Tag Check Elision

Zhong Zheng, Zhiying Wang
State Key Laboratory of High Performance
Computing & School of Computer
National University of Defense Technology
zheng_zhong@nudt.edu.cn,

zywang@nudt.edu.cn

ABSTRACT

For set-associative caches, accessing cache ways in parallel
results in significant energy waste, as only one way contains
the desired data. In this paper, we propose Tag Check Eli-
sion (TCE): a non-speculative approach for accessing set-
associative caches without a tag check to save energy.

TCE can eliminate up to 86% of the tag checks (67% on
average), without sacrificing any performance. These direct
accesses to a 4-way set-associative data cache under TCE re-
sult in up to 56% and 85% data cache and Data Translation
Look-aside Buffer (DTLB) dynamic energy saving, respec-
tively.

Categories and Subject Descriptors

C.1.0 [Processor Architecture]: General; B.3.2 [Memory
Structure]: Design Styles—Cache memories

1 Introduction

Caches have been playing an important role in efficiently

bridging the speed gap between memory and CPU for decades.

However, they consume a large fraction of the on-die area
along with up to 45% of core power [19]. In addition, indus-
trial sources and early research report that 3-17% of core
power can be consumed by Translation Look-aside Buffer
(TLB) [19, 9, 10]. In the many-core era, the power quota
for each core is very limited, which requires simple core logic
design along with more power efficient cache and TLB im-
plementation without hurting performance.

Set-associative caches dominate the cache design in cur-
rent commercial processors, as they provide higher hit rates,
resulting in better performance. However, they require par-
allel way read and energy-hungry tag comparison. As a re-
sult, much of the energy is wasted on accessing bits that are
discarded after tag check.

In this paper, we propose Tag Check Elision (TCE), a
hardware approach to access set-associative caches without
tag checks. TCE determines the correct cache way early
in the pipeline by doing a simple bounds check that relies
on the base register and offset associated with the memory

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

ISLPED’14, August 11-13, 2014, La Jolla, CA, USA.

Copyright 2014 ACM 978-1-4503-2975-0/14/08 ...$15.00.
http://dx.doi.org/10.1145/2627369.2627606.

351

Mikko Lipasti
Department of Electrical and Computer
Engineering
University of Wisconsin-Madison
mikko@engr.wisc.edu

instruction. In the same vein, the TLB access can also be
eliminated in a physically-tagged cache. TCE memoizes the
accessed cache ways and relies on a bounds check to decide if
the later access is to the same line as an earlier access. The
bounds check occurs as soon as the virtual address is avail-
able, and incurs no additional pipeline delay or performance
degradation.

The results show that 35% to 86% (67% on average) of
memory accesses in the SPEC CPU2006 benchmarks [6]
can perform direct access to the cache. The cache dynamic
energy saving is 15% to 56%, with 33% on average. The
DTLB dynamic energy saving is 34% to 85% (66% on aver-
age). TCE outperforms two types of way prediction, includ-
ing MRU and perfect prediction, in terms of Energy Delay
Product (EDP).

The rest of the paper is organized as follows: The back-
ground and insight that motivate our work are presented in
Section 2. The design of the TCE approach is described in
Section 3. Experimental results are presented in Section 4.
Related work is discussed in Section 5 and Section 6 con-
cludes the paper.

2 Motivation

For set-associative caches, all tags in a set must be checked
to decide which way contains the requested data. To provide
fast access in level one caches, all tags and data ways in a set
are accessed in parallel, while only one way has the requested
data. This redundant tag check and data access results in
much energy waste. For example, in a 4-way set-associative
cache, 4 tag checks and 4 data block reads are performed.
In contrast, TCE reduces the cache access to just one data
block read, eliding all tag checks and 3 other data block
reads.

TCE is inspired by how memory addresses are generated.
The example code in Figure 1(a) adds arrays b and ¢ to
form a new array a. The addresses to the array elements
are computed by adding offsets to base registers, as shown
in Figure 1(b)), where the base registers are rbp, r13 and
r12, respectively. The index register rs¢ is incremented by
4 in each loop iteration, providing the offset for the array
addresses.

