Silent Stores for Free

Kevin M. Lepak and Mikko H. Lipasti
Electrical and Computer Engineering
University of Wisconsin
1415 Engineering Drive
Madison, WI 53706
{lepak,mikko}@ece.wisc.edu

Abstract

Slent store instructions write values that exactly match the
valuesthat are already stored at the memory addressthat is
being written. Arecent study reveal sthat significant benefits
can be gained by detecting and removing such storesfroma
program’s execution. This paper studies the problem of
detecting silent storesand showsthat an average of 31% and
50% of silent stores can be detected for very low implemen-
tation cost, by exploiting temporal and spatial locality in a
processor’s load and store queues. e also show that over
83% of all silent storescan bedetected using idlecacheread
accessports. Furthermore, we show that processorsthat use
standard error-correction codesto protect data cachesfrom
transient errorscan be modified only slightly to detect 100%
of silent stores that hit in the cache. Finally, we show that
silent store detection via these methods can result in a 11%
harmonic mean performance improvement in a two-level
store-through on-chip cache hierarchy that is based on a
real microprocessor design.

1.0 Introduction

A recent study of store value locality notes that many
store instructions write values that are either trivially pre-
dictable or actually match the values that are already stored
at the memory address that is being written. Such stores
are called silent stores, since they have no effect on system
state. While surprising at face value, this discovery islogi-
cally consistent with the plethora of recent research on the
value locality of load instructions and register-writing
instructions (e.g. [6,7,10,15,17]). If indeed the input values
that are being loaded from memory exhibit significant
value locality, and the register-to-register computation
itself exhibits value locdlity, it follows naturally that the
output values being stored back to memory also exhibit
significant value locality. Source-level analysis presented
in [1] indicates that many silent stores are algorithmic in
nature. Results reported in [14] demonstrate that 20%-68%
of al storeinstructions are silent.

Detecting and squashing silent stores can have a hum-
ber of beneficial effects: reducing the pressure on cache
write ports, reducing the pressure on store queues or other
microarchitectural structures that are used to track pending
writes, reducing the need for store forwarding to depen-
dent loads, and reducing both address and data bus traffic
outside the processor chip. Many of these benefits are
examined and quantified in [14]. However, thereis also a
complexity and microarchitectural resource utilization cost

associated with detecting silent stores. Namely, to detect
the fact that a store is silent, the prior value must first be
read out from the memory location, compared to the new
value, and then conditionally overwritten in a process
caled store sguashing. The simple store squashing
approach outlined in [14] simply issues each store instruc-
tion twice: first as a read followed by a compare, and later
asastoreif it is not silent. Though beneficial overall, it is
clear that such a simplistic approach places additional
pressure on cache ports, particularly when running pro-
grams with few silent stores.

Meanwhile, concerns over reliability and the increasing
susceptibility of current and future semiconductor technol-
ogies to soft errors induced by gamma rays [24,25] and
alpha particles [16] have forced additional complexity into
the store-handling logic of high-end microprocessors. For
example, the latest high-end processors from Compaq and
IBM (the Alpha 21264 and PowerPC RS64-I11) protect L1
data caches from soft errors with SEC-DED error-correc-
tion codes for each aligned 64-bit quantity. Performing
sub-64bit stores into SEC-DED-protected caches requires
a read-merge-write procedure for recomputing and storing
the ECC for the affected 64 bit parcel.

Store handling has also been heavily complicated by the
introduction of out-of-order execution in many current
processor cores. In order to track pending requests and
guarantee that memory ordering rules are not violated, all
outstanding uncommitted loads and stores are tracked in
complex hardware structures commonly called load
gueues and store queues. These queues in fact provide a
historical and future context for every individual memory
reference by surrounding it with memory references that
occur near to it in the program order.

The emergence of both SEC-DED protection for tran-
sient error recovery and load/store queues to support out-
of-order execution create interesting opportunities for a
microarchitect searching for low-cost approaches for
implementing store squashing. In this paper, we examine
some of these opportunities, ranging from embedding
silent store detection into the read-merge-write sequence
required for subword stores, to read port stealing; to
exploiting temporal and spatia locality in the store and
load queues; al to perform store squashing for negligible
or reasonably low implementation cost. We find that 31%
of silent stores can be identified with the simplest approach
that exploits temporal locality only, while a more aggres-

Table 1: ECC data words and required check bits.

D-Cache
. - - Data-word | ECC Check | ECC-word | ECC Check
ore [.
%%) S : Store Size (bits) | Size(bits) | Size(bits) [Bit Overhead
- 8 4 12 50.0%
. EX/ .
| Fetch ‘geerfgsg/‘mspofoh ‘ Agen ‘ WB ‘Commn | 16 5 21 31.3%
FIGURE 1. A standard store verify consists of load 32 6 38 18.8%
and compar e oper ationsin the execute stage.. 64 7 71 10.9%
sive approach that also exploits spatial locality captures 128) 136 6.3%
an additional 19% on average. Finally, we explore the 556 9 265 35%

performance benefits of store sguashing in a two-level
cache hierarchy with store-through L1 caches that is
based on the upcoming IBM Power4 design [13]. In such
a configuration, we find that reducing pressure on the
memory system can provide up to 56% performance
improvement in one benchmark, with a harmonic mean
improvement of 11%.

2.0 Freeor Low-Cost Squashing Options

Earlier work showed that performance benefit can be
obtained by sguashing silent stores for both uniprocessor
and multiprocessor systems [14]. Throughout this paper,
store sgquashing describes the overall process of suppress-
ing asilent store; store verification refers to the subtask of
detecting that a store is silent. Further, we assume a
weakly consistent memory model when describing the
various sguashing and verification mechanisms. Of
course, some optimizations may or may not be possible
with stricter consistency models. Further discussion of
consistency model issuesis generally omitted for the sake
of brevity.

2.1 Explicit Store Verifiesfor All Stores

In order to understand why we would like to exploit
free silent store squashing (FSSS), a review of the origi-
nal proposed mechanism is necessary to understand its
implicit assumptions and potential performance prob-
lems. As originally explained in [14], referred to in this
work as a standard store verify, all store operations are
converted to explicit loads, comparisons, and conditional
stores. A pipeline diagram is shown in Figure 1.

