
Implementing Optimizations at Decode Time

Ilhyun Kim and Mikko H. Lipasti
Dept. of Electrical and Computer Engineering

University of Wisconsin−Madison
ikim@cae.wisc.edu, mikko@ece.wisc.edu
Abstract
The number of pipeline stages separating dynamic

instruction scheduling from instruction execution has
increased considerably in recent out-of-order microproces-
sor implementations, forcing the scheduler to allocate
functional units and other execution resources several
cycles before they are actually used. Unfortunately, several
proposed microarchitectural optimizations become less
desirable or even impossible in such an environment, since
they require instantaneous or near-instantaneous changes
in execution behavior and resource usage in response to
dynamic events that occur during instruction execution.
Since they are detected several cycles after scheduling
decisions have already been made, such dynamic
responses are infeasible. To overcome this limitation, we
propose to implement optimizations by performing what we
call speculative decode. Speculative decode alters the
mapping between user-visible instructions and the imple-
mented core instructions based on observed runtime char-
acteristics and generates speculative instruction
sequences. In these sequences, optimizations are pre-
scheduled in a manner compatible with realistic pipelines
with multicycle scheduling latency. We present case studies
on memory reference combining and silent store squash-
ing, and demonstrate that speculative decode performs
comparably or even better than impractical in-core imple-
mentations that require zero-cycle scheduling latency.

1. Introduction
Program compilation and optimization consists of a

sequence of semantic bindings that bridge the gap between
high-level programming languages and the hardware prim-
itives used to implement their semantics. These bindings
can occur early, as in a static compiler (Figure 1a) that cre-
ates an optimized binary by exploiting high-level program
knowledge and global analysis to remove redundant code,
perform common subexpression elimination, assign vari-
ables to registers, and so on. Semantic binding can also
occur later in the program’s life-cycle, during program load
time with a just-in-time (JIT) compiler (Figure 1b), or even
as a set of peephole optimizations performed at near run-
time on the program code residing in a processor’s trace
cache (Figure 1c) [2]. Finally, optimizing transformations
that affect or determine which hardware primitives are
employed to realize program semantics can even be
applied within the processor’s execution pipeline
(Figure 1e). The degree and accuracy of dynamic informa-

tion that is available to guide such optimization increases
as the process of semantic binding is delayed until right
before the hardware primitives are executed. It is these
types of late run-time optimizations that interest us; ones
that both require dynamic knowledge of program execu-
tion characteristics in order for them to be fruitful, and are
difficult to implement earlier in the program’s lifetime.

In this paper, we argue that technology and implementa-
tion trends make it impractical to delay the semantic bind-
ings that implement such run-time optimizations any
further than a processor’s decode stage. In classic out-of-
order processors based on Tomasulo’s algorithm [21],
dynamic events observed during instruction execution
could be used as inputs into the scheduling process to
affect scheduling decisions for the very next cycle. As
shown in Figure 2, modern out-of-order processors like the
Alpha 21264 [14] and Intel Pentium4 [16] implement deep
execution pipelines that separate dynamic instruction
scheduling from instruction execution by several stages.
Unfortunately, the scheduling latency induced by these
additional pipeline stages in modern designs prevents such
instantaneous feedback, since the execution schedules have
to be created several cycles in advance. As a result, such
pipelines cannot feasibly implement run-time optimiza-
tions that derive benefit from the processor’s ability to
immediately react to observed events and reassign execu-
tion resources for the very next execution cycle.

Given these implementation trends, run-time optimiza-
tion inside the dynamic execution window is no longer
practical; in our view, the most feasible time for imple-
menting run-time optimizations is in the decode stage
(Figure 1d). In this paper, we propose implementing
dynamic optimizations at decode time without perturbing
the dynamic scheduling logic by performing what we call
speculative decode (SD). SD alters the mapping between
user-visible and implemented-core instructions based on
observed runtime characteristics, and generates an instruc-
tion stream that directly expresses the run-time optimiza-
tion.

SD exploits the translation layer that often exists to
bridge the gap between the user-visible architected instruc-
tion set (U-ISA) and a realizable implementation instruc-
tion set (I-ISA). A number of working examples that
perform translations between U-ISA and I-ISA exist, rang-
ing from trap-based translators where unimplemented
instructions are emulated in the operating system’s invalid
instruction exception handler (e.g. MicroVAX, PowerPC
604); to microcoded emulation routines stored in an on-

chip lookup table (e.g. Intel Pentium Pro and it’s deriva-
tives and IBM Power4); to software-based binary transla-
tion approaches (e.g. Crusoe’s Code Morpher).

This paper proposes and evaluates SD as a feasible
mechanism for implementing late, run-time optimizations.
Section 2 describes the difficulties in implementing in-core
optimizations in a realistic processor pipeline, and intro-
duces SD to overcome those difficulties. In Section 4, we
present two case studies that address inefficiencies in the
handling of memory instructions by performing specula-
tive transformations. Section 5 provides a detailed perfor-
mance evaluation of these case studies and shows that SD
can reap many of the benefits and at times exceed the per-
formance of impractical pure hardware implementations
for a set of SPEC95 and SPEC2000 integer benchmarks.

2. Speculative decode

2.1. Speculative scheduling overview
Out-of-order processors are based on Tomasulo’s algo-

rithm [21], in which instructions that finish execution wake
up their dependent instructions and the scheduling logic
selects issue candidates from the pool of ready instructions.
As shown in Figure 2a, this atomic wakeup/select process
occurs in parallel with instruction execution. In recent
designs, the number of pipeline stages between instruction
issue and execution has increased to accommodate the
latency needed for reading the register file and performing
other book-keeping duties. As instruction issue and execu-
tion stages are further separated, a naive implementation
would fail to achieve maximum ILP because back-to-back
execution of dependent instructions is no longer possible.
To address this problem, current-generation processor
implementations [14][16] use speculative scheduling in
which the scheduler speculatively wakes up and selects
dependent instructions assuming the parent instruction has
a fixed execution latency, as illustrated in Figure 2b. Since
load latency is not deterministic, dependent instructions are
scheduled assuming the common case cache hit latency for
the parent load. If the load latency is mispredicted due to
e.g. cache misses, load-dependent instructions that have
issued within the load shadow [13] will get incorrect val-

ues, so they must be replayed [16] with correct inputs. Of
course, structural hazards (e.g. cache ports and functional
units) are also resolved speculatively, based on fixed
latency and common-case resource needs. Once an instruc-
tion leaves the scheduler, all operations needed for its exe-
cution are performed in a lock-step fashion that prevents
dynamic changes in instruction behavior and resource allo-
cation.