The addresses for these arrays comprise static base reg-
isters and an increasing index register. As the cache line
size (typically 64B) is much smaller than the physical page
size (typically 4KB), the same cache line access can be de-
termined just by comparing the virtual addresses. However,
this virtual address comparison cannot be performed until
address generation. Fortunately, if the base address register

1.mov $0x0,%esi
Loop:
for(i=0; i<N; i++) 2. mov 0x0(%r13,%rsi,1),%edx
{ 3. add (%rl12,%rsi,1),%edx
a[i] = b[i] +c[i]; 4. mov %edx,0x0(%rbp,%rsi,1)

} 5. add $0x4,%rsi

6. cmp $0x10,%rsi

7. jne Loop

(a) Loop (b) Instructions in X86

Figure 1: Loop to add two arrays and its corresponding
instructions in X86 ISA.

is unchanged (e.g. base registers shown in Figure 1(b)), the
same cache line determination could be simplified to just
compare the offsets (e.g. register rsi) with a bounds check.
Based on this observation, we design a mechanism to deter-
mine same cache line accesses by keeping a cache line record
for the base register and comparing the offset value. Once
the same cache line access is detected, the access to the
cache can be performed directly without any tag check or
TLB access. This type of access elides tag checks, and thus
we name this approach as Tag Check Elision. The sufficient
condition for the same cache line determination is:

e The same base register value,

e And the offset is within the cache line bounds.

Overall, the advantages of our TCE approach are:

(a) The stored cache line information and the offset bounds
are read the same time as performing register value read,
as they are indexed by base register id instead of register
value or address;

The offset comparison is performed in parallel with the
address generation, which does not add any delays to
the critical data path;

TCE completely elides the tag check for the determined
same cache line access;

On a direct access determined by TCE, the access to the
TLB is bypassed to save more energy.

3 TCE design
3.1 Cache Way Memoization

To memoize the accessed cache lines, cache way records
(CWRs) are added to the processor, as shown in Figure 2.
The number of CWRs matches the number of architected
fixed-point registers in the ISA, as one record is kept for
one register that will be used as base address register. This
CWR design allows it to be indexed by the register id and
be accessed early, the same time as the register read in the
pipeline.

Each CWR includes three fields, namely valid, bound, and
cache pointer. The valid field indicates if the corresponding
cache block information is valid or not. The bound field gives
the offset range that is located within the current cache line
with the same base register value. As the range length is
exactly the cache line size, we can just keep the lower bound
in the record to save space. The cache pointer records the
last cache line accessed based on the current base register.

352

Register File Cache Way Records

\
\

[valid |

Bound |Cache Pointer

Figure 2: Example of cache way records organization.

3.2 Walkthrough Example

An example of how the TCE mechanism works is shown in
Table 1. This example shows how the register rdx and its
corresponding CWR, changes.

At the beginning, we assume that the value of the register
rdz is 0r40043c8 and the CWR for register rdz is invalid.
The instruction in the first row accesses the memory whose
address comprises the value in register rdz and an immediate
number 4. As the valid bit in the CWR is 0, the cache
access is performed in the normal mode (probing all ways in
parallel) and the cache way number (e.g. 3) of the current
access is obtained to build the CWR. According to register
rdx’s value and the current offset value, the bounds for the
current accessed cache line are calculated, which are -8 and
56 (-8 + cache line size, 64). Thus, the CWR state for rdz

becomes n after the first instruction.

When executing the second instruction, the CWR is valid
and the offset 8 is within the bounds between -8 and 56.
Direct access to the desired cache way is performed to fetch
data. This case is what we expect, accessing cache directly
and bypassing DTLB access to save dynamic energy.

