
Accelerating Search and Recognition Workloads with SSE 4.2 String and

Text Processing Instructions

Guangyu Shi
gshi2@wisc.edu

Min Li
mli46@wisc.edu

University of Wisconsin-Madison

Mikko Lipasti
mikko@engr.wisc.edu

Abstract

Today’s information is increasing rapidly, doubling ev-
ery three years. Consequently, the search and recogni-
tion stages in computer applications will consume a grow-
ing portion of the total CPU time. The SSE 4.2 in-
struction set, first implemented in Intel’s Core i7, pro-
vides string and text processing instructions (STTNI)
that utilize SIMD operations for processing character
data. Though originally conceived for accelerating string,
text, and XML processing, the powerful new capabilities
of these instructions are useful outside of these domains,
and it is worth revisiting the search and recognition stages
of numerous applications to utilize STTNI to improve per-
formance. In this paper, we explored the feasibility and
potential benefit of using STTNI to improve the CPU
and memory performance of search-and-recognition ap-
plications. We optimized four benchmark applications
– cache simulation, B+tree search algorithm, template
matching, Basic Local Alignment Search Tool (BLAST)
– with STTNI, and the new applications outperform their
respective original implementations by a factor of 1.4x to
13x.

1 Introduction

Today’s information is increasing rapidly. According to
UC-Berkley’s project in 2003[1], the data in the world are
doubling every three years and currently it is measured
in exabytes a billion billion bytes. As a result, people’s
expectation on search and recognition (SR) application
keeps getting higher. Accuracy and speed are two ba-
sic metrics of SR applications. High accuracy guarantees
that the applications retrieve useful information while fil-
ter out redundant information, and high speed guaran-
tees that the information is retrieved in time. As the
technology scaling reaches the fundamental limit, perfor-
mance benefit from frequency scaling will diminish in fu-
ture. Therefore, we need to find a solution to meet future
computational needs of SR applications.

Intel SSE 4.2 instructions, first implemented in Intel’s
Core i7 processors, complete the SSE 4 instruction set
with 7 new instructions. Among them, four string and
text processing instructions (STTNI) offer the capabilities
to simultaneously operate on 16 bytes in two data arrays.
Four instructions has the same format:

Opcode operand1, operand2, MODE

Operand 1 and 2 are SIMD registers holding 128-bit
value. The third operand MODE is a constant specify-
ing the type of comparison of the instruction. Table I
summarizes the four instructions.

Table 1: STTNI Instructions In SSE4.2 [2]
Instruction Description
PCMPESTRI Packed compare explicit length

strings, return Index
PCMPESTRM Packed compare explicit length

strings, return Mask
PCMPISTRI Packed compare implicit length

strings, return Index
PCMPISTRM Packed compare implicit length

strings, return Mask

Table 2: STTNI Compare Mode Options [2]
Mode Return value is true if
equal any Element i in fragment2 matches any

element j in fragment1
ranges Element i in fragment2 is within any

range pairs specified in fragment1
equal each Element i in fragment2 matches ele-

ment i in fragment1
equal ordered Element i and subsequent, consec-

utive valid elements in fragment2
match fully or partially with frag-
ment1 starting from element 0

STTNI takes two 128-bit values from SIMD registers as
source and target, and a third immediate value as MODE.
STTNI can divide a 128-bit value into 8x16-bit elements
or 16x8-bit elements depending on the precision require-
ment. Table 2 illustrates four MODE options for STTNI
[2]. Each compare mode is useful in specific applications.
For example, Equal Any and Ranges mode can be used in
XML parsers, and Equal Ordered mode can be selected
for substring searches.

The original purpose of developing these instructions
is to accelerate string, text and XML processing. Intel



Researchers have used STTNI in XML parsing [3] and
schema validation [4]. According to the performance re-
port from Intel Corporation, each application achieved a
speedup of 70% and 20%, respectively. To study the be-
havior of STTNI, we compared the STTNI-based string
functions with the ones in string.h to measure the perfor-
mance improvement when we replace the original sequen-
tial comparison with the STTNI 16-byte parallel com-
parison. Figure 1 shows the normalized speedup of the
STTNI-version string functions with respect to the orig-
inal implementation in string.h. From the result we can
see that with the growth of the length of the strings, the
speedup that STTNI-version string functions achieve in-
creases from 1.2x to 4.7x.

Figure 1: Speedup of cstring functions modified by
STTNI with respect to the cstring functions in string.h.