Thisimplementation has some undesirable characteris-
tics. First, explicitly converting all stores to loads
increases pressure on the available cache ports in the sys-
tem and can potentially delay the issue of loads which are
likely on the critical path. Second, having asingle instruc-
tion perform multiple data cache accesses (and potentially
cause many data cache misses) will increase scheduler
and control logic complexity. Finaly, performing more
cache accesses (an additional read for each non-silent
store) can increase power consumption. Therefore, we
would like to find more efficient ways of squashing silent
stores.

In the next sections, we present several alternative
implementations of store squashing, each more efficient
than the standard store squashing mechanism. We use the
term free rather loosely to indicate that these mechanisms

have a qualitatively lower implementation cost than the
standard store verify. Detailed assessment of actual
implementation complexity is left to future work. We will
use the traditional store verify mechanism as the basis for
comparison.

2.2 Error Correcting Codes (ECC)

With soft errors in modern microprocessors becoming
alarger concern as we move to deeper sub-micron fabri-
cation technologies and higher reliability systems
[11,16,21,22,24,25], microprocessor designers are pro-
tecting the areas of a chip which are most densely packed
with transistors (e.g. caches, memories, etc.) against ran-
dom alpha-particles and other causes of soft errors. Error
checking and correcting (ECC) codes are a very common
method for protection against soft errors.

With the incorporation of ECC logic into data caches,
even in the L1, as is done in the Alpha 21264 [9] and
PowerPC RS64-111 [4], silent store squashing becomes
much simpler to implement. We return to this point in
more detail in Section 3.1 when a possible implementa-
tion of squashing in this cache structure is presented, but
the basic ideaisthe following:

ECC using various encoding schemes (we focus on the
SEC-DED variety of Hamming based codes [2,20], but
the comments made here apply more generally) requires
some number of data bits and check bits to enable the cor-
rection of errors. The number of check bits is related to
the number of data bits by the following function:

n+k< 2~ 1, wherenisthe number of data bits and k is
the number of check bits. Given the transcendental nature
of this function, there is no simple closed form for k, but
we illustrate the number of data bits and check bits
required for various ECC-word sizesin Table 1.

There is an obvious trade-off between the granularity
on which we keep ECC (data-word size) and the overhead
of the check bits. In the case of 12 bit ECC-words (8 data
bits), there is a 50% increase in storage space as overhead
for ECC. For progressively larger ECC-words, the over-
head is reduced--down to 3.5% in the case of 265 bit
ECC-words (256 data bits). However, thislower overhead
does not come without penalty. We can only correct asin-
gle bit error and detect a double bit error within the entire
ECC-word. Of course, as ECC-word size increases, the
probability of multiple errors within a word increases, so
ECC is less effective for larger words and a design com-

D-Cache

h
Store

CC Gen/
ore Verify

‘ Commit |

Decode/
Rename

) EX/
| Fetch ‘ Dispatch ‘ Agen ‘ WB

D-Cache
A v AT A
Read Port - .
Available?: é Sileni? » Store
Decode/| . EX/]
| Fetch ‘ Rename Dispatch ‘ Agen WB Commit

FIGURE 2. ECC store verify occursat commit.

promise must be reached. In general, fairly large ECC-
word sizes are chosen to minimize overhead and obtain
acceptable error coverage. In many modern microproces-
sors and system busses, 64 bit data-word ECC or larger is
used for ease of implementation and because of the con-
figuration of memory systems [9,11]. As a point of refer-
ence, the Alpha 21264 and the PowerPC RS64-111
implement L1 data cache ECC on quadword (64 bit) data
quantities.

The check bits for a data-word are generated when a
value is stored into the cache and compared when the
valueislater read (more detail in Section 3.1). In order to
generate correct check bits, al bitsin the ECC-word must
be available as input to the ECC generation logic. There-
fore, if we perform awrite operation that is either improp-
erly aligned on ECC-word boundaries, or is a sub-ECC-
word write, we must first fetch the rest of the original
ECC-word stored at the location, merge in the changes
(from the current write), calculate the new check bits, and
store the ECC-word.

We can see that in many cases the store operation into
an ECC-protected cache really consists of four opera
tions: read origina ECC-word, store merge, ECC check
bit generation, and new ECC-word store. This realization
illuminates the possibility of one type of free silent store
squashing (FSSS). Since we are reading the origina
ECC-word anyway, we can perform a comparison of the
new store value to the original value and squash the silent
stores. This store verify can be performed in parallel with
the store merge and new ECC check bit generation, add-
ing very little delay to the storelogic, aswill be examined
in more detail in Section 3.1.

In comparison to standard store verifies (Section 2.1),
we can see that store verifies carried out in ECC logic
require no explicit load operation, but rather can simply
be performed at commit, as illustrated in Figure 2. The
drawbacks of this approach are that a store is squashed
relatively late in the pipeline (at commit instead of during
the execute stage) so it may not reduce pressure on write
buffers; it cannot be removed early from the LSQ; and
finaly that it cannot capture ECC-word-aligned stores.

2.3 Read Port Stealing

It is well known that programs are non-uniform in the
usage of system resources. Therefore, in many cases,
some available idle resources can be used for other pur-
poses. We propose an additional use of idle resources;
namely, exploiting free cache read ports to implement
store verifies. This mechanism is a simple extension of
the standard store verify explained in Section 2.1. Since

FIGURE 3. Read port stealing performsaload and
compareonly if acacheport isidle.

stores must commit in order, it is possible that due to a
pipeline stall a store can wait in the LSQ for along period
of time before it completes. If aload port becomes free
while the store is waiting to commit, we can use the load
port to perform a store verify operation. Because we are
using resources that are idle and available, these store ver-
ifies are free. If a load port never becomes available
before the store is ready to commit, we forego attempting
to squash the store and assume it is non-silent.

Relative to standard store verifies, this method has the
benefit of not delaying execution of load operations due
to resource conflicts. However, it can create additional
instruction scheduling difficulties because the policy for
issuing a store verify is dependent on resource usage and
not just program order or another static scheduling policy.
Thistechnique of FSSSis shown in Figure 3.

