figure 2.3: PRF-based Out-of-Order Structure.

the separate scheduler, physical register file (PRF), and reorder buffer

approach is adopted by most current out-of-order processors. Figure 2.3

shows the high level structure of a modern out-of-order processor, such

as Intel’s Haswell microarchitecture [44].

Load/Store Ordering

In addition to maintaining order with respect to register operands, ag-

gressive out-of-orders must maintain ordering with respect to memory

across multiple instructions. Memory disambiguation consists of multi-

32

ple techniques to enable the simultaneous execution of multiple memory

operations in an out-of-order fashion. The ordering of multiple opera-

tions with respect to memory, frequently referred to as a microprocessor’s

consistency model, directly impacts the structure and operation of the

load/store unit [51, 1].

Although many alternative structures and techniques have been pro-

posed, the load/store units are generally maintained as two separate

queues: one for loads and one for stores [19, 58, 71, 82]. The load queue

primarily contains a load’s effective address and valid bits. The store

queue additionally maintains a data buffer for written values. As memory

operations enter the machine, each is assigned a monotonically increas-

ing store color. Fundamental to the load and store queue is maintaining

the order of operations between multiple operations to the same address.

Upon load issue, loads associatively probe the store queue to find any

older stores to the same address region being loaded. The store color is

used to limit the subset of candidate stores. Essentially any store queue

entry with an older store color is a candidate for data forwarding. Upon a

data match, the value is forwarded from the youngest store, older than the

given load. In the event of partial data and overlapping address regions,

a merge operation between store queue entry data and cache data may

be required. After load commit, the corresponding load queue entry is

reclaimed and used for future instruction execution.

When stores issue, the load queue is searched to detect the situation

33

where a younger load to the same address region has executed. In this

situation the load may have sourced stale data and must be triggered for

re-execution. Otherwise, the store places its data in the store queue. Once

the store commits, the store is considered finished or senior and may be

written back to memory. Some architectures, such as PowerPC and ARM,

utilize relaxed memory consistency models allowing multiple stores to be

merged and written back simultaneously to memory in almost all cases.

The structure which typically sits between a processor and its caches that

performs this operation is a store buffer. Other architectures, like x86, more

closely follow total store order (TSO), thus stores may not be combined in

the presence of intervening loads. Eventually completed stores drain into

memory and are removed from the store queue.

It should be noted that although associatively searched, load and store

queues maintain a precise program-based ordering of memory operations.

Thus the search logic must both maintain this ordering and be able to

handle the wrapping of these circular queues.

2.4 CRIB Microarchitecture

For an alternative out-of-order substrate, this thesis evalutes the effec-

tiveness of in-place loop execution on the CRIB architecture [32]. The

CRIB architecture constitutes an effort to eliminate complexities related

to register renaming, issue logic, and bypass networks in out of order

34

R3R2R1

C

C

C

C

R0

S
ou
rc
e1

S
ou
rc
e2

D
es
tin
at
io
n

WE

Clock
ALU C

To Next Entry

From Previous Entry

C C C C

CRIB Partition CRIB Entry

Figure 2.4: CRIB Structures.

architectures. Register renaming, although enabling elimination of false

dependencies, introduces additional complexity, energy, and latency to

the front end of modern processors. Additionally, modern out of order

issue logic faces great challenges in terms of scalability and the generation

of efficient schedules [14].

CRIB Design

CRIB achieves the objectives of eliminating renaming and issue logic com-

plexity by eschewing traditional register renaming for a spatially-oriented

operand network. This spatially-oriented operand network is organized

as a unidirectional ring with a dedicated channel per architectural regis-

ter. Figure 2.4 details the primary structures involved in CRIB. Register

operands are received from dedicated channels routed along columns

while instructions occupy entries within the rows. As instructions are

fetched they are inserted in program order into these dedicated CRIB en-

35

tries. CRIB entries comprise a dedicated ALU, routing structures to receive

and transmit sources and destinations, and completion logic. CRIB entries

perform many functions: instructions wait until each input operand is

ready, mux inputs from the register columns, execute on the dedicated

ALU, drive their results onto the appropriate output column, and mark

the destination output column as ready so later instructions may execute.

Although conceptually simple, these structures eliminate the need for

traditional renaming and scheduling logic. By ordering the instructions

and operand network according to the program sequence, CRIB guar-

antees that an instruction’s operands will only be marked ready by the

closest producing instruction in program order. This results on only true

dependencies being maintained, without the need for a mapping table to

help distinguish logical instances of an architected register. Additionally,

global scheduling logic is unnecessary as CRIB entries are effectively self-

scheduling. Once inserted, CRIB entries sit idle until all source operands

are ready before executing and marking their output as ready, thus en-

abling later instructions to begin execution.

CRIB Operand Network

The operation of CRIB, due to its operand network, has many interesting

tradeoffs with respect to superscalar architectures. Due to its organization

as a unidirectional ring, CRIB exposes communication latency in rout-

ing results to later instructions. In CRIB, once produced, register values

36

propagate along the ring at the rate of four entries per cycle. If a depen-

dent instruction is located within four entries of a producer, the result is

available the cycle it is produced, and no delay due to operand routing

is experienced. However, if dependent instructions are located far ahead

in the program sequence from a producer instruction, this operand rout-

ing latency will be exposed. For conventional out-of-order processors, as

long as dependent instructions are within the current instruction window,

these far out consumer instructions do not face additional latencies and

are scheduled for execution immediately following producer instructions.

Although conventional superscalar processors perform well when execut-

ing instructions where an operand is produced much earlier in program

order, many program-level behaviors work to mitigate this benefit. If

the time critical operand for an instruction is located closely within the

sequential instruction stream, the negative impact of far operand latency

in CRIB will be masked. Secondly, previous work [29] has shown that

the useful lifetime of register values are quite small. In the majority of

cases a register value is last used within 10 instructions of its production.

Thus, far communication amongst instructions is not the common case.

Finally, instructions slowed by operand propagation may not be on the

critical instruction path. CRIB has abundant execution resources, so seri-

alized scheduling of these resources, as done in conventional processors,

is unnecessary. Thus, delaying non-critical path instructions has impact

on overall performance.

37

2.5 Operand Networks

As processors architectures evolved, they underwent a progression from

simple multi-cycle processors, to pipelined scalar cores, and finally to

the wide-issue out-of-order processors in existence today. To enhance

the performance of these pipelined architectures, hardware bypassing

was employed to eliminate certain pipeline hazards. Consequently, most

instruction operands are obtained from bypass networks instead of the

register file. However, due to the wide-issue and deep pipelined nature of

modern processors, the complexity of these bypass networks can impose

limits on achievable frequencies. With respect to our CRIB baseline archi-

tecture, we explore the impact of operand latency and necessary bypass

paths for supporting in-place loop execution. In this section we explore

operand network techniques that have been applied in traditional and

non-traditional processor architectures.

Traditional and Clustered Bypass Networks

Traditional pipelined processors employ single-cycle bypass networks

which forward results to dependent pipeline stages in the same cycle as

they are produced. The latency of the bypass network and execution units

in these traditional processors places a limit on the maximum processor

frequency. This latency grows with respect to the issue width and pipeline

depth of a processor. As issue width and frequency greatly impact the

38

performance of modern processors, this gives rise to two distinct processor

design styles [34]. In the “brainiac" design style, a processor tries to achieve

performance by extracting the maximum level of parallelism through a

wide issue design – at the expense of a slow clock cycle. “Speed demons"

conversely comprise simple, narrow width pipelines that are capable of

operating at high frequency.

Architects have proposed many methods to reduce the negative im-

pacts of complex bypass networks. Ahuja et al. investigate the performance

impact limited bypass has on the performance of a scalar processor core [2].

Although limited bypass causes significant degradation in processor per-

formance, Ahuja et al. find that intelligent compiler scheduling can help

mitigate the negative impact. Commercially, the IBM POWER4 [85] and

IBM POWER5 [73] designers took the ultimate “speed demon" approach

and elected not to implement any bypass networks. To help mask the

forwarding latency to dependent instructions, these designs rely on their

out of order schedulers fill resultant pipeline bubbles with independent

instructions.

Trying to break the dichotomy between these two design styles, multi-

ple researchers have proposed clustered processor architectures [18, 27,

62, 92]. Clustered architectures serve as a mean of expanding the maxi-

mum width of a processor core while limiting the required number of

bypass paths. In these architectures, bypass networks and register files

are divided amongst two or more execution clusters. For instructions

39

within the same execution cluster, fully bypass paths are instrumented.

Between execution clusters, limited bypass paths exist. This clustering

approach has the effect of allowing back-to-back dependent instruction

execution within a cluster. However, additional latency will be incurred

if dependent instructions exist within other clusters. The performance

limiting impact of inter-cluster dependent instructions can be mitigated

by steering chains of dependent instructions to the same clusters. For

well behaved codes, this mechanism can effectively result in the apparent

performance of a fully bypassed processor core, without having to incur

slow cycle times. Commercially, the Alpha 21264 was the first processor

to implement clustering with two separate execution clusters [47].

Scalable Operand Networks

Although clustered architectures allow the issue width of a processor to

be increased without directly impacting the frequency of the resulting pro-

cessor core, there are limitations to the benefits of clustering. Additionally,

alternative processor designs are able to benefit processor performance

in non-traditional ways. These benefits encompass techniques such as

making the instruction set architecture (ISA) aware of distributed process-

ing models, exposing parallelism not captured by traditional out of order

processors, and eliminating pipeline complexities. To this end, we provide

a background on a relevant selection of distributed processor models with

scalable operand networks.

40

RAW

As technology scaling progresses, the relative delay of on-chip wires

grows [39]. Whereas the delay of wires in previous architectures was

negligible, they may diminish the performance in future architectures.

With this in mind, the RAW [84] processor architecture works to directly

support inter-core communication by incorporating it within the ISA. By

promoting the interfaces required for inter-core communication directly

to the ISA level, it is hoped that software interfaces can achieve greater

scalability and communication is made more efficient. In traditional chip

multiprocessors, inter-core communication is carried out through coher-

ent memory interfaces that incur more latency and energy than direct core

to core communication.

The RAW processor architecture is a tiled architecture, where proces-

sor tiles are connected directly to their adjacent neighbors through two

dimensional mesh networks. The RAW processor is a 16-core chip which

utilizes four 32-bit interconnection networks to directly communicate be-

tween scalar processor cores. Two of the networks are statically routed

with messages and routes being configured at compile time. The other

two networks are dynamically configured at runtime. These networks are

exposed through the ISA by mapping specific registers to the four on-chip

operand networks. These registers are constructed as FIFO queues. If an

instruction writes to a given register, the value is enqueued in the output

for the selected network. When reading a network mapped register, the

41

most recently received value will be extracted from the incoming network.

If no register value is present, the scalar processor stalls at fetch until a

value is available.

Through a platform specific compiler, the RAW architecture is capable

of making use of these operand networks. The explored region of codes

within the RAW work include traditional scalar codes and enhanced multi-

threaded applications communicating via its ISA level network.

Multiscalar

The Multiscalar processor architecture [80] is a design paradigm for extract-

ing large quantities of instruction level parallelism from single-threaded

programs. The multiscalar paradigm works by dividing single-threaded

programs into sets of tasks and distributing these tasks across multiple

processing elements. Tasks in multiscalar correspond to a contiguous re-

gion of the program control flow graph – potentially encapsulating many

instructions and complex control flow. Once distributed, these tasks oper-

ate in unison, executing different portions of the program executable in a

parallel fashion. Although tasks are distributed and executed in parallel,

they are not required to be fully independent from each other as they

represent subsections of a larger sequential instruction stream. Dependen-

cies across tasks are supported in multiscalar processors by presenting

the appearance of a unified logical register file and sharing a memory

dependence unit across all processing elements. Dependencies and the

42

sequential commitment of tasks are efficiently supported in multiscalar by

organizing processing elements along a unidirectional ring network. As

tasks produce values needed by later sequential tasks, compiler generated

masks control the forwarding and reception of values along this network.

Additionally, as tasks complete a commit pointer advances along the ring-

organized processing elements to reflect the committed architectural state.

Due to its interaction with high level program semantics, the multi-

scalar paradigm results in multiple benefits not commonly realized by

traditional processor architectures. First, due to the task-oriented structure

of multiscalar, multiscalar processors are capable of performing selective

branch prediction. As a global sequencer provides each processing ele-

ment with tasks, the global control flow path remains valid as long as no

branches invalidate the currently executing tasks. Within tasks, branches

may be mispredicted, but this has no impact on global control flow and the

other tasks. This property allows multiscalar processors to effectively toler-

ate poor branch prediction within some tasks while extracting parallelism

from others. This inter-task misprediction property is a form of control

independence [66]. Second, as a task-oriented architecture, multiscalar

can effectively extract parallelism over a very large contigious region of

the sequential execution stream. Traditional out of order processors must

hold all unexecuted instructions within issue queues, limiting the program

region where parallelism can be extracted, whereas in multiscalar’s task-

based structure, only subsets of each task need be under consideration for

43

execution. Finally, due to the distributed nature of multiscalar’s processing

elements and its ring-based interconnect, multiscalar effectively imple-

ments software-controlled clustering. Inter-cluster, dataflow dependencies

are tightly coupled via non-scalable bypass paths. Intra-cluster, the ring is

orchestrated by mutiscalar’s compiler controlled register passing.

TRIPS

The TRIPS architecture [68] is a recent initiative to build a scalable out

of order processor through the use of a distributed architecture and a

new ISA that explicitly encodes dataflow dependencies between large

batches of instructions. In TRIPS, the compiler constructs blocks of 128

instructions and distributes them in groups of eight across 16 processing

tiles. These processing elements are organized in a two dimensional mesh

with single-cycle interconnections between nodes. As instruction place-

ment within tiles is compiler orchestrated and instruction dependencies

explicitly encoded through the ISA, the compiler can effectively minimize

exposed communication latencies between dependent instructions. Like

multiscalar and RAW, this leads to a scalable bypass network where la-

tencies between processing elements are exposed and communication is

expressed within the ISA. TRIPS operates as a dynamic issue machine,

whereas the RAW architecture’s instruction issue amongst its scalar cores

is statically determined. Although a goal of TRIPS was to create a scalable

and low latency operand network, performance of programs on TRIPS

44

is heavily limited by the latency and contention of its interconnection

network. As shown in [68], the latency and contention within the TRIPS

interconnection network can account for large fractions of program execu-

tion time. This observation motivates the importance in optimizing the

communication latency of a distributed processor’s operand network.

2.6 Summary

This chapter presented related work and background material central to

the implementation of in-place loop execution. The exploration of loop

caching shows the progression of loop buffers from general structures

to highly optimized and embedded parts of modern microarchitecture.

The history of prefetching provided context for the proposed load pre-

execution technique enabled by in-place loop execution. Next the structure

and design of traditional and non-traditional out-of-order processors was

presented to give an overview of the structures being modified by our

techniques. Finally, background on operand networks was provide to

motivate our investigation into improving the CRIB operand network.

45

3 loop detection and training

To identify and eliminate redundant instruction dispatches during loop

execution, the processor front-end requires the presence of dynamic loop

detection hardware. Front-end loop detection and dispatch hardware

operates in two primary phases. In the first phase the front-end must

identify loops that are capable of being dispatched in loop-mode to the

out-of-order back-end. In the second phase of operation, the front-end

must determine which candidate loops should utilize loop-mode dispatch.

In this section we detail the structure of the loop detection hardware

and what factors determine the probability that a undergoes loop-mode

dispatch.

3.1 Identifiable Loops

This section provides an overview of the types of loops which our Re-

volver architectures support for loop-mode dispatch. Figure 3.1 presents

examples of multiple loops which are potentially supported in our Re-

volver designs. Simple conditional loops that have a single point of entry

and exit, like Figure 3.1a, are easily identified and handled by the loop

hardware. Our designs also support the dispatch of loops like Figure 3.1b

that contain nested control. These loops are handled by predicting that

all iterations of a given loop follow the same inner control path. Thus

46

ld r0,[r1, r3]
str r0, [r2, r3]
sub r3, r3, #4
cmp r3,#0
bne start

start:

(a) Simple Conditional

ld r0, [r1, r2]
cmp r0, #0
beq skip
str #0xF, [r1, r2]
sub r2, r2, #4
cmp r2, 0
bne start

start:

skip:

(b) Nested Control

ldr r0, [r1]
cmp r0, #0
beq exit
add r1,r1, #1
b start

start:

(c) Early Exit

Figure 3.1: Loop Types

the Revolver architectures can dispatch loops with almost unlimited in-

ner control, provided the same path is taken across many iterations. For

loops with unstable control, feedback described in Section 3.4 is necessary

to disable loop-mode dispatch. Finally, our loop detection hardware is

also capable of identifying loops that utilize early exits like in Figure 3.1c.

It should be noted however that this loop structure is quite rare as it is

not often generated by the GCC 4.7.2 compiler utilized in benchmark

compilation.

47

Idle

TrainDispatch

start backwardsBranch(pc)va
lid

Lo
op

(p
c)

trained || tooLarge

di
sp

at
ch

ed
validLoop(pc)

Figure 3.2: Loop Detection Finite State Machine.

v start addr fallthrough addr num_insts max_unroll profitability

Figure 3.3: Loop Address Table (LAT) Structure.

3.2 Detection Operation

The loop detection logic in the Revolver architectures is similar to that used

in previous loop buffer proposals [40, 54]. Loop detection is controlled

by the simple finite state machine (FSM) shown in Figure 3.2. This state

machine operates in one of three possible states: Idle, Train, orDispatch.

In the Idle state, instructions propagate normally through decode until

the start of a profitable loop is identified or a taken PC-relative backwards1

1Branch target instruction address less than current instruction addresss.

48

branch/jump is encountered. Profitable loops are identified by consulting

a small structure containing known loops called the Loop Address Table

(LAT). The LAT, detailed in Figure 3.3, is a small direct-mapped structure

that records information relating to the loops composition and profitability.

In the event a profitable loop is encountered, the detection FSM transitions

to the Dispatch state and begins loop-mode dispatch. If no profitable

loop is identified and a backwards branch or jump is encountered, the

detection FSM instead transitions to the Train state.

The Train state exists to record a previously unknown loop’s start ad-

dress, end address, and allowable unroll factor2 in the LAT. Once entering

the Train state, until the loop ending branch, resources required by the

loop body are recorded. After the ending branch is encountered, the loop

information is entered into the LAT and the FSM transitions to the Idle

state again. If a loop requires too many resources to be contained by the

back-end, the LAT is not updated. The fall through address for a loop is

set to the next sequential memory address. It should be noted that, if a

loop start instruction is encountered at any time, training will be aborted

and the FSM will immediately transition to the Dispatch state. Finally, if

another backwards control instruction is encountered, the resource usage

information is reset and the Train state is re-entered.

In the Dispatch state, the decode logic guides the dispatch of loop

instructions into the out-of-order back-end by specially tagging them as
2As constrained by physical resources.

49

loop instructions. The loop body is unrolled as many times as possible,

subject to available back-end resources. After unrolling all loop instances,

the front-end is redirected to the fall through path. Once the fall through

path fills the front-end, the front-end stalls and clock gates.

3.3 Detection Discussion

In this section we highlight multiple aspects of the previously described

loop detection mechanism.

First, the Revolver architectures allow almost unlimited control flow,

including function calls/returns, within a loop body. The only limitation is

that predicted execution paths are statically determined at the time of loop

dispatch. Thus loops with unstable control flow make poor candidates for

loop-mode and back-end feedback is responsible for eventually disabling

loop-mode dispatch of such loops.

Secondly, loop-mode is disabled for a given loop if it contains serializing

instructions. Examples of serializing instructions include system calls,

memory barriers, and load-linked/store-conditional pairs.

3.4 Training Feedback

The back-end feedback serves one primary purpose: relaying informa-

tion about the profitability of a loop body. The use of feedback enables

50

the Revolver architectures to successfully eliminate instruction dispatch

overheads while limiting any potential negative performance impacts.

In Chapter 8 we evaluate the impact of no feedback on loop-mode dis-

patch. The remainder of this section describes our developed feedback

mechanism.

Shown in Figure 3.3, the LAT contains a profitability field that acts as

a 4-bit saturating counter. Upon insertion into the LAT, loops receive a

default profitability of 8. Loop-mode dispatch is enabled if profitability

is greater than or equal to 8. Feedback from the back-end adjusts a loops

profitability to impact its likelihood of loop-mode dispatch.

The following factors impact a trained loops profitability. If the dis-

patched unrolled loop body iterates more than twice the profitability is

incremented by 2, otherwise it is decremented by 2. If a branch within

the loop body mispredicts to an address that other than the fall through,

the loops profitability is set to zero. For disabled loops, the front-end

increments the profitability by 1 for every two sequential successful dis-

patches observed. The absolute values of these profitability factors was

determined through iterative simulation and performance measurement

across three benchmark suites.

Adjusting by these factors ensures that only highly profitable loops are

enabled for loop-mode dispatch, thus mitigating any potential negative

performance impact while capturing the majority of potential benefit.

51

3.5 Summary

In this chapter the capabilities and operation of Revolver’s loop detection

hadware were described. Additionally, the necessity and operation of

back-end feedback in order to restrict loop mode execution to profitable

loops was described.

52

4 conventional back-end loop

execution
Revolver’s conventional out-of-order back-end supports loop-mode execu-

tion through a series of simple modifications to the issue queue, load/store

queue, and commit logic. These modifications allow loop instructions

within the back-end to be executed multiple times in order to complete all

necessary loop iterations. During subsequent executions, all instructions

retain their initially allocated resources. In this chapter we provide an

overview of back-end operation as well as the required structural modifi-

cations.

4.1 Overview

To summarize back-end functionality, Figure 4.1 provides an example of

loop-mode execution performing a string copy operation1. In this example,

the six instruction string copy loop is unrolled twice into the issue queue.

The first (green) loop body performs all odd-numbered iterations while the

second (blue) loop body completes all even-numbered loop iterations. This

partial unrolling allows parallelism across iterations during loop-mode

execution.
1Copy bytes from source array to destination array until encountering null.