The performance improvement in string functions
points us to a novel and promising solution for improv-
ing the performance of SR workloads. In this paper, we
explore the possibility of revising the SR stages of applica-
tions to improve the performance without sacrificing their
accuracy. We also analyze when and how to use STTNI
in such applications in order to achieve the highest per-
formance improvement.

This paper makes the following contributions:

(1) We classify the SR applications by the data struc-
tures, and proposed optimization technique for each class.

(2) We apply our STTNI-based optimization on 4
benchmark applications - cache simulation, B+tree search
algorithm, template matching, Basic Local Alignment
Search Tool (BLAST) - and analyzed the CPU perfor-
mance and cache performance of each application. Ex-
perimental results show that our proposed implementa-
tion achieves performance improvement of 1.4x to 13x.

(3) We analyzed different types of overhead when using
STTNI and discussed how to minimize or avoid them.

This paper is organized as follows: Section 2 illustrates
the general optimization technique of our approach. Sec-
tion 3 specifies the hardware configuration and other de-
tails of our experimental environment. Section 4 describes
our proposed implementations of four benchmark appli-
cations. For each of them, we will first summarize the
related work in improving the performance of each appli-

cation. Then we describe the STTNI-based implementa-
tion as well as the baseline implementation. After that we
show the CPU performance and memory performance of
the new design in our experiment compared to the base-
line. Section 5 we conclude our work and discuss future
works.

2 Optimization Technique

One attribute of STTNI is that the word length for com-
paring can be either 8 bits or 16 bits long, depending on
whether the compare mode is BYTE or WORD in the
third argument of STTNI. We define STTNI-word as the
element that STTNI compares between two sequences (in
order to distinguish the word in query and reference se-
quences, the length of which are not necessarily 8 bits or
16 bits).

2.1 Nature of SR Applications

SR applications compare query sequences with reference
sequences. It can compare for either equality or inequal-
ity. Note that in some applications query is compared
against reference, but in other ones the relation is re-
versed. In STTNI, the first operand is the reference and
the second operand is the incoming query.

The most simple SR algorithm (such as in strcmp) com-
pares sequences sequentially. These applications are use-
ful when sequences are relatively short. For long sequence
compare, they become impractical due to the slow speed
of sequential compare.

To achieve a better performance, optimization algo-
rithms and data structures are developed. Hash table and
search tree structures are most commonly used. Hash ta-
bles are widely used when compare for equality is needed.
It minimizes the number of necessary comparisons by cre-
ating a table structure and assigning key words values
which are used as index of the hash table. Ideally, find-
ing desired elements in the hash table requires no com-
pare if the hash table has entries for every possible ele-
ment. In that case, a translation by the hash function is
enough to find the element, and reference is not needed.
In many cases, however, hash collisions the cases when
different key words have the same hash value cannot be
avoided and must be handled in some way. As a result,
hash collision resolving is followed after hash translation.
Most of the collision resolving method requires compare
between incoming keys and the keys stored in the hash
buckets. Designers balance the hash table size and the
average number of collisions to achieve the best overall
performance.

Search trees, on the other hand, are widely used when
compare for inequality is needed. Tree data structure ar-
ranges key words in a specific order, and searching for
key words in the tree becomes traversing from the root
to the leaves. The number of comparisons required is
proportional to the distance from the root to the desti-
nation node and the number of key words in each node.
Tree structures do not have as significant memory space



overhead as a hash table. As a result, they need more
compares.

Almost all the SR applications can be categorized into
the three types discussed above. By choosing strategies
with different mode option, STTNI can be used to accel-
erate all three kinds of SR applications.

2.2 Design Strategies

Figure 2: Block diagram of STTNI usage in general.

Figure 2 shows the block diagram of how STTNI is
used in general. First, it loads at most 128-bit values into
the SIMD register. If the size of a word in the sequences
exceeds the size of an STTNI-word, a part of the word
should be loaded in the SIMD register. The correspond-
ing part of a word in the query sequence should be loaded
into another SIMD register. Then the application com-
pares the contents of the registers. If one or more match
is found, the matching position will be recorded so that
the SR stage will start from a filtered search space. If
no match is found, or if the application requires finding
all matches, the next round of STTNI comparisons will
follow up. In either case, the compare stage will proceed
in parallel within SIMD capability, which is much faster
than a regular compare method. The steps in figure 2
are shared by all kinds of STTNI-based SR applications.
For the rest of the part, depending on the nature of the
applications (as described in 2.1), usage of the STTNI is
different correspondingly. They are illustrated in figure 3.
The baseline algorithm (without using STTNI) is shown
in the upper-half of the figures, and the STTNI-optimized
algorithm is shown in the lower-half of the figures.