2.4 Load/Store Queue

In order to obtain high performance, many processors
implement aggressive memory systems which require
load/store queues (LSQs) to perform store to load for-
warding and monitor speculative load operations which
may be violations of the architected consistency model.
We can exploit locality in the LSQ to obtain FSSS as out-
lined in the following sections.

2.4.1 Temporal Locality inthe LSQ

Store to load forwarding of memory dependencesis an
optimization commonly implemented in modern micro-
processors. In the case of store sguashing, a store verify
operation necessitates aread. If store forwarding isimple-
mented, we can extend it to squash later stores to the same
address as an earlier store in the LSQ (WAW depen-
dence). We can do so without using a cache read port,
hence making the squash free.

In asimilar fashion, we can a so squash stores to mem-
ory addresses for which an outstanding load exists in the
LSQ. This is possible because the cache access for the
load will be performed, obtaining the data value for the
store verify. In some sense, we can consider the store ver-
ify for the store to be “piggy-backed” on the explicit load
operation to the same memory address (WAR depen-
dence). Note that this optimization is also possible for
loads which occur later in program order, which generally
would have their load value forwarded from the previous
store we're trying to squash. This is possible because the
usage of the cache port is usually scheduled before it is
known whether the value will be forwarded from an ear-
lier store in the LSQ [8,13]. Therefore, since we have
scheduled the load for cache access anyway, the load can

Load St Load St
‘ ‘ 0(& ‘ Oée ‘ OO¢ ‘ Oée ‘ 4@Swlcngsqucsh

ol

Store

Valid

g
Q

Cache/
Mem

au18yong

(oo [l

[Load | store | Load | store |

Load

|

g
a

g
a
g
ol
§
a

Cache/
Mem

ENET)
ENET)

au18yong

U1 8yon)

FIGURE 4. Block level L SQ cache design. Thetemporal
and spatial L SQ sguashing operations, data allocation, and store

forwarding are illustrated for memory operations.

still be performed at no cost. Hence, the store verify is
again free in the case of a RAW memory dependence.

2.4.2 Spatial Locality inthe LSQ

In asimilar fashion, we can expand the scope of stores
squashable within the LSQ to addresses that inhabit the
same cache line. Given that L1 data caches are on-chip,
obtaining wide access to these caches is relatively easy.
Therefore, one may imagine each memory operation
reading an entire cacheline on any reference because of
the high bandwidth available from the L1 cache. Assum-
ing that a memory access reads the entire line from the
cache into a LSQ cache (shown in Figure 4), we can use
the spatially local datato perform additional squashing.

In the case of a WAW dependence, a previous store to
the line reads the line into the LSQ cache, and all subse-
quent stores to that line can be squashed from the LSQ
cache. In the case of a WAR and RAW dependences, a
similar process occurs--the load operation allocates the
line in the LSQ cache, and stores to the same line are
squashed from it. We will show in Section 4.4 that a small
LSQ cache is especialy effective in the case of WAW
dependences.

The LSQ cache is similar to the write cache proposed
in [12], except it contains entire cache lines as opposed to
8 byte quantities and it buffers both load-allocated and
store-allocated lines. Also note that since issuing storesis
generally not astime critical asissuing loads (because the
stores can be buffered at commit) we serialize the lookup
in the LSQ cache and the access to the memory system
(shown in Figure4) to avoid unnecessary usage of the
data cache port. We can also exploit read port stealing
(Section 2.3) and only read data for stores into the LSQ
cacheif amemory read port is available. Assuming we do
so, we also need a separate valid bit both for the LSQ
cacheline data and for the entries in the LSQ themselves
(shown in the Figure4) because a store may fail to
acquire afreeread port, leaving the datainvalid. When an
access adlocates aline into the L SQ cache, we may choose
to verify stores already present in the LSQ with the newly
alocated data, but this may add complexity to the LSQ

and LSQ cache for additional data paths. We will discuss
this further in Section 4.4.

If we assume that the LSQ cacheis FIFO allocated and
is operated in lock-step with the entries in the LSQ such
that when an entry leaves the LSQ its LSQ cache line is
also deallocated, we can avoid having explicit tags and
dirty bitsin the entries (because all necessary address and
dirty value forwarding is aready available in the LSQ
entries for store-forwarding). In the case of aweakly con-
sistent system, it is sufficient for correctness to flush the
LSQ cache on memory barriers (and this is most likely
very effective because of the small LSQ cache size) and
avoid snooping it for invalidates. In more strict consis-
tency models, snooping the LSQ may already be required
to detect consistency model violations, so snooping the
L SQ cache as well adds no additional complexity [23].

The benefits of squashing in the LSQ relative to stan-
dard store verifies are apparent. No additional cache
access is required for the load portion of the store verify
and sguashing storesisfree.

3.0 ECC FreeSilent Store Squashing

As touched on briefly in Section 2.2, soft errors are a
growing concern for microprocessor architects in order to
provide highly reliable systems and because of manufac-
turing concerns [11,16,21,22,24,25]. Having discussed in
Section 2 the opportunities for FSSS, in this section we
elaborate on the ECC method of FSSS in greater detail.
We show three possible mechanisms for protecting L1
data caches from soft errors and illustrate under what cir-
cumstances the FSSS techniques can be exploited. We
also explore which of the techniques we expect to be most
effective for different cache architectures.

3.1 L1 DataCachewith ECC

Soft error protection can be performed in the L1 data
cache directly, asis done in the Alpha 21264 [9] and the
PowerPC RS64-111 [4]. The 21264 and PowerPC RS64-
[11 use 64-bit ECC data words. As shown in Section 2.2,
this provides error coverage for relatively low space over-
head of approximately 11%. As also outlined in that Sec-
tion, FSSS is trividly implementable as part of ECC
check bit generation for subword writes. In order to illus-
trate the argument made in Section 2.2, Figure 5 shows a
datapath with which ECC may be implemented on a sub-
ECC-word store operation in an Alpha-like system. Note
that we use 72-bit ECC words (instead of the 71 used in
standard Hamming-based codes) because the Alpha uses
adightly modified coding scheme with 72-bit words [9].