53

ld r0, [r1, #0]
st r0, [r2, #0]
add r1, r1, #1
add r2, r2, #1
cmp r0, #0
bne str_cpy

str_cpy:while(*dst++ = *src++) { }

ld r0, [r1, #0]

st r0, [r2, #0]

add r1, r1, #1

add r2, r2, #1
cmp r0, #0

bne
ld r0, [r1, #0]

st r0, [r2, #0]

add r1, r1, #1

add r2, r2, #1
cmp r0, #0

bne

Issue Queue

ld r0, [r1, #0]

Load Queue

ld r0, [r1, #0]

st r0, [r2, #0]

Store Queue

st r0, [r2, #0]

Write Buffer

loop_start

loop_end

commit

commit

loop_start

loop_end

commit

loop_start

loop_end

Source Code Assembly

Figure 4.1: Revolver Out-of-Order Back-end Example.

For maintenance and ordering, loop start and end pointers are tracked

by each back-end queue. The queues also maintain a commit pointer

that identifies their oldest, uncommitted entry. Shown in Figure 4.1, the

commit pointer walks from the loop start until the loop end entry. After

committing the loop end instruction, the commit pointer wraps to the

loop start to begin committing the next loop iteration. Upon commit, issue

54

queue entries are reset and can be immediately reused for the next loop

iteration. Load queue entries are simply invalidated on commit, while

store queue entries drain into a small write combining buffer. Draining

stores into a write buffer allows the store queue entry to be immediately

reused in the next loop iteration. In the rare instance when a store cannot

drain into the write buffer, commit stalls. Finally, loop-mode reuse of LSQ

entries requires no modification to the age-based ordering logic of the

LSQ. LSQ ordering logic must already support wrap-around based upon

the relative position of a commit pointer in a conventional out-of-order.

To demonstrate this, given the example’s relative position of the commit

pointer in Figure 4.1, the second (blue) loop body store is properly ordered

as older than the first (green) loop body store.

Loop-mode execution completes when any branch, loop terminating or

otherwise, resolves to the loop’s fall through path. Allowing any branch

which resolves to the fall through path to terminate loop-mode execution

means that loops end gracefully even on iteration counts that are not evenly

divisible by the unrolling factor. Additionally, this resolution handling

allows break statements within loop bodies to quickly resolve without

being treated as mispredicts. After termination, the loop’s out-of-order

resources may be freed and the fall through path immediately proceeds

through dispatch.

In the remainder of this chapter we describe the precise structural

modifications necessary to support this operation.

55

Modified
Wakeup
Matrix

Select
Logic

Reqs

Grants

Tag
Propagation

Unit
Grants

Op
Silo

Program
Ordered

Instructions

oppdst psrc0 psrc1

ldst lsrc0 lsrc1 pdst op

Instruction Silo

Figure 4.2: Revolver Out-of-Order Issue Queue Design.

4.2 Scheduler Modifications

Key to supporting loop-mode execution in Revolver is the structure and

operation of the instruction scheduler. The overall design of the Revolver’s

scheduler, shown in Figure 4.2, is similar to the matrix scheduler presented

in [69] by Sassone et al. The main components of this scheduler are a

wakeup array for identifying ready instructions, select logic for arbitration

between ready instructions, and the instruction silo for producing the

opcode and physical register identifiers of selected instructions.

Three primary modifications make the Revolver scheduler distinctive

from [69]. First, Revolver’s scheduler is strictly managed as a queue and

maintains program order among entries. Secondly, the wakeup array

utilizes logical register identifiers and position dependence, rather than

56

physical register identifiers for wakeup. Finally, Revolver uses a Tag Prop-

agation Unit (TPU) to provide physical register mappings, instead of a

front-end RAT combined with back-end tag storage.

With the high level structure of the scheduler defined, the following

Sections 4.3 and 4.4 explain the function and operation of the Revolver’s

instruction wakeup and Tag Propagation Unit.

4.3 Wakeup Logic

The purpose of instruction wakeup in an out-of-order processor is to ob-

serve results generated by scheduled instructions in order to identify new

instructions capable of being executed. To perform this task, Revolver’s

instruction wakeup utilizes program-based ordering of instructions and

logical register identifier broadcasts. This differs from many conventional

schedulers, which use physical register-based broadcasts and do not re-

quire ordering. The primary benefit from this organization is that Revolver

is able to perform instruction wakeup without requiring front-end renam-

ing.

Wakeup Operation

Figure 4.3 shows an overview of the Revolver wakeup logic. At the highest

level, instruction wakeup is organized as a segmented, program-ordered

circular queue. The segmented wakeup arrays within the scheduler are

57

Wakeup
Array

Segment Header

Segment Header

Wakeup
Array

Figure 4.3: Wakeup Overview

interconnected via a unidirectional ring that transmits logical register

broadcasts. In our designs, segments are sized equal to the machine’s

dispatch width and broadcasts along the ring interconnect travel at the

rate of eight instruction entries per cycle. At any given time, one segment

in the machine will be designated the architected segment, with incoming

operands implicitly ready.

Inside the wakeup array, shown in Figure 4.4, instructions are dis-

tributed along rows, while columns correspond to logical registers. Upon

58

r0ready r1ready r2ready r3ready

granted
request

granted
request

granted
request

granted
request

clk

Figure 4.4: Wakeup Array

allocation into the wakeup array, instructions mark their respective logical

source and destination registers. Unscheduled instructions within the

wakeup array cause their downstream logical destination register column

to be deasserted. This deassertion prevents younger, downstream depen-

dent instructions from waking up. Once all necessary source register

broadcasts are received, an instruction requests scheduling. After being

granted by select, the instruction asserts its destination register to wakeup

younger dependent instructions.

Close examination of the wakeup array’s logic cell, shown in Fig-

ure 4.5, demonstrates how the wakeup operation is possible. Our modified

wakeup cell design draws from earlier work in [69]. The wakeup cell holds

two state bits that designate the instruction as sourcing or producing a

59

request

clk

read_reg

alloc

dependent?

write_reg

alloc

ready_reg

granted

output?

Figure 4.5: Wakeup Cell

logical register. The request signal to the select logic is implemented in

dynamic logic. If an instruction is dependent and the incoming ready

signal is not asserted, the request signal is pulled down. This pulldown

operation works as a logical NOR. If no un-broadcast dependents remain,

the request signal to select will remain asserted. With respect to outputs,

if an instruction has not been scheduled and produces the logical register,

the outgoing ready signal will be deasserted. The ready signal and grant

signal are implemented with static logic. Once the result producing in-

struction is granted, the grant signal will result in the downstream ready

being asserted. For loop-mode operation, after commit, the grant signal is

deasserted and the cell is free to reevaluate based upon a new incoming

ready signal.

60

1) add r0, r1, #1

2) sub r0, r2, r0

3) cmp r0, #0

req

r0ready

src

dst
1

src
1

dst
1

src
1

dst

r1ready

src
1

dst

src

dst

src

dst

r2ready

src

dst

src
1

dst

src

dst

req

req

gnt

gnt

gnt

(a) Cycle 0 - Inst1 ready.

1) add r0, r1, #1

2) sub r0, r2, r0

3) cmp r0, #0

req

r0ready

src

dst
1

src
1

dst
1

src
1

dst

r1ready

src
1

dst

src

dst

src

dst

r2ready

src

dst

src
1

dst

src

dst

req

req

gnt

gnt

gnt

(b) Cycle 1 - Grant Inst1. Inst2
ready.

1) add r0, r1, #1

2) sub r0, r2, r0

3) cmp r0, #0

req

r0ready

src

dst
1

src
1

dst
1

src
1

dst

r1ready

src
1

dst

src

dst

src

dst

r2ready

src

dst

src
1

dst

src

dst

req

req

gnt

gnt

gnt

(c) Cycle 2 - Grant Inst2. Inst3
ready.

Figure 4.6: Revolver Wakeup Example

Wakeup Example

In this section we work through a simple example of wakeup logic oper-

ation. Figure 4.6 provides an example with three instructions. All three

instructions must be serially executed due to dependencies on logical

register r0. The diagram is color coded with ready register columns col-

ored in blue, active request signals represented in green, and active grants

represented in red.

On cycle 0, the ready signals for logical registers propagate downwards

unless inhibited by an instruction. As Instruction 1 produces register r0, it

gates the downstream ready broadcast until it has been scheduled. This

prevents improper wakeup of Instruction 2 and Instruction 3. Logical regis-

ters r1 and r2 are produced by no instruction, thus their ready broadcasts

are uninhibited and continue propagation. During cycle 0, Instruction 1

satisfies all dependencies and asserts its request vector.

61

In cycle 1, the grant signal for Instruction 1 returns acknowledging issue.

Signalling issue, Instruction 1 ceases inhibition of the downstream r0 ready

signal. With r0 now asserted, Instruction 2 asserts its request vector. As

Instruction 2 has not been granted, it maintains downstream inhibition of

r0, preventing Instruction 3 from waking up.

Finally on cycle 3, the grant for Instruction 2 returns and r0 is uninhib-

ited. With r0 now asserted, the final instruction wakes up and assets its

request vector.

This example demonstrates how the use of program-based ordering

enables Revolver to perform instruction wakeup on logical register iden-

tifiers, in contrast to conventional out-of-orders which require front-end

renaming and physical register-based wakeup.

4.4 Tag Propagation Unit

Without front-end renaming, Revolver needs a mechanism to properly map

logical registers to physical register identifiers. In this section we discuss

the reasoning behind the use of the TPU in Revolver and its operation.

Enabler of loop-mode execution

The reason Revolver requires a TPU is to enable reuse of physical registers

during loop-mode execution. As noted earlier, Revolver does not require

any additional resource allocations between loop iterations. The largest

62

obstacle to avoiding allocation is physical register management. This is so

because, after committing, a loop instruction should be free to begin spec-

ulative execution of the next loop iteration. This is impossible, however,

if an instruction only has access to a single physical destination register.

After commit, the contents of the physical register may be required by

dependent instructions and are part of the architected state. Thus, to begin

speculative execution of the next loop iteration, access to an alternative

physical register identifier is required.

Revolver solves this issue by providing each result producing loop-

mode instruction with two physical destination registers. As loop instruc-

tions iterate, they simply alternate writing between their two destination

registers. This alternation of writes, known in other literature as double

buffering, ensures the previous state is maintained while speculative com-

putation is being performed. To clarify, after iteration N+ 1 commits, an

instruction may reuse the destination register from iterationN on iteration

N+ 2. This is safe because, upon commit, the N+ 1 destination register

holds the architectural state and no more instructions are dependent on

the iteration N destination register. Any instructions dependent on the

N+ 1 value continue to source it from the alternative register.

This double buffering technique enables instructions to speculatively

write output registers. However, by dynamically changing output registers,

additional functionality must be added to properly maintain dependencies

between instructions. The TPU’s function is to perform this dynamic

63

Tag Propagation

Tag Propagation

port0_src0

port0_src1

port0_dst

Tag Propagation

Tag Propagation

Figure 4.7: Tag Propagation Unit.

linkage between dependent instructions and source registers.

Structure and Operation

Figure 4.7 shows the high level structure of the TPU. Revolver’s TPU is

structured similarly to the wakeup logic discussed in Section 4.3. Like the

wakeup logic, the TPU is composed of partitions interconnected along a

unidirectional ring interconnect. The ring is composed of multiple chan-

nels, where each channel corresponds to a logical register and carries the

current physical register mapping. Thus to obtain source register identi-

fiers, all an instruction must do is source the appropriate logical register

64

r0tag r1tag r2tag r3tag

src0

src1

dst

dst0 dst1

loop_itr

Figure 4.8: Tag Propagation Unit Cell Design.

channel. Instructions present in the scheduler change the logical register

mapping of their output register by simply overwriting the appropriate

output column. Since instructions are stored in program order, this op-

eration guarantees downstream instructions will obtain proper source

register mappings. At all times, one segment is deemed architected and

retains the architected register mapping in latches. This architected latch

rotates throughout the TPU as segments commit.

Figure 4.8 shows the propagation logic cell used in the construction

of the TPU. As seen there are multiple logical register columns that carry

physical register identifiers. Instructions source their operand tags from

corresponding columns and drive their destination onto the appropri-

ate output column. Also within the figure, we show how loop-mode

instructions alternate between writing two physical destination registers.

Essentially a single bit of state records if the instruction has executed

65

an odd or even number of times, this bit controls a mux that drives the

appropriate destination register identifier onto the output.

Checkpoints and Register Reclamation

In addition to dynamic dependence linking, Revolver’s TPU provides ben-

efits relating to checkpointing and branch misprediction recovery. Every

instruction within the TPU has access to a valid physical register mapping

for every architectural register. Thus Revolver effectively provides per-

instruction renaming checkpoints. If any instruction mispredicts, down-

stream instructions are simply flushed and the mappings from the branch

instruction propagate to all newly scheduled instructions. In compari-

son, RAT-based renaming encounters significant additional complexity

in order to support checkpoints [55]. This checkpoint support is largely a

byproduct of Revolver’s progam ordering within the issue queue.

In non-loop mode, overwritten registers are reclaimed on commit, as

in conventional processors. On branch mispredictions or loop-mode exits,

the TPU is walked forward from the terminating branch to reclaim physical

registers.

Latency Impact

Amongst the structures modified within the scheduler, the TPU repre-

sents the most significant deviation from conventional design. As the

66

corresponding wakeup logic is simpler, the critical path of the scheduler

is determined by the worst-case path delay of the TPU. This path delay is

incurred when a newly produced destination tag is immediately sourced

by a distant instruction. This cycle time is constrained by the maximum

allowed 8-entry propagation path from a producer tag to dependent sourc-

ing. The total delay is given in equation (1).

tpu_latency = (register_mux_delay) + (8 ∗ column_mux_delay) (1)

Given the latency of 64-bit arithmetic operations and load/store queue

complexity of modern processors, it is not expected for this delay to be a

significant design limitation.

4.5 Load/Store Support

The overall structure of Revolver’s LSQ is shown in Figure 4.9. Other than

the additional tracking of loop start and end pointers, few differences exist

between Revolver’s LSQ and that of a conventional out-of-order. Loads

and stores receive their respective LSQ entries prior to dispatch and retain

them until the instruction exits the out-of-order back-end. As noted in

Section 4.1, loop-mode load and store instructions are free to reuse their

allocated LSQ entries to execute multiple loop iterations. This is due to

two factors: 1) The immediate “freeing” of a LSQ entry upon commit and

2) The use of position-based age logic in modern processor’s LSQs.

67

V Addr
Load Queue

Alloc

Commit

Retire

Loop End

Loop Start

V Addr Data
Write Buffer

V Addr Data
Store Queue

Alloc

Commit

Retire

Loop End

Loop Start

Data Cache Unit

V Addr Data
Pre-Ex Load Buffer

InstQ

Figure 4.9: LSQ and Cache Interface.

LSQ entries are immediately freed upon commit by two means depend-

ing on whether the committing instruction is a load or store. In the event of

a load, the load queue entry is simply reset to allow future load execution.

Stores however must be written back to memory. To enable immediate

freeing of store queue entries, stores are drained into a write-combining

buffer that sits between the store queue and the L1 cache interface. If a

store cannot drain into the write buffer, commit stalls. This is however a

rare occurrence as due to the impact of write-combining and the fact we

target an ISA with a relaxed consistency model that places very few order-

ing restrictions on write-combining. In ISAs with more restrictive memory

68

ordering, like total store ordering (TSO) or sequential consistency (SC), ad-

ditional limitations are imposed. For TSO systems, a write-buffer may still

be utilized, however write combining will be inhibited and ordering must

exist between the completed stores. Additionally, due to the lack of write

combining, a larger buffer will be required for equivalent performance. A

processor implementing sequential consistency will be even more limited

by the lack of a store buffer. However research proposals to address the

lack of a store buffer with additional hardware resources do exist [56].

Existing age-based ordering techniques work in Revolver as they are

based upon the relative position of a commit pointer. The only difference

during loop-mode operation is that Revolver’s commit pointer wraps from

loop end to loop start. Whereas a normal LSQ only wraps the commit pointer

based upon the physical end and start of the queue.

The final portion of Revolver’s LSQ, the pre-executed load buffer, is an

enhancement enabled by loop mode execution and will be discussed in

the following chapter.

4.6 Summary

In this chapter the Revolver architecture for a PRF-based out-of-order

processor was introduced. It was shown that in-place loop execution is

possible without the reallocation of physical resources. Necessary mod-

ifications to the operation of operand dependence linking, instruction

69

scheduling logic, and the load/store unit were also presented.

70

5 load pre-execution

In this section we detail an extension to loop-mode that enables the pre-

execution of loads from future loop iterations. Pre-executing future loads

realizes parallelism beyond the processor’s instruction window and can

be used to enable single-cycle loads. The remainder of this section covers

the insight behind load pre-execution, the conditions where load pre-

execution is possible, and why load pre-execution would be untenable in

a conventional out-of-order without in-place loop execution.

5.1 Optimization Insight

During loop execution in an out-of-order processor, loads from within

the loop body are repeatedly executed until all necessary iterations com-

plete. Due to the recurrent nature of loops, these loads often have highly

predictable address patterns. Our load pre-execution mechanism aims to

exploit these predictable loads.

Revisiting the example from Figure 4.1, the string copy loop simply

strides through memory copying bytes from a source array into a destina-

tion array. Thus, the load addresses in consecutive iterations are perfectly

predictable. In a conventional processor, the dynamic instances of each

load receive unique issue queue and load queue entries. In Revolver how-

ever, a load dispatched by the front-end is statically bound to fixed entries

71

for all loop iterations. This static binding makes it easy to observe when an

entry is performing loads that follow a simple pattern. In Figure 4.1, since

the string copy loop was unrolled by a factor of two, the first load queue

entry will be observed striding through memory, reading consecutive

even-addressed bytes from memory.

The insight behind load pre-execution is that, when these patterns are

recognized, it is possible to speculatively initiate future iteration loads.

On the next iteration, if a load was pre-executed, it will not pay the L1

cache access latency and will complete after verifying the pre-executed

load address. This technique yields a performance benefit when the out-

of-order execution window is insufficient to hide a load’s latency.

Load pre-execution, by queuing future iteration loads in parallel with

existing computation shares some similarities to decoupled architectures

like the Astronautics ZS-1 [77]. Previously, decoupled architectures would

rely upon explicit address and computation instruction streams. The ad-

dress stream would be utilized to queue up future required loads. Through

load pre-execution, the Revolver architectures are effectively extracting the

address stream for load queuing for a subset of loads. The next sections

detail the supported load pre-execution access patterns and hardware

implementation.

72

ld r0, [r1, r3]
str r0, [r2, r3]
add r3, r3, #1
cmp r0, #0
bne

Assembly

Source

while (*dst++ = *src++) { }

Predicted Pattern

Addrn+1 = Addrn + c
c = Addrn - Addrn-1

Figure 5.1: Strided Load Example.

5.2 Supported Address Patterns

In Revolver we support three primary access patterns for load pre-execution:

stride, constant, and pointer-based addressing. For each of these access

patterns we place simple pattern identification hardware alongside the

pre-executed load buffer. Examples of each type of pre-executed load are

shown in Figures 5.1, 5.2, and 5.3.

Striding memory accesses, shown in Figure 5.1, are the most common

addressing pattern, as many loops iterate over arrays of data. To identify

stride-based addressing we simply compute the address delta between

two consecutive loads. If a third load from the same load queue entry

matches the predicted stride, the stride is verified and the next load will

be pre-executed. This method of stride detection is similar in structure

to the earlier prefetching work done by Baer and Chen [9]. The primary

difference is that strides are detected with respect to a specific dispatched

73

for (i = 0; i < (1 << reg->hashw); i++)
reg->hash[i] = 0;

aliasing

Source

str r5, [r1, #4]
add r1, r1, #4
add r3, r3, #1
ldr r2, [r13, #8]
mov r0, r4 LSL r2
cmp r0, r3
b

Assembly

Predicted Pattern

Addrn+1 = Addrn

Figure 5.2: Constant Load Example.

instance of a load instruction, rather than performing a lookup operating

using the load instruction’s program address.

Constant loads, the second most common pattern, occur when loads

continuously read from the same address. Constant loads exist primarily

due to stack-allocated variables and pointer aliasing. These conditions

force the compiler to spill registers and access variables through data mem-

ory. An example of a constant load from the SPEC CPU2006 benchmark

462.libquantum is shown in Figure 5.2. Due to indirect pointer access, the

compiler can not guarantee that the loop store does not alias with the

hashw variable. This aliasing forces the hashw variable to be reloaded each

iteration despite its constant value. The stride-based prediction hardware

also handles constant loads, as they are a special case of a zero-sized stride.

Finally Revolver supports pointer-based addressing, where the value

74

ldr r3, [r3, #4]
cmp r3, #0
b

Assembly

Source

while (ptr->next) ptr = ptr->next;

Predicted Pattern

Addrn+1 = Datan + c
c = Addrn - Datan-1

Figure 5.3: Pointer Load Example.

returned by the current load value is related to the next iteration’s address.

Shown in Figure 5.3, the next iteration’s load address is predicted as the

previous iterations data plus a constant offset. This captures many simple

linked list traversals.

Once a pattern is recognized, the pre-executed load buffer speculatively

initiates the next iteration memory access. This buffer, shown in Figure 4.9,

sits between the load queue and the L1 cache interface. Once the next

iteration load executes, the value is claimed and the buffer may initiate

the next iteration load. If any store aliases with the pre-executed load,

the entry is invalidated to maintain coherency. Loads to invalidated pre-

executed loads execute normally, accessing memory through the normal

cache structures.

75

5.3 Scheduler Modification

With the pre-execution buffer and supported access patterns defined, we

now detail how Revolver’s out-of-order scheduler can take advantage of

pre-execution.

In many out-of-order designs, operations dependent on loads are spec-

ulatively scheduled assuming an L1 cache hit latency. When a pre-executed

load returns from memory, the corresponding issue queue entry is notified

that the load has been pre-executed. Once scheduled, this load will specu-

latively wake dependent operations on the next cycle instead of waiting

for the L1 cache access latency. If the predicted address is incorrect, the

scheduler must perform a cancel and re-issue operation. The design could

be more aggressive than as described here and wake dependent opera-

tions before the load is capable of being scheduled, however our evaluated

implementation does not support this. For designs to support this more

aggressive operation, either fine grained recovery and re-execution of

dependent instruction chains must be supported or an expensive flush

recovery operation performed in the case of incorrect speculation.

For the CRIB-based architecture, described in Chapter 6, no scheduler

modifications are necessary as CRIB-based architectures easily support

variable latency operations. For this architecture, the pre-executed load

buffer is simply probed when a load’s effective address is written to the

load queue. Upon a match, the pre-executed load value is forwarded

76

immediately marking the load as complete.