On the third instruction, the offset 64 is out of bounds of
the current CWR. In this situation, the cache access must
be performed in normal mode, and the CWR is rebuilt af-
ter finishing cache access (assuming the accessed cache way
number is 2). The CWR is invalidated after the last instruc-
tion as the value of register rdz is modified.

For simplicity of illustration, this example uses immediate
values as offsets to describe our proposed approach. How-
ever, this approach works the same for the offsets that are
stored in the register file, as shown in Figure 1.

3.3 TCE Enhancements
3.3.1 Multiple records.

Keeping one record for each register will possibly suffer from
capacity misses. With multiple records, more cache line in-
formation can be kept. If we keep NN records for one register,
then we can track the last N cache line that have been ac-
cessed based on the same register value. However, keeping
too many records will complicate the management of the
CWRs.

In our design, initial experiments showed that provision-
ing two CWRs (Double Record, DR) for each register forms
a reasonable compromise between complexity and perfor-
mance.

3.3.2 Register value tracking.

As illustrated in Figure 3, some array accesses rely on just
a single base register rax. The base register is incremented
by 4 in each iteration, causing CWR rebuilding. To deal
with the small changes to the register, another optimization
is added to keep track of the register value to avoid unneces-

Instruction Action

Record state

1 | Mov 4(%rdx), %rcx

[Miss]: Access the cache in normal mode, get the way pointer.

[1[-8]3]

2 | Add 8(%rdx), %rcx

[Hit]: The offset 8 is within the bounds between -8 and 56 (-8+64).
Then access the cache block through direct access.

3 | Mov %rcx, 64(%rdx)

[Miss]: The offset 64 is out of bounds between -8 and 56. Access the
cache in normal mode and rebuild the record.

4 | Mov %rax, %rdx

[Invalidation]: The value of the base register rdz has changed. The
corresponding cache way record for register rdz must be invalidated.

Table 1: An example to show how the cache way record works, using X86 ISA.

1.lea 0x1000(%rsp),%rcx
for (i = 0; i< N; i++) Loop:
{ 2. add (%rax),%edx
sum += a[il; 3. add $0x4,%rax
} 4. cmp %rcx,%rax
5. jne Loop
(a) Loop (b) Instructions in X86

Figure 3: Loop to sum the array a and its corresponding
instructions in X86 ISA.

| Register Value [valid | Bound [Cache Pointer |

Figure 4: Example of backup buffer design for the CWRs.

sary invalidation; this applies whenever the accesses are still
located in the same cache line.

This optimization is called Register Value Tracking (RVT),
which keeps the CWR valid by tracking the register value
and adjusting the corresponding bound field. On the in-
struction add $0z4, %rax , we update the CWR by sub-
tracting the bound with the same immediate 0x4, instead of
invalidating. Thus, the CWR still points to the same cache
line and the next access has a chance to hit.

3.3.3 Backup buffer.

When the register value changes, the corresponding CWR
entry must be invalidated. However, it is possible that this
discarded CWR would be useful later. To prevent unnec-
essary CWR rebuilding, a backup buffer can be added to
buffer the CWRs that are discarded because of the register
value change.

As the CWR is strongly coupled with the register value
and the offset, each item in the backup must contain the
register value, as shown in Figure 4. The backup can be
organized as an inexpensive direct-mapped cache. The tag
is the register value, and the data is the corresponding CWR
item.

3.3.4 Energy modeling.

The energy consumption of CWRs check, register value track-
ing, and backup buffer are carefully modeled and integrated
into McPAT [12].

3.4 Coherence and Correctness

To guarantee correct access to the cache without tag check,
the CWRs must be kept coherent with the cache lines. Once
a cache line is evicted or invalidated, the CWR entries that
point to this cache line must be invalidated. Instead of using
energy-intensive associative lookups as [20], we keep back-
ward pointers in each cache line.

353

EXE/MEM
latch VEM
M

IF 1D EXE

Register

]
File |Base
1
]
1
0ffset
Cache way
1Bound

L
t Valid
'

T ¥

Figure 5: Pipeline integrated with TCE.