Implementation will be dlightly different to handle
smaller bit width stores, but for ease of illustration, only a
32-hit store is shown. We see the four major operations as
discussed in Section 2.2: read the original quadword from
the data cache, merge the store data into the input side of
the ECC Data Register, generate ECC check bits, and
store the quadword and ECC bits. Note that if ECC-word
generation takes multiple cycles (as one might expect for

Check
bits (8)

Dafa Reg. 5
N 32 Data q
(32-bit) j%» pits (32)| &
32 -
8 &
% 32 [a=N
2 ECC Logic e
(Correction é 3 [an]
3z 32 Data Q
[72 oits (32)] &
D-Cache 4/{

FIGURE 5. L1 data cache ECC-word generation on a
sub-ECC-word store.

32
«é > [check

ST 2 bits (8) | —

ata Reg. o

. 32 Data !

(32-bit) 64 :@ »|Dits (32) N

32 =

. >
$ ECC ” &)
£ Erroy 32 5
h=) ECC Logic "56
(Correction) > b~

32 Data Q

72 pits (32)| @

D-Cache
l- - - - 1772 (!Silent) | | (ECC Error)

FIGURE 6. L1 data cache ECC-word generation on a
sub-ECC-word store with free silent store squashing.

essentially aread-modify-write sequence), we must main-
tain atomicity of the sequence either through design of the
write buffer feeding the ECC logic, or in the logic itself.
We have ignored this detail to simplify the diagram.

In Figure 6, we show the implementation of FSSS in
the same ECC logic structure as shown in Figure 5. We
can see that the changes to the datapath are relatively sim-
ple; the addition of an extra multiplexor and a compara
tor. Figure 6 aso illustrates that we cannot perform silent
store squashing if an ECC error is encountered on the read
of the data value from memory. This is because the cor-
rected value is obtained from the ECC correction logic
and therefore must be written back to the memory system.
The logic implements the same four steps as described
previously. However, the store merge, ECC check bit
generation, and new ECC-word store operations may be
aborted if it is determined that the store is silent and there
is no ECC error. The abort operation can be as ssimple as
not re-acquiring the cache port for the write of the (silent)
ECC-word from the ECC Data Register.

The most important aspect of Figure 6 is when the
silent store comparison can be performed. From the data-
path shown, we can see that the comparison can be per-
formed in parallel with the ECC check bit correction and
generation. In general, ECC correction and generation
logic consists of trees of exclusive-or gates [20] which
have delay on the same order as the 32-bit comparison for
sguashing. Therefore, FSSS for sub-ECC-word stores can
be implemented in an ECC-protected L1 data cache for
simply the cost of a few extra gates which should not
increase the ECC logic’s critical path.

3.2 Store-through L1 Cachewith ECC L2

Implementing ECC protection directly is not the only

way to combat soft errors in the L1 data cache. In fact,
adding ECC protection to the L1 directly can contribute
negatively to cycle time because the ECC correction logic
is now added to the critical path on load operations to
assure usage of corrected values from the cache. Of
course, speculation can be used in order to move the ECC
check/correction logic off the critical path by speculating
that al load values are correct and recovering if the ECC
logic reports an error. Of course, this adds control com-
plexity to trigger the recovery [9].

An dlternativeisto use an L1 cache with simple parity
protection and a store-through policy backed up with an
ECC L2 cache. The L1 parity protection has afew advan-
tages when compared with ECC in the L1. First, parity
can easily be kept on a byte basis with the same overhead
asthe 72-bit ECC-word as in the 21264 (in both cases the
overhead is approximately 13%.) With byte parity in the
L1, there are no merging issues with store operations
because the smallest atom for memory operations is a
byte--therefore stores into the L1 do not require a read-
modify-write sequence. The parity for each byte can be
calculated very early in the pipeline when the store value
is known and can simply be written into the cache. The
single bit of parity for each byte provides single error
detection on the byte level, as opposed to double error
detection over 64 data bits as provided by 64-bit SEC-
DED. If an error is detected in the L1 data cache via par-
ity, the correct value is fetched from the ECC L2 cache.

Of course, amajor caveat of this approach is the addi-
tional bus traffic generated by implementing a store
through L1 cache [12]. This traffic can be reduced with
techniques like aggressive write combining and other
buffering techniques, but special care must be taken to
handle the extra L1 to L2 bandwidth requirements.
Wesaker consistency models allow greater freedom for
store combining than stricter models.

In the case of a store-through L1 cache, silent store
squashing can have a noticeable performance benefit. To
further improve performance, we can use ECC sguashing
for sub-ECC-word writes in an ECC-protected L2 cache.
However, this will not reduce store-through traffic on the
L1 to L2 interface. Instead, we rely on the other methods
of FSSS--sguashing in the LSQ and stealing read ports--in
order to reduce store-through traffic. Performance results
of the different methods of FSSS for such a memory sys-
tem configuration are given in Section 4.

3.3 Duplication of L1 Data Cache

We can also obtain single error detection and correc-
tion capability in the L1 cache by duplicating it and pro-
tecting both copies with parity. If we encounter a parity
error on the read of any byte, we can fetch the correct byte
from the other copy of the cache to recover from the error.
This scheme avoids a read-modify-write sequence for
sub-word stores. It aso provides effectively double the
read-port bandwidth into the L1 data cache because each
copy of the data cache can be accessed with loads to arbi-
trary addresses.

However, this scheme is not without its flaws. First,
this scheme has high overhead of 100% compared to a
cache with only parity. Second, this scheme does not
allow easy scaling of store bandwidth because both copies
must be consistent, requiring stores to write both copies.

FSSS can ill provide performance benefit in this
cache structure because it is biased towards more read
ports than write ports. Therefore, we would expect the
performance improvement of FSSS in this cache configu-
ration to be similar to results reported in [14] and do not
explore this configuration further in this work.

4.0 FSSS Performance Benefit

We have shown in Section 2 and Section 3 that many
opportunities exist for FSSS. In this Section, we quantify
the performance benefit of the mechanisms compared
with a standard architecture. As we have stated previ-
oudly, the squashing mechanisms we evaluate are free (as
defined in Section 2.1) so any non-negligible perfor-
mance benefit is proof that these methods are effective.