2.2. Problems with in-core optimizations and
speculative scheduling

Run-time optimizations are performed in the execution
core based on observed dynamic behavior. Instructions that
are control, data, or resource-dependent on the optimiza-
tion target benefit since they are able to execute sooner.
However, if the optimizations require run-time knowledge
that is not available until the optimization target is in the
execution window, it will be too late to benefit these
dependent instructions. For example, consider an optimiza-
tion like memory reference combining [9] that avoids
using a cache port, thus making it available to a subsequent
instruction. If the scheduler is unaware that the memory
reference is going to be combined when it is constructing
the execution schedule for the pipeline, it cannot reassign
the cache port to another instruction. Hence, avoiding use
of the port provides no direct performance benefit.
Figure 3a illustrates such a scenario, in which none of the
instructions issued in the cycles following the optimization
target are able to benefit from the optimization since they
have already been scheduled to behave as if the optimiza-
tion had not been performed.

In general, in-core implementations of microarchitec-
tural optimizations become undesirable or even impossible
in a processor that implements speculative scheduling if
they depend on any of following attributes:
• Instant re-execution: Any technique that assumes instant

re-execution of dependent instructions becomes consid-
erably less efficient. One example that assumes instant
re-execution is the next-cycle selective reissue mecha-
nism used in value prediction and other speculative tech-
niques.

• Variable execution latency: If a technique implies vari-

(a) (b) (c) (d) (e)
Figure 1. Optimizations in various layers. Although optimizations in the execution core may benefit from the most
dynamic information, it becomes impractical with the introduction of speculative scheduling

Implementation
Instructions

Architected
Instructions

Execution Core

Decode

Fetch

Trace / decoded
instr cache

Decode /
Trace Cache fill

Execution Core

Instr cache

Host machine

Virtual machine

Binary Translation /
Optimization

Processor

Compiler

Execution Core

Decode

Fetch

Latest Feasible
Optimization Limit

Most
Global

Most
Dynamic

Implementation
Instructions

Architected
Instructions

Execution Core

Decode

Fetch

Architected
Instructions

Execution Core

Decode

Fetch

Trace / decoded
instr cache

Decode /
Trace Cache fill

Execution Core

Instr cache

Trace / decoded
instr cache

Decode /
Trace Cache fill

Execution Core

Instr cache

Host machine

Virtual machine

Binary Translation /
Optimization

Host machineHost machine

Virtual machineVirtual machine

Binary Translation /
Optimization

Processor

Compiler

ProcessorProcessor

Compiler

Execution Core

Decode

Fetch

Execution Core

Decode

Fetch

Latest Feasible
Optimization Limit

Most
Global

Most
Dynamic

able instruction latency, dependent instructions--which
must be scheduled with fixed latency--cannot benefit. If
the latency assumed is longer than the actual latency,
there is no benefit from the reduced latency; if the actual
latency is longer, recovery is required (similar to han-
dling a load miss). One example of variable execution
latency is a sequential-associative cache [15].

• Instant resource allocation/deallocation: It is impractical
to dynamically re-allocate processor resources once they
are scheduled. For instance, store/load forwarding or
memory cloaking [17] does not reduce load port conten-
tion unless it is detected and scheduled beforehand
because another load cannot fill the deallocated slot.

2.3. Enabling in-core optimizations via specula-
tive decode

We propose using speculative transformations at
decode-time to overcome the challenges of implementing
run-time in-core optimizations in processors with realistic
scheduling latency. The key idea for enabling such optimi-
zations is to communicate them directly to the processor
core via a different sequence of instructions that express
the run-time optimization explicitly, as shown in Figure 3b.
Of course, the dynamic events that guide such optimiza-
tions must be predicted, since the decision to optimize
must be made before the instructions leave the scheduler.

Figure 4 illustrates the basic concept of SD. The predic-
tor is trained by signals from the core that record dynamic
events pertinent to the optimization at hand. If an optimiza-
tion condition is predicted based on observed runtime char-
acteristics, the decode logic transforms the architected
instruction into one or more implementation instructions
that express the optimization explicitly. Misprediction is
detected by verification code inserted into the transformed
sequence and the correct architected state is recovered by
draining the pipeline, fetching the original instructions, and
executing them without any speculative transformations.

Increasing the complexity of the decode logic to sup-
port such translation may seem difficult to justify. How-
ever, since translation between U-ISA and I-ISA already
occurs in many processors, we believe that the current and
future generation decoders will be able to incorporate SD
without significantly affecting processor cycle time. For
example, in an experimental S/390 processor [12] that
applies a table look-up approach for instruction translation,
some instructions have more than one look-up entry
mapped to different sequences depending on architectural
states. Moreover, existing decoders such as those for IA-32
[16] and Power4 [18] already perform one-to-multiple
instruction transformations similar to the transformations
proposed here. However, if a processor does not have pre-
existing translation stages, SD becomes less attractive
since the added complexity in the decode stage may nega-
tively affect overall performance by either increasing cycle
time or requiring additional pipeline stages. We study sen-
sitivity to pipeline depth in Section 5.4.

In summary, the potential benefits of SD are 1) it pre-
schedules optimizations in a manner compatible with real-
istic pipelines with multicycle scheduling latency. It does
not negatively affect instruction scheduling since the opti-
mization is transparent to the scheduler. 2) It reuses exist-
ing data path and resources in the processor core if an
optimization is implemented using existing I-ISA instruc-
tions. This helps to reduce the cost of processor core rede-
sign for new optimizations. 3) It reduces resource and
queue contention better than an in-core implementation
since SD affects all stages from schedule to commit.