Effective Backup

Address -
buffer

Instruction

i

e

Lmm Cache

X

iALU

For each cache line, we add a vector to indicate which
register’'s CWRs have pointers pointing to this cache line,
one bit for each register. When the cache line is accessed
in normal mode to build a CWR, the vector bit for the
CWR will be set. As the number of fixed-point registers is
relatively small, the cost of the vector bits will be fairly low.

For a small number of backup buffer entries, the same
bit vector mechanism can be extended to cover the backup
buffer. We show in the next section that a 16-entry backup
buffer is a good design choice, considering the overhead and
complexity of keeping it coherent.

For other events that will possibly make CWR entries go
stale, for example, memory map changes, page access per-
mission changes, and thread context switches, TCE invali-
dates all of the CWRs. TCE also bypasses DTLB lookups;
hence, any DTLB replacement will invalidate all CWRs to
guarantee correctness.

3.5 TCE Design in the Pipeline

As illustrated in Figure 5, the structures added to imple-
ment the TCE are shaded in the pipeline. For simplicity,
the pipeline components that are unaffected by TCE are
not shown in the figure. The register-id-indexed CWR is
accessed at the same time as the register file read, and the
bounds check for the offset is finished in parallel with address
generation, by a dedicated comparator CMP. The bounds
check results and the cache way information are sent to the
cache to decide which mode should be adopted to finish the
data access. The iALU component is dedicated for RVT,
and the backup buffer is accessed in the WB stage.

The direct access information is stored in EXE/MEM
latch before reaching MEM stage. The cache way infor-
mation can be bypassed to the EXE/MEM latch to satisfy
back-to-back access, like the first and second instruction in
Table 1. When cache lines get evicted, TCE also checks the

Parameters Value

Processor One core, X86 ISA, In-order
Base L1 DCache 32K, 4-way, 3 cycles, 64 B

L2 Cache 2MB, 16-way, 12 cycles, 64 B
DTLB 64 entries, fully-associative
Basic CWR 32 bits, 16 entries (32 for DR)

96 bits, 16-1024 entries

16 bits per cache line, 1KB in
total

Table 2: System configuration parameters.

Backup buffer

DCache back pointer

EXE/MEM latch to invalidate any inflight matching TCE
cache access.

4 Evaluation
4.1 System Configuration

The system configuration in our evaluation is listed in Table
2. Our base architecture is a single core X86 in-order pro-
cessor. As tens to hundreds of cores are integrated into one
chip, simple cores are appealing due to their area and power
efficiency (e.g. Intel® Xeon Phi co-processor [5]). As TCE
deals with L1 caches, it is scalable to multi-cores. TCE can
also be adapted to out-of-order cores, but that is beyond the
scope of this paper.

We use Gemb [2] in Syscall Emulation mode (SE mode) for
detailed architecture simulation, with Simpoints [18] for fast
simulation. TCE mechanism and a simple DTLB simulation
component are added to Gemb.

The test programs come from SPEC CPU2006 [6], with
input data size train. The benchmarks are compiled and
statically linked with GCC-4.7.2, G++-4.7.2 and gfortran-
4.7.2. We integrated TCE component into McPAT [12] to
estimate the whole processor energy dissipation.

The baseline systems that we compared with are two way
prediction schemes, MRU and perfect prediction, where per-
fect prediction is not realistic and just for reference. As way
prediction incurs performance degradation, we adopt Energy
Delay Product (EDP) as metric for comparison.

4.2 CWR Hit Rate

The total CWR hit rates for SPEC benchmarks under dif-
ferent optimization are shown in Figure 6. We evaluate the
effectiveness of the base design and optimizations by cu-
mulatively adding optimizations and increasing the backup
buffer size.

Generally, the hit rate improves as more optimizations are
applied over the base design, and with more backup buffer
entries. On average, the base design can capture 40.95% of
the memory access, 36.96% and 43.77% for SPECint and
SPECHD, respectively. The effectiveness of the basic design
and optimizations vary widely among different benchmarks.
The reason for this difference is two-fold: the data access
pattern in the program and the binary code compiled and
optimized by compilers. The data access pattern depends
on the benchmark’s algorithm and how it is implemented.