We perform only uniprocessor simulations to show
proof-of-concept for the proposed mechanisms. Of
course, as shown in [14], there are additional savings for
communication misses in multiprocessors that are not
considered in these results.

4.1 Machine Modd

To determine the performance impact of FSSS, we
used an execution driven simulator of the SimpleScalar
architecture with an enhanced memory system model [5].
The default SimpleScalar does not accurately (or in some
cases at all) model finite memory system components
such as write buffers, writeback buffers, scheduling of
write/writeback traffic over the L1 to L2 interface, etc.
Since FSSS focuses on improving memory system perfor-
mance, modelling these resources accurately is necessary
for our resultsto reflect true performance.

In order to model the increasing demands on a memory
subsystem, we used an aggressive out of order design.
The configuration of the execution engine is 8 issue; 64
entry RUU; GShare branch predictor with 64K entries, 16
bit global history; 6 integer ALUSs, and 2 integer multipli-
ers. The cache configurations are 64KB each split I/D L1
and 512K B unified L2 with latencies 2, 8, and 50 clocks
for the L1, L2, and main memory, respectively. The I-
cache is 2 way associative with a line size of 64 bytes,
The D-caches are 4 and 8 way associative with line sizes
of 32 and 64 bytes, respectively. Store to load forwarding
isimplemented in the simulator with alatency of 2 clocks
to match the L1 hit latency. All binaries are SimpleScalar
PISA and compiled with SimpleScalar gcc at -O3.

The machine has two fully pipelined general memory
access ports each of which can handle either one load or
one store per cycle with no address restrictions. If a store
has begun verification, we count this store as verified in
the percentages reported, but we do not force verification
to finish before committing the store. If a store has not

finished verifying when it reaches commit, it is assumed
to be non-silent and enters the memory system. Read port
stealing for sguashing occurs regardless of where an
address hits in the memory hierarchy. The simulator
implements two write buffers outside of the instruction
window (i.e. only for committed stores) where committed
stores are held until their completion. Aggressive write-
combining is implemented in the write buffer so that any
store to the same L1 cacheline can be combined with
other stores to the same line in the buffer. The LSQ cache
only allocates for stores when it can steal aread port.

The L1 cache has a write-through, write-allocate pol-
icy backed by awriteback L2. In all cases (except Section
4.5 where we consider this bandwidth specifically) we
make the very aggressive assumption that there is a full
L1 cache line width interface between L1 and L2 that can
begin a new transaction every clock cycle, as might be
possible with on-die L2 caches. Both store-through band-
width and L1 fill bandwidth are modeled over this inter-
face. Fill transactions (i.e. demand misses) take
precedence over store-through traffic on this interface.

The memory access configuration of this machine
model is similar, though not identical, to the Power4 [13]
which implements a store-through L1 and writeback L2
for ECC protection (as outlined in Section 3.2). It is not
our goal in this Section to advocate a specific method of
error correction, but rather to show how FSSS can be
exploited for performance benefit in one possible config-
uration.

4.2 ECC Squashing

We do not show performance results for this method of
FSSS because it does not make sense to complicate the
results discussion with two incomparable machine mod-
els. Asdiscussed in Section 3, if a store-through L1 cache
is implemented for the purposes of error protection, we
have no need for ECC in the L1, since the store-through
to an ECC-protected L2 provides adequate reliability. In
order to meaningfully demonstrate the performance of
ECC squashing, we need a writeback L1. Results for a
machine model similar to this were published in [14].

However, it should be noted that the key assumption of
Section 2.2 and Section 3.1, namely that store operations
must be sub-ECC-word for ECC FSSS, is realistic given
commercially available processors today. One would
expect that no architect would design a system with the
maximal store atom size being smaller than the ECC-
word-size so that every store incurs a read-modify-write
for ECC generation. However, this occurs frequently. The
IBM RS64-11 (Pulsar) processor, inusein IBM S80 serv-
ers and other machines, executes exactly this way when
running 32-bit code. In the RS64-111, the L1 cacheis ECC
protected directly (similar to the manner discussed in Sec-
tion 3.1) using an ECC-data-word size of 64 bits. In 32 bit
mode, the largest integer store atom is 32 hits, hence
incurring the read-modify-write on every store [3,4].
Therefore, we expect ECC squashing to provide signifi-
cant performance benefit in this and similar systems.

= B Free Read Port
- —
2.5 ONo Squash
[l p—
2 L
a 15]]

1H = — L L

051 1 1 M]]

0 T T T T T T T T
o x a = o N = x a & i [}
>3 § E g8 ¢ § 8% 8§ %

€ 8 = S g

FIGURE 7. Performance improvement of read port
stealing vs. no squashing.

- BLSQ--Same Line
OLSQ--Same Address | pm
25 [ONo Squash

IPC
P
|
\
\

0.5 — —

& © s
> E I

go
ijpeg
perl

vortex
gzip

parser |
bzip 7

5 ¢
© g
o

m88k

100 +

90
g o |
s S NE EEEEEEN
I NN EEEEEENE
i H H N EEEEEEN
2l B B N EEEEEENE
I NN EEEEEEN
i B N B EEEEEENE
I EEE EEEEEENE
i N N B EEEEEEN
£ = S s

FIGURE 9. Performance of LSQ squashing. The
stacked bars indicate the performance of the baseline system
(without sguashing), same address (temporal) LSQ squashing,
and same cacheline (spatial) L SQ squashing, respectively.

FIGURE 8. Percentage of all dynamic stores verified

using only available cacheread ports.

4.3 Available Read Port Squashing

Figure 7 shows the performance improvement of read
port stealing over the baseline performance with no
squashing. We see improvements ranging from a low of
0% in li and vpr to a high of 56% in mcf. The harmonic
mean across all benchmarks shows a 10.3% improve-
ment.

It is worthwhile to note that we do not see a perfor-
mance decrease in any benchmark. This occurs because
we are only using cache read ports available after all other
ready loads and stores have had a chance to i ssue/commit.
The performance benefit comes primarily from two fac-
tors: @) areduction of bandwidth required between L1 and
L2 caches by eliminating store traffic on the interface,
and b) reduced pressure on write buffers.