3. Simulation Environment

3.1. Base machine model
Our execution driven simulator is based on SimpleSca-

lar [6]. We model a detailed 8-stage out-of-order processor
with speculative scheduling, as shown in Figure 2b. The
base machine configurations are shown in Table 1. For the

(a) Generic OoO pipeline w/ atomic wakeup / select

(b) 8-stage OoO pipeline w/ speculative scheduling
Figure 2. Speculative Scheduling.

Figure 3. Different approaches to optimizations.

Atomic wakeup/select

Fetch Decode Issue/
Exe

WB Commit

Atomic wakeup/select

Fetch Decode Issue/
Exe

WB CommitFetch Decode Issue/
Exe

WB Commit

Speculative
wakeup/select

Re-schedule when latency mispredicted

Speculatively issued instructions

Fetch Decode Sched RF Exe1 Exe2 WB/
Recover Commit

Speculative
wakeup/select

Re-schedule when latency mispredicted

Speculatively issued instructions

Fetch Decode Sched RF Exe1 Exe2 WB/
Recover CommitFetch Decode Sched RF Exe1 Exe2 WB/
Recover Commit

Fetch Decode Sched RF Exe1 Exe2 WB/
Recover Commit

Communication
via control signal

in-core
optimizations

No benefits from
optimizations

Instructions
already issued

Instructions within
Schedule distance + =

Fetch Decode Sched RF Exe1 Exe2 WB/
Recover CommitFetch Decode Sched RF Exe1 Exe2 WB/
Recover Commit

Communication
via control signal

in-core
optimizations

No benefits from
optimizations

Instructions
already issued

Instructions within
Schedule distance + =

Pred

Fetch Decode Sched RF Exe1 Exe2 WB/
Recover Commit

optimizations
appear to happen

Optimization-aware
instructions

Communication
through I-ISA

Optimization
PredictedPred

Fetch Decode Sched RF Exe1 Exe2 WB/
Recover CommitFetch Decode Sched RF Exe1 Exe2 WB/
Recover Commit

optimizations
appear to happen

Optimization-aware
instructions

Communication
through I-ISA

Optimization
Predicted

(a) In-core implementations

(b) SD implementations

Figure 4. SD integrated into a pipeline.

Fetch Decode

Predictor

OoO
Exe core Commit

Original
Instructions

Transformed
Instructions

When mispredicted recovered by
branch/exception handler (Squashing & Re-fetching)

Predictor update
information

Fetch Decode

Predictor

OoO
Exe core Commit

Original
Instructions

Transformed
Instructions

When mispredicted recovered by
branch/exception handler (Squashing & Re-fetching)

Predictor update
information

translation layer in which SD is performed, we assume
decode-time translation as shown in Figure 1d. We also
modeled the degraded processing bandwidth due to SD by
assuming that speculatively decoded instructions consume
decode/dispatch/issue/commit bandwidth when an instruc-
tion is decoded into multiple operations.

3.2. Benchmark programs
We used eight benchmark programs from SPECINT95

and five from SPECINT2000 as presented in Table 2. All
binaries are compiled by the gcc-pisa compiler with maxi-
mum optimizations (-O3).

4. Implementing Optimizations via SD
In this section, we discuss two possible optimizations

via SD: memory reference combining [9] and silent store
squashing [5]. Earlier proposals have described pure hard-
ware implementations for these techniques. We describe
how these techniques are implemented via SD, and also
compare them with aggressive, even unrealistic, in-core
implementations.

4.1. Memory reference combining
SD memory reference combining converts multiple nar-

row references into a single wider reference, resulting in a
net reduction of accesses to the data cache. This technique
is enabled by the presence of wide data paths in support of
instruction set extensions that have now been added to
many general-purpose instruction sets, as either a 64-bit
execution mode or 128-bit media processing instructions.
Despite these 64/128-bit extensions, it is expected that the
vast majority of user-mode and even kernel code will con-
tinue to execute in 32-bit mode. SD memory reference
combining enables existing binaries to benefit from wider
memory datapaths without recompiling them. Further-
more, such an approach could logically be extended for
wider reference combining up to the full cache line pro-
vided that wider data paths become available.

4.1.1. In-core implementations
There are numerous proposals to utilize a wide data

path and achieve higher memory bandwidth by exploiting
spatial locality in cache lines and satisfying multiple
requests with a single cache access. Figure 5 shows a pos-
sible load queue modification that combines multiple loads
to the same doubleword, similar to [9]. In this configura-
tion, each load queue entry has a buffer to hold 64-bit data
from memory until the entry is committed. When a load
value is available from a previous entry, the value is for-
warded from the buffer. 128-bit load combining can be
implemented by widening the datapath from cache and
increasing the buffer size. Store combining cannot be
implemented this way since it could commit stores out of
order. Instead, we perform store combining by allowing
write merging in the store buffer [19].

Although this scheme appears to be effective in reduc-
ing cache port contention and improving load latency, there
are real problems in implementing hardware load reference
combining in a pipeline with multicycle scheduling
latency. To obtain benefit in such a pipeline, the piggy-
backed (i.e. combinable) loads must be identified at sched-
ule time so they can avoid allocating a cache port and
hence their dependent instructions can be scheduled for
reduced latency. However, since effective addresses are not
available at schedule time, combinability cannot be deter-
mined, and all loads must allocate a cache port and sched-
ule dependent instructions assuming the longer cache hit
latency. As a result, reference combining that avoids using

Table 1: Machine configuration.