1) Sequential Compare.
Figure 3 (a) shows the STTNI optimization technique

for sequential compare. If the query sequence is longer
than 16 bytes (cannot fit in a SIMD register), the first
16-byte word is compared first. If there is a match, the

next 16-byte word is compared, and so forth. Although
it looks quite straightforward STTNI compares 16 bytes
at a time, designers need to select a proper mode option
in order to achieve the best performance.

If there are multiple reference sequences, we compare
the query with 8 (16) references at a time and each ref-
erence is equal or less than 2 (1) bytes. If each reference
sequence is longer than 2 (1) bytes, then load 2 (1) bytes
in one at a time, and repetitively compare when matches
are found.

2) Search Tree

Figure 3 (b) illustrates the way of optimizing applica-
tions which uses search tree structure. In a search tree,
comparisons between query and the keys take place on
each node until the user finds the desired element. The
approach we use here is similar to the optimization on
sequential compare. But instead of comparing two se-
quences directly, we compare the query key with keys in
each node. When the keys in each node are arranged in
order, STTNI Range mode is very useful in comparing
the key word and finding the next branch.

3) Hash Table

For hash tables with collision resolving, STTNI can be
used for comparing the incoming key against keys in each
bucket, which is similar to the optimization in sequential
compare.

We know that hash collision is introduced in the pur-
pose of decreasing the number of hash table entries (in-
crease the utilization of the hash table) and thus reduce
the memory space overhead. Based on this observation,
we can use STTNI to introduce more collisions in each
bucket, and reduce the number of entries further. As
a result, the collision resolving step requires more com-
parisons between the query key and keys in the buckets.
However, compare steps can be handled by STTNI, there-
fore the overall performance will not suffer significantly
from the extra times of compare. Therefore, besides a
promising performance improvement, using STTNI can
also balance the stress between CPU and memory and re-
lax pressure on the most critical resource. Designers are
able to rebalance the number of hash table entries with
the number of collisions to achieve a better overall per-
formance. Figure 3 (c) illustrates the way of optimizing
hash table-based applications. This method is applicable
to hash table algorithms with or without collision resolv-
ing step.

The STTNI-based optimization technique for all three
types of SR applications is generally applicable. Besides,
it does not conflict with most of the existing optimization
techniques. Therefore, performance improvement can be
accumulated.

2.3 Minimizing the Overhead

In spite of the powerful SIMD capability, using STTNI is
not free. Several issues will cause the STTNI compare to
be slower, sometimes even worse than regular compare.

1) Initialization of STTNI. As [3] mentioned, the initial-
ization of STTNI can cause performance overhead. This



Figure 3: STTNI optimization scheme for 3 different types of SR applications.

overhead is negligible when the query sequence or the ref-
erence sequence is much longer than 128 bits, which in
most cases is true.

2) Utilization of the SIMD register. Because STTNI
can only compare in BYTE mode (each word occupies 8-
bit) or WORD mode (each word occupies 16-bit), an ar-
bitrary word length can possibly leave part of the SIMD
register empty, and eventually causes performance degra-
dation. Algorithms must guarantee the utilization of both
SIMD registers has a lower bound of a certain threshold
to ensure STTNI will improve the performance.

3) Overhead of loading 128-bit value. When loading
128-bit value from the reference sequence to the SIMD
register, the overhead is minimal if the value is a contin-
uous array (stores linearly in the memory). The worst
case is that the program needs to load each word into
the register individually. From our experiments, STTNI
will not provide any benefit in that case. To avoid the
SIMD loading overhead, we need to rearrange the data
of the application in the memory, if necessary, to ensure
that each 128-bit value can be loaded into the SIMD reg-
ister at one time. If each word in the reference is longer
than an STTNI-word, we need to truncate the word into
a partial word and make use of the STTNI compare.

From the discussion above we know that, in order to
take as much advantage of the STTNI compare as possi-
ble, one should 1) use STTNI to compare the sequences as
long as possible, 2) use STTNI to compare the sequences
which the length of a word is equal or greater than one
STTNI-word (8-bit or 16-bit) in STTNI, and 3) arrange
the reference sequence to be placed in a continuous mem-
ory space.