Finally, it should be noted that performing this scheduler optimiza-

tion in a conventional out-of-order is untenable, as there is no relation

between static load instructions and issue queue entries. By retaining

specific load queue and issue queue indices across multiple executions,

the scheduler can be easily modified to utilize the reduced load latency

operation. To perform such an operation in a conventional out-of-order

would require delta-based offsets between recurrences of load instructions

and the corresponding issue queue entries, leading to significant predictor

complexity.

5.4 Summary

In this chapter we introduced a new technique called load pre-execution

to enable single-cycle loads, effectively hiding the latency of the L1 cache.

In addition to the supported memory access patterns, necessary hard-

ware modifications were discussed. Load pre-execution is evaluated in

Section 8.4 and found to benefit some benchmarks by up to 10.6% in

performance.

77

6 crib back-end loop execution

In this chapter we detail the necessary extensions to enable in-place exe-

cution on a CRIB-based out-of-order processor. In addition to describing

necessary datapath modifications, we detail additional loop constructs

that can be easily handled during loop-mode on the CRIB-based out-of-

order. Finally in section 6.4 we describe an alternative implementation of

the load store queue that effectively supports in-place execution.

6.1 Overview

The primary motivation behind the CRIB architecture is that conventional

out-of-order processors were designed in an era where physical resources

were scarce and power consumption was a secondary design constraint.

The CRIB architecture in contrast is designed with dynamic energy con-

sumption as a primary design constraint with physical resource utilization

as a secondary design constraint. With respect to in-place loop execu-

tion, the resulting design offers four attractive architectural features: the

avoidance of traditional register renaming, program-based ordering of

instructions within the out-of-order execution core for resolving data

dependencies, an LSQ that supports dynamic allocation within the out-of-

order back-end, and a circular ring interconnect for propagation of register

operands. Utilizing these features, this chapter dscribes how the CRIB

78

Fetch
Unit

CRIB 0

CRIB 1

CRIB 2

CRIB 3

Figure 6.1: CRIB Overview

architecture can be extended to support in-place loop execution.

6.2 Datapath Modifications

Shown in Figures 6.1 and 2.4, the existing CRIB operand network is struc-

tured as a unidirectional ring. The simplest means of supporting in-place

loop execution on CRIB is to place a single iteration of loop within CRIB

instruction window, making all other CRIB entries no-op instructions. As

instructions within the loop execute they retain their corresponding CRIB

entries and await ready operands for the next loop iteration. Allocation,

deallocation, and commit of CRIB partitions is guarded through three

pointers as done for the issue queue in the PRF-based Revolver design in

Figure 4.1. Otherwise, the unidirectional ring operand network and ready

79

while(i < 256) {
 i++;
 if (a[i] == 0) continue;
 b[i] = a[i];
}

cmp r0, #256
bge exit
add r0, r0, #1
ld r1, [r2, r0]
cmp r1, #0
beq start
st r1, [r3, r0]
cmp r0, #256
blt start

}Loop Header

}Loop Body

add r0, r0, #1

ld r1, [r2, r0]

cmp r1, #0

beq start

blt start

st r1, [r3, r0]

cmp r0, #256

add r0, r0, #1

ld r1, [r2, r0]

cmp r1, #0

beq start

blt start

st r1, [r3, r0]

cmp r0, #256

Source Code Assembly Code CRIB Layout

Figure 6.2: Loop Continue Example

logic of the existing CRIB baseline sufficiently supports in-place execution

without modifications. In addition to loop support as described here, we

also evaluate the impact of loop unrolling on in-place CRIB-based in-place

execution in Chapter 8.

6.3 Additional Loop Support

The CRIB-based Revolver architecture supports all loop bodies detailed in

section 3.1. In addition to these supported loop structures, the CRIB-based

Revolver architecture also supports loops with continuation statements.

Figure 6.2 provides a source code example of a loop that utilizes a continu-

80

ation statement. The resultant compilation of this code results in assembly

code with two branches that redirect to the start of the loop body. The

CRIB-based Revolver architecture can handle such loops due to its ability

to easily dynamically predicate the execution of instructions. In the last

panel of Figure 6.2 we show the loop body unrolled into CRIB by a fac-

tor of two. In situations where the continue is not taken, all instructions

repeatedly execute. If any non-loop end branch resolves to the loop start

address, the Revolver architecture simply dynamically predicates all in-

structions until the next loop start instruction. The figure shows this when

the continue is taken during the first iteration. Dynamically predicated

instructions are shown in grey. Support for early continuation statements

is unique to the CRIB-based Revolver architecture as supporting them in

the PRF-based design is untenable. Supporting dynamic predication in a

conventional out-of-order would require architectural support and source

operands similar to Wish Branches [48].

6.4 Load/Store Support

In this section we describe the differences between the baseline CRIB

load/store queue (LSQ) and a conventional out-of-order processor’s LSQ.

After describing these differences we elaborate on the necessary changes

to enable in-place execution utilzing a similar address banked LSQ.

81

CRIB Load/Store Queue

The original CRIB architecture utilized an position-insensitive, address

banked load/store buffer, in contrast to a conventional load/store queue

(LSQ) [32, 31]. In conventional architectures, LSQs are maintained as logi-

cally FIFO-like, monolithic structures where entries are dynamically al-

located in-order upon instruction dispatch and reclaimed in an in-order

fashion upon commit. The in-order and logical placement of loads/s-

tores within their respective queues enables simple logic for searching

to identify potential situations where load forwarding or bypassing is

allowable.

In contrast to a conventional LSQ, CRIB’s LSQ foregoes in-order alloca-

tion and deallocation. Similar to a conventional out-of-order, instructions

maintain a monotonically increasing store color to maintain ordering be-

tween loads and stores. Within the load and store queues however there

is no correlation between load/store entry placement and instruction age.

Instead of allocating LSQ entries in-order upon instruction dispatch, en-

tries are allocated out-of-order as memory instructions execute. The store

color assigned at dispatch is utilized for age-based ordering resolution

along with wrapping comparator logic from [15]. To clarify operation we

now step through the execution of load and store instructions with an

position-insensitive LSQ.

Allocation of loads in the CRIB architecture happens upon load execute.

Through execution the load computes the effective address of required

82

data. CRIB’s LSQ is banked on a cache line basis, thus the lower bits of the

effective address are utilized to determine the required LSQ bank. After

bank determination, an empty load queue entry is allocated at random

from the selected bank. If no entry is free, one is reclaimed from a younger

load. In the event no younger load exists, the load stalls until an entry

becomes available. Loads which have their entries reclaimed, and thus

invalidated, are required to re-execute. In parallel with allocation, the

load’s store color and effective address are used to probe the corresponding

store queue bank for potential aliasing and forwarding.

The operation of stores is performed similarly to loads. Upon successful

store queue entry allocation, the corresponding load queue bank is probed

to determine if any younger loads that alias with the given store have

executed. After stores execute and commit, entries are maintained until

stores successfully drain to memory.

The position-insensitive, banked nature, and ease of instruction re-

execution in CRIB’s LSQ enable smaller load and store queues than in

conventional architectures. Smaller sized queues are possible because

memory instructions only hold instructions from the time of execution

until retirement, unlike traditional designs which require LSQ entries be

obtained at dispatch. These smaller queues enable area and power savings

in the CRIB design. To retain these benefits, in the next subsection we

investigate how the existing LSQ structure could be modified to support

in-place loop execution.

83

}Before Loop
ld r6, [r7]
st r8, [r9]

}ld r0, [r1, r3]
st r0, [r2, r3]
add r3, r3, #1
cmp r0, #0
bne

Iteration #1

}ld r0, [r1, r3]
st r0, [r2, r3]
add r3, r3, #1
cmp r0, #0
bne

Iteration #2

}After Loop
ld r0, [r7]
st r1, [r5]

I-Stream
Store
Color

0
1

1
2

2
3

3
4

(a) Conventional Memory Ordering

}Before Loop
ld r6, [r7]
st r8, [r9]

}ld r0, [r1, r3]
st r0, [r2, r3]
add r3, r3, #1
cmp r0, #0
bne

Iteration #1

}ld r0, [r1, r3]
st r0, [r2, r3]
add r3, r3, #1
cmp r0, #0
bne

Iteration #2

}After Loop
ld r0, [r7]
st r1, [r5]

I-Stream
Store
Color

0
1

1
2

1
2

3
4

Iter.
Count

0
0

0
0

1
1

0
0

Loop
Color

0
0

1
1

1
1

2
2

(b) Loop Memory Ordering

Figure 6.3: Memory Ordering

In-place Execution Modifications

Although the LSQ structure derived for in-place execution in Section 4.5

could be utilized, such a design would forego the benefits of CRIB’s LSQ

design. As LSQ entries in CRIB are dynamically allocated at execute,

rather than dispatch, the primary modification necessary to support in-

place execution is the modification of age-based ordering logic to properly

represent the relation between memory instructions.

In Figure 6.3, we show how memory instruction’s colors are assigned

for conventional LSQ’s as well as for in-place execution CRIB. The code

example consists of a simple loop that iterates twice along with instructions

from before and after the loop. As seen in Figure 6.3a, store colors alone

84

are sufficient to provide ordering between memory instructions. Store

colors are easily supported by simply increasing a monotonic counter with

wrapping logic in the processor front-end upon every store encountered.

This however is not sufficient for the CRIB-based Revolver architecture.

This is because, as shown in Figure 6.3b, the instructions from different

iterations of a loop share the same store color. To differentiate the age

across loop iterations, additional information is required. Thus, whenever

a load or store execute and require allocation, the loop iteration count is

also sent along to the LSQ for ordering purposes. As shown in the figure,

this would allow proper ordering of the memory instructions from the first

and section loop iteration. A machine’s loop iteration identifier field must

be sufficiently large enough to handle as many stores may be present within

an LSQ bank with conventional wrapping logic. Due to the small size of

the LSQ banks in CRIB, this field is quite small however. Lastly shown in

the example, there must be proper ordering of memory instructions from

within a loop to those after a loop. As non-loop instructions do not iterate,

with iteration counters and store colors alone, it would be possible to mis-

order the last load in the example with a load from the second iteration of

the loop. To solve this issue, the processor front-end also assigns a loop

color along with a store color. The loop color is simply an identifier that

is montonically incremented upon ever loop dispatch attempted by the

processor front-end.

Through these simple additions to the store color identification logic, it

85

is possible to support in-place execution with the existing LSQ design. It

should also be noted that unlike the conventional out-of-order based LSQ,

there is no need to immediately free store queue entries upon commit by

draining them into a store buffer. Instead of draining into a store buffer,

new store queue entries can be dynamically allocated for future iteration

stores alongside existing stores.

Load Pre-Execution Support

In the conventional out-of-order based Revolver architecture load pre-

execution is supported through a special buffer to store pre-executed load

data, as shown in Figure 4.9. In the CRIB-based Revolver architecture this

additional buffer is unnecessary. Instead load pre-execution is supported

through detection logic associated with each CRIB entry and the existing

LSQ. When the pre-execution logic detects a supported address pattern,

a load queue entry is speculatively allocated in parallel for the next loop

iteration. The only difference between the two load queue entry allocations

are the associated iteration counter. Once the next iteration of a given load

instruction executes, the existence of a speculative load queue entry is

realized. Upon execution, the speculative load’s address is verified and the

speculative load queue entry is claimed, thus becoming non-speculative.

Prior to being claimed and made non-speculative, a speculative load may

become invalidated for two primary reasons: coherence events and older

loads reclaiming the entry. In either of these events, the next iteration’s

86

load simply executes normally. Upon loop termination, speculatively

allocated load queue entries for extraneous iterations are invalidated.

6.5 Conclusion

In this chapter we have given an overview of how in-place loop execution

can effectively be supported on an CRIB-based out-of-order processor.

The design as proposed utilizes the existing CRIB operand network. In

Chapter 7 we evaluate the impact of operand network design and the

impact of operand network limitations on loop-mode execution.

87

7 operand network

This chapter investigates operand network design parameters and their

impact on in-place loop execution. Additionally the potential performance

benefit from an optimized operand interconnection network ins analyzed.

7.1 Overview

Supporting in-place execution of loops on the CRIB architecture involves

multiple complications and necessary design modifications. When con-

sidering how to support in-place execution within the CRIB instruction

window, multiple design alternatives in how to propagate operand values

across loop iterations arise.

Shown in Figure 7.1a, CRIB’s existing operand network is structured

as a unidirectional ring. The simplest means of supporting in-place loop

a) No Loop Support

CRIB 0

CRIB 1

CRIB 2

CRIB 3

Fetch
Unit

CRIB 2

CRIB 3

CRIB 0

CRIB 1

Fetch
Unit

b) Full-Width Loop

CRIB 2

CRIB 3

CRIB 0

CRIB 1

Fetch
Unit

c) Partial Loop Bypass

Figure 7.1: CRIB Alternative Operand Networks.

88

execution on CRIB is to utilize the existing operand network and unroll

loops to fill as much of the instruction window as possible. Unutilized

entries would be set as no-ops with register operands routed past along

the ring network.

Utilizing an alternative network with additional bypass paths like

Figure 7.1b and 7.1c, would allow performance improvements by rapidly

routing around unused entries. Additionally, bypass networks could be

simplified like in Figure 7.1c to carry only the loop carried dependencies

rapidly rather than all operands like in Figure 7.1b.

This chapter contains a design space exploration that was conducted to

evaluate the requirements of such bypass networks and the potential ben-

efit that could be obtained from such networks. In the design exploration

phase it was determined that such network modifications would result in

small performance gains at the cost of additional design complexity.

7.2 Loop Carried Dependencies

Although loops within programs are expressed sequentially, loops are of-

ten largely independent with few communicated values between iterations.

This property of loops was largely utilized in speculative multithreading,

and can be utilized to simplify a network for in-place loop execution [81].

In Figures 7.2 and 7.3, the impact of limited allowed dependencies on

in-place execution on the number of instruction dispatches are shown.

89

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

d
is

p
ar

it
y

lo
ca

li
za

ti
o
n

m
se

r

m
u
lt

i_
n
cu

t

si
ft

st
it

ch

sv
m

te
x
t_

sy
n
th

tr
ac

k
in

g

g
eo

m
ea

n

N
o
rm

al
iz

ed
 D

is
p
at

ch
ed

 I
n
st

ru
ct

io
n
s

No dep

1 dep

2 dep

3 dep

4 dep

6 dep

8 dep

Inf dep

Figure 7.2: SD-VBS Dispatched Instructions vs. Bypass Dependencies.

The CRIB-based Revolver architecture, with parameters as specified in

Chapter 8 are utilized.

In Figure 7.2 the reduction in number of dispatched instructions versus

the number of allowed loop carried dependencies are shown for SD-VBS.

The number of allowed dependencies is varied between zero and infinite

allowed dependencies. It is observed that the majority of instruction dis-

90

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

au
to

.b
it

cn
t

au
to

.q
so

rt

au
to

.s
u
sa

n
.c

o
rn

er
s

au
to

.s
u
sa

n
.e

d
g
es

au
to

.s
u
sa

n
.s

m
o
o
th

in
g

co
n
s.

cj
p
eg

co
n
s.

d
jp

eg

co
n
s.

la
m

e

co
n
s.

m
ad

co
n
s.

ti
ff

2
b
w

co
n
s.

ti
ff

2
rg

b
a

co
n
s.

ti
ff

d
it

h
er

co
n
s.

ti
ff

m
ed

ia
n

n
et

.d
ij

k
st

ra

n
et

.p
at

ri
ci

a

o
ff

.r
sy

n
th

o
ff

.s
tr

in
g
se

ar
ch

se
c.

b
lo

w
fi

sh

se
c.

p
g
p

se
c.

ri
jn

d
ae

l

se
c.

sh
a

te
le

.a
d
p
cm

.c
o
m

p
re

ss

te
le

.a
d
p
cm

.d
ec

o
m

p
re

ss

te
le

.c
rc

te
le

.f
ft

te
le

.g
sm

g
eo

m
ea

n

N
o
rm

al
iz

ed
 D

is
p
at

ch
ed

 I
n
st

ru
ct

io
n
s

No dep

1 dep

2 dep

3 dep

4 dep

6 dep

8 dep

Inf dep

Figure 7.3: MiBench Dispatched Instructions vs. Bypass Dependencies.

patch benefit can be obtained by a bypass operand network that supports

four or more loop carried dependencies.

Figure 7.3 shows how many instruction dispatches can be saved with

limited allowed bypassed operands through in-place loop execution on

the MiBench suite. Some benchmarks like, tiff2bw and tele.crc, sucessfully

91

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

4
0
0
.p

er
lb

en
ch

4
0
1
.b

zi
p
2

4
0
3
.g

cc

4
1
0
.b

w
av

es

4
1
6
.g

am
es

s

4
2
9
.m

cf

4
3
3
.m

il
c

4
3
4
.z

eu
sm

p

4
3
5
.g

ro
m

ac
s

4
3
6
.c

ac
tu

sA
D

M

4
3
7
.l

es
li

e3
d

4
4
4
.n

am
d

4
4
5
.g

o
b
m

k

4
5
0
.s

o
p
le

x

4
5
3
.p

o
v
ra

y

4
5
4
.c

al
cu

li
x

4
5
6
.h

m
m

er

4
5
8
.s

je
n
g

4
5
9
.G

em
sF

D
T

D

4
6
2
.l

ib
q
u
an

tu
m

4
6
4
.h

2
6
4
re

f

4
6
5
.t

o
n
to

4
7
0
.l

b
m

4
7
3
.a

st
ar

4
8
1
.w

rf

4
8
3
.x

al
an

cb
m

k

S
P

E
C

IN
T

S
P

E
C

F
P

N
o
rm

al
iz

ed
 D

is
p
at

ch
ed

 I
n
st

ru
ct

io
n
s

No dep

1 dep

2 dep

3 dep

4 dep

6 dep

8 dep

Inf dep

Figure 7.4: SPEC CPU2006 Dispatched Instructions vs. Bypass Dependen-
cies.

eliminate the majority of instruction dispatches with only two allowed

bypass paths. However to eliminate the majority of instruction dispatches,

operand networks supporting four or more loop carried dependencies are

required.

Finally, Figure 7.4, shows the dispatch reductions obtained through

92

supporting more loop carried dependencies on the SPEC2006 benchmark

suite. In comparison to SD-VBS and MiBench, the SPECINT suite has

fewer loop carried dependency requirements. Most benefit for the floating

point subset is obtained with support for three loop carried dependencies.

With the impact of limited loop carried dependencies determined,

the following section evaluates the potential benefit from interconnection

network latency optimization.

7.3 Operand Latency

The primary goal of adding lower-latency bypass paths for loop execution

is to improve performance during loop execution. To determine the benefit

from faster operand networks, Figures 7.5, 7.6, and 7.7 show execution

latencies of SD-VBS, MiBench, and SPEC CPU2006 with different speed

operand networks. All designs are normalized against a baseline operand

routing speed of 8 CRIB entries per cycle.

Figure 7.5, shows the reduction in execution time from increasing

operand propagation to 12 or 16 entries per cycle on SD-VBS. Increasing

operand propagation by 50% to 12 entries per cycle results on average in

a 1.5% performance improvement, whereas doubling operand network

speed to 16 entries per cycle results in a 1.8% improvement in overall

performance.

Figure 7.6 shows the impact of operand network latency on execution

93

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

d
is

p
ar

it
y

lo
ca

li
za

ti
o

n

m
se

r

m
u

lt
i_

n
cu

t

si
ft

st
it

ch

sv
m

te
x

t_
sy

n
th

tr
ac

k
in

g

g
eo

m
ea

n

N
o

rm
al

iz
ed

 E
x

ec
u

ti
o

n
 T

im
e

12prop

16prop

Figure 7.5: SD-VBS Bypass Latency Sensitivity.

time for the MiBench suite. Increasing the propagation rate to 12 or 16 en-

tries per cycle improves overall performance by 1.4% and 1.6% respectively.

The auto.susan.smoothing obtains the most benefit lessening execution time

by 11.2% with a faster operand network.

Finally, Figure 7.7 shows the benefit from lower operand network la-

tency on execution time for SPEC CPU2006. Overall the SPECINT work-

loads improve execution time by 1.1% when executed on an operand

network with half the implementable latency. SPECFP workloads obtain

more benefit, with up to a 1.7% increase in overall performance.

94

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

au
to

.b
it

cn
t

au
to

.q
so

rt

au
to

.s
u

sa
n

.c
o

rn
er

s

au
to

.s
u

sa
n

.e
d

g
es

au
to

.s
u

sa
n

.s
m

o
o

th
in

g

co
n

s.
cj

p
eg

co
n

s.
d

jp
eg

co
n

s.
la

m
e

co
n

s.
m

ad

co
n

s.
ti

ff
2

b
w

co
n

s.
ti

ff
2

rg
b

a

co
n

s.
ti

ff
d

it
h

er

co
n

s.
ti

ff
m

ed
ia

n

n
et

.d
ij

k
st

ra

n
et

.p
at

ri
ci

a

o
ff

.r
sy

n
th

o
ff

.s
tr

in
g

se
ar

ch

se
c.

b
lo

w
fi

sh

se
c.

p
g

p

se
c.

ri
jn

d
ae

l

se
c.

sh
a

te
le

.a
d

p
cm

.c
o

m
p

re
ss

te
le

.a
d

p
cm

.d
ec

o
m

p
re

ss

te
le

.c
rc

te
le

.f
ft

te
le

.g
sm

g
eo

m
ea

n

N
o

rm
al

iz
ed

 E
x

ec
u

ti
o

n
 T

im
e

12prop

16prop

Figure 7.6: MiBench Bypass Latency Sensitivity.

7.4 Summary

Overall it is observed that an new network, with half the latency, would

offer less than 2% performance benefit over the current implementation.

Due to the additional multiplexing required by the earlier bypass alter-

natives, it was determined that it was such alternative operand network

structures were unlikely to prove beneficial once fully realized.