Out-of-order
Execution

8-stage, 4-wide fetch/issue/commit, 64-entry
RUU, 32-entry load / 16-entry store schedul-
ers, speculative scheduling, replays load-
dependent instructions when load misses, fetch
stops at first taken branch in a cycle

Branch
Prediction

Combined bimodal (4k entries) / gshare (4k
entries) with a selector (4k entries),
16 RAS, 1k-entry 4-way BTB, at least 8 cycles
taken for misprediction recovery

Memory
System
(latency)

64KB 2-way 32B line IL1 (2), 64KB 4-way
16B line DL1 (2), 512KB 4-way 64B line uni-
fied L2 (8), main memory (50), 2 store buffers
outside the OoO core

Functional
Units
(latency)

4 integer ALUs (1), 2 floating ALUs (2), 2
integer MULT/DIV (3/20), 2 floating
MULT/DIV (4/12), 2 load ports, 1 store port,
load/store ports are mutually exclusive

Table 2: Benchmark programs tested.

Benchmarks Input sets Instruction count

compress compress.in 35.7M

gcc genoutput.i 58.3M

go go.in 85.6M

ijpeg tinyrose.ppm 74.8M

li queen6.lsp 41.7M

m88ksim m88ksim.in 100M

perl trainscrabbl.in 40.5M

vortex vortex.in 65.1M

bzip input.random 4.5B

gzip input.compressed 1.3B

mcf mdred.in 601M

parser parsertest.in 3.1B

vpr net.in, arch.in 1.5B
Figure 5. A possible in-core implementation for load
combining.

LW 100
LW 404
LW 104

…
LW 400
LB 105

100104
400404 Cache /

Memory
64-bit

datapath

Bypass Network

Load
completed

Load Scheduler

Piggyback
load issues

Byte selection

LW 100
LW 404
LW 104

…
LW 400
LB 105

LW 100
LW 404
LW 104

…
LW 400
LB 105

100104
400404 Cache /

Memory
64-bit

datapath

Bypass Network

Load
completed

Load Scheduler

Piggyback
load issues

Byte selection

the allocated cache port provides no performance benefit,
and its benefit is reduced strictly to reducing power con-
sumption by eliminating accesses to the data cache.

4.1.2. Memory Reference Combining via SD
In memory reference combining via SD, loads and

stores that access consecutive memory locations are
explicitly merged into one wider memory instruction. The
advantage of explicit conversion is 1) it reduces load/store
scheduler contention since it dispatches fewer memory
instructions, and 2) it moves combining decisions from the
critical path outside the out-of-order execution window.
For simplicity of presentation, we only describe double-
word (64-bit) combining; quad-word (128-bit) combining
is implemented in an analogous manner. Performance
results for both are presented in Section 5.2.

Reference Combining Mechanism. Figure 6 shows
examples of double-word combining. For load combining,
two loads that access consecutive memory locations are
merged into one double-word load operation. An extract
instruction (exthi) is inserted after a double-word load
(dlw) to put the higher word into the target register. The
decoded sequence can vary depending on ISAs. For exam-
ple, as long as the higher 32 bits loaded in the register are
ignored when a 64-bit implementation of PowerPC archi-
tecture is running in 32-bit mode, the sequence shown in
Figure 6 works as illustrated. In the MIPS architecture, a
double-word load instruction puts a 64-bit value into two
logically adjacent registers so the decoder logic could
manipulate the rename table to put values into arbitrary tar-
get registers without any ALU operations to extract the
high word value. In our simulations, we assume that one
load and one ALU operation are needed. Store combining
can be accomplished in an analogous manner. One ALU
operation (sethi in the example) to merge two 32-bit val-
ues into a 64-bit register and one double-word store opera-
tion are needed for store combining. Wider reference
combining may either utilize datapaths and storage that
exist for media processing instructions (e.g. PowerPC

Altivec extensions [20]) or, as in the case of hardware
combining, require modifications to the load/store queue to
hold wider values.

Detection / Prediction. Detecting combinable instruc-
tions that are not located near to each other in the dynamic
instruction stream can be challenging. Furthermore, main-
taining precise exceptions for store combining can be diffi-
cult in cases where an instruction between two combinable
stores throws an exception. To simplify these issues, our
mechanism is restricted to combining load sequences inter-
rupted only by ALU instructions or uninterrupted store
sequences. Finally, many architectures require naturally
aligned memory accesses, and misaligned references can
cause exceptions or soft traps. However, it is hard to stati-
cally decide whether the combined reference will be natu-
rally aligned at decode time. We propose a structure called
the Combining Predictor to predict the alignment of the
combined references and direct the decoder to perform
transformations. Its structure and the pipeline are illus-
trated in Figure 7. The sequence detector monitors the
dynamic instruction stream and detects combinable refer-
ences by examining offset fields that differ by 4 with the
same base register and also ensuring the second load’s base
register is not overwritten by the first instruction. Although
sub-word references (e.g. load-halfword and load-byte)
could be combined into wider references, we did not con-
sider such cases since they happen infrequently. The
sequence detector can be easily implemented by using a

lw r1, 0(r10)
lw r2, 4(r10)
lw r3, 8(r10)
lw r4,12(r10)

When r10 is predicted
as doubleword-aligned:

load 64 bits from the memory dlw r1, 0(r10)
extract a higher word into r2 exthi r2, r1
load 64 bits from the memory dlw r3, 8(r10)
extract a higher word into r4 exthi r4, r3

sw r1, 0(r10)
sw r2, 4(r10)
sw r3, 8(r10)
sw r4,12(r10)

When r10 is predicted
as word-aligned only:

sw r1, 0(r10)
merge into one 64-bit register sethi r2, r3
store 64 bits to memory dsw r2, 4(r10)

sw r4, 12(r10)

Figure 6. Examples of double-word SD memory refer-
ence combining.

Table 3: History bit patterns and their corresponding
predictions in double-word combining.

History bit pattern
(rightmost is newest

1:aligned
0:unaligned)

Prediction Description

1 1 1 1 Combine Effective address is very likely
to be doubleword-aligned

1 0 1 0 Combine Base register value is changing
by word-aligned amounts

Other patterns Do not
Combine

Cannot predict the alignment
or unlikely to be doubleword-
aligned

\

Figure 7. The structure of the combining predictor and
the pipeline front-end.