The most significant difference among the benchmarks
comes with the RVT optimization. Libguantum has more
than 50% increase, and another five benchmarks from SPECint
and three from SPECfp have more than 20% increase. In
contrast, mcf, cactusADM have just around 1% increase.

With DR, RVT and a 16-entry backup buffer, up to 86%
of accesses (hmmer) can perform direct access, with 67% on

354

average. When increasing the backup buffer entry number
to 1024, the average hit rate improves by a marginal 4.7%
over the 16-entry design, while incurring significant area and
energy overhead.

4.3 Energy
4.3.1 Data cache and DTLB dynamic energy saving.

As shown in the last section, a large number of backup buffer
entries offer marginal benefit while increasing complexity
and energy consumption. The rest results are be based on
Base + DR + RVT -+ 16 BBs.

The cache and DTLB dynamic energy saving for SPEC
CPU2006 benchmarks are shown in Figure 7 (left). The
energy savings for cache dynamic energy vary widely, with
around 55.69% for sphinz3 to just 15.01% for gamess. Gen-
erally, the proposed TCE mechanism reduces the cache and
DTLB dynamic energy by 32.72% and 66.38% on average,
respectively.

A higher hit rate in the CWR does not necessarily result
in higher cache dynamic energy saving, because writes to the
data cache will first check tag then write to the data array.
TCE writes can only save the tag check energy, whereas
TCE reads can save energy on both tag check and data
array read. For example, milc enjoys higher total hit than
h26/4ref, 84.09% and 79.44 %, respectively. However, the
cache dynamic energy saving for these two benchmarks are
43.60% and 49.67%. The reason is that TCE reads in h26/ref
account, for about 68% of the total memory access while in
milc reads are around 60%, as shown in Figure 7 (right).

As the DTLB miss rate is quite low and the energy con-
sumption for TLB lookup is much higher than for TLB re-
placement, the DTLB access energy accounts for around
99% percent of total DTLB energy. Thus, the percentage
of dynamic DTLB energy saving is almost the same as the
hit rate in the CWR.

4.3.2 Area and energy overhead.

The biggest area overhead comes from the back pointer vec-
tor, with 1KB capacity in total. However, the total area
overhead is less than 0.1% of the total chip area. In addition,
TCE design adopts small structures for CWR and backup
buffer, compared with data cache. The energy cost to access-
ing these structures and doing optimization is around 0.5%
of the data cache energy according to McPAT, on average.

4.4 Comparison with Way Prediction

In this section, the TCE approach is compared with the most
closely-related prior work, way prediction, which similarly
does not rely on the compiler or ISA modification.

Two way prediction schemes are included to give a bet-
ter comparison: (a) Ideal Most Recent Used (iMRU): MRU
technique predicts the last accessed way in a set to be the
next. In this evaluation, we assume an ideal MRU, where no
delays will be added to the critical path and no energy will
be consumed to access the predict bit before cache access.
(b) Perfect Prediction (PP): The PP scheme can correctly
predict every access without any cost (area or energy cost),
which ONLY misses on data cache miss. This prediction
cannot be achieved by any prediction scheme. This is in-
cluded ONLY as a reference to the best-case potential of all
previously-proposed way prediction approaches.

Energy delay product (EDP) is reported to compare way
prediction with the TCE approach.