95

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

4
0

0
.p

er
lb

en
ch

4
0

1
.b

zi
p

2

4
0

3
.g

cc

4
1

0
.b

w
av

es

4
1

6
.g

am
es

s

4
2

9
.m

cf

4
3

3
.m

il
c

4
3

4
.z

eu
sm

p

4
3

5
.g

ro
m

ac
s

4
3

6
.c

ac
tu

sA
D

M

4
3

7
.l

es
li

e3
d

4
4

4
.n

am
d

4
4

5
.g

o
b

m
k

4
5

0
.s

o
p

le
x

4
5

3
.p

o
v

ra
y

4
5

4
.c

al
cu

li
x

4
5

9
.G

em
sF

D
T

D

4
5

6
.h

m
m

er

4
5

8
.s

je
n

g

4
6

2
.l

ib
q

u
an

tu
m

4
6

4
.h

2
6

4
re

f

4
6

5
.t

o
n

to

4
7

0
.l

b
m

4
7

3
.a

st
ar

4
8

1
.w

rf

4
8

3
.x

al
an

cb
m

k

S
P

E
C

IN
T

S
P

E
C

F
P

N
o

rm
al

iz
ed

 E
x

ec
u

ti
o

n
 T

im
e

12prop

16prop

Figure 7.7: SPEC CPU2006 Bypass Latency Sensitivity.

96

8 evaluation

To evaluate the Revolver architectures, a combination of cycle accurate

simulation and power modeling was utilized across a wide variety of

benchmarks. Through the respective analysis tools, the overall effective-

ness, possible design tradeoffs, and as well as the detailed microarchitec-

tural impacts of in-place loop execution are presented. In this chapter the

physical and performance modeling methodology is presented. Following

the methodology, a thorough analysis of in-place execution on both the

PRF-based and CRIB-based out-of-order processors is presented.

8.1 Methodology

Performance Simulation

All performance evaluation was performed within the gem5 simulator

infrastructure [13]. Within the gem5 framework, custom cycle-accurate

out-of-order core models were implemented to simulate the PRF-based

and CRIB-based out-of-order processors.

For the PRF-based out-of-order evaluation, the two baseline configura-

tions shown in Table 8.1 were used for comparison. The OO2 configuration

is a small 2-wide out-of-order processor configured similarly to the recently

announced Intel Silvermont architecture [46]. The OO4 design represents

a more aggressive 4-wide architecture with the window size and execution

97

OO2, Small Out-of-Order OO4, Large Out-of-Order
Branch Combined bimodal (16k entry) / gshare (16k entry),
Predictor selector (16k entry), 32 entry RAS, 2k BTB
Core 2GHz, 4-wide fetch/commit, 2GHz, 4-wide fetch/commit,

6-wide issue, 32 ROB/IQ, 8-wide issue, 64 ROB/IQ,
12 LQ, 8 SQ, 8 WB, 48 Int PRF, 24 LQ, 16 SQ, 8 WB, 80 Int PRF,
64 FP PRF, aggressive 96 FP PRF, aggressive
memory speculation, memory speculation,
13-stage pipeline 13-stage pipeline

Functional 2 Int ALU (1-cycle), 1 Int
Mult/Div (3-cycle/20-cycle),
1 LD (1-cycle AGU), 1 ST (1-
cycle), 2 SIMD units (1-cycle),
2 FP Add/Mult (5-cycle), 1 FP
Div/Sqrt (10-cycle)

3 Int ALU (1-cycle), 1 Int
Mult/Div (3-cycle/20-cycle),
2 LD (1-cycle AGU), 1 ST (1-
cycle), 2 SIMD units (1-cycle),
2 FP Add/Mult (5-cycle), 1 FP
Div/Sqrt (10-cycle)

Units

Memory L1 ICache 32KB, 2-way, 64B (2-cycle), 2-ahead sequential prefetch
System L1 DCache 32KB, 4-way, 64B (3-cycle), 2-ahead stride prefetch

L2 Unified 256KB, 8-way, 64B (12-cycle), 2-ahead comb. prefetch
L3 Unified 4MB, 16-way, 64B (24-cycle), 4-ahead comb. prefetch
Off-Chip Memory: 2GB DDR3-1600

Table 8.1: Common Processor Configurations.

resources scaled up from the OO2 configuration. Two PRF-based Revolver

designs are compared against these baselines, a 2-wide (Rev2) and 4-wide

(Rev4) configuration. All designs utilize aggressive memory systems with

prefetchers at every cache level. Unless otherwise specified, all Revolver

designs incorporate the load pre-execution optimization where up to 8

loads may be pre-executed.

For the CRIB-based out-of-order evaluation, an aggressive 64-instruction

window configuration, presented in Table 8.2, was utilized. The increased

physical resources and differing operand result latency from the original

98

Branch Combined bimodal (16k entry) / gshare (16k entry),
Predictor selector (16k entry), 32 entry RAS, 2k BTB
Core 2GHz, 4-wide fetch/commit, 64-entry CRIB,

8 entries/cycle operand propagation,
2 LSQ banks, 16 Loads/8 Stores per LSQ bank,
aggressive memory speculation, 13-stage pipeline,

Functional Int ALU (1-cycle), 1 Int Mult/Div (3-cycle/20-cycle), 2 LD/cy-
cle (1-cycle AGU), 1 ST/cycle (1-cycle), 2 SIMD units (1-cycle),
2 FP Add/Mult (5-cycle), 1 FP Div/Sqrt (10-cycle)

Units

Memory L1 ICache 32KB, 2-way, 64B (2-cycle), 2-ahead sequential prefetch
System L1 DCache 32KB, 4-way, 64B, (3-cycle), 2-ahead stride prefetch,

8-internal banks, 2-cycle bank row hit latency
L2 Unified 256KB, 8-way, 64B (12-cycle), 2-ahead comb. prefetch
L3 Unified 4MB, 16-way, 64B (24-cycle), 4-ahead comb. prefetch
Off-Chip Memory: 2GB DDR3-1600

Table 8.2: CRIB Processor Configuration

CRIB proposal [32] result from moving between the 65nm to 28nm process

technology nodes.

For competitive baselines, each processor configuration can optionally

be equipped with a 32-µop loop buffer (LB) or a 1.5K µop cache (µC),

similar to recent Intel and ARM designs [45, 46, 52, 72].

A wide variety of applications from the San Diego Vision Benchmark

Suite (SD-VBS), MiBench, and SPEC2006 were used for simulation [33, 36,

87]. All applications were compiled for the ARMv7 ISA on gcc 4.7.2 with

full optimizations (-O3), vectorization, and link-time optimization(-flto)

enabled. On SD-VBS, simulation was limited to the instrumented regions

of interest. For MiBench, entire applications were simulated on the large

input set. Finally for SPEC2006, a SimPoint simulation methodology was

99

Benchmark Input Set OO2 / OO4 IPC OO2 / OO4 µpc
disparity cif 1.564 / 2.368 1.654 / 2.505
localization vga 0.807 / 1.165 1.446 / 2.086
mser vga 1.110 / 1.449 1.124 / 1.467
multi_ncut sim_fast 1.305 / 1.427 1.306 / 1.428
sift qcif 1.628 / 1.921 1.643 / 1.939
stitch qcif 1.598 / 2.612 1.709 / 2.793
svm qcif 1.363 / 1.918 1.578 / 2.221
text_synth vga 1.340 / 1.890 1.480 / 2.089
tracking fullhd 1.115 / 1.571 1.245 / 1.755

Table 8.3: SD-VBS Benchmarks and Baseline Performance

employed, resulting in the suite being represented by 177 100M instruc-

tion simulation points [35]. The train input set was utilized for SPEC2006.

Baseline performance for all benchmark suites are shown in Tables 8.3, 8.4,

and 8.5.

Three different benchmark suites were chosen in order to evaluate

differing workloads. Traditional computing is represented through the

SPEC CPU2006 benchmark suite, whereas MiBench and SD-VBS represent

embedded and emerging classes of processor workloads.

Physical Modeling

Power modeling was performed through a correlated and extended version

of the McPAT power simulator [55]. In addition to the baseline McPAT

simulator, microarchitectural models for loop buffers and µop caches

were added in order to enable proper energy accounting. For energy

100

Benchmark OO2 / OO4 IPC OO2 / OO4 µpc
auto.bitcnt 1.526 / 1.959 1.607 / 2.064
auto.qsort 1.145 / 1.583 1.421 / 1.964
auto.susan.corners 1.637 / 2.491 1.652 / 2.513
auto.susan.edges 1.619 / 2.501 1.642 / 2.537
auto.susan.smoothing 1.827 / 2.440 1.828 / 2.441
cons.cjpeg 1.517 / 2.428 1.610 / 2.577
cons.djpeg 1.625 / 2.600 1.723 / 2.758
cons.lame 1.228 / 1.622 1.331 / 1.757
cons.mad 1.598 / 2.272 1.653 / 2.350
cons.tiff2bw 1.509 / 2.294 1.942 / 2.952
cons.tiff2rfba 1.399 / 2.169 1.506 / 2.336
cons.tiffdither 1.467 / 2.481 1.600 / 2.706
cons.tiffmedian 1.511 / 2.591 1.662 / 2.849
net.dijkstra 1.176 / 1.522 1.262 / 1.634
net.patricia 1.161 / 1.659 1.426 / 2.039
off.rsynth 1.299 / 1.522 1.371 / 1.607
off.stringsearch 1.299 / 1.895 1.559 / 2.251
sec.blowfish 1.309 / 1.681 1.496 / 1.921
sec.pgp 0.768 / 0.881 0.804 / 0.922
sec.rijndael 1.677 / 2.758 1.778 / 2.924
sec.sha 1.736 / 2.778 1.837 / 2.942
tele.adpcm.compress 1.571 / 1.679 1.623 / 1.734
tele.adpcm.decompress 1.486 / 2.334 1.557 / 2.445
tele.crc 0.839 / 0.877 1.027 / 1.073
tele.fft 1.486 / 2.112 1.596 / 2.269
tele.gsm 1.456 / 1.688 1.486 / 1.722

Table 8.4: MiBench Benchmarks and Baseline Performance

101

Benchmark OO2 / OO4 IPC OO2 / OO4 µpc
400.perlbench 1.004 / 1.260 1.275 / 1.600
401.bzip2 1.377 / 2.044 1.466 / 2.179
403.gcc 0.890 / 1.168 1.148 / 1.505
410.bwaves 1.104 / 1.452 1.117 / 1.469
416.gamess 1.559 / 2.319 1.590 / 2.366
429.mcf 0.641 / 0.729 0.653 / 0.746
433.milc 0.613 / 0.782 0.625 / 0.796
434.zeusmp 1.121 / 1.563 1.226 / 1.710
435.gromacs 1.325 / 1.949 1.341 / 1.971
436.cactusADM 1.659 / 2.808 1.711 / 2.897
437.leslie3d 1.042 / 1.390 1.256 / 1.677
444.namd 1.281 / 1.765 1.383 / 1.911
445.gobmk 0.946 / 1.188 1.121 / 1.408
450.soplex 0.841 / 1.035 0.895 / 1.104
453.povray 0.898 / 1.152 1.237 / 1.586
454.calculix 1.339 / 1.650 1.420 / 1.751
456.hmmer 1.716 / 2.739 1.797 / 2.869
458.sjeng 1.067 / 1.390 1.193 / 1.554
459.GemsFDTD 1.154 / 1.371 1.246 / 1.479
462.libquantum 1.523 / 2.551 1.580 / 2.646
464.h264ref 1.680 / 2.800 1.745 / 2.909
465.tonto 1.488 / 2.028 1.618 / 2.204
470.lbm 1.072 / 1.179 1.072 / 1.179
471.omnetpp 0.921 / 1.143 1.230 / 1.527
473.astar 1.019 / 1.276 1.026 / 1.284
481.wrf 1.130 / 1.578 1.437 / 2.042
483.xalancbmk 0.910 / 1.164 1.264 / 1.616

Table 8.5: SPEC CPU2006 Benchmarks and Baseline Performance

102

estimation, microarchectural event counters were embedded within the

gem5 performance simulator. The resulting event frequencies were then

utilized by McPAT in the generation of final energy estimates. All later

energy comparisons represent core energy, including the L1 caches.

Power model validation was performed through an iterative process.

Initial model validation was performed by configuring McPAT and gem5 to

emulate an ARM Cortex-A15 microprocessor [52]. After configuration, the

SPECINT benchmark suite and used to generate power estimates. These

power estimates where compared to published SPECINT power data from

nVidia [60]. From these initial energy estimates, it was discovered that

McPAT significantly underestimates decode and branch prediction power.

Source code level inspection of McPAT revealed that these are partially

known issues. To enable realistic modeling, compensation factors were

added to bring McPAT’s branch prediction and decode energy estimates

in line with measured energies. As our power model is correlated with a

Cortex-A15, McPAT was configured to model a low power technology node.

Low power technology nodes are frequently used in the mobile segment

as they prioritize minimizing leakage in exchange for higher dynamic

energy costs. This energy prioritization increases the benefit of in-place

loop execution as it is primarily a technique to save dynamic energy. If

a high performance technology node were utilized, the expected benefit

from in-place execution can expected to be less due to proportionally

less dynamic energy consumption. It should be noted that most of our

103

benchmark evaluation, other than the SPEC CPU2006 benchmark suite,

utilizes relevant to mobile workloads.

The complexity and power consumption of the PRF-based Revolver

architecture’s tag propagation unit (TPU) is approximated as an SRAM-

based RAT with checkpoints. This approximation is made due to the

structural similarities between the two structures. To maintain instruction-

level checkpoints, the OO4 RAT would require 8.75Kbits of storage for

the SRAM-based RAT with checkpointing [67]. Equivalently, Revolver’s

integer TPU is organized as 16 register columns, each carrying a 7-bit

register identifier for the entire 64 instruction window. This structural

representiation also requires an effective 8.75Kbits of storage. By maintain-

ing a valid architectural register mappings at each instruction boundary,

Revolver’s TPU complexity ends up comparable to a conventional RAT.

Thus, energy savings from TPU usage result from pipeline routing, control,

and allocation overheads rather than direct energy reduction.

For the estimation of CRIB power consumption, relative energies for

the line-banked data cache and execution core were utilized alongside

the McPAT frontend power model. This operation was performed by

scaling estimated McPAT execution energies to be representative of those

presented in [32].

104

8.2 Conventional Out-of-Order

This section presents an evaluation of in-place loop execution against

conventional out-of-order processor designs. Designs are evaluated in

terms of their impact on the numbers of instructions dispatched by the

processor front-end, the performance impact of in-place loop execution,

energy consumption, and combined energy-delay product.

Instruction Dispatch

Through loop execution mode, the Revolver architecture is capable of

eliminating many front-end instruction dispatches. Removing front-end

dispatches allows Revolver architectures to save energy, even beyond loop

buffers and µop caches, as multiple pipeline stages between decode and

execute are elided.

To demonstrate this benefit, Figures 8.1, 8.2, and 8.3 detail the fraction of

instructions dispatched by the PRF-based Revolver designs in comparison

to traditional out-of-order cores across all three benchmark suites. Each

configuration is normalized against the equivalent width out-of-order

baseline.

In Figure 8.1, the instruction dispatch results for SD-VBS are presented.

As shown earlier in Figure 1.2, SD-VBS benefits the most from loop buffer-

ing out of all three benchmark suites. Overall the Rev2 and Rev4 processor

configurations successfully eliminate 83.7% and 78.7% of all front-end

105

0

 0.2

 0.4

 0.6

 0.8

 1

di
sp

ar
ity

lo
ca

liz
at

io
n

m
se

r

m
ul

ti_
nc

ut si
ft

st
itc

h

sv
m

te
xt

_s
yn

th

tr
ac

ki
ng

ge
om

ea
n

N
or

m
al

iz
ed

 D
is

pa
tc

he
d

In
st

ru
ct

io
ns

Rev2
Rev4

Figure 8.1: SD-VBS Dispatched Instructions

instruction dispatches through loop-mode reuse. The reduced efficiency

of instruction dispatch in the Rev4 configuration is due to additional loop

unrolling allowed by the larger instruction queue. The two best perform-

ing benchmarks, disparity and multi_ncut reduce instruction dispatches

by 98.4% and 99.6% as they spend almost all execution within simple

loops. The only benchmark which fails to achieve benefit is text_synth.

Revolver increases instruction dispatches by up to 0.7% above the base-

line on the text_synth benchmark. text_synth’s dispatch increase is due

to unstable, data-dependent control embedded within the benchmark’s

innermost loops. This variable control flow quickly results in the disabling

of loop-mode dispatch.

106

0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

au
to

.b
itc

nt
au

to
.q

so
rt

au
to

.s
us

an
.c

or
ne

rs
au

to
.s

us
an

.e
dg

es
au

to
.s

us
an

.s
m

oo
th

in
g

co
ns

.c
jp

eg
co

ns
.d

jp
eg

co
ns

.la
m

e
co

ns
.m

ad
co

ns
.ti

ff
2b

w
co

ns
.ti

ff
2r

gb
a

co
ns

.ti
ff

di
th

er
co

ns
.ti

ff
m

ed
ia

n
ne

t.d
ijk

st
ra

ne
t.p

at
ri

ci
a

of
f.r

sy
nt

h
of

f.s
tr

in
gs

ea
rc

h
se

c.
bl

ow
fi

sh
se

c.
pg

p
se

c.
ri

jn
da

el
se

c.
sh

a
te

le
.a

dp
cm

.c
om

pr
es

s
te

le
.a

dp
cm

.d
ec

om
pr

es
s

te
le

.c
rc

te
le

.ff
t

te
le

.g
sm

ge
om

ea
n

N
or

m
al

iz
ed

D
is

pa
tc

he
d

In
st

ru
ct

io
ns Rev2

Rev4

Figure 8.2: MiBench Dispatched Instructions

Instruction dispatch results for MiBench, shown in Figure 8.2, show

significantly more variance than those of SD-VBS. Overall the Rev2 and

Rev4 configurations reduce instruction dispatches by 46.6% and 54.6%.

Although the Rev4 configuration unrolls loops by larger factors than the

Rev2 processor configuration, Rev4’s larger instruction window allows

the capturing of larger loops on multiple benchmarks. This larger loop

handling capability leads to significant reductions on certain benchmarks,

primarily cons.tiffmedian and tele.fft.

The SPEC CPU2006 benchmark suite observes the least benefit from the

Revolver architecture’s loop-mode dispatch. For the integer workloads,

107

0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

40
0.

pe
rl

be
nc

h
40

1.
bz

ip
2

40
3.

gc
c

41
0.

bw
av

es
41

6.
ga

m
es

s
42

9.
m

cf
43

3.
m

ilc
43

4.
ze

us
m

p
43

5.
gr

om
ac

s
43

6.
ca

ct
us

A
D

M
43

7.
le

sl
ie

3d
44

4.
na

m
d

44
5.

go
bm

k
45

0.
so

pl
ex

45
3.

po
vr

ay
45

4.
ca

lc
ul

ix
45

6.
hm

m
er

45
8.

sj
en

g
45

9.
G

em
sF

D
T

D
46

2.
lib

qu
an

tu
m

46
4.

h2
64

re
f

46
5.

to
nt

o
47

0.
lb

m
47

1.
om

ne
tp

p
47

3.
as

ta
r

48
1.

w
rf

48
3.

xa
la

nc
bm

k

SP
E

C
IN

T
SP

E
C

FP

N
or

m
al

iz
ed

 D
is

pa
tc

he
d

In
st

ru
ct

io
ns

Rev2
Rev4

Figure 8.3: SPEC CPU2006 Dispatched Instructions

overall instruction dispatches are reduced by 20.6% and 18.2% for the

Rev2 and Rev4 configurations. On the floating point workloads, the Rev2

configuration observes less benefit and reduces instruction dispatches

by 14.0%. Shown earlier in Figure 1.2, although most of floating-point

execution is spent within simple loops, the loops are of considerable size.

This results in in-place execution and traditional loop buffers capturing

a small fraction of total loop opportunities due to their limited size. The

Rev4 configuration performs slightly better than Rev2, capturing 20.2% of

all instruction dispatches.

108

Performance Impact

This subsection evaluates the performance impact of in-place loop execu-

tion in terms of execution latency. As loops are unrolled by even factors

into the respective processor issue queues, multiple issue queue entries

may go unutilized. Issue queue underutilization during loop-mode dis-

patch potentially results in reduced performance. Reduced performance is

observed when utilizing all issue queue entries would result in additional

instruction level parallelism.

In Figures 8.4, 8.5, and 8.6 the present the normalized execution for all

processor configurations across the three benchmark suites. All execution

latencies are normalized against the OO2 processor baseline.

On SD-VBS, presented in Figure 8.4, moving from the OO2 to OO4

reduces execution time by 26.9% The Rev2 and Rev4 processors reduce

performance on average by 1.6% and 1.0% against their equivalent width

baselines. The smaller performance degradation of the Rev4 design in

comparison to OO4 is expected due to diminishing returns on large execu-

tion windows. The stitch bencharm demonstrates the largest performance

degradation, hurting performance by 5.3% on the Rev2 configuration.

In Figure 8.5, the performance results for MiBench are shown. Compar-

ing the baseline designs, the OO4 configuration offers 28.6% better overall

performance than the OO2 configuration. Overall the Rev2 and Rev4 both

negatively impact performance against their equivalent width baselines

by 0.6%.

109

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2
d

is
p

ar
it

y

lo
ca

li
za

ti
o

n

m
se

r

m
u

lt
i_

n
cu

t

si
ft

st
it

ch

sv
m

te
x

t_
sy

n
th

tr
ac

k
in

g

g
eo

m
ea

n

N
o

rm
al

iz
ed

 E
x

ec
u

ti
o

n
 T

im
e

OO2

Rev2

OO4

Rev4

Figure 8.4: SD-VBS Normalized Execution Time

Finally, performance results for the SPEC CPU2006 benchmark suite

are shown in Figure 8.6. On the integer workloads, the OO4 baseline re-

duces execution time by 26.2% in comparison to OO2. The Rev2 and Rev4

designs reduce overall performance by 0.3% in comparison to their respec-

tive baselines. For the floating point workloads, OO4 reduces execution

time by 24.3% over OO2. The Rev2 and Rev4 designs hurt overall perfor-

mace by 0.6% on the floating point workloads. The reduced performance

degradation on SPEC is correlated with a reduction in opportunity for

110

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2
au

to
.b

it
cn

t

au
to

.q
so

rt

au
to

.s
u

sa
n

.c
o

rn
er

s

au
to

.s
u

sa
n

.e
d

g
es

au
to

.s
u

sa
n

.s
m

o
o

th
in

g

co
n

s.
cj

p
eg

co
n

s.
d

jp
eg

co
n

s.
la

m
e

co
n

s.
m

ad

co
n

s.
ti

ff
2

b
w

co
n

s.
ti

ff
2

rg
b

a

co
n

s.
ti

ff
d

it
h

er

co
n

s.
ti

ff
m

ed
ia

n

n
et

.d
ij

k
st

ra

n
et

.p
at

ri
ci

a

o
ff

.r
sy

n
th

o
ff

.s
tr

in
g

se
ar

ch

se
c.

b
lo

w
fi

sh

se
c.

p
g

p

se
c.

ri
jn

d
ae

l

se
c.

sh
a

te
le

.a
d

p
cm

.c
o

m
p

re
ss

te
le

.a
d

p
cm

.d
ec

o
m

p
re

ss

te
le

.c
rc

te
le

.f
ft

te
le

.g
sm

g
eo

m
ea

n

N
o

rm
al

iz
ed

 E
x

ec
u

ti
o

n
 T

im
e

OO2

Rev2

OO4

Rev4

Figure 8.5: MiBench Normalized Execution Time

loop-mode dispatch. The two benchmarks with the largest performance

degradation, 437.leslie3d and 450.soplex eliminate a significant number of

instruction dispatches through loop-mode.