Alignment History(4)
3 2 1 0

= 1111 or 1010 ? Alignment
Prediction

Last
Alignment

Shift

Tag Next inst
info

=

PC
Alignment History(4)
3 2 1 0

= 1111 or 1010 ? Alignment
Prediction

Last
Alignment

Shift Last
Alignment

Shift

Tag Next inst
info

=

PC

Fetch Decode

Predictor

adjacent
loads/stores

combining predicted

lw+lw
sw+sw

dlw + split
merge + dsw

To
Execution

Core

alignment history
of loads/stores

Sequence
Detector

Fetch Decode

Predictor

adjacent
loads/stores

combining predicted

lw+lw
sw+sw

dlw + split
merge + dsw

To
Execution

Core

alignment history
of loads/stores

Sequence
Detector

Load Combining

Store Combining

few narrow adders and gates to examine offset fields and
base registers, as presented in [10]. Because the sequence
detector only adds a new entry to the combining predictor
and it is located outside the decode path, the processor’s
critical path will not be affected by the latency for detec-
tions. When a combinable group is identified, a new pre-
dictor entry is allocated in the predictor.

A predictor entry records the last 4 alignment outcomes
under the assumption that two instructions are combined.
After several instances, references are combined based on
bit patterns stored in the history fields if the pattern indi-
cates that the next reference is likely to be double-word
aligned. Table 3 summarizes the bit patterns and corre-
sponding predictions.

Misprediction Recovery. When a combined reference
tries an unaligned access to memory due to a mispredic-
tion, it is detected by the existing exception handling
mechanism. The pipeline is drained and the original
instruction are fetched again, and instructions are decoded
without any combining transformations after the recovery.

In Figure 8, we show the coverage and accuracy of a
double-word combining predictor with 1k direct-mapped
entries. The percentages of combined instructions range
from 2.67% of all memory references in bzip to a maxi-
mum of 30.4% in gcc. Our predictor captures roughly 80%
of combinable references in all cases except for go, in
which only 64% are captured. On the other hand, the
misprediction rate due to misaligned memory accesses is
extremely low (0.1% of all memory references in most
benchmarks). Performance improvements from double and
quad-word memory reference combining are discussed in
Section 5.2, compared with optimistic hardware schemes
[9][19] discussed in the previous section.

4.2. Silent store squashing
A silent store is an instruction which writes a value that

exactly matches the value already stored at the memory
location that is being written [3][5][7]. Because silent
stores do not change the machine state, eliminating them is
safe and has several advantages: reducing the pressure on
cache write ports, reducing the pressure on store queues or
other microarchitectural structures used to track pending

writes, reducing the need for store forwarding to dependent
loads, and reducing both address and data bus traffic to
lower levels in the memory hierarchy [3][5].

4.2.1. In-core implementations
The initial approach for eliminating silent stores as

originally proposed in [5] requires converting each store
into three implicit operations; a load, a comparison, and a
conditional store that is initiated when the memory value
and the new value to be written do not match (illustrated in
Figure 9). As pointed out in [4], this simple approach has
drawbacks when it is applied to every single store; it can
place additional pressure on cache ports and other execu-
tion resources since unnecessary load and compare opera-
tions are performed even for non-silent stores. The next
section introduces silence prediction, which can be used to
reduce the frequency of silent store verifies.

An additional complication for store verification arises
from the fact that many processors [16][18] have separate
scheduling queues for loads and stores. Separate load/store
schedulers imply that a store instruction must occupy both
queues: the load queue for the store verify, and the store
queue for the conditional store. Naturally, this will increase
contention. Furthermore, multicycle scheduling latency for
store ports may negate much of the benefit of squashing
silent stores, since a successful store verify must complete
releasing and reallocating the port before the store issue.

Additional techniques for reducing the cost of store ver-
ifies are discussed in [4]; we do not consider them here
since they entail significant changes to the processor’s
load/store queues and/or data cache hierarchy. Our
approach is able to achieve comparable performance bene-
fits.

4.2.2. Silent Store Squashing via SD
SD silent store squashing is implemented by removing

the store from the decoded instruction stream. Instead, a
store is decoded into a load and a compare that verify its
silence to guarantee correctness. Since verify operations
are explicitly injected into the processor core, implicit load
verifies and conditional stores do not adversely affect the
scheduling logic. However, transforming all stores incurs
recovery overhead when they are not silent; therefore, we
need a prediction mechanism that filters out many of the
non-silent stores.

Silence Prediction. Training a silence predictor is diffi-
cult because silence outcomes become available only when
store verifies are being performed. Once the predictor state
machine reaches a terminal state and hence the predictor

Figure 8. Percentage of combined memory instructions
captured by a 1024-entry predictor.

0

10

20

30

40

50

co
m

p

gc
c go

ijp
eg li

m
88

k

pe
rl

vo
rt

ex

bz
ip

gz
ip

m
cf

pa
rs

er vp
r

P
er

ce
n

ta
g

e
o

f
al

l m
em

o
ry

 r
ef

er
en

ce Predicted but not combinable
Combinable but not predicted

Combined

Figure 9. A possible in-core implementation for silent
store squashing.

Memory

(1) access
memory

=
(2) compare values

(3) nullify the store
when silent

Store
SchedulerV

Load
Scheduler

Load
(converted)

V

Store ValueMemoryMemory

(1) access
memory

=
(2) compare values

(3) nullify the store
when silent

Store
SchedulerV

Load
Scheduler

Load
(converted)

Load
(converted)

V

Store Value

determines that a store is not silent, no outcome history
would be available to transition out of that state. Instead,
our predictor mechanism exploits a silent store characteris-
tic that was reported in [3]: static stores that consecutively
write the same value are more likely to be silent than if
they were storing different values. Figure 10 shows the
likelihood of a store being silent as a function of whether a
static store writes the same value as the last store value,
regardless of effective memory addresses. We see that in
most benchmarks over 70% of all silent stores can be cap-
tured by correlating with the last store value.