" OBa OBase + DR BBase + DR + RVT @ Base + DR + RVT + 16 BBs M Base + DR + RVT + 1024 BBs
[-4
80%
g
o 60% T--m-{IK--T08-------A {1 -1 TIOR--0 -l | - TR O -2 -l - - -1l
=
£
£ 40%
o
B 20%
=
I 0%
S Q& E XS %) I R NI o o > O © ©
SFg¥ & & F S CFNELSTFTAFTLL S S @ P
NI € & T & S S § &R
& & & & ° & &
A © SPECfp K 9 Average
Figure 6: CWR hit rate for data cache access under different optimizations.
w090% - P [ONormal write__ONormal read _BITCE write__MTCE read |
S 80% T M M & 100% TR TTT T e =TT
®70% 111111 T -7 %90% lll
o6 HE - HHHE E ot I
250% 1 - - - 2 sox I I
& a0% il il g o | -
@ 30% - - - r § 40% I I
2 20% | 3 30% I L
Elo% Lo AR AR R R R R R R R R R R R R R
S 0%] - e L E 13: HAIEER AR R R EE NS NN EEEEEEEEER!
3 SN UTY T PETREES L8R RS F 202 £ g s e a oy = o x .
2 SETERE"E2s §pl% it % 2 SE"SSE"EEs 8g3B°°R88vET &
s £ g] 8 = £ ° = i 8
Figure 7: Data cache and DTLB dynamic energy saving (left), and TCE access breakdown (right).

 —

_ 1

i i
y €
H

Prediction accuracy
3
xR

libquantum |
i ——
cactusADM r
)
-
soplex [———

CNYLXLWEL QALEX VN0 NSTTS ~x0a o m o
CSUPEIESTEbEUELEEsETIESEE5%E 2
25 SEREZURLEEESEI2 5883328 £
z W< g §5% 2g3E ag8g o
g S 3
x 1)
Wpp OiMRU
115
o [m1ce mpp iMRU__|
R e ——
E=]
s
.51.05’ ——
3
2
Q
X
&
S
BLEREIESEEEEUicEEagEsIcEE5E 2
g5 SEwE3ERgzEfIESS 28832328 £
5 we STE F558% V2o ”agg S
8 g7 & g g
= x o o
Figure 8: Prediction accuracy for PP and iMRU (top) and

execution time for TCE, PP, and iMRU (bottom).

4.4.1 Performance.

The prediction accuracy and execution time under PP and
iMRU schemes are shown in Figure 8, respectively. The per-
formance of TCE is also included, but it always the same as
the baseline. As shown in the Figure 8 (top), the prediction
accuracy of PP is quite high for most of the benchmarks, as it
ONLY misses on data cache miss. The prediction accuracy
for the more realistic approach, iMRU, is lower than PP,
with 12% difference. Way prediction requires re-accessing
the cache way on a wrong prediction, incurring performance
degradation. The average performance degradations (shown
in Figure 8 (bottom)) are about 1.18% and 5.02% more ex-
ecution time for PP and iMRU, respectively. And the worst
cases are 3.78% and 14.57% for PP and iMRU, respectively.

4.4.2 Energy delay product (EDP).

The whole core dynamic energy saving and corresponding
EDP are illustrated in Figure 9. The variation of these re-
sults comes from two aspects: (a) differences in cache dy-
namic energy saving for TCE and way prediction on different

355

L2

£

©

c

g

©

o

@

o

g

2

[=] L1

2
fN QOB X LEWMEY QLY NN 0UAQNSTTS X >X00 o o

3 CSBPEZPETEEELEZ2EEz3E38¢822258%5 ¢
SN S Leg g 2aom g 2 £22s0ve3305= £
28 SE-E3e°23E8 35%35°38¢% S <
5 £ ST E §Fow ¥E3e 8 g S
g z3<§ < g £

S 2 8 8

5

E =

3 PP

8

g

>

&

S

3

&

]

g gk wEB R LY B L eSS R RE xR R ET D
@ tTERRLEPiiiriiiciiEiizifzseszi 2
2 2 SEWEZ L2RY T E S EgZsEs 932 8 =
z o < S 2 E 8% s gz228 ? s8¢ %

g g S = oo g 51
= ol 3 o
Figure 9: Whole core dynamic energy saving (top, higher is

better) and energy delay product (bottom, lower is better)
for TCE, PP, and iMRU.

benchmarks; (b) cache dynamic energy accounts for differ-
ent fractions of the whole core dynamic energy for different
benchmarks.