Overall it is observed that in-place loop execution, on average, hurts

processor performance by less than 1% while significantly reducing the

number of instruction dispatches.

111

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2
4

0
0

.p
er

lb
en

ch

4
0

1
.b

zi
p

2

4
0

3
.g

cc

4
1

0
.b

w
av

es

4
1

6
.g

am
es

s

4
2

9
.m

cf

4
3

3
.m

il
c

4
3

4
.z

eu
sm

p

4
3

5
.g

ro
m

ac
s

4
3

6
.c

ac
tu

sA
D

M

4
3

7
.l

es
li

e3
d

4
4

4
.n

am
d

4
4

5
.g

o
b

m
k

4
5

0
.s

o
p

le
x

4
5

3
.p

o
v

ra
y

4
5

4
.c

al
cu

li
x

4
5

6
.h

m
m

er

4
5

8
.s

je
n

g

4
5

9
.G

em
sF

D
T

D

4
6

2
.l

ib
q

u
an

tu
m

4
6

4
.h

2
6

4
re

f

4
6

5
.t

o
n

to

4
7

0
.l

b
m

4
7

1
.o

m
n

et
p

p

4
7

3
.a

st
ar

4
8

1
.w

rf

4
8

3
.x

al
an

cb
m

k

S
P

E
C

IN
T

S
P

E
C

F
P

N
o

rm
al

iz
ed

 E
x

ec
u

ti
o

n
 T

im
e

OO2

Rev2

OO4

Rev4

Figure 8.6: SPEC CPU2006 Normalized Execution Time

Energy Impact

This subsection presents the processor core energy estimations obtained

by through cycle-accurate simulation and the McPAT power analysis tool.

For comparison, configurations of the baseline OO2 and OO4 are evalu-

ated with optional loop buffers and µop caches. All energy numbers are

normalized against the equivalent width out-of-order baseline without a

loop buffer or µop cache.

112

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2
d
is

p
ar

it
y

lo
ca

li
za

ti
o
n

m
se

r

m
u
lt

i_
n
cu

t

si
ft

st
it

ch

sv
m

te
x
t_

sy
n
th

tr
ac

k
in

g

g
eo

m
ea

n

N
o
rm

al
iz

ed
 E

n
er

g
y

OO−2 + LB

OO−2 + uC

Rev2

Rev2 + uC

Figure 8.7: SD-VBS 2-Wide Normalized Energy

SD-VBS

Figure 8.7 presents energy consumption for the 2-wide processor config-

urations on the SD-VBS benchmark suite. With respect to the baselines,

the loop buffer and µop cache designs offer significant energy improve-

ments. Although the µop cache design offers the best energy consumption

overall, specific benchmarks demonstrate better energy consumption with

a small loop buffer. For benchmarks which expend almost all execution

time within very simple loops, like disparity or multi_ncut, the loop buffer

113

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2
d
is

p
ar

it
y

lo
ca

li
za

ti
o
n

m
se

r

m
u
lt

i_
n
cu

t

si
ft

st
it

ch

sv
m

te
x
t_

sy
n
th

tr
ac

k
in

g

g
eo

m
ea

n

N
o
rm

al
iz

ed
 E

n
er

g
y

OO−4 + LB

OO−4 + uC

Rev4

Rev4 + uC

Figure 8.8: SD-VBS 4-Wide Normalized Energy

offers all of the dispatch benefits of a µop cache, but with reduced access

energy requirements. The Rev2 configuration also outperforms the loop

buffer equipped out-of-order due to it’s ability to handle similar sized

loops with reduced energy costs. Due to the high occurrences of simple

loops, the Revolver-based designs outperform the conventional out-of-

order designs on all benchmarks except for text_synth. The Rev4 + µop

cache configuration offers the best overall energy consumption.

Figure 8.8 shows the energy consumption for the 4-wide issue processor

114

configurations on SD-VBS. In general the trends from Figure 8.7 remain the

same, however the overall energy benefit from front-end energy savings in

the Revolver designs is greater than that of the 2-wide configuration. For

the conventional loop buffer and µop cache designs, the relative benefit

is approximately the same. This energy characteristic is due to the Rev2

and Rev4 designs eliminating allocation energy overheads. In general

the pre-decode stages energy consumption scales linearly with processor

width, while front-end renaming and allocation hardware scales poorly

with issue width.

MiBench

Figure 8.9 presents the energy consumption for 2-wide issue processor

configurations on the MiBench suite. The µop cache equipped designs,

OO2 + µC and Rev2 + µC, designs offer the best overall processor energy

consumption. This trend is due to the limited potential of Rev2 and OO2

+ LB to capture proportionally as many dynamic instructions as the µop

caches. Benchmarks such as tele.adpcm.compress exemplify this as loop

buffering saves no dynamic energy while µop caches result in great energy

benefits.

The energy results for 4-wide issue processor configurations on MiBench

are show in Figure 8.10. In contrast to the 2-wide configurations, the Rev

design outperforms the OO + µC design overall. This is possible because

the 64-entry instruction window on the Rev4 design is large enough that

115

 0

 0.2

 0.4

 0.6

 0.8

 1

au
to

.b
it

cn
t

au
to

.q
so

rt

au
to

.s
u
sa

n
.c

o
rn

er
s

au
to

.s
u
sa

n
.e

d
g
es

au
to

.s
u
sa

n
.s

m
o
o
th

in
g

co
n
s.

cj
p
eg

co
n
s.

d
jp

eg

co
n
s.

la
m

e

co
n
s.

m
ad

co
n
s.

ti
ff

2
b
w

co
n
s.

ti
ff

2
rg

b
a

co
n
s.

ti
ff

d
it

h
er

co
n
s.

ti
ff

m
ed

ia
n

n
et

.d
ij

k
st

ra

n
et

.p
at

ri
ci

a

o
ff

.r
sy

n
th

o
ff

.s
tr

in
g
se

ar
ch

se
c.

b
lo

w
fi

sh

se
c.

p
g
p

se
c.

ri
jn

d
ae

l

se
c.

sh
a

te
le

.a
d
p
cm

.c
o
m

p
re

ss

te
le

.a
d
p
cm

.d
ec

o
m

p
re

ss

te
le

.c
rc

te
le

.f
ft

te
le

.g
sm

g
eo

m
ea

n

N
o
rm

al
iz

ed
 E

n
er

g
y

OO−2 + LB

OO−2 + uC

Rev2

Rev2 + uC

Figure 8.9: MiBench 2-Wide Normalized Energy

it captures significantly more loops than the Rev2 design on MiBench.

SPECINT

Energy results for the 2-wide and 4-wide issue processor configurations

for the SPECINT 2006 benchmarks are shown in Figures 8.11 and 8.12

respectively.

For the 2-wide configuration, OO2 + µC again outperforms the Rev2

116

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

au
to

.b
it

cn
t

au
to

.q
so

rt

au
to

.s
u
sa

n
.c

o
rn

er
s

au
to

.s
u
sa

n
.e

d
g
es

au
to

.s
u
sa

n
.s

m
o
o
th

in
g

co
n
s.

cj
p
eg

co
n
s.

d
jp

eg

co
n
s.

la
m

e

co
n
s.

m
ad

co
n
s.

ti
ff

2
b
w

co
n
s.

ti
ff

2
rg

b
a

co
n
s.

ti
ff

d
it

h
er

co
n
s.

ti
ff

m
ed

ia
n

n
et

.d
ij

k
st

ra

n
et

.p
at

ri
ci

a

o
ff

.r
sy

n
th

o
ff

.s
tr

in
g
se

ar
ch

se
c.

b
lo

w
fi

sh

se
c.

p
g
p

se
c.

ri
jn

d
ae

l

se
c.

sh
a

te
le

.a
d
p
cm

.c
o
m

p
re

ss

te
le

.a
d
p
cm

.d
ec

o
m

p
re

ss

te
le

.c
rc

te
le

.f
ft

te
le

.g
sm

g
eo

m
ea

n

N
o
rm

al
iz

ed
 E

n
er

g
y

OO−4 + LB

OO−4 + uC

Rev4

Rev4 + uC

Figure 8.10: MiBench 4-Wide Normalized Energy

configuration overall. However this trend reverses in the 4-wide issue

configurations with the Rev4 design offering greater energy benefits than

the corresponding OO4 + µC design. The 462.libquantum benchmark re-

sults in the greatest overall energy savings from all instruction buffering

techniques since the benchmark spends almost all execution within loop

bodies with fewer than 10 instructions.

117

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1
4
0
0
.p

er
lb

en
ch

4
0
1
.b

zi
p
2

4
0
3
.g

cc

4
2
9
.m

cf

4
4
5
.g

o
b
m

k

4
5
6
.h

m
m

er

4
5
8
.s

je
n
g

4
6
2
.l

ib
q
u
an

tu
m

4
6
4
.h

2
6
4
re

f

4
7
1
.o

m
n
et

p
p

4
7
3
.a

st
ar

4
8
3
.x

al
an

cb
m

k

g
eo

m
ea

n

N
o
rm

al
iz

ed
 E

n
er

g
y

OO−2 + LB

OO−2 + uC

Rev2

Rev2 + uC

Figure 8.11: SPECINT CPU2006 2-Wide Normalized Energy

SPECFP

Figures 8.13 and 8.14 show the normalized energy consumption of the

SPECFP 2006 benchmarks across the different processor configurations.

In general, all instruction buffering techniques offer comparatively less

energy benefits in comparison to the SPECINT benchmarks. This is due

to higher execution unit energy consumption consumed on floating point

benchmarks, resulting in less energy reduction opportunity [78, 55].

118

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1
4
0
0
.p

er
lb

en
ch

4
0
1
.b

zi
p
2

4
0
3
.g

cc

4
2
9
.m

cf

4
4
5
.g

o
b
m

k

4
5
6
.h

m
m

er

4
5
8
.s

je
n
g

4
6
2
.l

ib
q
u
an

tu
m

4
6
4
.h

2
6
4
re

f

4
7
1
.o

m
n
et

p
p

4
7
3
.a

st
ar

4
8
3
.x

al
an

cb
m

k

g
eo

m
ea

n

N
o
rm

al
iz

ed
 E

n
er

g
y

OO−4 + LB

OO−4 + uC

Rev4

Rev4 + uC

Figure 8.12: SPECINT CPU2006 4-Wide Normalized Energy

For the 2-wide configurations, µop cache equipped designs outperform

the OO2 + LB and Rev2 designs. However the both Revolver desings, Rev4

and Rev4 + µC designs offers the best energy efficiency for 4-wide issue

machines. The 64-instruction window of Revolver-based designs leads

to the most significant energy savings on the 436.leslie3d and 465.tonto

benchmarks.

119

 0

 0.2

 0.4

 0.6

 0.8

 1
4
1
0
.b

w
av

es

4
1
6
.g

am
es

s

4
3
3
.m

il
c

4
3
4
.z

eu
sm

p

4
3
5
.g

ro
m

ac
s

4
3
6
.c

ac
tu

sA
D

M

4
3
7
.l

es
li

e3
d

4
4
4
.n

am
d

4
5
0
.s

o
p
le

x

4
5
3
.p

o
v
ra

y

4
5
4
.c

al
cu

li
x

4
5
9
.G

em
sF

D
T

D

4
6
5
.t

o
n
to

4
7
0
.l

b
m

4
8
1
.w

rf

g
eo

m
ea

n

N
o
rm

al
iz

ed
 E

n
er

g
y

OO−2 + LB

OO−2 + uC

Rev2

Rev2 + uC

Figure 8.13: SPECFP CPU2006 2-Wide Normalized Energy

Overall Energy-Delay

Although piecewise evaluations of energy and delay highlight specific

impacts of in-place loop execution, looking at each characteristic in fails

to show the true efficiency of in-place loop execution. In this subsection

we present the overall energy-delay picture for in place execution for the

conventional out-of-order based Revolver architectures.

Figures 8.15 and 8.16 show the overall energy-delay product results

120

 0

 0.2

 0.4

 0.6

 0.8

 1
4
1
0
.b

w
av

es

4
1
6
.g

am
es

s

4
3
3
.m

il
c

4
3
4
.z

eu
sm

p

4
3
5
.g

ro
m

ac
s

4
3
6
.c

ac
tu

sA
D

M

4
3
7
.l

es
li

e3
d

4
4
4
.n

am
d

4
5
0
.s

o
p
le

x

4
5
3
.p

o
v
ra

y

4
5
4
.c

al
cu

li
x

4
5
9
.G

em
sF

D
T

D

4
6
5
.t

o
n
to

4
7
0
.l

b
m

4
8
1
.w

rf

g
eo

m
ea

n

N
o
rm

al
iz

ed
 E

n
er

g
y

OO−4 + LB

OO−4 + uC

Rev4

Rev4 + uC

Figure 8.14: SPECFP CPU2006 4-Wide Normalized Energy

for each configuration normalized against a conventional out-of-order

withoutany loop buffer or µop cache capabilities. Figure 8.15 presents re-

sults for the smaller out-of-order configurations while Figure 8.16 presents

results for the large out-of-order designs.

For the small out-of-order designs shown in Figure 8.15, multiple trends

are observed. First the benchmark suites perform as expected with the

Revolver architectures extracting the most energy benefit from SD-VBS,

followed by MiBench and SPEC. Secondly, the Revolver architecture always

121

0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

SD−VBS MiBench SPECINT SPECFP

N
or

m
al

iz
ed

 E
ne

rg
y−

D
el

ay
OO2 + LB OO2 + µC Rev2 Rev2 + µC

Figure 8.15: Overall 2-Wide Energy-Delay

outperforms the loop buffer equipped out-of-order, due to the reduced

energy costs while capturing similarly sized loops. Third, the µop cache

always outperforms the loop buffer with respect to entire benchmark suites.

Fourth„ for the benchmark suites with fewer capturable loops (MiBench

and SPEC), the µop cache outperforms the Rev2 configuration. Finally,

Rev2 with a µop cache exhibits the best energy-delay performance across

all benchmark suites.

On the large out-of-order designs shown in Figure 8.16, Revolver

demonstrates even greater energy-delay benefit due to its ability to capture

larger loops. Across the benchmark suites, Rev4 outperforms traditional

122

0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

SD−VBS MiBench SPECINT SPECFP

N
or

m
al

iz
ed

 E
ne

rg
y−

D
el

ay
OO4 + LB OO4 + µC Rev4 Rev4 + µC

Figure 8.16: Overall 4-Wide Energy-delay

SD-VBS MiBench SPECINT SPECFP
Rev2 vs. OO2+LB 8.7% 3.5% 3.4% 0.7%
Rev2+µC vs. OO2+µC 15.3% 4.0% 3.9% 1.3%
Rev4 vs. OO4+LB 17.6% 12.8% 6.9% 5.1%
Rev4+µC vs. OO4+µC 18.3% 12.4% 7.8% 5.3%

Table 8.6: Energy-Delay Improvement.

out-of-orders on all benchmarks except SPECFP. Again, this is expcted

due to the numerous large loops that cannot be captured by Revolver

in SPECFP. However, when combined with a µop cache, the Revolver

architecture outperforms all other configurations.

In Table 8.6 we show Revolver’s relative energy-delay improvement

for multiple configurations. With respect to loop buffers, Rev2 obtains

123

0.7%-8.7% energy delay improvement against a loop-buffer equipped out-

of-order. While Rev4 observes an even greater 1.3%-17.6% benefit over

loop-buffer equipped designs. When all designs are equipped with µop

caches, Revolver remains more energy efficient. The two-wide configura-

tion enjoys 5.1%-17.6% benefit, while the 4-wide Revolver configuration

observes 5.3%-18.3% benefit over a traditional out-of-order design.

8.3 Loop Design Tradeoffs

The design of loop-mode execution in the Revolver architectures involved

many tradeoffs with respect to performance, energy savings, and design

simplicity. In this section the interactions and design alternatives relating

to loop unrolling, back-end feedback, and branch prediction are examined.

Loop Unrolling

Within the Revolver architectures, although loops are executed in-place

within the processor out-of-order back-end, they are unrolled multiple

times in order to extract additional instruction level parallelism. This

unrolling tradeoff has been made in the previous processor back-end loop

buffering proposals. As noted earlier, [40] also unrolls loops into the issue

queue, while [63] does not. This subsection investigates the impacts of this

design decision.

124

Performance Impact

The act of unrolling loops in order to extract additional performance is a

widely known and longstanding technique used in both hardware and soft-

ware [23]. Unrolling loops in software comes at the expense of additional

instruction cache requirements, although some dynamic operations may

be eliminated. Dynamic unrolling of loops by hardware alternatively has

no instruction cache impact, however may execute more operations than

the corresponding loop unrolled by software. In modern out-of-orders

program based loops are dynamically unrolled across all iterations and

extract the maximum available instruction level parallelism.

The use of loop-mode execution in the Revolver architectures places

additional constraints by limiting the maximum amount of loop unrolling

possible. Although much work greatly suggests loop unrolling greatly

impacts performance, [63] suggests that loop unrolling has minimal impact

on performance when buffering loops in the processor’s back-end.

Figures 8.17, 8.18, and 8.19 show the performance degradation realized

if loop unrolling were disabled and only a single iteration of a loop were al-

lowed within the out-of-order processor back-end at any time. All designs

are normalized against their equivalent design with loop unrolling.

For SD-VBS, shown in Figure 8.17, the lack of loop unrolling hurts per-

formance by 16.5% and 38.1% for the Rev2 and Rev4 designs respectively.

The larger performance degradation on the Rev4 design in comparison to

the Rev2 design is due to the larger unrolling factors typically afforded by

125

 0

 0.5

 1

 1.5

 2

 2.5

d
is

p
ar

it
y

lo
ca

li
za

ti
o
n

m
se

r

m
u
lt

i_
n
cu

t

si
ft

st
it

ch

sv
m

te
x
t_

sy
n
th

tr
ac

k
in

g

g
eo

m
ea

n

N
o
rm

al
iz

ed
 S

lo
w

d
o
w

n
 W

it
h
o
u
t

U
n
ro

ll
in

g

Rev2

Rev4

Figure 8.17: SD-VBS Execution Slowdown Without Loop Unrolling

the Rev4 processor’s instruction window. Effectively, during loop mode

execution, the instrution windows of the Rev2 and Rev4 designs are the

same size if unrolling is disabled. Benchmarks which do not benefit from

our in-place execution technique, like text_synth are unaffected by this

design tradeoff.

For MiBench, shown in Figure 8.18, the lack of loop unrolling worsens

performance on the Rev2 and Rev4 designs by 6.0% and 15.0% respectively.

In Figure 8.19 results are presented for the SPEC CPU2006 benchmark

suite. Overall, the SPEC benchmark suite is hurt the least by disallowing

loop unrolling. No unrolling hurts SPECINT performance by 5.5% and

126

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

au
to

.b
it

cn
t

au
to

.q
so

rt

au
to

.s
u
sa

n
.c

o
rn

er
s

au
to

.s
u
sa

n
.e

d
g
es

au
to

.s
u
sa

n
.s

m
o
o
th

in
g

co
n
s.

cj
p
eg

co
n
s.

d
jp

eg

co
n
s.

la
m

e

co
n
s.

m
ad

co
n
s.

ti
ff

2
b
w

co
n
s.

ti
ff

2
rg

b
a

co
n
s.

ti
ff

d
it

h
er

co
n
s.

ti
ff

m
ed

ia
n

n
et

.d
ij

k
st

ra

n
et

.p
at

ri
ci

a

o
ff

.r
sy

n
th

o
ff

.s
tr

in
g
se

ar
ch

se
c.

b
lo

w
fi

sh

se
c.

p
g
p

se
c.

ri
jn

d
ae

l

se
c.

sh
a

te
le

.a
d
p
cm

.c
o
m

p
re

ss

te
le

.a
d
p
cm

.d
ec

o
m

p
re

ss

te
le

.c
rc

te
le

.f
ft

te
le

.g
sm

g
eo

m
ea

n

N
o
rm

al
iz

ed
 S

lo
w

d
o
w

n
 W

it
h
o
u
t

U
n
ro

ll
in

g

Rev2

Rev4

Figure 8.18: MiBench Execution Slowdown Without Loop Unrolling

10.4% for the Rev2 and Rev4 designs respectively. The impact on the

floating point benchmarks is less with Rev2 and Rev4 losing 3.0% and 7.2%

performance respectively on SPECFP.

Overall it is observed that loop unrolling is highly beneficial to perfor-

mance during loop-mode operation.

Instruction Dispatch Impact

Although limiting loop unrolling negatively impacts performance it does

provide energy consumption benefits. To evaluate the potential savings

127

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

4
0
0
.p

er
lb

en
ch

4
0
1
.b

zi
p
2

4
0
3
.g

cc

4
1
0
.b

w
av

es

4
1
6
.g

am
es

s

4
2
9
.m

cf

4
3
3
.m

il
c

4
3
4
.z

eu
sm

p

4
3
5
.g

ro
m

ac
s

4
3
6
.c

ac
tu

sA
D

M

4
3
7
.l

es
li

e3
d

4
4
4
.n

am
d

4
4
5
.g

o
b
m

k

4
5
0
.s

o
p
le

x

4
5
3
.p

o
v
ra

y

4
5
4
.c

al
cu

li
x

4
5
6
.h

m
m

er

4
5
8
.s

je
n
g

4
5
9
.G

em
sF

D
T

D

4
6
2
.l

ib
q
u
an

tu
m

4
6
4
.h

2
6
4
re

f

4
6
5
.t

o
n
to

4
7
0
.l

b
m

4
7
1
.o

m
n
et

p
p

4
7
3
.a

st
ar

4
8
1
.w

rf

4
8
3
.x

al
an

cb
m

k

S
P

E
C

IN
T

S
P

E
C

F
P

N
o
rm

al
iz

ed
 S

lo
w

d
o
w

n
 W

it
h
o
u
t

U
n
ro

ll
in

g

Rev2

Rev4

Figure 8.19: SPEC CPU2006 Execution Slowdown Without Loop Unrolling

from eliminating unrolling, Figures 8.20, 8.21, and 8.22 present the number

of dispatched instructions without loop unrolling across the benchmark

suites. All designs are normalized against their respective baseline with

in-place execution and loop unrolling.