Our silence predictor is a PC-indexed direct-mapped
table where each predictor entry has two saturating
counters and a value history field as shown in Figure 11a.
The value history field contains only lower 8 bits of the last
store value since initial experiments determined that this
was sufficient for providing reasonable prediction accuracy
and significantly reduces the size of the predictor. Depend-
ing on whether the same value as the history is written, the
confidence counter is increased or decreased. However, a
store may not be silent even when the same value is stored
repeatedly since the stores can be to a different address or
intervening stores to the same location can alter the stored
value. To reduce mispredictions due to such aliasing, our
predictor mechanism has a dynamic threshold counter that
changes according to the silence outcome history. We show
the state diagram of the silence predictor in Figure 11b.

Silence Squashing Mechanism and Misprediction
Recovery. After the same value is observed repeatedly by
the predictor and the confidence reaches the threshold, the
store is decoded into a store plus a load and a compare to
check silence. If the store is silent, its threshold counter is
decreased; otherwise the threshold is increased by a fixed
penalty and the confidence counter is cleared, which makes
it harder for the store to transition out of the ’No squash’
state. When a store is predicted to be silent, only a load and
a conditional trap are generated until a store verify fails.
Figure 13 shows an example of SD silent store squashing.
If a silence misprediction in ’Squash’ state is detected by a
trap operation, the mispredicted store is fetched and issued
again without transformations after draining the pipeline.

In Figure 12, we show the performance of the silence

predictor used in our simulations, with the configurations
of 1024 direct-mapped entries, 8-bit last value fields, and
6-bit confidence and threshold counters (1k X (8+6+6 bits)
= 2.5 kB). It correctly predicts (silent / predicted silent)
45.5% of all silent stores on average, which accounts for
5~55% of all dynamic stores. Compared with same-value-
silent stores shown in Figure 10, some benchmarks such as
go, show relatively low prediction rates since many non-
silent stores also repeatedly write the same value and hence
decrease the efficiency of our predictor. The misprediction
rates (not silent / predicted silent) range from 0.02% in li to
1.7% in m88ksim. Performance via SD and in-core imple-
mentations will be discussed later in Section 5.3.

5. Microarchitectural Evaluations

5.1. Performance effects incurred by SD
Speculative decode can affect program executions in

the following ways:
• Replacement effect: Original instructions are translated

Figure 10. Percentage of silent stores categorized by the
last store value.

0

20

40

60

80

100

co
m

p

gc
c go

ijp
eg

li

m
88

k

pe
rl

vo
rt

ex

bz
ip

gz
ip

m
cf

pa
rs

er vp
r

P
er

ce
n

ta
g

e
o

f
al

l s
to

re
s

Different Value and Silent

Same Value and Silent

(a) Silence predictor structure

(b) Predictor states
Figure 11. The structure of a silence predictor and its
state diagram.

Figure 12. Percentage of silent stores captured by a pre-
dictor with 1k entries and 6-bit threshold counters.

Last Store Value
(lower n bits)

Confidence
counter

Threshold
counter

PC

Current Store
Value(lower 8 bits)

+1(same) / -1(different)

≥

=

Store verify result
-1(silent) / +4(not silent)

Predict

Last Store Value
(lower n bits)

Confidence
counter

Threshold
counter

Confidence
counter

Threshold
counter

Confidence
counter

Threshold
counter

PC

Current Store
Value(lower 8 bits)

+1(same) / -1(different)

≥

==

Store verify result
-1(silent) / +4(not silent)

Predict

No squash
no SD

Squash
load+trap

Check
load+compare

+storeThe same value
for several instances

SilentNot Silent

Not Silent

Silent

Different values

No squash
no SD

Squash
load+trap
Squash

load+trap

Check
load+compare

+store

Check
load+compare

+storeThe same value
for several instances

SilentNot Silent

Not Silent

Silent

Different values

0

20

40

60

80

100

co
m

p

gc
c go

ijp
eg

li

m
88

k

pe
rl

vo
rt

ex

bz
ip

gz
ip

m
cf

pa
rs

er vp
r

P
er

ce
nt

ag
e

of
al

ls
to

re
s

Not silent / predicted not silent
Not silent / predicted silent
Checked
Silent / predicted not silent
Silent / predicted silent

into semantics that interact differently with surrounding
operations. For example, stores in silent store squashing
are decoded as loads that do not create RAW or WAW
memory dependences for subsequent instructions.

• Bandwidth effect: The total number of instructions exe-
cuted changes due to SD. If an instruction expands into
several operations, SD consumes more dis-
patch/issue/commit bandwidth, queue entries and func-
tional units, which may negatively affect the
performance. Conversely, SD may help to reduce band-
width consumed by fewer operations.

• Latency effect: Extra operations in a depencence chain
increase the instruction latency. E.g. piggyback loads get
values after extract operations (exthi in Figure 6),
which may increase their latency.

5.2. Evaluations of SD for memory reference
combining

We evaluate SD double-word (SDC8) and quad-word
(SDC16) combining, comparing with in-core implementa-
tions that perform double (HWC8) and quad-word
(HWC16) combining together with store merging, similar
to [9][19]. As discussed in Section 4.1.1, HWC is not easy
to integrate into a pipeline with realistic scheduling
latency. For purposes of comparison, we assume an opti-
mistic oracle scheduler that identifies piggyback loads at
schedule time before effective addresses are known.

Figure 14a shows normalized DL1 cache accesses
reduced by HWC and SDC, with respect to the base
machine. Since HWC is not restricted to adjacent instruc-
tions and combines across several references, it captures
significantly more references and in turn reduces more
cache accesses than SDC in all benchmarks (on average
19.3% (HWC8), 6.8% (SDC8), 27.5% (HWC16) and
10.4% (SDC16), respectively). Based on the cache
accesses, one might expect that HWC would give much
greater performance improvements than SDC. However,

the improvements come from different sources: fewer
memory instructions reduce cache accesses in SDC while
HW combining achieves the reduction by buffering them.
SDC gets benefits from the positive bandwidth (fewer
memory instructions) and replacement (fewer address gen-
erations) effects in load/store schedulers and ALUs. On the
other hand, HWC still performs dispatch, issue and commit
of all memory instructions and experiences the same
amount of resource contention as in the base machine,
except that the improved throughput helps to resolve some
contention. Figure 14b shows that there is less load/store
scheduler contention in SDC in all cases except for bzip, in
which SDC achieves a very low rate of combining.