TCE dynamic energy saving comes from cache dynamic
energy saving and DTLB dynamic energy saving. In con-
trast, way prediction (PP and iMRU) only saves dynamic
energy in the cache. Generally, the average whole core en-
ergy saving for TCE is almost the same as PP, better than
iMRU. However, PP is not realistic, and TCE significantly
outperforms iMRU across benchmarks.

On average, TCE outperforms both PP and iMRU in
terms of EDP. Because of the delay caused by misprediction,
TCE outperforms iMRU on ALL cases. TCE has significant
advantages over iMRU on several benchmarks, for exam-
ple, mcf, hmmer, libguantum, leslie3d, dealll, GemsFDTD.
These big differences come from the misprediction penalty
for longer execution time.

The most significant advantage of TCE is that it reduces
the cache dynamic energy without hurting performance across
all the benchmarks. On the contrary, EDP for way predic-

tion can be higher than the baseline system, such as libquan-
tum and GemsEFDTD.

5 Related work

The work most similar to TCE to reduce the cache way
access is way prediction. Predictive sequential associative
cache [3] uses a number of prediction sources to pick the
first block in a set to probe. On a miss to the predicted
way, the other ways are checked. Similar way prediction
techniques have been proposed in [8] and [1]. Powell et al.
[16] combined way prediction and selective direct-mapping
to reduce L1 dynamic cache energy. Besides performance
penalty on misprediction, physical address must be obtained
from TLB to check if the prediction is correct.

Instead of prediction, way caching [15] [14] records the way
of recently accessed cache lines to reduce the dynamic energy
of highly associative caches. A problem for this technique is
that the way cache is accessed before cache access, which will
add delay to the data access in the critical path. A similar
approach, way memoization [13], adds the lower 14 bits of
base address and displacement to index the memoized recent
accessed cache ways. However, it is designed for application
specific integrated processors and assumes that the 14-bit
add and structure indexing can be finished in parallel with
32-bit add, which does not adapt easily to general purpose
processor.

Tagless cache [17] restructures the first-level cache and
TLB for more efficient storage of tags, achieving substantial
energy gains, but, unlike TCE, does not elide TLB accesses,
requires changes to the replacement policy, affects miss rates
and performance in unpredictable ways, and complicates
support for coherence and virtual address synonyms.

Before accessing the cache, techniques are proposed to
filter unnecessary accesses. Sentry tag [4] determines the
mismatched ways and halts them to save energy. The way
halting technique [21] is an extension of the concept of sentry
tags. Way decay [11] and way guard [7] adopt a bloom filter
to reduce the ways that need to be checked. One problem
for this type of techniques is that a new structure must be
accessed serially, after address generation before accessing
the cache, hence either increasing cycle time or adding a
pipestage to the memory access latency.

6 Conclusion

To reduce set-associative cache access energy, we propose
Tag Check Elision, which avoids tag checks and TLB access
without causing performance degradation. TCE memoizes
the accessed cache line and the offset of the memory address
for a base address. Access to the same line elides tag checks
and TLB lookups by comparing the offset of the memory
address that use the same base register. To improve the
base design, three optimizations are proposed, namely dou-
ble records, register value tracking and a backup buffer.

We evaluated the effectiveness of the base TCE approach
and further optimizations on X86 for reducing L1 data cache
energy. The TCE approach avoids 35% to 86% of tag checks,
which results in data cache energy savings of 15% to 56%,
and DTLB dynamic energy saving of 34% to 85%. Under the
TCE approach, set-associative caches achieve better energy
delay product than way prediction.

356

7 Acknowledgments

We thank the anonymous reviewers for their insightful feed-
back, which has improved the content and presentation of
this paper. This work is partially supported by CSC, China’s
863 Program (No. 2012AA010905), NSFC (No. 61070037,
61272143, 61272144, 61103016, 61202121), NUDT’s innova-
tion fund (No. B120607), and RFDP (No0.20114307120013).
This work is also supported in part by NSF grant CCF-
1318298.