It is also interesting to note how few store squashing
opportunities we miss by only using available cache read
ports as opposed to trying to squash all stores. In Figure 8
we show the percentage of store operations we are able to
store verify for free using read port stealing.

We can see that in all cases, we are able to verify over
83% of store operations using available cache read ports
with an average of 89%. This indicates that we are
achieving amost all available benefit from squashing that
uses the standard store verify, but without impacting per-
formance of critical load and store operations.

4.4 LSQ Squashing

In Figure 9, we show the performance improvement of

80 T

B Subsequent Load
w 70 [Previous Store
9 O Previous Load
2 60 =
»
-]
§ 50
2 0
<
5 30 I
g
8 20 A
]
o 10
gilninin sininininis_ow
o = = x s =
& g 8 £ g8 2§ 28 8 %
£ 8 = g g

FIGURE 10. Temporal LSQ squashing provided by
WAR, WAW, and RAW dependences.

temporal and spatial LSQ squashing over the baseline
performance with no squashing (as discussed in Section
2.4.1 and Section 2.4.2, respectively). The stacked bars
show the contribution of each mechanism to overall per-
formance. For temporal L SQ squashing, we see improve-
mentsin IPC ranging from alow of 0% in gzip and mcf to
ahigh of 3% in vortex with overall performanceimproved
by 0.6% as indicated by the harmonic mean over al
benchmarks. When we add spatial L SQ squashing, we see
total improvements over the baseline from alow of 0% in
gzip to a high of 56% in mcf with the harmonic mean
improving by 11.3%.

When examining temporal squashing, it is interesting
to note that most of the stores are squashed by preceding
or subsequent load operations (the RAW and WAR
dependences discussed in Section 2.4.1), as opposed to
previous store operations (WAW dependences), as illus-
trated in Figure10. In most benchmarks (except com-
press, ijpeg, vpr, and mcf), temporal LSQ squashing
captures over 25% of all silent stores within the dynamic
program execution. Some possible explanations for this
are provided in [1], and could include program model
considerations like stack frame usage. In the results pre-
sented in Figure 10, each dynamic silent store is counted
at most once (it is present in only one section of the

100 -

801 M M M FH L
NHAHHAAA A HHHH

OOHHHHHHBRHH®RH M M HORead Port Stealing
= - L] B Subsequent Line Store
50 HH— —=— H I " H H —H — —H @3Previous Line Store
= O Previous Line Load
40— 1= 11 H0SameAddress

0 HHHHHAHFE HH A
20 4

Percent of All Silent Stores

_‘
o o
T
[
[

1

[]
I

[]
[

[]

I

[]

[]

[]

HI“

]

[]

T

iipeg 1
perl

go
m88k
mcf
bzip

o o
<1
Y >

comp

vortex 1
9zip

parser

FIGURE 11. LSQ store verifies provided by same
address (temporal locality), previous load to line,
previous store to line, subsequent store to line, and
read port stealing.

stacked bars), with the following priority counting on
multiple aliases: previous load (WAR), previous store
(WAW), subsequent load (RAW).

In the case of spatia LSQ squashing, the same state-
ment regarding counting of squashable stores holds (a
dynamic silent store is only counted once). However, the
priority of counting changes slightly due to simulator
implementation issues. In this case, the counting prece-
dence iss WAR, WAW, cache line previous load, cache
line previous store, RAW, cacheline subsequent load, and
read port stealing. We show the results of this method of
counting in Figure1l (results from al same address
sguashing methods are combined in the Same Address bar
for readability and the subseguent line load section is
removed because it did not contribute meaningfully).
Note that the total percentage of silent stores captured by
this mechanism is greater than the results presented in
Figure 8 (simple read port stealing) because the LSQ
cache is store-allocating using free read ports, as well as
exploiting locality in the LSQ. Because LSQ store veri-
fies do not consume a cache port, a port tends to be free
more often for additional read port stealing store verifies.

We see that the percentage of same address store veri-
fies decreases over Figure 10, mainly due to counting pre-
cedence. Also, substantial previous line store verifies are
observed, indicating that the LSQ cache proposed in Sec-
tion 2.4.2 isuseful. These results aso indicate, due to the
small fraction of subsequent line verifies, that verification
from aline allocated by a subsequent access to previous
stores in the LSQ is unnecessary for sguashing purposes,
potentially saving some complexity in the LSQ cache.

Finally, we see that in all benchmarks (except com-
press and mcf), over 40% of all silent stores are captured
by exploiting locality in the LSQ. Read port stealing for
LSQ cache line allocation brings the total percentage of
silent stores captured to over 90% (except for ijpeg).

In comparing temporal to spatial LSQ squashing, we
see only two benchmarks that benefit from tempora
squashing (perl gains 1.5% and vortex 3.3%). It is not
until spatial LSQ sguashing is applied that we see notice-
able improvements in instruction throughput. This occurs

60 T

A O Percent Write Traffic Reduction
50 A Percent of Dynamic Stores Removed -~

40

30

Percent Write Traffic Reduction

A
A N al a
A A
20 A A —
A _
SRR
0 Hob L ﬂ AL 0.8, 1m1 ;ﬁ;
S 8 2 § © g

FIGURE 12. Percent reduction of L1 to L2 traffic by
performing FSSS. The bars and bullets indicate the
percentage of write through traffic reduction and the percentage
of total dynamic stores removed, respectively, by FSSS.

because the overall percentage of silent stores detected by
the spatial scheme (including free read port squashing) is
much higher.

4.5 Increasing Effective Write-Through

Bandwidth via FSSS

Given that FSSS can squash many silent stores, it is
interesting to examine what kind of trade-offs we can
make as an architect with this type of memory system to
obtain sufficient throughput between the L1 and L2
caches. We can use the “brute force” method and imple-
ment a fully-pipelined, write-combining, cache-line-
width interface between L1 and L2 (as used in all results
presented so far) which can induce significant circuit
design complexity. Or, we can exploit FSSS to obtain
“effective” throughput over the L1 to L2 interface with
less physical throughput. In order to illustrate this, we
present Figure 12 which shows the store-through traffic
reduction over the L1 to L2 interface as well as the per-
centage of dynamic stores removed by FSSS. We see an
average traffic reduction of 15% across all benchmarks
and up to 45% in m88ksim. Since this interface is wide
(32B) and fast (single cycle pipelined), it is reasonable to
assume that this traffic reduction would lead to a savings
in chip power.