3 Experimental Configurations

All of our applications run on an Intel Core i7 Model
30 processor with 8 cores; each core operates at 2.80
GHz. The private L1 instruction cache and data cache

are both 32KB for each core. Private L2 cache size is
256KB for each core, and L3 cache is 8MB shared across
all the cores. We are running 2.6.31 version of Ubuntu
9.10 Linux and compile all the applications with gcc ver-
sion 4.4.1 at optimization level -O3. Performance results
were collected using the built-in performance counters,
accessed via the Performance Analysis Programming In-
terface (PAPI) version 4.0.0.0 [5]. All applications were
measured repeatedly and the average execution time is
reported.

4 Optimization on Benchmark
Applications

We choose the benchmark applications from a diverse set
of case studies from multiple disciplines: computer sim-
ulation, image processing, database and life science. In
terms of performance, our baseline reflects the state of
the art. Cache simulation and template matching we used
here are considered sequential comparing SR application
(first category in 2.2). B+tree algorithm is an SR ap-
plication based on search tree structure (second category
in 2.2). BLAST belongs to hash-table based SR applica-
tions (third category in 2.2). We will illustrate how we
apply STTNI-based optimization differently and achieve
certain performance benefits from them. We primarily
focus on CPU performance (speedup). We also discuss
the memory performance by presenting the data of cache
misses, which is an important factor of CPU performance
degradation.

4.1 Cache Simulators

Cache simulators are used for evaluating program behav-
ior, studying cache related issues such as replacement pol-
icy, coherence and so forth [6]. Mark Hill in University
of Wisconsin - Madison has been working on projects of



cache simulators including Tycho, Dinero III and Dinero
IV [7]. For architecture level simulation, the cache simu-
lation time is always a major concern. Every generation
of cache simulators the developers put significant effort in
decreasing the simulation times.

Like real caches, on each reference to a memory address,
the tag bits of the corresponding set in the cache will be
checked against the higher bits to see if this address hits
in the cache or misses. When simulating a set-associative
cache or a fully-associative cache, the simulator need to
compare high address bits against tag bits of each cache
line in the set. This is a slow sequential process and costs
most of the simulation time.

Program 1 Pseudo-code for STTNI-based cache simula-
tor.
// Pseudo code for cache simulation:

load 16 subtags into SIMD regsiter

set compare mode as Equal Any;

while (i<associativity)

begin

compares subtags with reference;

if(match) begin

compares full tag with reference;

if(hit)

return hit location;

end

i += 16;

load next 16 subtags into SIMD register;

end

return miss;

Program 1 is the pseudo code of the tag comparing
stage of the STTNI-based cache simulator. We improved
it by putting the least-significant bits as sub-tags into an
additional directory. The number of bits is 8 or 16 de-
pending on the associativity. When doing a comparison,
we load at most 16 sub-tags into the SIMD register and
compare them with the corresponding bits in the address.
This step filters out the unmatched lines. A regular se-
quential comparison between the high address bits and
the entire tag bits of the lines returned from STTNI com-
parison is followed to confirm whether a hit takes place.

Our aggressive baseline cache simulator has two
speedup features. The first one is an address hashing
mechanism (not hash table) that start comparing the tag
bits from the most-recently used line of this set, rather
than sequentially scanning from set 0 to set n-1. The
other is a fast return-on-misses mechanism. When there
is no hit in the entire set (indicated by a hash table miss),
the simulator will return a miss signal fast rather than af-
ter checking tag bits of each way in the set. The STTNI
scheme is build on top of these optimizations.

Figure 4 shows the speedup of the STTNI-based set
associative cache simulation with different associativity.
Other parameters such as total cache size or line size do
not affect the result significantly as we expect. From the
experimental result we can see that the speedup is smaller
than 1 when the associativity is smaller than 4. With the

associativity increases, the speedup of STTNI-based im-
plementation increases to up to 8.3x when associativity
is 64. This is because the number of comparison needed
is proportional to the associativity. Although it is also
true with STTNI-based implementation, the subtag fil-
tering step helps avoid unnecessary comparisons and thus
accelerates the simulation process.

Figure 4: Speedup of STTNI-based cache simulators with
respect to the baseline implementation.

L1 Miss L2 Miss L3 Miss
124% 136% 100%

Table 3: Cache performance of STTNI-based cache sim-
ulators with respect to the baseline implementation.

Table 3 shows the cache performance of the STTNI-
based cache simulator when associativity is 8. The num-
bers of accesses and misses are normalized to the baseline
design. From here we can see that by applying STTNI
to the cache simulator, the numbers of L1 and L2 misses
are increased due to an additional directory we used to
store the sub-tags. The L3 misses, however, does not
have significant change because the additional directory
have a moderate size that can fit in L3 cache well. The
memory overhead is insignificant compared to the CPU
performance improvement.