Shown in Figure 8.20, eliminating loop unrolling reduces instruction

dispatches by 22.0% and 42.0% for the Rev2 and Rev4 designs respectively.

Although these are significant dispatch reductions, they were accom-

panied by 17%-38% performance reductions in the previous study. As

front-end energy is already reduced through the use of the Revolver archi-

tectures, eliminating loop unrolling is not a sensible energy-delay based

128

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

d
is

p
ar

it
y

lo
ca

li
za

ti
o
n

m
se

r

m
u
lt

i_
n
cu

t

si
ft

st
it

ch

sv
m

te
x
t_

sy
n
th

tr
ac

k
in

g

g
eo

m
ea

n

N
o
rm

al
iz

ed
 D

is
p
at

ch
ed

 I
n
st

ru
ct

io
n
s

Rev2

Rev4

Figure 8.20: SD-VBS Normalized Dispatched Instructions Without Loop
Unrolling

tradeoff.

Figure 8.21 shows that eliminating loop unrolling can save 10.4% and

21.8% of all instruction dispatches on the MiBench suite for the Rev2 and

Rev4 designs.

Finally, instruction dispatch results for the SPEC CPU2006 benchmark

suite are shown in Figure 8.22. On the SPECINT subset, no unrolling

results in a 6.3% and 7.7% reduction in instruction dispatches for the 2-

wide and 4-wide Revolver architectures. SPECFP results in 6.4% savings

for the 2-wide configuration, while the 4-wide confuration eliminates

129

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2
au

to
.b

it
cn

t

au
to

.q
so

rt

au
to

.s
u
sa

n
.c

o
rn

er
s

au
to

.s
u
sa

n
.e

d
g
es

au
to

.s
u
sa

n
.s

m
o
o
th

in
g

co
n
s.

cj
p
eg

co
n
s.

d
jp

eg

co
n
s.

la
m

e

co
n
s.

m
ad

co
n
s.

ti
ff

2
b
w

co
n
s.

ti
ff

2
rg

b
a

co
n
s.

ti
ff

d
it

h
er

co
n
s.

ti
ff

m
ed

ia
n

n
et

.d
ij

k
st

ra

n
et

.p
at

ri
ci

a

o
ff

.r
sy

n
th

o
ff

.s
tr

in
g
se

ar
ch

se
c.

b
lo

w
fi

sh

se
c.

p
g
p

se
c.

ri
jn

d
ae

l

se
c.

sh
a

te
le

.a
d
p
cm

.c
o
m

p
re

ss

te
le

.a
d
p
cm

.d
ec

o
m

p
re

ss

te
le

.c
rc

te
le

.f
ft

te
le

.g
sm

g
eo

m
ea

n

N
o
rm

al
iz

ed
 D

is
p
at

ch
ed

 I
n
st

ru
ct

io
n
s

Rev2

Rev4

Figure 8.21: MiBench Normalized Dispatched Instructions Without Loop
Unrolling

10.2% of all instruction dispatches.

Due to the large performance regressions and limited dispatch benefits

resulting from limited loop dispatch, loop unrolling is utilized within the

Revolver architectures.

130

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1
4
0
0
.p

er
lb

en
ch

4
0
1
.b

zi
p
2

4
0
3
.g

cc

4
1
0
.b

w
av

es

4
1
6
.g

am
es

s

4
2
9
.m

cf

4
3
3
.m

il
c

4
3
4
.z

eu
sm

p

4
3
5
.g

ro
m

ac
s

4
3
6
.c

ac
tu

sA
D

M

4
3
7
.l

es
li

e3
d

4
4
4
.n

am
d

4
4
5
.g

o
b
m

k

4
5
0
.s

o
p
le

x

4
5
3
.p

o
v
ra

y

4
5
4
.c

al
cu

li
x

4
5
9
.G

em
sF

D
T

D

4
5
6
.h

m
m

er

4
5
8
.s

je
n
g

4
6
2
.l

ib
q
u
an

tu
m

4
6
4
.h

2
6
4
re

f

4
6
5
.t

o
n
to

4
7
0
.l

b
m

4
7
3
.a

st
ar

4
8
1
.w

rf

4
8
3
.x

al
an

cb
m

k

S
P

E
C

F
P

S
P

E
C

IN
T

N
o
rm

al
iz

ed
 D

is
p
at

ch
ed

 I
n
st

ru
ct

io
n
s

Rev2

Rev4

Figure 8.22: SPEC CPU2006 Normalized Dispatched Instructions Without
Loop Unrolling

Loop Training Feedback

Described earlier in Section 3.4, feedback from the out-of-order processor

back-end provides the function of disabling loop-mode dispatch for loops

with unstable control flow or do not iterate a sufficient number of times.

In this subsection the impact and effectiveness of the loop profitability

prediction is evaluated.

To evaluate the impact of back-end feedback, three alternative loop

feedback mechanisms are evaluated. In addition to the earlier proposed

131

feedback policy, the impact of no back-end feedback and feedback without

a positive reinforcement mechanism are considered. The first alternative

policy, no training (NT), simply performs loop-dispatch without feedback

from the processor back-end. With this policy loop-mode dispatch is never

impacted by the number of executed loop iterations. Additionally, in the

event of a branch misprediction, the executed loop is simply removed

from the LAT. The front-end however is free to immediately retrain and

attempt loop-mode dispatch again. In the second policy, abort (ABT), any

branch mispredictions lead to loop-mode dispatch being permanently

disabled. To evaluate the impact of these policies, the remainder of this

section evaluates their impact on instruction dispatch and performance.

Figure 8.23 shows the effect of back-end feedback on the number of

instructions dispatched for SD-VBS. In general the Rev2 and Rev2-NT

configurations result in similar instruction dispatch characteristics with

the NT policy resulting in marginally more instruction dispatches. The

ABT policy drastically reduces the effectiveness of loop-mode dispatch.

Overall, the Rev2 and Rev2-NT configurations result in 84% reductions in

dispatched instructions compared to the baseline Rev2 architecture. Due

to the lack of positive reinforcement, the Rev2-ABT configuration only

results in 36% savings in instruction dispatches.

Figure 8.25 shows the impact of the three training policies in terms of

execution time. Overall the designs perform similarly, although the Rev2

and Rev2-NT configurations degrade performance on some benchmarks.

132

 0

 0.2

 0.4

 0.6

 0.8

 1

d
is

p
ar

it
y

lo
ca

li
za

ti
o
n

m
se

r

m
u
lt

i_
n
cu

t

si
ft

st
it

ch

sv
m

te
x
t_

sy
n
th

tr
ac

k
in

g

g
eo

m
ea

n

N
o
rm

al
iz

ed
 D

is
p
at

ch
ed

 I
n
st

ru
ct

io
n
s Rev2

Rev2−NT

Rev2−ABT

Figure 8.23: SD-VBS Loop Profitability Feedback - Dispatched Instructions.

The Rev2-ABT policy offers the best performance of all designs, bettering

overall performance over the baseline OO2 design by 0.1%.

Figure 8.26 shows the instruction dispatch impact of the policies on

the MiBench suite. On most benchmarks Rev2 and Rev2-NT perform

similarly, however for benchmarks like auto.bitcnt the impact of training

results in the disabling of loop-mode dispatch more frequently on the Rev2

design. Overall, the Rev2-ABT policy increases the number of dispatched

instructions by 36% over the Rev2 configuration.

Next, Figure 8.27 presents the impact of feedback policy on execution

time for the MiBench suite. Although performance is similar on many

133

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

d
is

p
ar

it
y

lo
ca

li
za

ti
o

n

m
se

r

m
u

lt
i_

n
cu

t

si
ft

st
it

ch

sv
m

te
x

t_
sy

n
th

tr
ac

k
in

g

g
eo

m
ea

n

N
o

rm
al

iz
ed

 E
x

ec
u

ti
o

n
 T

im
e

Rev2

Rev2−NT

Rev2−ABT

Figure 8.24: SD-VBS Loop Profitability Feedback - Execution Time.

benchmarks, significant performance regressions are observed on some

benchmarks. For the auto.bitcnt and auto.qsort benchmarks, the lack of

feedback in the NT policy significantly degrades performance. For these

benchmarks the performance degradation is due to the presence of unsta-

ble control flow.

Figure 8.28 details the number of dispatched instructions for the SPEC

CPU2006 benchmark suite. Again, in comparison to the other policies, the

Rev2-ABT configuration significantly increases the number of dispatched

134

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

d
is

p
ar

it
y

lo
ca

li
za

ti
o

n

m
se

r

m
u

lt
i_

n
cu

t

si
ft

st
it

ch

sv
m

te
x

t_
sy

n
th

tr
ac

k
in

g

g
eo

m
ea

n

N
o

rm
al

iz
ed

 E
x

ec
u

ti
o

n
 T

im
e

Rev2

Rev2−NT

Rev2−ABT

Figure 8.25: SD-VBS Loop Profitability Feedback - Execution Time.

instructions.

Finally, Figure 8.29 shows the impact on profitability training on the

SPEC CPU2006 benchmark suite. Both the Rev2 and Rev2-ABT policies

negligibly impact execution. Improper loop dispatch on Rev2-NT increases

execution time by 2.9% and 1.8% on the integer and floating point bench-

mark subsets respectively.

Overall, it is observed that the existing policy effectively reduces the

number of required instruction dispatches while successfully mitigating

135

 0

 0.2

 0.4

 0.6

 0.8

 1
au

to
.b

it
cn

t

au
to

.q
so

rt

au
to

.s
u
sa

n
.c

o
rn

er
s

au
to

.s
u
sa

n
.e

d
g
es

au
to

.s
u
sa

n
.s

m
o
o
th

in
g

co
n
s.

cj
p
eg

co
n
s.

d
jp

eg

co
n
s.

la
m

e

co
n
s.

m
ad

co
n
s.

ti
ff

2
b
w

co
n
s.

ti
ff

2
rg

b
a

co
n
s.

ti
ff

d
it

h
er

co
n
s.

ti
ff

m
ed

ia
n

n
et

.d
ij

k
st

ra

n
et

.p
at

ri
ci

a

o
ff

.r
sy

n
th

o
ff

.s
tr

in
g
se

ar
ch

se
c.

b
lo

w
fi

sh

se
c.

p
g
p

se
c.

ri
jn

d
ae

l

se
c.

sh
a

te
le

.a
d
p
cm

.c
o
m

p
re

ss

te
le

.a
d
p
cm

.d
ec

o
m

p
re

ss

te
le

.c
rc

te
le

.f
ft

te
le

.g
sm

g
eo

m
ea

n

N
o
rm

al
iz

ed
 D

is
p
at

ch
ed

 I
n
st

ru
ct

io
n
s

Rev2

Rev2−NT

Rev2−ABT

Figure 8.26: MiBench Loop Profitability Feedback - Dispatched Instruc-
tions.

potential performance regressions due to unstable control flow.

Branch Prediction Impact

The process of performing loop-mode execution in the Revolver archi-

tectures impacts most microarchitectural structures. In the evaluated

microarchitectures, a traditional tournament-based branch predictor is

136

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2
au

to
.b

it
cn

t

au
to

.q
so

rt

au
to

.s
u

sa
n

.c
o

rn
er

s

au
to

.s
u

sa
n

.e
d

g
es

au
to

.s
u

sa
n

.s
m

o
o

th
in

g

co
n

s.
cj

p
eg

co
n

s.
d

jp
eg

co
n

s.
la

m
e

co
n

s.
m

ad

co
n

s.
ti

ff
2

b
w

co
n

s.
ti

ff
2

rg
b

a

co
n

s.
ti

ff
d

it
h

er

co
n

s.
ti

ff
m

ed
ia

n

n
et

.d
ij

k
st

ra

n
et

.p
at

ri
ci

a

o
ff

.r
sy

n
th

o
ff

.s
tr

in
g

se
ar

ch

se
c.

b
lo

w
fi

sh

se
c.

p
g

p

se
c.

ri
jn

d
ae

l

se
c.

sh
a

te
le

.a
d

p
cm

.c
o

m
p

re
ss

te
le

.a
d

p
cm

.d
ec

o
m

p
re

ss

te
le

.c
rc

te
le

.f
ft

te
le

.g
sm

g
eo

m
ea

n

N
o

rm
al

iz
ed

 E
x

ec
u

ti
o

n
 T

im
e

Rev2

Rev2−NT

Rev2−ABT

Figure 8.27: MiBench Loop Profitability Feedback - Execution Time.

utilized [57]. In recently proposed branch predictors, filtering branch pre-

dictor lookups and updates is used to better branch prediction accuracy

and power [70]. Since during loop-mode execution branches within loop

bodies are statically predicted, many lookups and updates are also filtered.

Additionally, the number of times a loop executes is no longer predicted,

thus a potential source of branch mispredicts is directly eliminated by in-

place loop execution. This subsection investigates the impact of loop-mode

137

 0

 0.2

 0.4

 0.6

 0.8

 1
4
0
0
.p

er
lb

en
ch

4
0
1
.b

zi
p
2

4
0
3
.g

cc

4
1
0
.b

w
av

es

4
1
6
.g

am
es

s

4
2
9
.m

cf

4
3
3
.m

il
c

4
3
4
.z

eu
sm

p

4
3
5
.g

ro
m

ac
s

4
3
6
.c

ac
tu

sA
D

M

4
3
7
.l

es
li

e3
d

4
4
4
.n

am
d

4
4
5
.g

o
b
m

k

4
5
0
.s

o
p
le

x

4
5
3
.p

o
v
ra

y

4
5
4
.c

al
cu

li
x

4
5
6
.h

m
m

er

4
5
8
.s

je
n
g

4
5
9
.G

em
sF

D
T

D

4
6
2
.l

ib
q
u
an

tu
m

4
6
4
.h

2
6
4
re

f

4
6
5
.t

o
n
to

4
7
0
.l

b
m

4
7
3
.a

st
ar

4
8
1
.w

rf

4
8
3
.x

al
an

cb
m

k

S
P

E
C

IN
T

S
P

E
C

F
P

N
o
rm

al
iz

ed
 D

is
p
at

ch
ed

 I
n
st

ru
ct

io
n
s

Rev2

Rev2−NT

Rev2−ABT

Figure 8.28: SPEC CPU2006 Loop Profitability Feedback - Dispatched
Instructions.

execution on branch prediction.

Figures 8.30 and 8.31 show the impact of loop-mode execution on

the 2-wide conventional out-of-order based designs for SD-VBS. Shown

in Figure 8.30, the percentage of branches mispredicted greatly increase.

However, this is expected as loop-mode execution effectively filters the easy

to predict branches, resulting in the branch predictor no longer predicting

them. Thus the subset of branches predicted are less stable and predictable.

138

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2
4

0
0

.p
er

lb
en

ch

4
0

1
.b

zi
p

2

4
0

3
.g

cc

4
1

0
.b

w
av

es

4
1

6
.g

am
es

s

4
2

9
.m

cf

4
3

3
.m

il
c

4
3

4
.z

eu
sm

p

4
3

5
.g

ro
m

ac
s

4
3

6
.c

ac
tu

sA
D

M

4
3

7
.l

es
li

e3
d

4
4

4
.n

am
d

4
4

5
.g

o
b

m
k

4
5

0
.s

o
p

le
x

4
5

3
.p

o
v

ra
y

4
5

4
.c

al
cu

li
x

4
5

6
.h

m
m

er

4
5

8
.s

je
n

g

4
5

9
.G

em
sF

D
T

D

4
6

2
.l

ib
q

u
an

tu
m

4
6

4
.h

2
6

4
re

f

4
6

5
.t

o
n

to

4
7

0
.l

b
m

4
7

3
.a

st
ar

4
8

1
.w

rf

4
8

3
.x

al
an

cb
m

k

S
P

E
C

IN
T

S
P

E
C

F
P

N
o

rm
al

iz
ed

 E
x

ec
u

ti
o

n
 T

im
e

Rev2

Rev2−NT

Rev2−ABT

Figure 8.29: SPEC CPU2006 Loop Profitability Feedback - Execution Time.

Figure 8.31 shows the total reduction in branch mispredictions due

to loop execution on the Rev2 architecture. The reduction in branch pre-

diction mispredicts originates from loop-mode ability to handle variable

iteration or unpredictable loop iteration counts without pipeline flushes.

On a conventional architecture, even on very predictable loops prediction

tables require training periods during which loop iteration counts may

be improperly predicted. This is visible in 8.31 as the misprediction rate

for SD-VBS is quite low for most benchmarks, but great reductions in the

139

 0

 2

 4

 6

 8

 10

d
is

p
ar

it
y

lo
ca

li
za

ti
o

n

m
se

r

m
u

lt
i_

n
cu

t

si
ft

st
it

ch

sv
m

te
x

t_
sy

n
th

tr
ac

k
in

g

L
o

ca
l

B
ra

n
ch

 P
re

d
ic

to
r

M
is

p
re

d
ic

ti
o

n
 R

at
e

(%
)

OO2

Rev2

Figure 8.30: SD-VBS Local Branch Misprediction Rate.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

d
is

p
ar

it
y

lo
ca

li
za

ti
o

n

m
se

r

m
u

lt
i_

n
cu

t

si
ft

st
it

ch

sv
m

te
x

t_
sy

n
th

tr
ac

k
in

g

R
ev

o
lv

er
 B

ra
n

ch
 M

is
p

re
d

ic
ti

o
n

 R
ed

u
ct

io
n

 (
%

)

Figure 8.31: SD-VBS Reduction in Branch Mispredicts.

140

 0

 5

 10

 15

 20

 25

 30

au
to

.b
it

cn
t

au
to

.q
so

rt

au
to

.s
u
sa

n
.c

o
rn

er
s

au
to

.s
u
sa

n
.e

d
g
es

au
to

.s
u
sa

n
.s

m
o
o
th

in
g

co
n
s.

cj
p
eg

co
n
s.

d
jp

eg

co
n
s.

la
m

e

co
n
s.

m
ad

co
n
s.

ti
ff

2
b
w

co
n
s.

ti
ff

2
rg

b
a

co
n
s.

ti
ff

d
it

h
er

co
n
s.

ti
ff

m
ed

ia
n

n
et

.d
ij

k
st

ra

n
et

.p
at

ri
ci

a

o
ff

.r
sy

n
th

o
ff

.s
tr

in
g
se

ar
ch

se
c.

b
lo

w
fi

sh

se
c.

p
g
p

se
c.

ri
jn

d
ae

l

se
c.

sh
a

te
le

.a
d
p
cm

.c
o
m

p
re

ss

te
le

.a
d
p
cm

.d
ec

o
m

p
re

ss

te
le

.c
rc

te
le

.f
ft

te
le

.g
sm

L
o
ca

l
B

ra
n
ch

 P
re

d
ic

to
r

M
is

p
re

d
ic

ti
o
n
 R

at
e

(%
)

OO2

Rev2

Figure 8.32: MiBench Local Branch Misprediction Rate.

total percentage of mispredictions are possible.

Figures 8.32 and 8.33 show the branch prediction impacts for the

MiBench suite. The trend of increased local misprediction rates, but fewer

total mispredictions in general is maintained. Only two benchmarks,

cons.jpeg and net.patricia show an increase in total branch mispredictions.

Finally, Figures 8.34 and 8.35 show loop-mode executions impact on

the SPEC CPU2006 branch prediction. In general the SPECFP benchmarks

which make use of loop-mode execution show the greatest reduction in

total mispredicts. This is mostly attributable to their low misprediction

141

 0

 20

 40

 60

 80

 100

au
to

.b
it

cn
t

au
to

.q
so

rt

au
to

.s
u
sa

n
.c

o
rn

er
s

au
to

.s
u
sa

n
.e

d
g
es

au
to

.s
u
sa

n
.s

m
o
o
th

in
g

co
n
s.

cj
p
eg

co
n
s.

d
jp

eg

co
n
s.

la
m

e

co
n
s.

m
ad

co
n
s.

ti
ff

2
b
w

co
n
s.

ti
ff

2
rg

b
a

co
n
s.

ti
ff

d
it

h
er

co
n
s.

ti
ff

m
ed

ia
n

n
et

.d
ij

k
st

ra

n
et

.p
at

ri
ci

a

o
ff

.r
sy

n
th

o
ff

.s
tr

in
g
se

ar
ch

se
c.

b
lo

w
fi

sh

se
c.

p
g
p

se
c.

ri
jn

d
ae

l

se
c.

sh
a

te
le

.a
d
p
cm

.c
o
m

p
re

ss

te
le

.a
d
p
cm

.d
ec

o
m

p
re

ss

te
le

.c
rc

te
le

.f
ft

te
le

.g
sm

R
ev

o
lv

er
 B

ra
n
ch

 M
is

p
re

d
ic

ti
o
n
 R

ed
u
ct

io
n
 (

%
)

Figure 8.33: MiBench Reduction in Branch Mispredicts.

rates and the lack of predictor training overheads for such loops on the

Revolver architectures.

Overall we find loop-mode execution has a minor positive impact

on processor performance due to the elimination of training periods to

warmup predictor structures during loops.

8.4 Load Pre-Execution

Although the Revolver architectures are targeted primarily towards energy

conservation, load pre-execution enables Revolver to extract memory level

142

 0

 5

 10

 15

 20

4
0
0
.p

er
lb

en
ch

4
0
1
.b

zi
p
2

4
0
3
.g

cc

4
1
0
.b

w
av

es

4
1
6
.g

am
es

s

4
2
9
.m

cf

4
3
3
.m

il
c

4
3
4
.z

eu
sm

p

4
3
5
.g

ro
m

ac
s

4
3
6
.c

ac
tu

sA
D

M

4
3
7
.l

es
li

e3
d

4
4
4
.n

am
d

4
4
5
.g

o
b
m

k

4
5
0
.s

o
p
le

x

4
5
3
.p

o
v
ra

y

4
5
4
.c

al
cu

li
x

4
5
6
.h

m
m

er

4
5
8
.s

je
n
g

4
5
9
.G

em
sF

D
T

D

4
6
2
.l

ib
q
u
an

tu
m

4
6
4
.h

2
6
4
re

f

4
6
5
.t

o
n
to

4
7
0
.l

b
m

4
7
1
.o

m
n
et

p
p

4
7
3
.a

st
ar

4
8
1
.w

rf

4
8
3
.x

al
an

cb
m

k

L
o
ca

l
B

ra
n
ch

 P
re

d
ic

to
r

M
is

p
re

d
ic

ti
o
n
 R

at
e

(%
)

OO2

Rev2

Figure 8.34: SPEC CPU2006 Local Branch Misprediction Rate.