8 References
[1]
[2]

B. Batson and T. N. Vijaykumar. Reactive-associative caches.
In PACT 01, pages 49-60, 2001.

N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi,
A. Basu, J. Hestness, D. R. Hower, T. Krishna, S. Sardashti,
R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. D. Hill, and D. A.
Wood. The gemb simulator. SIGARCH CAN, 39(2):1-7, Aug.
2011.

B. Calder, D. Grunwald, and J. Emer. Predictive sequential
associative cache. In HPCA ’96, pages 244-253, 1996.

Y.-J. Chang, S.-J. Ruan, and F. Lai. Sentry tag: an efficient
filter scheme for low power cache. In CRPIT ’02, pages
135-140, 2002.

G. Chrysos and S. P. Engineer. Intel® xeon phi coprocessor
(codename knights corner). 2012.

S. P. E. Corporation. SPEC CPU2006 Site, 2013.

M. Ghosh, E. Ozer, S. Ford, S. Biles, and H.-H. S. Lee. Way
guard: a segmented counting bloom filter approach to reducing
energy for set-associative caches. In ISLPED ’09, pages
165-170, 2009.

K. Inoue, T. Ishihara, and K. Murakami. Way-predicting
set-associative cache for high performance and low energy
consumption. In ISLPED ’99, pages 273-275, 1999.

T. Juan, T. Lang, and J. J. Navarro. Reducing tlb power
requirements. In ISLPED ’97, pages 196-201, 1997.

I. Kadayif, A. Sivasubramaniam, M. Kandemir, G. Kandiraju,
and G. Chen. Generating physical addresses directly for saving
instruction tlb energy. In MICRO-35, pages 185-196, 2002.

G. Keramidas, P. Xekalakis, and S. Kaxiras. Applying decay to
reduce dynamic power in set-associative caches. In HiPEAC’07,
pages 38-53, 2007.

S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen,
and N. P. Jouppi. Mcpat: an integrated power, area, and
timing modeling framework for multicore and manycore
architectures. In MICRO-42, pages 469-480, 2009.

A. Ma, M. Zhang, and K. Asanovic. Way memoization to
reduce fetch energy in instruction caches. In ISCA Workshop
on Complexity Effective Design, page 31, 2001.

R. Min, W.-B. Jone, and Y. Hu. Location cache: a low-power 12
cache system. In ISLPED ’04, pages 120-125, 2004.

D. Nicolaescu, A. Veidenbaum, and A. Nicolau. Reducing
power consumption for high-associativity data caches in
embedded processors. In DATE ’03, pages 1064-1068, 2003.
M. D. Powell, A. Agarwal, T. N. Vijaykumar, B. Falsafi, and
K. Roy. Reducing set-associative cache energy via
way-prediction and selective direct-mapping. In MICRO-34,
pages 54-65, 2001.

A. Sembrant, E. Hagersten, and D. Black-Shaffer. Tlc: A
tag-less cache for reducing dynamic first level cache energy. In
MICRO-46, pages 49-61, 2013.

T. Sherwood, E. Perelman, G. Hamerly, and B. Calder.
Automatically characterizing large scale program behavior. In
ASPLOS X, pages 45-57, 2002.

A. Sodani. Race to exascale: Opportunities and challenges. In
MICRO 2011 Keynote talk., 2011.

E. Witchel, S. Larsen, C. S. Ananian, and K. Asanovié. Direct
addressed caches for reduced power consumption. In
MICRO-34, pages 124-133, 2001.

C. Zhang, F. Vahid, J. Yang, and W. Najjar. A way-halting
cache for low-energy high-performance systems. ACM TACO,
2(1):34-54, 2005.

;3]
[4]

5]

[6]
(7]

8]

19l

(10]

(11]

(12]

(13]

[14]

(15]

[16]

(17]

(18]

(19]

(20]

[21]