4.2 Template Matching

Template matching [10] is a technique to detect similar
areas of the template image within a reference image.
Basically, the present detection can be attributed to two
methods: one is the feature based and the other is the
template-based approach. In our experiments, we choose
to modify the template-based approach to adapt the ad-
vantage of STTNI.

In 1995, J. P. Lewis raises the idea of computing nor-
malized cross correlation in transformation domain to
quicken the template matching process [10]. In 2002, H.
Schweitzer proves the polynomial based template match-
ing approach can accelerate the normalized correlation
approach by a factor of 100 [11]. Shinichiro Omachi



and Masako Omachi put forward the Algebraic Template
Matching (ATM, [12]) method, which achieves a speedup
of 8x 9x comparing to [11]. In our experiment, the base-
line algorithm uses direct compare method. Therefore we
categorize it as sequential compare SR application.

In our approach, each pixel is defined as 1 byte. We
mask the lower bits of each pixel value and use the upper-
most bits to compare between the template and the ref-
erence images. There are two steps in our approach: for
the first round, we find all the possible matching points by
comparing the first 16 pixel values (each pixel value is 8
bits and the SIMD register can hold 128 bits) of the tem-
plate image with the whole reference image pixels; then at
the second round, we start from every possible matching
point and compare the following 16 pixels in the reference
image with related template pixels values. Once no exact
match found, we remove the possible matching points and
move on to the next. If the whole template area is com-
pared and they are all matched, the matching area is said
to be found; otherwise a no matching status is returned.

In our experiment, we use the Open Source Computer
Vision Library (OpenCV) to load in pictures and convert
its pixel information into a one-dimensional unsigned char
array. STTNI Equal Ordered mode is used. The base-
line has no STTNI acceleration. The size of the template
image is 400*400 pixels and the size of reference images
range from 400*400 to 2000*2000.

Figure 5 shows the execution time (in clock cycles) of
the STTNI implementation of template matching algo-
rithm and the baseline implementation. We can conclude
that when the difference between sizes of reference and
template gets bigger, the speed-up will become more ap-
parent. In the best case here, STTNI-based template
matching achieves a speedup of 13.8x.

Figure 5: Speedup of STTNI-based template matching
with respect to the baseline implementation.

L1 Miss L2 Miss L3 Miss
147% 112% 108%

Table 4: Cache performance of STTNI-based template
matching with respect to the baseline implementation.

Table 4 shows the cache performance of the STTNI-

based template matching algorithm. All values are nor-
malized to the values we obtain from the baseline im-
plementation. As we use an additional data structure
to store the truncated search space, the number of L1
misses increased by 47%. This data structure occupies
relatively small memory space compared to the reference
image. Therefore the numbers of L2 and L3 misses does
not increase as much as L1 misses, and therefore does not
cause degradation of overall performance.

4.3 B+Tree Algorithm

B+ tree [8] is one kind of tree data structure that allows
search, insert and delete operations to finish in logarith-
mic amortized time. B+ tree is widely used in databases
and file systems due to its advantage in I/O operations
over other tree structures. In a B+ tree, each node is
constituted by an array of words. The words not only
store the data, but also indicate the sub-tree to search if
the query word is not found in current node. For every
operation, B+ tree always needs to search to the correct
position for the query word first. B-tree search can be
CPU-intensive when the number of nodes or the number
of words in a node is very large. Therefore B+ tree search
time has always been a critical issue for the developers.

Program 2 Pseudo-code for STTNI-based B-tree search.

// Pseudo code for B-tree search:

load 4 pairs of words;

set compare mode as Ranges;

while (i<number of words in current node)

begin

compare query word with 4 word pairs;

if (query word within ranges) begin

compare query word sequentially;

return hit location;

end

else

shift SIMD register content by 8 bits;

compare query word with the rest 3 word pairs;

if (query word within ranges) begin

compare query word sequentially;

return hit location;

end

else

i += 8;

load next 4 pairs of words;

end

end

return miss;

We use STTNI to optimize the B-tree search within a
node. Program 2 shows the pseudo code of the STTNI-
based B-tree search within a node. In order to utilize
STTNI, we define the word as 16-bits each. For longer
words, our approach is also applicable because we can
compare the least significant 16 bits of the word before
a full-word compare. STTNI Range mode is chosen. For
each iteration, we load at most 8 words into the mm regis-



ter. 8 words can define 7 ranges of words, but STTNI de-
fine ranges by pairs of words in the SIMD register, there-
fore 4 ranges are defined. Then we do STTNI comparison
between the query word and the 4 ranges to see if the
query word falls into one of the ranges. In order to cover
the rest 3 ranges, we right shift the 128-bit value by 16
bits to constitute new ranges in the register. Another
STTNI comparison is followed if the first one returns no
match. We do the sequential comparison only when a
match is found by STTNI. Therefore the numbers of it-
erations needed is decreased by 4 times, approximately.