 0

 10

 20

 30

 40

 50

 60

 70

 80

4
0
0
.p

er
lb

en
ch

4
0
1
.b

zi
p
2

4
0
3
.g

cc

4
1
0
.b

w
av

es

4
1
6
.g

am
es

s

4
2
9
.m

cf

4
3
3
.m

il
c

4
3
4
.z

eu
sm

p

4
3
5
.g

ro
m

ac
s

4
3
6
.c

ac
tu

sA
D

M

4
3
7
.l

es
li

e3
d

4
4
5
.g

o
b
m

k

4
4
4
.n

am
d

4
5
0
.s

o
p
le

x

4
5
3
.p

o
v
ra

y

4
5
4
.c

al
cu

li
x

4
5
6
.h

m
m

er

4
5
8
.s

je
n
g

4
5
9
.G

em
sF

D
T

D

4
6
2
.l

ib
q
u
an

tu
m

4
6
4
.h

2
6
4
re

f

4
6
5
.t

o
n
to

4
7
0
.l

b
m

4
7
1
.o

m
n
et

p
p

4
7
3
.a

st
ar

4
8
1
.w

rf

4
8
3
.x

al
an

cb
m

k

R
ev

o
lv

er
 B

ra
n
ch

 M
is

p
re

d
ic

ti
o
n
 R

ed
u
ct

io
n
 (

%
)

Figure 8.35: SPEC CPU2006 Reduction in Branch Mispredicts.

143

0%

 2%

 4%

 6%

 8%

 10%

 12%

co
ns

.ti
ff

2b
w si
ft

di
sp

ar
ity

st
itc

h

43
7.

le
sl

ie
3d

co
ns

.d
jp

eg

co
ns

.ti
ff

m
ed

ia
n

tr
ac

ki
ng

ne
t.d

ijk
st

ra

41
0.

bw
av

es

sv
m

se
c.

sh
a

m
ul

ti_
nc

ut

te
le

.c
rc

co
ns

.ti
ff

di
th

er

au
to

.b
itc

nt

te
le

.ff
t

au
to

.s
us

an
.s

m
oo

th
in

g

46
2.

lib
qu

an
tu

m

O
ve

ra
ll

A
ve

ra
ge

L
oa

d
Pr

e−
E

xe
cu

tio
n

Sp
ee

du
p

(%
) Rev2

Rev4

L
oo

p
In

te
ns

iv
e

A
ve

ra
ge

Figure 8.36: Load Pre-Execution Speedup.

parallelism beyond the currently active instruction window. In Figure 8.36,

we show the prefetch benefit from load pre-execution obtained by the

Rev2 and Rev4 configurations on loop intensive benchmarks. Loop inten-

sive benchmarks are defined as those which execute more than 50% of all

instructions in loop-mode. On loop intensive code, load pre-execution

benefits Rev2 and Rev4 by 2.1% and 1.4% respectively. Across all bench-

marks, including non-loop intensive codes, the overall benefit is 0.8% and

0.6% for Rev2 and Rev4.

Figures 8.37, 8.38, and 8.39 show the load pre-execution breakdown for

144

 0%

 20%

 40%

 60%

 80%

 100%

d
is

p
ar

it
y

lo
ca

li
za

ti
o
n

m
se

r

m
u
lt

i_
n
cu

t

si
ft

st
it

ch

sv
m

te
x
t_

sy
n
th

tr
ac

k
in

g

P
er

ce
n
ta

g
e

o
f

P
re

−
E

x
ec

u
te

d
 L

o
ad

s

Pointer

Constant

Stride

Figure 8.37: SD-VBS Load Pre-Execution Breakdown.

each benchmark suite. Pre-executed loads are classified as being stride-

based, constant address, or pointer-based.

As seen in Figure 8.37, virtually all pre-executed loads on SD-VBS

are stride-based or constant address. Large fluctuations in the ratios of

pre-executed load types exist across the benchmarks.

Figure 8.38 shows the load pre-execution breakdown for the MiBench

suite. Again the majority of pre-executed loads are stride-based or constant.

Within the networking subset, the net.dijkstra and net.patricia consist of

145

 0%

 20%

 40%

 60%

 80%

 100%
au

to
.b

it
cn

t

au
to

.q
so

rt

au
to

.s
u
sa

n
.c

o
rn

er
s

au
to

.s
u
sa

n
.e

d
g
es

au
to

.s
u
sa

n
.s

m
o
o
th

in
g

co
n
s.

cj
p
eg

co
n
s.

d
jp

eg

co
n
s.

la
m

e

co
n
s.

m
ad

co
n
s.

ti
ff

2
b
w

co
n
s.

ti
ff

2
rg

b
a

co
n
s.

ti
ff

d
it

h
er

co
n
s.

ti
ff

m
ed

ia
n

n
et

.d
ij

k
st

ra

n
et

.p
at

ri
ci

a

o
ff

.r
sy

n
th

o
ff

.s
tr

in
g
se

ar
ch

o
ff

.b
lo

w
fi

sh

se
c.

p
g
p

se
c.

ri
jn

d
ae

l

se
c.

sh
a

te
le

.a
d
p
cm

.c
o
m

p
re

ss

te
le

.a
d
p
cm

.d
ec

o
m

p
re

ss

te
le

.c
rc

te
le

.f
ft

te
le

.g
sm

P
er

ce
n
ta

g
e

o
f

P
re

−
E

x
ec

u
te

d
 L

o
ad

s

Pointer

Constant

Stride

Figure 8.38: MiBench Load Pre-Execution Breakdown.

5.9% and 2.8% pointer-based pre-executed loads. Pointer-based load pre-

execution benefit exists on these two benchmarks as dijkstra’s algorithm

and patricia trees each deal with pointer heavy structures. However the

overall benefit of supporting pointer-based load pre-execution is quite

low on these benchmark suites. The two missing datapoints for tele.adpcm

exist as no pre-executed loads are generated for these benchmarks.

Finally, Figure 8.39 shows the pre-execution breakdown for SPEC

146

 0%

 20%

 40%

 60%

 80%

 100%
4
0
0
.p

er
lb

en
ch

4
0
1
.b

zi
p
2

4
0
3
.g

cc

4
1
0
.b

w
av

es

4
1
6
.g

am
es

s

4
2
9
.m

cf

4
3
3
.m

il
c

4
3
4
.z

eu
sm

p

4
3
5
.g

ro
m

ac
s

4
3
6
.c

ac
tu

sA
D

M

4
3
7
.l

es
li

e3
d

4
4
4
.n

am
d

4
4
5
.g

o
b
m

k

4
5
0
.s

o
p
le

x

4
5
3
.p

o
v
ra

y

4
5
4
.c

al
cu

li
x

4
5
6
.h

m
m

er

4
5
8
.s

je
n
g

4
5
9
.G

em
sF

D
T

D

4
6
2
.l

ib
q
u
an

tu
m

4
6
4
.h

2
6
4
re

f

4
6
5
.t

o
n
to

4
7
0
.l

b
m

4
7
3
.a

st
ar

4
8
1
.w

rf

4
8
3
.x

al
an

cb
m

k

P
er

ce
n
ta

g
e

o
f

P
re

−
E

x
ec

u
te

d
 L

o
ad

s

Pointer

Constant

Stride

Figure 8.39: SPEC CPU2006 Load Pre-Execution Breakdown.

CPU2006. Pointer-based pre-executed loads are also rare on this bench-

mark suite. Additionally, no constant and stride based pre-executed loads

are quite varied.

8.5 CRIB Out-of-Order

In this section the CRIB-based Revolver architecture is evaluated in terms

of performance and energy efficiency.

147

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

d
is

p
ar

it
y

lo
ca

li
za

ti
o

n

m
se

r

m
u

lt
i_

n
cu

t

si
ft

st
it

ch

sv
m

te
x

t_
sy

n
th

tr
ac

k
in

g

g
eo

m
ea

n

N
o

rm
al

iz
ed

 E
x

ec
u

ti
o

n
 T

im
e

Figure 8.40: CRIB SD-VBS Normalized Execution Time

Performance Impact

Figures 8.40, 8.41,and 8.42, present the normalized execution time of the

CRIB-based revolver against a baseline CRIB design without in-place loop

execution. Overall, the performance impact of the CRIB-based Revolver is

also small, although larger performance deltas relating to in-place execu-

tion are realized in comparison to the PRF-based Revolver designs. This

performance delta is because, as observed within [32], CRIB makes very

effective use of it’s provided window size. By performing loop unrolling

similarly to our PRF-based designs, possible underutilization of CRIB

entries is more likely to lead to performance degradations.

148

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

au
to

.b
it

cn
t

au
to

.q
so

rt

au
to

.s
u

sa
n

.c
o

rn
er

s

au
to

.s
u

sa
n

.e
d

g
es

au
to

.s
u

sa
n

.s
m

o
o

th
in

g

co
n

s.
cj

p
eg

co
n

s.
d

jp
eg

co
n

s.
la

m
e

co
n

s.
m

ad

co
n

s.
ti

ff
2

b
w

co
n

s.
ti

ff
2

rg
b

a

co
n

s.
ti

ff
d

it
h

er

co
n

s.
ti

ff
m

ed
ia

n

n
et

.d
ij

k
st

ra

n
et

.p
at

ri
ci

a

o
ff

.r
sy

n
th

o
ff

.s
tr

in
g

se
ar

ch

se
c.

b
lo

w
fi

sh

se
c.

p
g

p

se
c.

ri
jn

d
ae

l

se
c.

sh
a

te
le

.a
d

p
cm

.c
o

m
p

re
ss

te
le

.a
d

p
cm

.d
ec

o
m

p
re

ss

te
le

.c
rc

te
le

.f
ft

te
le

.g
sm

g
eo

m
ea

n

N
o

rm
al

iz
ed

 E
x

ec
u

ti
o

n
 T

im
e

Figure 8.41: CRIB MiBench Normalized Execution Time

Overall on the SD-VBS, MiBench, SPECINT, and SPECFP workloads

performance regressions of 1.6%, 2.2%, 0.8%, and 1.7% respectively are

observed.

Energy Impact

Although the percentage of eliminated instruction dispatches for the CRIB-

based Revolver architecture are similar to Rev4, eliminating an equiva-

lent number of instruction dispatches will benefit a CRIB-based design

proportionally more than a conventional out-of-order design. The CRIB

149

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

4
0

0
.p

er
lb

en
ch

4
0

1
.b

zi
p

2

4
0

3
.g

cc

4
1

0
.b

w
av

es

4
1

6
.g

am
es

s

4
2

9
.m

cf

4
3

3
.m

il
c

4
3

4
.z

eu
sm

p

4
3

5
.g

ro
m

ac
s

4
3

6
.c

ac
tu

sA
D

M

4
3

7
.l

es
li

e3
d

4
4

4
.n

am
d

4
4

5
.g

o
b

m
k

4
5

0
.s

o
p

le
x

4
5

3
.p

o
v

ra
y

4
5

4
.c

al
cu

li
x

4
5

6
.h

m
m

er

4
5

8
.s

je
n

g

4
5

9
.G

em
sF

D
T

D

4
6

2
.l

ib
q

u
an

tu
m

4
6

4
.h

2
6

4
re

f

4
6

5
.t

o
n

to

4
7

0
.l

b
m

4
7

1
.o

m
n

et
p

p

4
7

3
.a

st
ar

4
8

1
.w

rf

4
8

3
.x

al
an

cb
m

k

S
P

E
C

IN
T

S
P

E
C

F
P

N
o

rm
al

iz
ed

 E
x

ec
u

ti
o

n
 T

im
e

Figure 8.42: CRIB SPEC CPU2006 Normalized Execution Time

architecture minimizes execution energy within the out-of-order back-

end, correspondingly the unaffected front-end energy represents a higher

overall percentage of total core power.

Figures 8.43, 8.44, and 8.45 present the energy consumed for CRIB-

based Revolver designs against an equivalent CRIB design without in-

place loop execution. The designs are also compared with and without

the presence of µop caches and loop buffers. All designs are normalized

against CRIB without any loop buffers or µop caches.

Figure 8.44, shows the energy consumed on the MiBench suite. Overall,

The CRIB+Rev configuration achieves 17.2% energy savings over the base-

150

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2
d
is

p
ar

it
y

lo
ca

li
za

ti
o
n

m
se

r

m
u
lt

i_
n
cu

t

si
ft

st
it

ch

sv
m

te
x
t_

sy
n
th

tr
ac

k
in

g

g
eo

m
ea

n

N
o
rm

al
iz

ed
 E

n
er

g
y

CRIB+LB

CRIB+uC

CRIB+Rev

CRIB+Rev+uC

Figure 8.43: CRIB SD-VBS Normalized Energy.

line CRIB+LB configuration. With µop caches, the CRIB-based Revolver

architecture achieves 17.0% energy savings.

Figure 8.45, shows the energy consumed on the SPEC CPU2006 suite.

Overall, The CRIB+Rev configuration achieves 9.5% and 8.0% energy

savings over the baseline CRIB+LB configuration for the SPECINT and

SPECFP subsets respectively. With µop caches, the CRIB-based Revolver

architecture achieves 10.8% and 7.9% energy savings for the SPECINT and

SPECFP benchmarks respectively.

151

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

au
to

.b
it

cn
t

au
to

.q
so

rt

au
to

.s
u
sa

n
.c

o
rn

er
s

au
to

.s
u
sa

n
.e

d
g
es

au
to

.s
u
sa

n
.s

m
o
o
th

in
g

co
n
s.

cj
p
eg

co
n
s.

d
jp

eg

co
n
s.

la
m

e

co
n
s.

m
ad

co
n
s.

ti
ff

2
b
w

co
n
s.

ti
ff

2
rg

b
a

co
n
s.

ti
ff

d
it

h
er

co
n
s.

ti
ff

m
ed

ia
n

n
et

.d
ij

k
st

ra

n
et

.p
at

ri
ci

a

o
ff

.r
sy

n
th

o
ff

.s
tr

in
g
se

ar
ch

se
c.

b
lo

w
fi

sh

se
c.

p
g
p

se
c.

ri
jn

d
ae

l

se
c.

sh
a

te
le

.a
d
p
cm

.c
o
m

p
re

ss

te
le

.a
d
p
cm

.d
ec

o
m

p
re

ss

te
le

.c
rc

te
le

.f
ft

te
le

.g
sm

g
eo

m
ea

n

N
o
rm

al
iz

ed
 E

n
er

g
y

CRIB+LB

CRIB+uC

CRIB+Rev

CRIB+Rev+uC

Figure 8.44: CRIB MiBench Normalized Energy.

Overall, the CRIB-based Revolver architecture energy consumption is

similar but significantly lower than the PRF-based Revolver architecture.

8.6 Summary

In this chapter performance and physical simulation was performed to

evaluate the effectiveness of the Revolver architecture on PRF-based and

152

 0

 0.2

 0.4

 0.6

 0.8

 1

4
0
0
.p

er
lb

en
ch

4
0
1
.b

zi
p
2

4
0
3
.g

cc

4
1
0
.b

w
av

es

4
1
6
.g

am
es

s

4
2
9
.m

cf

4
3
3
.m

il
c

4
3
4
.z

eu
sm

p

4
3
5
.g

ro
m

ac
s

4
3
6
.c

ac
tu

sA
D

M

4
3
7
.l

es
li

e3
d

4
4
4
.n

am
d

4
4
5
.g

o
b
m

k

4
5
0
.s

o
p
le

x

4
5
3
.p

o
v
ra

y

4
5
4
.c

al
cu

li
x

4
5
6
.h

m
m

er

4
5
8
.s

je
n
g

4
6
2
.l

ib
q
u
an

tu
m

4
6
4
.h

2
6
4
re

f

4
5
9
.G

em
sF

D
T

D

4
6
5
.t

o
n
to

4
7
0
.l

b
m

4
7
1
.o

m
n
et

p
p

4
7
3
.a

st
ar

4
8
1
.w

rf

4
8
3
.x

al
an

cb
m

k

S
P

E
C

IN
T

S
P

E
C

F
P

N
o
rm

al
iz

ed
 E

n
er

g
y

CRIB+LB

CRIB+uC

CRIB+Rev

CRIB+Rev+uC

Figure 8.45: CRIB SPEC CPU2006 Normalized Energy.

CRIB-based out-of-order processors. Additionally the impacts of loop

unrolling, branch prediction, and load pre-execution on loop-mode execu-

tion were evaluated. Overall large energy reductions in front-end power

were observed.

153

9 conclusion

Historically, advances in process technology have provided computer ar-

chitects with additional transistor resources and energy savings. However,

with the end of Dennard scaling, the associated per-transistor energy sav-

ings from successive technology nodes has been curtailed. To overcome

the stringent energy limitations brought about by this trend, future out-

of-order processors must further streamline common execution patterns,

thereby eliminating unnecessary pipeline activity.

Prior work has focused on reducing front-end energy overheads by

means of pipeline-centric instruction caching mechanisms, like loop buffers,

aimed at capitalizing on spatial and temporal instruction access patterns.

With time these instruction reuse mechanisms have become progressively

more complex and deeply embedded in modern processor pipelines. This

thesis represents another step in this logical progression of embedding

instruction reuse techniques deep within a processor pipeline.

This thesis presented the Revolver architectures, two processor designs

that make use of in-place loop execution within the out-of-order proces-

sor’s back-end. Through in-place execution, a few static instances of each

instruction from a loop body are dispatched to the out-of-order execution

core by the processor front-end. After dispatch, each static instruction

instance may be executed multiple times in order to complete all necessary

loop iterations. During in-place loop execution the processor front-end,

154

including fetch, branch prediction, decode, allocation, and dispatch logic

may be completely clock gated in order to save energy.

To realize the in-place execution, a traditional PRF-based out-of-order

and CRIB were utilized as baseline architectures for modification. For the

conventional out-of-order, operand dependence linking was moved from

the traditional front-end RAT into the processor’s out-of-order execution

core. Additionally modifications were made to the conventional scheduler

and LSQ operation in order to enable in-place execution. For the CRIB

architecture the a modified LSQ structure, sufficient for in-place execution

was proposed. Additionally, a study to investigate the performance impact

of a more ideal CRIB operand network was conducted.

Additionally, to accelerate in-place loop execution, load pre-execution

was proposed. Load pre-execution improves processor performance by

dynamically detecting common load access patterns and speculatively

executing loads from future loop iterations. Through load pre-execution,

single-cycle loads are enabled.

Finally, the efficacy of in-place execution and load pre-execution were

evaluated across three benchmark suites. In addition to the final config-

urations many design alternatives were studied. Overall, in-place loop

execution was found able to eliminate 20%, 55%, and 84% of all front-end

dispatches on the SPEC CPU2006, MiBench, and SD-VBS benchmark suites.

Through these large reductions in instruction dispatches, great energy

gains were observed for the conventional out-of-order and CRIB-based

155

Revolver architectures.

9.1 Future Work

During the conduction of this thesis research, multiple avenues of potential

future research were discovered. These research areas consist of an exten-

sion of our load pre-execution mechanism, an interesting in-depth power

study of the CRIB architecture, and an investigation of tightly integrated

prefetchers.

Load Pre-Execution Extensions

In Section 8.4, it was observed that a large quantity of pre-executed loads

were to constant addresses. Dynamically re-executing constant loads each

loop iteration, even though data may never change, seems wasteful with

respect to processor energy. An alternative implementation could save

constant data alongside the load queue and maintain a constant entry

across loop iterations, eliminating energy from repetitive cache accesses.

Additionally, as noted earlier in Section 5.3, it is possible an architecture

could allow speculatively pre-executed load data propagate to dependent

operations before validating the load’s effective address. Although this

operation is difficult to support in conventional out-of-orders, CRIB’s

simple re-execution mechanism could enable this operation. A study

investigating the relative benefit could be performed.

156

Bit-Level CRIB Power Study

Within the CRIB architecture, logical register operands are passed along

a specific column. This differs significantly from traditional out-of-order

architectures that multiplex many differing logical registers on the same by-

pass paths. It is speculated that the operational energy of CRIB’s operand

network is significantly lower than was estimated in [32]. This may be the

case because logical registers may be more likely to contain similar values

over time, resulting in fewer switching events along the operand network.

Prefetcher and Processor Core Interaction

Finally, much effort went into verifying the operation and effectiveness of

L1 cache prefetching for our respective architectures. During this effort it

became clear that many processor core interactions can easily confuse L1

cache prefetchers. For example, in an out-of-order processor, although a

code sequence may be regular and repetitive, the loads from within may

be presented to the memory system in different orders. This is the case

when absolute age-based instruction issue is not enforced. Although such

re-orderings have no impact on functional correctness, potential confusion

of the L1 cache prefetcher results from such nondeterminism. This impact

was observed and corrected for during the early implementation of in-

place load execution, however it seems largely unstudied within academia.

To the best of our knowledge the only investigation of processor core and

157

prefetcher interactions has been in relation to instruction caching [28].

158

bibliography
[1] S.V. Adve and K. Gharachorloo. “Shared memory consistency mod-

els: a tutorial”. In: Computer 29.12 (1996), pp. 66–76.
[2] Pritpal S. Ahuja, Douglas W. Clark, and Anne Rogers. “The per-

formance impact of incomplete bypassing in processor pipelines”.
In: Proceedings of the 28th annual international symposium on Microar-
chitecture. MICRO 28. Ann Arbor, Michigan, United States: IEEE
Computer Society Press, 1995, pp. 36–45.

[3] M. Alidina et al. “DSP16000: A High Performance, Low-Power Dual-
MAC DSP Core for Communications Applications”. In: CICC’98.
1998, pp. 119–122.

[4] AMD Jaguar Software Optimization Guide. url: http://support.amd.
com/us/Processor_TechDocs/52128_16h_Software_Opt_Guide.
zip.