We show the speedups achieved by SDC and HWC in
Figure 15. In general, SDC achieved comparable speedups
although HWC captures many more memory references
than SDC. In gcc, SDC shows even better improvements.
In some benchmarks SDC8 shows better performance than
SDC16 because quad-word alignments are harder to pre-
dict than double-word alignments and result in higher
misprediction rates. It is interesting that the contention
reduction in SDC does not always correlate to better per-
formance improvements. Besides the differences in the
numbers of combined references, this is mostly because
SDC transfers the contention from the load/store schedul-
ers to the RUU, whose contention becomes another bottle-
neck (RUU full rates of and in
vortex and mcf, respectively). In mcf, frequent cache
misses cause the RUU to be filled up, which prevents spec-
ulatively decoded extract instructions from being commit-
ted. Another reason SDC does not always improve
performance is the latency effect of extract operations.
When piggyback loads are on the program critical path,
performance is degraded compared to the base case in
which loads are issued in parallel. If SDC were applied
selectively depending on memory port contention or criti-
cality of load latency, we would expect greater speedups

Figure 13. An example of silent store squashing via SD.
(a) The confidence counter is increased regardless of effective addresses if the store value matches the history in the predictor
(b) The confidence reaches the threshold and a load is issued to see if the store is silent. The threshold is decreased when it is silent.
(c) An intervening store changes the value of memory B.
(d) Only a load and a trap are issued when the confidence exceeds the threshold. The trap is triggered when values do not match.
(e) After the misprediction, the confidence counter is cleared and the threshold is increased by a penalty (4 in this example) and the store is

fetched and issued again after draining the pipeline.

Time Silence Predictor State

100 3 4
value confid thres

Store 100 to [A](a) PC x: Store 100, [A] A 100
B 100

100 4 4
Load from [B]

Compare
Store 100 to [B]

(b) PC x: Store 100, [B] A 100
B 100

(c) PC y: Store 50, [B] A 100
B 50

MemoryDecoded OpsOriginal Instruction

100 0 7 Store 100 to [B] A 100
B 100

(e) PC x: Store 100, [B]

Load from [B]
Trap if not silent

(d) PC x: Store 100, [B] 100 5 3
A 100
B 50

Silence misprediction detectedRe-fetch instruction after
pipeline flush

Time Silence Predictor State

100 3 4
value confid thres

Store 100 to [A](a) PC x: Store 100, [A] A 100
B 100

100 3 4100 3 4
value confid thresvalue confid thres

Store 100 to [A](a) PC x: Store 100, [A] A 100
B 100
A 100
B 100

100 4 4
Load from [B]

Compare
Store 100 to [B]

(b) PC x: Store 100, [B] A 100
B 100

100 4 4100 4 4
Load from [B]

Compare
Store 100 to [B]

(b) PC x: Store 100, [B] A 100
B 100
A 100
B 100

(c) PC y: Store 50, [B] A 100
B 50

(c) PC y: Store 50, [B] A 100
B 50
A 100
B 50

MemoryDecoded OpsOriginal Instruction

100 0 7 Store 100 to [B] A 100
B 100

(e) PC x: Store 100, [B] 100 0 7100 0 7 Store 100 to [B] A 100
B 100
A 100
B 100

(e) PC x: Store 100, [B]

Load from [B]
Trap if not silent

(d) PC x: Store 100, [B] 100 5 3
A 100
B 50

Silence misprediction detected

Load from [B]
Trap if not silent

(d) PC x: Store 100, [B] 100 5 3100 5 3
A 100
B 50
A 100
B 50

Silence misprediction detectedRe-fetch instruction after
pipeline flush

0.14 0.41→ 0.24 0.77→

from it. The rightmost bars in Figure 15 are the potential
SDC16 speedups from a perfect combining predictor and
show that SDC with a perfect predictor outperforms HWC
with the oracle scheduler in some benchmarks.

In summary, memory reference combining via SD pro-
vides comparable or even better performance than the
impractical in-core implementation because SD pre-sched-
ules this optimization and eliminates contention more
effectively.

5.3. Evaluations of SD for silent store squashing
To evaluate SD for silent store squashing (SDSSS), it is

compared with the predictor-based in-core silent store
squashing (HWSSS), derived from [5]. A load verify is
performed only on predicted stores in both cases. This
HWSSS has several advantages over SDSSS. First,
HWSSS does not need any recovery such as draining the
pipeline in SD from mispredictions, since the store is con-
ditional depending on the store verify. Second, it does not
require the ’check’ state of the silence predictor because
the purpose of the state was to reduce the misprediction
penalty. Third, the dedicated compare logic reduces con-
tention in the ALUs. We discussed the details of HWSSS,
and potential difficulties in Section 4.2.1. The silence pre-
dictor and SDSSS were described in Section 4.2.2.

Detecting silent stores may improve memory disambig-
uation, allowing later loads to bypass earlier stores with
unresolved effective addresses [11]. Delaying the later

loads after unresolved silent stores to avoid memory
dependence violations is unnecessary because silent stores
do not change the values of the memory location.
Improved memory disambiguation is achieved by the
replacement effect of SDSSS since predicted silent stores
are converted into loads that do not block subsequent
memory accesses. On the other hand, HWSSS still dis-
patches silent stores and requires extra logic to obtain this
benefit [11]. Figure 16 shows the average extra cycles
needed for a load instruction to wait until earlier store
addresses are resolved. We measure a 14% reduction in
store-to-load block cycles in SDSSS compared to those of
the base machine. It is expected that the potential perfor-
mance improvements would be greater on register-starved
ISAs such as Intel x86, on which the average performance
improvement is reported as 4%, ranging from 0.2% to
14.7% according to the initial study by Yoaz et. al.[11].