Note that, as we would expect, the percentage of write
through traffic reduction closely mirrors the percentage of
successfully removed, squashed, stores. In the case of
vortex and mcf, the traffic reduction is dightly greater
than the percentage of removed stores, which we attribute
to second-order increase in write combining efficiency.
Because squashed stores do not allocate a write buffer,
there are more buffers available for combining non-silent
stores. The percentage of removed storesis lower than the
overall percentage of silent stores (and aso the percent-
ages of squashed stores presented previously) because we
do not wait for store verifies to complete before commit-
ting stores (explained in Section 4.1). In further experi-
ments not detailed here, we found that although we could
decrease traffic by waiting for stores that hit in the L1 to
finish verifying, because commit of some storesis stalled

— B Squash
254 Eug] ONo Squash B

PR — 4 _ I

1.5 7 ui

IPC

0.5 HI | H H

|
o = & © =
e g > E T

m88k
gee
m
ijpeg

vortex |
9zip

parse
bzip

FIGURE 13. Performance comparison between most
aggressive FSSS and no squashing for narrower L1to
L2 interfaces. The stacked bars indicate the performance
obtained by squashing with 32B, 16B, and 8B wide L1 to L2
interfaces, respectively.

in this case, overall instruction throughput is lower. There
is a potential performance vs. power consumption trade-
off here that could be exploited in power-aware designs.

In order to determine how effective this bandwidth
reduction is on instruction throughput, we present
Figure 13, which shows the performance across all bench-
marks with varying width interfaces between L1 and L2,
with and without FSSS squashing in its most aggressive
form (spatial LSQ squashing with read port stealing). We
keep the L1 cacheline size at 32B in all simulations, but
illustrate the performance of 32B, 16B, and 8B wide
interfaces between the L1 and L2. In each case, we are
progressively lowering the physical bandwidth of the L1
to L2 interface because in the case of 16B and 8B widths
more transactions across the interface are required for a
cacheline transfer (two and four transactions for 16B and
8B, respectively). However, we change the write combin-
ing width to match the physical interface width so that
flushing a write buffer takes only asingle cycle.

If we compare FSSS with an interface width of 8B to
no squashing with an interface width of 32B, we see that
the effective bandwidth (as evidenced by IPC) of FSSS
with the 75% lower physical bandwidth interface is more
effective than the higher physica bandwidth interface
without FSSS (the only exceptions to this are go and gzip;
in these benchmarks, the percentages of silent stores are
low, 27% and 16% respectively, leading us to expect less
benefit from FSSS). In fact, as evidenced by the harmonic
mean, the FSSS low physical bandwidth interface actu-
aly provides 9% greater effective bandwidth on average
than the fastest physical interface we model. Therefore,
we can potentially trade the implementation of FSSS for
physical bandwidth. Of course, as also shown, FSSS till
provides benefit no matter what physical bandwidth is
available. Note that even though the actual reduction in
physical bandwidth for the narrower interfaces (50% and
75% for 16B and 8B wide interfaces, respectively) is
larger than the percent reductions shown in Figure 12,
FSSS also decreases pressure on other hardware struc-
tures, such as write buffers, so the performance improve-

ment is not solely due to the reduced L2 bandwidth.

We also observe in Figure 13 that the performance
degradation from the widest (32B) to the narrowest (8B)
interface islower in the case of FSSS than for the baseline
system with no sgquashing (40% lower according to the
harmonic mean). This occurs because squashing is rela
tively more effective as the write-combining width nar-
rows. With respect only to physical interface bandwidth,
combining and squashing are equivalent. We can either
save atransaction over the L1 to L2 interface by combin-
ing with a previous store or by sguashing the store. How-
ever, there is some overlap between the methods (i.e.
some stores that are squashed could also have been com-
bined, and vice-versa, as can bee seen in Figure 12 in the
difference between removed dynamic stores and reduced
write through traffic). Of course, the combining width
directly affects the number of stores that can be com-
bined, but does not directly affect the number of squashed
silent stores. Therefore, FSSS will capture some stores
that can no longer be combined (but can still be squashed
at any combining width), so the relative benefit of squash-
ing increases as the combining width decreases along
with the width of the L1 to L2 interface.

4.6 Results Discussion

Comparing the performance results for the three FSSS
methods simulated for our machine model, we see that
read port stealing and aggressive L SQ squashing exploit-
ing both temporal and spatial locality in the LSQ provide
nearly equivalent performance, with harmonic mean
speedups of 10% and 11%, respectively. This occurs
because both methods capture greater than 83% of all
silent stores and close to 90% on average, so both meth-
ods are suitable for exploiting FSSS for IPC benefit.
However, aggressive L SQ sguashing reduces the number
of store verifiesissued to the memory system by 50%, on
average (comparing the read port stealing percentages
from Figure 8 and Figure 11). Therefore, in a machine
model with relatively fewer memory ports, aggressive
LSQ squashing may have greater benefit because of
reduced port contention. Reducing data cache accesses
may also reduce overall power consumption.

Temporal LSQ squashing by itself provides only mod-
est speedup in these benchmarks, less than 1%, because of
the low percentage of silent stores captured (31% on aver-
age) and the corresponding 9% average reduction in total
committed dynamic stores. Therefore, while temporal
L SQ squashing has the benefit of never stealing a cache
read port, in our machine, solely implementing this mech-
anism does not seem worthwhile.