Our implementation of B+ tree is based on the algo-
rithm described in [9]. The baseline design does sequential
comparisons within a node. From the result in figure 6 we
observe that once the number of words in a node increases,
the STTNI-based implementation outperforms the base-
line. In the best case the speed up is approximately 2.32x.
A log2-based search within a node can improve the perfor-
mance by always comparing the word in the middle of the
range with the query word. However, STTNI acceleration
phase can be built along with the log2-based search after
proper justifications of the data structure. Table 5 shows
the cache performance of STTNI-based B-tree search al-
gorithm with the maximum number of words. All values
are normalized to the values of the baseline implementa-
tion. From the data we can see the revised SR stage have
little impact on cache performance. Since we do no have
additional data structure to support the SIMD compare,
there is no additional memory pressure.

Figure 6: Speedup of STTNI-based B+ tree algorithm
with respect to the baseline implementation. Total num-
ber of nodes in the B+ tree is 106.

L1 Miss L2 Miss L3 Miss
104% 97% 102%

Table 5: Cache performance of B+ tree algorithm with
respect to the baseline implementation.

4.4 BLAST

Basic Local Alignment Search Tool [13], or BLAST, is an
application that scans a biological query sequence, such
as the amino-acid sequence of different proteins or nu-
cleotides of DNA sequences, and finds the similarity be-
tween it and the subject sequences in the database. In the
preprocessing stage of BLAST, every word appearing in
the query sequence is stored in a word list. Usually it is a
data structure that is efficient for searching. When scan-
ning the subject sequences in the database, each word is
checked against the word list of query sequence, and all
matches will return both positions of this word in query
sequence and in database to the program. Because of the
huge volume of the database, usually the subject sequence
scanning stage costs about 65% of the CPU time of the
entire BLAST program.

Although BLAST is developed as a replacement of more
time-consuming sequence alignment algorithms such as
Smith-Waterman process, scientists and researchers still
put considerable attentions on accelerating it. Differ-
ent versions of BLAST toolboxes including NCBI BLAST
[14], WU-BLAST (now acquired by AB-BLAST [15]) were
developed. Different program of BLAST is developed for
improving the performance under different applications
such as [16] [17]. Some other local alignment algorithms
such as RPAlign [18] were developed as fast and accurate
alternatives.

We choose NCBI BLAST [14], one of the most widely
used BLAST applications in the world, as our baseline
design. In NCBI BLAST, a hash table is created, and the
hash function encodes each word into a unique value. As
the advantage of hash tables, the SR algorithm access the
hash table once and retrieve the number of occurrence
of each word as well as the offset of each word in the
query sequence, instead of comparing subject sequences
with the query sequence repeatedly. The disadvantage of
this approach is the huge size of the hash table, which is
proportional to the number of bits in an encoded word. In
DNA sequences, typically a word contains 11 residues and
each residue needs 2 bits. Therefore, to create a hash table
for all possible 11-letter words, the entries in the hash
table will be (2 ∗ 2)11=4M. Because of the significant size
of the hash table, cache performance becomes a critical
issue to the overall performance.

However, usually not all the words exist in the query se-
quence, which means that many of the entries in the hash
table are empty. NCBI BLAST developers have realized
the cache performance issue and optimize the program
by two means. First, it estimates the number of entries
needed and decreases the size of the hash table if it is
possible. Therefore even if the hash table word length is
smaller than the actual word size, there will be enough
entries for each word so the accuracy is not sacrificed too
much. Second, it allocates a smaller PV array to record if
a word has a hit in the query or not. When scanning the
subject sequence, the program will first access the PV ar-
ray. If there is no hit in the query sequence, the program
will skip accessing the hash table in order to save CPU
time.