[5] Wilhelm Anacker and Chu Ping Wang. “Performance Evaluation
of Computing Systems with Memory Hierarchies”. In: Electronic
Computers, IEEE Transactions on EC-16.6 (1967), pp. 764–773.

[6] ARM Cortex A9. url: http://www.arm.com/products/processors/
cortex-a/cortex-a9.php.

[7] T.M. Austin and G.S. Sohi. “Zero-cycle loads: microarchitecture sup-
port for reducing load latency”. In: Microarchitecture, 1995., Proceed-
ings of the 28th Annual International Symposium on. 1995, pp. 82–92.

[8] John Backus. “Can programming be liberated from the von Neu-
mann style?: a functional style and its algebra of programs”. In:
Commun. ACM 21.8 (Aug. 1978), pp. 613–641.

[9] Jean-Loup Baer and Tien-Fu Chen. “An effective on-chip preloading
scheme to reduce data access penalty”. In: Proceedings of the 1991
ACM/IEEE conference on Supercomputing. Supercomputing ’91. Albu-
querque, New Mexico, USA: ACM, 1991, pp. 176–186.

[10] R.S. Bajwa et al. “Instruction Buffering to Reduce Power in Processors
for Signal Processing”. In: VLSI Systems, IEEE Transactions on 5.4
(1997), pp. 417–424.

http://support.amd.com/us/Processor_TechDocs/52128_16h_Software_Opt_Guide.zip
http://support.amd.com/us/Processor_TechDocs/52128_16h_Software_Opt_Guide.zip
http://support.amd.com/us/Processor_TechDocs/52128_16h_Software_Opt_Guide.zip
http://www.arm.com/products/processors/cortex-a/cortex-a9.php
http://www.arm.com/products/processors/cortex-a/cortex-a9.php

159

[11] N. Bellas et al. “Energy and Performance Improvements in Micro-
processor Design Using a Loop Cache”. In: ICCD-17. 1999, pp. 378–
383.

[12] David Bernstein, Doron Cohen, and Ari Freund. “Compiler tech-
niques for data prefetching on the PowerPC”. In: Proceedings of the
IFIP WG10.3 working conference on Parallel architectures and compila-
tion techniques. PACT ’95. Limassol, Cyprus: IFIP Working Group on
Algol, 1995, pp. 19–26.

[13] Nathan Binkert et al. “The gem5 Simulator”. In: SIGARCH Comput.
Archit. News 39.2 (Aug. 2011), pp. 1–7.

[14] Eric Borch et al. “Loose Loops Sink Chips”. In: Proceedings of the 8th
International Symposium on High-Performance Computer Architecture.
HPCA ’02. Washington, DC, USA: IEEE Computer Society, 2002,
pp. 299–. url: http://dl.acm.org/citation.cfm?id=874076.
876467.

[15] Alper Buyuktosunoglu, Ali El-Moursy, and David H. Albonesi. “An
Oldest-First Selection Logic Implementation for Non-Compacting
Issue Queues”. In: 15TH INTERNATIONAL ASIC/SOC CONFER-
ENCE. 2002, pp. 31–35.

[16] H.W. Cain and P. Nagpurkar. “Runahead execution vs. conventional
data prefetching in the IBM POWER6 microprocessor”. In: Perfor-
mance Analysis of Systems Software (ISPASS), 2010 IEEE International
Symposium on. 2010, pp. 203–212.

[17] David Callahan, Ken Kennedy, and Allan Porterfield. “Software
prefetching”. In: Proceedings of the fourth international conference on
Architectural support for programming languages and operating systems.
ASPLOS IV. Santa Clara, California, USA: ACM, 1991, pp. 40–52.

[18] R. Canal, J.-M. Parcerisa, and A. Gonzalez. “A cost-effective clustered
architecture”. In: Parallel Architectures and Compilation Techniques,
1999. Proceedings. 1999 International Conference on. 1999, pp. 160 –
168.

[19] George Z. Chrysos and Joel S. Emer. “Memory dependence predic-
tion using store sets”. In: Proceedings of the 25th annual international
symposium on Computer architecture. ISCA ’98. Barcelona, Spain: IEEE
Computer Society, 1998, pp. 142–153.

http://dl.acm.org/citation.cfm?id=874076.876467
http://dl.acm.org/citation.cfm?id=874076.876467

160

[20] N. Clark, A. Hormati, and S. Mahlke. “VEAL: Virtualized Execution
Accelerator for Loops”. In: ISCA-35. 2008, pp. 389–400.

[21] Fredrik Dahlgren, Michel Dubois, and Per Stenstrom. “Fixed and
Adaptive Sequential Prefetching in Shared Memory Multiproces-
sors”. In: Proceedings of the 1993 International Conference on Parallel
Processing - Volume 01. ICPP ’93. Washington, DC, USA: IEEE Com-
puter Society, 1993, pp. 56–63.

[22] R.H. Dennard et al. “Design of ion-implanted MOSFET’s with very
small physical dimensions”. In: Solid-State Circuits, IEEE Journal of
9.5 (1974), pp. 256–268.

[23] J. J. Dongarra and A. R. Hinds. “Unrolling loops in fortran”. In:
Software: Practice and Experience 9.3 (1979), pp. 219–226. issn: 1097-
024X.

[24] James Dundas and Trevor Mudge. “Improving data cache perfor-
mance by pre-executing instructions under a cache miss”. In: Pro-
ceedings of the 11th international conference on Supercomputing. ICS ’97.
Vienna, Austria: ACM, 1997, pp. 68–75.

[25] H. Esmaeilzadeh et al. “Dark Silicon and the End of Multicore Scal-
ing”. In: ISCA-38. 2011, pp. 365–376.

[26] Dave J Everitt. “Inexpensive Performance Using the Am29000”. In:
Microprocessors and Microsystems 14.6 (1990), pp. 397 –406.

[27] Keith I. Farkas et al. “The multicluster architecture: reducing cy-
cle time through partitioning”. In: Proceedings of the 30th annual
ACM/IEEE international symposium on Microarchitecture. MICRO 30.
Research Triangle Park, North Carolina, United States: IEEE Com-
puter Society, 1997, pp. 149–159.

[28] Michael Ferdman, Cansu Kaynak, and Babak Falsafi. “Proactive
instruction fetch”. In: Proceedings of the 44th Annual IEEE/ACM Inter-
national Symposium on Microarchitecture. MICRO-44 ’11. Porto Alegre,
Brazil: ACM, 2011, pp. 152–162. isbn: 978-1-4503-1053-6.

[29] Manoj Franklin and Gurindar S. Sohi. “Register traffic analysis for
streamlining inter-operation communication in fine-grain parallel
processors”. In: Proceedings of the 25th annual international symposium
on Microarchitecture. MICRO 25. Portland, Oregon, United States:
IEEE Computer Society Press, 1992, pp. 236–245.

161

[30] Edward H. Gornish, Elana D. Granston, and Alexander V. Veiden-
baum. “Compiler-directed data prefetching in multiprocessors with
memory hierarchies”. In: Proceedings of the 4th international confer-
ence on Supercomputing. ICS ’90. Amsterdam, The Netherlands: ACM,
1990, pp. 354–368.

[31] E. Gunadi and M.H. Lipasti. “A position-insensitive finished store
buffer”. In: Computer Design, 2007. ICCD 2007. 25th International Con-
ference on. 2007, pp. 105–112.

[32] Erika Gunadi and Mikko H. Lipasti. “CRIB: consolidated rename,
issue, and bypass”. In: Proceedings of the 38th annual international
symposium on Computer architecture. ISCA ’11. San Jose, California,
USA: ACM, 2011, pp. 23–32.

[33] Matthew R Guthaus et al. “MiBench: A free, commercially repre-
sentative embedded benchmark suite”. In: Workload Characterization,
2001. WWC-4. 2001 IEEE International Workshop on. IEEE. 2001, pp. 3–
14.

[34] Linley Gwennap. Speed Kills? Not for RISC Processors. 1993.
[35] Greg Hamerly et al. “Simpoint 3.0: Faster and More Flexible Program

Phase Analysis”. In: Journal of Instruction Level Parallelism. 2005.
[36] John L Henning. “SPEC CPU2006 Benchmark Descriptions”. In:

ACM SIGARCH Computer Architecture News 34.4 (2006), pp. 1–17.
[37] M.D. Hill and A.J. Smith. “Evaluating associativity in CPU caches”.

In: Computers, IEEE Transactions on 38.12 (1989), pp. 1612–1630.
[38] M. Hiraki et al. “Stage-Skip Pipeline: A Low Power Processor Archi-

tecture Using a Decoded Instruction Buffer”. In: ISLPED’96. 1996,
pp. 353–358.

[39] R. Ho, K.W. Mai, and M.A. Horowitz. “The future of wires”. In:
Proceedings of the IEEE 89.4 (2001), pp. 490 –504.

[40] J.S. Hu et al. “Scheduling Reusable Instructions for Power Reduc-
tion”. In: Design, Automation and Test in Europe Conference and Exhi-
bition, 2004. Proceedings. Vol. 1. 2004, 148–153 Vol.1.

[41] Doug Joseph and Dirk Grunwald. “Prefetching using Markov pre-
dictors”. In: Proceedings of the 24th annual international symposium on
Computer architecture. ISCA ’97. Denver, Colorado, USA: ACM, 1997,
pp. 252–263.

162

[42] Norman P. Jouppi. “Improving direct-mapped cache performance by
the addition of a small fully-associative cache and prefetch buffers”.
In: ISCA-17. Seattle, Washington, USA: ACM, 1990, pp. 364–373.

[43] Gokul B. Kandiraju and Anand Sivasubramaniam. “Going the dis-
tance for TLB prefetching: an application-driven study”. In: Proceed-
ings of the 29th annual international symposium on Computer architec-
ture. ISCA ’02. Anchorage, Alaska: IEEE Computer Society, 2002,
pp. 195–206.

[44] David Kanter. IntelâŁ™s Haswell CPU Microarchitecture. 2012. url:
http://www.realworldtech.com/haswell-cpu.

[45] David Kanter. IntelâŁ™s Sandy Bridge Microarchitecture. 2010. url:
http://www.realworldtech.com/sandy-bridge.

[46] David Kanter. Silvermont, Intel’s Low Power Architecture. 2013. url:
http://www.realworldtech.com/silvermont.

[47] R.E. Kessler, E.J. McLellan, and D.A. Webb. “The Alpha 21264 mi-
croprocessor architecture”. In: Computer Design: VLSI in Computers
and Processors, 1998. ICCD ’98. Proceedings. International Conference
on. 1998, pp. 90 –95.

[48] Hyesoon Kim et al. “Wish Branches: Combining Conditional Branch-
ing and Predication for Adaptive Predicated Execution”. In: MICRO-
38. 2005, 12 pp.–54.

[49] Johnson Kin, Munish Gupta, and William H. Mangione-Smith. “The
Filter Cache: An Energy Efficient Memory Structure”. In: MICRO-30.
Research Triangle Park, North Carolina, USA, 1997, pp. 184–193.

[50] Alexander C. Klaiber and Henry M. Levy. “An architecture for
software-controlled data prefetching”. In: Proceedings of the 18th
annual international symposium on Computer architecture. ISCA ’91.
Toronto, Ontario, Canada: ACM, 1991, pp. 43–53.

[51] L. Lamport. “How to Make a Multiprocessor Computer That Cor-
rectly Executes Multiprocess Programs”. In: Computers, IEEE Trans-
actions on C-28.9 (1979), pp. 690–691.

[52] Travis Lanier. Exploring the Design of the Cortex-A15 Processor. Tech.
rep. ARM, 2011.

[53] J.K.F. Lee and A.J. Smith. “Branch Prediction Strategies and Branch
Target Buffer Design”. In: Computer 17.1 (1984), pp. 6–22.

http://www.realworldtech.com/haswell-cpu
http://www.realworldtech.com/sandy-bridge
http://www.realworldtech.com/silvermont

163

[54] Lea Hwang Lee, B. Moyer, and J. Arends. “Instruction Fetch Energy
Reduction Using Loop Caches for Embedded Applications with
Small Tight Loops”. In: ISLPED’99. 1999, pp. 267–269.

[55] Sheng Li et al. “McPAT: An Integrated Power, Area, and Timing
Modeling Framework for Multicore and Manycore Architectures”.
In: MICRO-42. 2009, pp. 469–480.

[56] Changhui Lin et al. “Efficient sequential consistency via conflict
ordering”. In: Proceedings of the seventeenth international conference on
Architectural Support for Programming Languages and Operating Sys-
tems. ASPLOS XVII. London, England, UK: ACM, 2012, pp. 273–286.
isbn: 978-1-4503-0759-8.

[57] Scott McFarling. Combining Branch Predictors. Tech. rep. HPL, 1993.
[58] Andreas Moshovos and Gurindar S. Sohi. “Streamlining inter-operation

memory communication via data dependence prediction”. In: Pro-
ceedings of the 30th annual ACM/IEEE international symposium on Mi-
croarchitecture. MICRO 30. Research Triangle Park, North Carolina,
USA: IEEE Computer Society, 1997, pp. 235–245.

[59] K.J. Nesbit and J.E. Smith. “Data Cache Prefetching Using a Global
History Buffer”. In: Software, IEE Proceedings-. 2004, pp. 96–96.

[60] NVIDIA Tegra 4 Family CPU Architecture. Tech. rep. NVIDIA, 2013.
url: http://www.nvidia.com/docs/IO/116757/NVIDIA_Quad_a15_
whitepaper_FINALv2.pdf.

[61] Kunle Olukotun et al. “The case for a single-chip multiprocessor”.
In: Proceedings of the seventh international conference on Architectural
support for programming languages and operating systems. ASPLOS VII.
Cambridge, Massachusetts, USA: ACM, 1996, pp. 2–11.

[62] Subbarao Palacharla, Norman P. Jouppi, and J. E. Smith. “Complexity-
effective superscalar processors”. In: Proceedings of the 24th annual
international symposium on Computer architecture. ISCA ’97. Denver,
Colorado, United States: ACM, 1997, pp. 206–218.

[63] Frederico Pratas et al. “Low Power Microarchitecture with Instruc-
tion Reuse”. In: CF-5. Ischia, Italy: ACM, 2008, pp. 149–158.

http://www.nvidia.com/docs/IO/116757/NVIDIA_Quad_a15_whitepaper_FINALv2.pdf
http://www.nvidia.com/docs/IO/116757/NVIDIA_Quad_a15_whitepaper_FINALv2.pdf

164

[64] Steven Przybylski. “The performance impact of block sizes and fetch
strategies”. In: Proceedings of the 17th annual international symposium
on Computer Architecture. ISCA ’90. Seattle, Washington, USA: ACM,
1990, pp. 160–169.

[65] Qualcomm’s New Snapdragon S4: MSM8960 & Krait Architecture Ex-
plored. url: http://www.anandtech.com/show/4940/qualcomm-
new-snapdragon-s4-msm8960-krait-architecture.

[66] E. Rotenberg, Q. Jacobson, and J. Smith. “A Study of Control In-
dependence in Superscalar Processors”. In: Proceedings of the 5th
International Symposium on High Performance Computer Architecture.
HPCA ’99. Washington, DC, USA: IEEE Computer Society, 1999,
pp. 115–.

[67] E. Safi, A. Moshovos, and A. Veneris. “A physical level study and op-
timization of CAM-based checkpointed register alias table”. In: Low
Power Electronics and Design (ISLPED), 2008 ACM/IEEE International
Symposium on. 2008, pp. 233–236.

[68] K. Sankaralingam et al. “Distributed Microarchitectural Protocols in
the TRIPS Prototype Processor”. In: Microarchitecture, 2006. MICRO-
39. 39th Annual IEEE/ACM International Symposium on. 2006, pp. 480
–491.

[69] Peter G. Sassone et al. “Matrix Scheduler Reloaded”. In: ISCA-34.
ISCA ’07. San Diego, California, USA: ACM, 2007, pp. 335–346.

[70] André Seznec. “A 256 kbits l-tage branch predictor”. In: Journal of
Instruction-Level Parallelism (JILP) Special Issue: The Second Champi-
onship Branch Prediction Competition (CBP-2) 9 (2007).

[71] Tingting Sha, Milo M. K. Martin, and Amir Roth. “NoSQ: Store-
Load Communication without a Store Queue”. In: Proceedings of the
39th Annual IEEE/ACM International Symposium on Microarchitecture.
MICRO 39. Washington, DC, USA: IEEE Computer Society, 2006,
pp. 285–296.

[72] Ronak Singhal. “Inside Intel Next Generation Nehalem Microarchi-
tecture”. In: Hot Chips. Vol. 20. 2008.

[73] B. Sinharoy et al. “POWER5 System microarchitecture”. In: IBM J.
Res. Dev. 49.4/5 (July 2005), pp. 505–521.

http://www.anandtech.com/show/4940/qualcomm-new-snapdragon-s4-msm8960-krait-architecture
http://www.anandtech.com/show/4940/qualcomm-new-snapdragon-s4-msm8960-krait-architecture

165

[74] A. J. Smith. “Sequential Program Prefetching in Memory Hierar-
chies”. In: Computer 11.12 (Dec. 1978), pp. 7–21.

[75] Alan Jay Smith. “Cache Memories”. In: ACM Comput. Surv. 14.3
(Sept. 1982), pp. 473–530.

[76] J.E. Smith and A.R. Pleszkun. “Implementing precise interrupts
in pipelined processors”. In: Computers, IEEE Transactions on 37.5
(1988), pp. 562–573.

[77] J.E. Smith et al. “The Astronautics ZS-1 processor”. In: Computer De-
sign: VLSI in Computers and Processors, 1988. ICCD ’88., Proceedings
of the 1988 IEEE International Conference on. 1988, pp. 307–310.

[78] Avinash Sodani. “Race to Exascale: Challenges and Opportunities”.
In: MICRO-44. Presented at the 44th International Symposium on
Microarchitecture, Porto Alegre, Brazil, 2011.

[79] G. S. Sohi and S. Vajapeyam. “Instruction issue logic for high-performance,
interruptable pipelined processors”. In: Proceedings of the 14th an-
nual international symposium on Computer architecture. ISCA ’87. Pitts-
burgh, Pennsylvania, USA: ACM, 1987, pp. 27–34.

[80] Gurindar S. Sohi, Scott E. Breach, and T. N. Vijaykumar. “Multiscalar
processors”. In: Proceedings of the 22nd annual international symposium
on Computer architecture. ISCA ’95. S. Margherita Ligure, Italy: ACM,
1995, pp. 414–425.

[81] Gurindar S. Sohi and Amir Roth. “Speculative Multithreaded Pro-
cessors”. In: Computer 34.4 (Apr. 2001), pp. 66–73. issn: 0018-9162.

[82] Sam S. Stone, Kevin M. Woley, and Matthew I. Frank. “Address-
Indexed Memory Disambiguation and Store-to-Load Forwarding”.
In: Proceedings of the 38th annual IEEE/ACM International Symposium
on Microarchitecture. MICRO 38. Barcelona, Spain: IEEE Computer
Society, 2005, pp. 171–182.

[83] W. Tang, R. Gupta, and A. Nicolau. “Design of a predictive filter
cache for energy savings in high performance processor architec-
tures”. In: Computer Design, 2001. ICCD 2001. Proceedings. 2001 In-
ternational Conference on. 2001, pp. 68–73.

[84] Michael Bedford Taylor et al. “The Raw Microprocessor: A Computa-
tional Fabric for Software Circuits and General-Purpose Programs”.
In: IEEE Micro 22.2 (Mar. 2002), pp. 25–35.

166

[85] J. M. Tendler et al. “POWER4 system microarchitecture”. In: IBM
Journal of Research and Development 46.1 (2002), pp. 5 –25.

[86] R. M. Tomasulo. “An Efficient Algorithm for Exploiting Multiple
Arithmetic Units”. In: IBM Journal of Research and Development 11.1
(1967), pp. 25–33.

[87] Sravanthi Kota Venkata et al. “SD-VBS: The San Diego Vision Bench-
mark Suite”. In: IISWC’09. Washington, DC, USA: IEEE Computer
Society, 2009, pp. 55–64.

[88] Wikipedia. Pareto principle — Wikipedia, The Free Encyclopedia. [On-
line; accessed 18-July-2013]. 2013. url: \url{http://en.wikipedia.
org/w/index.php?title=Pareto_principle&oldid=564323946}.

[89] Wm. A. Wulf and Sally A. McKee. “Hitting the memory wall: im-
plications of the obvious”. In: SIGARCH Comput. Archit. News 23.1
(Mar. 1995), pp. 20–24.

[90] Chengmo Yang and Alex Orailoglu. “Power-efficient instruction
delivery through trace reuse”. In: Proceedings of the 15th international
conference on Parallel architectures and compilation techniques. PACT ’06.
Seattle, Washington, USA: ACM, 2006, pp. 192–201.

[91] K.C. Yeager. “The Mips R10000 Superscalar Microprocessor”. In:
Micro, IEEE 16.2 (1996), pp. 28–41.

[92] Victor V. Zyuban and Peter M. Kogge. “Inherently Lower-Power
High-Performance Superscalar Architectures”. In: IEEE Trans. Com-
put. 50.3 (Mar. 2001), pp. 268–285.

\url{http://en.wikipedia.org/w/index.php?title=Pareto_principle&oldid=564323946}
\url{http://en.wikipedia.org/w/index.php?title=Pareto_principle&oldid=564323946}

	Contents
	List of Tables
	List of Figures
	Abstract
	Introduction
	Revolver Architectures
	Thesis Contributions
	Thesis Organization

	Background
	Loop Caching and Buffering
	Prefetching Techniques
	Out-of-Order Microarchitecture
	CRIB Microarchitecture
	Operand Networks
	Summary

	Loop Detection and Training
	Identifiable Loops
	Detection Operation
	Detection Discussion
	Training Feedback
	Summary

	Conventional Back-end Loop Execution
	Overview
	Scheduler Modifications
	Wakeup Logic
	Tag Propagation Unit
	Load/Store Support
	Summary

	Load Pre-Execution
	Optimization Insight
	Supported Address Patterns
	Scheduler Modification
	Summary

	CRIB Back-end Loop Execution
	Overview
	Datapath Modifications
	Additional Loop Support
	Load/Store Support
	Conclusion

	Operand Network
	Overview
	Loop Carried Dependencies
	Operand Latency
	Summary

	Evaluation
	Methodology
	Conventional Out-of-Order
	Loop Design Tradeoffs
	Load Pre-Execution
	CRIB Out-of-Order
	Summary

	Conclusion
	Future Work

	Bibliography