5.0 Conclusion

We make four contributions in this paper. First, we
explain why standard store verifies, as initially proposed
in [14] have some undesirable characteristics, and intro-
duce the concept of free silent store squashing, which
uses existing resources as-is or with slight modification to

squash a significant portion of all silent stores. Second,
we explain three ways in which we can implement free
silent store squashing: i) using pre-existing ECC logic
that is present, and will become more prevalent, in current
and future microarchitectures; ii) using idle read port
stealing to perform store verifies; iii) enhancing an exist-
ing load/store queue to exploit tempora and spatial local-
ity for store squashing. We show that in current and next
generation microarchitectures that opportunities exist to
exploit these mechanisms using real examples from the
Alpha 21264 [9], IBM RS64-111 [4], and IBM Power4
[13]. We further show that substantial performance bene-
fit can be obtained by exploiting free silent store squash-
ing and that two of the three mechanisms--read port
stealing and aggressive L SQ squashing--capture a signifi-
cant portion of silent stores detected by the standard store
verify mechanism (greater than 83% and 89% on aver-
age). They do so at a substantially reduced cost for perfor-
mance benefits averaging 10% and 11% across the
SPECINT95 and a subset of the SPECINT-2000 bench-
marks for each method respectively. Third, we illustrate
that “effective” bandwidth between the L1 and L2 data
caches can be increased by free silent store squashing,
and indicate that a substantially lower bandwidth physical
interface between the two caches provides the same or
better performance when performing free silent store
squashing. Finally, we provide additional characterizing
information about silent stores by showing that, in most
benchmarks, greater than 40% of al silent stores can be
squashed by simply examining data that are temporally or
spatially local to data already existing in the LSQ. We
aso illustrate that, on average, 31% of silent stores are
detected with temporal locality, and an additional 19%
are detected with spatial locality, in the LSQ. The work
reiterates that silent stores can be exploited for perfor-
mance improvement and illustrates that taking advantage
of the majority of silent storesisrelatively easy given cur-
rent microarchitectures, lowering the barriers to exploit-
ing them in the future.

6.0 Acknowledgements

This work was supported by generous equipment
donations from IBM and Intel. Financial support was pro-
vided through a graduate student fellowship from Intel
and also funds from the University of Wisconsin Gradu-
ate School. We would also like to thank the anonymous
reviewers for their many helpful comments.

References

[1] G.B.Bell, K. M. Lepak, and M. H. Lipasti. Characterization
of Silent Stores. To appear in International Conference on
Parallel Architectures and Compilation Techniques, Octo-
ber 2000.

[2] R. E. Blahut. Theory and Practice of Error Control Codes.
Addison-Wesley Publishing Company, Reading, MA, 1983.

[3] J. Borkenhagen. Personal Communication. IBM Server De-
velopment. Rochester, MN, June 2000.

[4] J. Borkenhagen and S. Storino. 5th Generation 64-bit Pow-
erPC-Compatible Commercial Processor Design. IBM
Whitepaper, http://www.rs6000.ibm.com, 1999.

[5] D. C. Burger and T. M. Austin. The Simplescalar Tool Set,
Version 2.0. Technica Report CS-TR-97-1342, University
of Wisconsin, Madison, June 1997.

[6] B. Cader, G. Reinman, and D. Tullsen. Selective Value Pre-
diction. In Proceedings of the 26th Annual International
Symposium on Computer Architecture (ISCA’99), volume
27, 2 of Computer Architecture News, pages 6475, New
York, N.Y., May 1-5 1999. ACM Press.

[7] B. Cdder, P. Feller, and A. Eustace. Vaue Profiling. In Pro-
ceedings of the 30th Annual ACM/IEEE International Sym-
posium on Microarchitecture, December 1997.

[8] R. P. Colwell and R. Steck. A 0.6um BiCMOS Processor
with Dynamic Execution. In Proceedings of ISSCC. 1995.

[9] Compag Computer Corp. Alpha 21264 Hardware Reference
Manual DS-0027A-TE. http://www1.support.compag.com/
alpha-tool s/documentation/current/chip-docs.html. Febru-
ary, 2000.

[10]J. Gonzalez and A. Gonzalez. Control-flow Speculation
Through Value Prediction for Superscalar Processors. In
Proceedings of PACT-99, October 1999.

[11]IBM Corporation. Fault Tolerance Decision in DRAM Ap-
plications. Application Note, http://www.chips.ibm.com/
products/memory/fault/fault.html. July, 1997.

[12]Norman P. Jouppi. Cache Write Policies and Performance.
In Proceedings of the 20th Annual International Symposium
on Computer Architecture, 1993

[13]J. Kahle. Power4: A Dual-CPU Processor Chip. Micropro-
cessor Forum. October 1999.

[14]K. M. Lepak and M. H. Lipasti. On the Value Locality of
Store Instructions. In Proceedings of the 27th Annual Inter-
national Symposium on Computer Architecture, June 2000.

[15]M. H. Lipasti and J. P. Shen. Exceeding the Dataflow Limit
via Vaue Prediction. In Proceedings of the 29th Annual
ACM/IEEE International Symposium on Microarchitecture,
December 1996.

[16]T. May and M. Woods. Alpha-particle-induced Soft Errors
in Dynamic Memories. | EEE Transactionson Electronic De-
vices, 26(2), 1979.

[17]A. Mendelson and F. Gabbay. Specul ative Execution Based
on Value Prediction. Technical report, Technion, 1997. (ht-
tp://www-ee.technion.ac.il/.

[18]C. Molina, A. Gonzalez, and J. Tubella. Reducing Memory
Traffic via Redundant Store Instructions. In Proc. of Int.
Conf. on High Perf. Computing and Networking, pages
1246-1249, April 1999.

[19]A. Moshovos. Memory Dependence Prediction. PhD thesis,
University of Wisconsin, December 1998.

[20]T.R.N. Rao and E. Fujiwara. Error-Control Coding for Com-
puter Systems. Prentice Hall, Englewood Cliffs, NJ, 1989.

[21]E. Rotenberg. AR-SMT: A Microarchitectural Approach to
Fault Tolerance in Microprocessors. In Proceedings of the
29th Fault-Tolerant Computing Symposium, June 1999.

[22]P. Rubinfeld. Managing Problems at High Speed. |EEE
Computer, pages 47-48, January 1998.

[23]Kenneth C. Yeager. The MIPS R10000 Superscalar Micro-
processor. |[EEE Micro, April 1996.

[24]3. Ziegler. Terrestrial Cosmic Rays. IBM Journal of Re-
search and Devel opment, 40(1):19-39, January 1996.

[25]J. Ziegler et a. IBM Experimentsin Soft Failsin Computer
Electronics. IBM Journal of Research and Development,
40(1):3-18, January 1996.