We apply our optimization scheme discussed in 2.2 3)
(figure 3(c)) here. 4 letters from LSB skip the hash func-
tion and used to compare directly with keys stored in
the entries of a hash bucket. The rest part of the word is
hashed in order to find the bucket. Initially, 16 entries are
allocated in each bucket. Whenever there are more than
16 entries needed, the hash table size is doubled and the
number of compared bits is increase by one. In the best
case, the hash table is 16 times smaller than the baseline
hash table. Although the number of comparisons in the
SR stage is increased, STTNI compares 16 tags a time
and thus minimizes the overhead.

We choose the ”nt” database from NCBI in our exper-
iment. It is a nucleotide sequence database with entries
from all traditional divisions of GenBank, EMBL, and
DDBJ. The size of this database is 10.5 GB in total. For
this experiment, in order to study sensitivity of perfor-
mance to word length, we modified original program so
that the hash table word length is set manually instead
of being determined automatically by the program. We
run the BLAST program with query sequences of differ-
ent length from NCBI benchmark. Figure 7 shows the
speedup of the STTNI-version subject sequence scanning
stage of BLAST compared with the baseline. The se-
quences are DNA sequences and one letter consumes two
bits. The range of the hash table word length is from
8 to 12. 1 letter increase in the hash table word length
will increase the number of entries in the hash table to
four times larger. Since we are not accelerating the com-
parison directly, the speedup is not as much as that in
previous applications. In the best case, STTNI-based im-
plementation achieves a speedup of 1.47x.

Figure 7: Speed up of the STTNI-based BLAST subject
sequence scanning stage with respect to the baseline im-
plementation.

Table 6 shows the cache performance of BLAST with
STTNI-based optimization when the maximum number
of entries. All values are normalized to the values we ob-
tain from the baseline implementation. The increase in
L1 and L2 misses (36% and 37%, respectively) are due to
additional computation needed to calculate the new in-
dex value. The L3 miss decreases by 63%. This observa-
tion is consistent with our expectation. Since we reduced

L1 Miss L2 Miss L3 Miss
136% 137% 37%

Table 6: Cache performance of the STTNI-based BLAST
subject sequence scanning stage with respect to the base-
line implementation.

the index bits by adding one compare in the SR stage of
BLAST, the new hash table size is decreased and a larger
portion of it can fit in the L3 cache. From the cache
performance result we can conclude that the speedup in
figure 12 comes from the decreased L3 miss penalties.

4.5 Reasons of Diverse Performance Im-
provement

One may notice that the range of speedup is relatively
large (from 1.4x to 13x). We discuss the most significant
factors here.

1) Percentage of parallel computing in the overall exe-
cution. Amdahl’s law parallelization 1/(1-P+P/N) can
illustrate the influence of parallel portion in the program.
Here N is the parallelism factor provided by STTNI. Note
that N can be greater than 16 because the STTNI actu-
ally compare each word in one sequence with every word
in another sequence, and the result is obtained from a
16*16 matrix. Therefore, the maximum value of N is 256.

2) Different natures of SR application. As illustrated
in section 2.2, sequential compare requires the least ex-
tra computation, and thus it achieves the speedup from
STTNI directly. In our case, template matching and cache
simulation achieves the highest speedup. Hash tables are
highly tuned for performance requirements. STTNI is
used to reduce the memory overhead, and the perfor-
mance gain comes indirectly. Therefore, BLAST has the
least performance improvement.

3) Mode option in STTNI. As illustrated in [2], al-
though the STTNI generates a 16*16 matrix for each op-
eration, the return value may not use all of them depend-
ing on in which mode it is comparing. For example, Equal
Each mode will only return elements on the diagonal, and
Equal Order mode will only return elements at row i col-
umn j, when i¿=j. As a result, the achievable parallelism
is different for each mode.

4) Overhead discussed in section 2.3. Initialization
overhead is similar for most benchmarks. SIMD register
utilization and memory loading overhead are very differ-
ent among SR applications. For example, B+ tree algo-
rithm rearranging the words into an array spends more
CPU time rearranging the words into an array than in
cache simulation and template matching. That is the rea-
son why B+ tree search achieve less speedup than cache
simulation and template matching even if more than a
hundred keys are stored in each node.



5 Conclusion

We propose an optimization technique based on STTNI
for SR applications, and propose the STTNI implementa-
tion of four diverse applications: cache simulation, B-tree
search, template matching and BLAST. We use different
strategies in each application in order to improve the per-
formance as much as possible. In most applications, the
speedup of STTNI-based implementations increases with
the volume of the workload. Our proposed implementa-
tion can be adapted to many other applications with SR
workloads. STTNI will not conflict with existing opti-
mizations. We can expect an accumulated performance
improvement. The design effort of each application is dif-
ferent depending on the nature of the application itself. In
our case, cache simulation requires the least and BLAST
requires the most.

In future, we are looking forward to revising more ap-
plications with STTNI. In addition to the programmer
revising approach, we want to investigate automatic code
generation. We also want to revise more applications and
their optimized versions so that we can combine the per-
formance improvement of the optimization with the bene-
fit from STTNI. We are going to revise the applications in
a finer granularity, not only the search and compare stage
but also the whole application to cooperate with the new
feature of STTNI. We also plan to further evaluate the
memory behavior of STTNI-based applications, includ-
ing cache performance and memory space consumption.
Finally, we want to study the power overhead of these
applications.

References

[1] P. Lymen and H. Varian, How Much Infor-
mation, UC-Berkeley Project, 2003. Available:
http://www2.sims.berkeley.edu/research/projects/how-
much-info-2003/

[2] Intel 64 and IA-32 Architectures Optimization Ref-
erence Manual, Intel Corporation, 2009

[3] Z. Lei, ”XML Parsing Accelerator with Intel Stream-
ing SIMD Extensions 4 (Intel SSE4)”, Intel Corpora-
tion, 2008. Available: http://software.intel.com/en-
us/articles/xml-parsing-accelerator-with-intel-
streaming-simd-extensions-4-intel-sse4/

[4] Y. Le, ”Schema Validation with Intel Streaming
SIMD Extensions 4 (Intel SSE4)”, Intel Corpora-
tion, 2008. Available: http://software.intel.com/en-
us/articles/schema-validation-with-intel-streaming-
simd-extensions-4-intel-sse4/

[5] Performance Application Programming Interface.
Available: http://icl.cs.utk.edu/papi/

[6] H.G. Rotithor, ”On the effective use of a cache mem-
ory simulator in a computer architecture course”,
IEEE Trans. Education, vol. 38(4), pp. 357360,
1995.

[7] M.D. Hill, Dinero Project. Available:
http://pages.cs.wisc.edu/ markhill/DineroIV/

[8] R. Bayer and E. McCreight, ”Organization and
Maintenance of Large Ordered Indexes”, Acta Infor-
matica vol. 1 (3), 1972, pp. 173189

[9] T.H. Cormen, C.E. Leiserson, R.L. Rivest and Clif-
ford Stein, Introduction to Algorithms, 2nd ed., MIT
Press and McGraw-Hill. ISBN 0-262-53196-8, 2001.

[10] J.P. Lewis, ”Fast Template Matching”, Vision Inter-
face, 1995

[11] H. Schweitzer, J. W. Bell, and F. Wu, ”Very fast tem-
plate matching”, in Proc. 7th Eur. Conf. Computer
Vision IV, 2002, pp. 358372.

[12] Shinichiro Omachi, Masako Omachi, ”Fast Template
Matching With Polynomials”, IEEE Trans Image
Processing, vol. 16 (8), 2007

[13] S.F. Altschul, W. Gish, W. Miller, E.W. Myers, D.J.
Lipman, ”Basic local alignment search tool”. J Mol
Biol, vol. 215 (3), pp. 403410, 1990.

[14] National Center for Biotechnology Information.
Available: http://blast.ncbi.nlm.nih.gov/

[15] Advanced Biocomputing, LLC, Available:
http://www.advbiocomp.com/blast.html

[16] S. F. Altschul, T. L.Madden, A. A. Schaffer, J.
Zhang, Z. Zhang,W. Miller, and D. J. Lipman,
”Gapped BLAST and PSI-BLAST: A new genera-
tion of protein database search programs, Nucleic
Acids Res, vol. 25, pp. 33893402, 1997.

[17] Z. Zhang, S. Schwartz, L.Wagner, andW.Miller, ”A
greedy algorithm for aligning DNA sequences”, J.
Comput. Biol., vol. 7, pp. 203214, 2000.

[18] S. Bandyopadhyay and R.Mitra, ”A Parallel Pairwise
Local Sequence Alignment Algorithm”, International
Conference on Advanced Communication Technol-
ogy, vol.3 pp. 2317 2320, 2009.


	Introduction
	Optimization Technique
	Nature of SR Applications
	Design Strategies
	Minimizing the Overhead

	Experimental Configurations
	Optimization on Benchmark Applications
	Cache Simulators
	Template Matching
	B+Tree Algorithm
	BLAST
	Reasons of Diverse Performance Improvement

	Conclusion