Figure 17 reports the performance improvements from
HWSSS and SDSSS when they use both a silence predictor
previously discussed and a perfect silence predictor.
Speedups are calculated based on the total execution time
since SD changes the total number of committed instruc-
tions and IPC numbers are no longer comparable. Perfor-
mance degrades in SDSSS marginally on half of the
benchmarks where HWSSS also shows minor speedups or
slowdowns. This is primarily because SDSSS suffers from
silence mispredictions. Especially in m88ksim the perfor-
mance is degraded noticeably due to a high misprediction

(a) Normalized DL1 accesses (b) Load /store scheduler full rates
Figure 14. Normalized DL1 accesses and load/store scheduler full rates in HW and SD memory reference combining.

Figure 15. Speedups from HW and SD memory reference combining.

0.4

0.5

0.6

0.7

0.8

0.9

1

co
m

p

gc
c go

ijp
eg

li

m
88

k

pe
rl

vo
rt

ex

bz
ip

gz
ip

m
cf

pa
rs

er vp
r

N
or

m
al

iz
ed

D
L1

ac
ce

ss

HWC8 w/ oracle
HWC16 w/ oracle
SDC8
SDC16

0

0.2

0.4

0.6

0.8

1

co
m

p

gc
c go

ijp
eg

li

m
88

k

pe
rl

vo
rt

ex

bz
ip

gz
ip

m
cf

pa
rs

er vp
r

Lo
ad

/s
to

re
sc

he
du

le
r

fu
ll

ra
te Base

HWC8 w/oracle

SDC8

0

5

10

15

20

25

co
m

p

gc
c go

ijp
eg

li

m
88

k

pe
rl

vo
rt

ex

bz
ip

gz
ip

m
cf

pa
rs

er vp
r

S
pe

ed
up

s
%

SDC8
HWC8 w/oracle
SDC16
HWC16 w/oracle
SDC16 w/perfect pred

rate. The negative bandwidth effect is another source of
SDSSS slowdowns since extra silence verify operations in
check and squash states consume ALU and cache port
bandwidth.

On the other hand, significant performance improve-
ments are observed in compress, vortex and mcf (up to
13.8%, 18.1% and 19.7%, respectively). The perfect pre-
dictor in mcf achieves lower speedup than our silence pre-
dictor due to a second-order LRU effect in the L2 cache:
since silent store squashing avoids setting the dirty bit in
the L1 cache, lines are evicted silently and do not update
the L2 LRU, leading to additional L2 misses. In these
benchmarks, SDSSS outperforms HWSSS with a perfect
predictor because SDSSS benefits from improved memory
disambiguation and HWSSS does not reduce contention in
the store scheduler.

5.4. Performance sensitivity to pipeline depth
As discussed in Section 2.3, SD should be evaluated

critically if the processor does not have a translation stage
or SD requires extra decode latency. Figure 18 shows the
performance sensitivity to the decode stage depth when
both double-word memory reference combining (SDC8)
and silent store squashing (SDSSS) are performed. In this
graph, the execution time is normalized to the base
machine with 1 decode stage. Although performance
degrades in all cases as the decode stage pipeline gets

deeper, 8 benchmarks (compress, gcc, ijpeg, vortex, bzip,
gzip, mcf and parser) still perform as well or better than the
base machine with no extra stage even when SD requires 1
extra pipeline stage. All benchmarks except for m88ksim
show speedups compared with each base case. To better
understand the effect of pipeline depth on SD performance,
we present detailed sensitivity results on three benchmarks
that achieve significant speedups from our optimizations in
both SD and HW.

In Figure 19a, we show performance sensitivity of base,
HW and SD to the decode pipeline depth. The front-end
pipeline depth affects overall performance by increasing
the time spent on recovery from either branch or specula-
tive optimization mispredictions (alignment and silence in
our study). Although the penalty for a SD misprediction is
significant and HW does not suffer from it, the relative per-
formance degradation in SD is surprisingly slight, mainly
because our SD predictors are highly accurate.

On the other hand, additional pipeline stages between
schedule and writeback (EX pipeline) have greater impact
on performance than additional front-end stages. Besides a
longer misprediction penalty and more mis-scheduled
instructions under load shadow [13], a longer EX pipeline
increases contention in out-of-order execution queues due
to increased occupancy. HW does not reduce or even
increases contention while SD reduces queue occupancy in
the memory schedulers and hence HW performance is
noticeably more degraded than SD as the EX pipeline gets
longer, as presented in Figure 19b. In summary, SD may
provide benefits in an even longer pipeline where HW
would fail to do so since SD is less sensitive than HW to
this portion of the pipeline.

6. Related Work
Jacobson et. al. [1] and Friendly et. al. [8] suggested

transforming instructions based on peephole optimizations
during a trace cache construction to implement better
instruction scheduling, constant propagation, instruction
collapsing and etc. Chou and Shen [2] proposed the
instruction path co-processor, which is a programmable
internal processor that operates on instructions of the core
processor to transform them into a more efficient stream,
and showed the performance gain from similar optimiza-

Figure 16. Improved memory disambiguation via SD
silent store squashing.

0.0

0.2

0.4

0.6

0.8

C
om

p

G
cc G
o

Ijp
eg Li

M
88

k

P
er

l

V
or

te
x

B
zi

p

G
zi

p

M
cf

P
ar

se
r

V
pr

A
vg

 c
lo

ck
 c

yc
le

s
o

f
a

lo
ad

 is
su

e
b

lo
ck

ed
 b

y
st

o
re

s Base

SD SSS

Figure 17. Speedups from silent store squashing via HW and SD.

-2

3

8

13

18

23

co
m

p

gc
c go

ijp
eg

li

m
88

k

pe
rl

vo
rt

ex

bz
ip

gz
ip

m
cf

pa
rs

er vp
r

S
pe

ed
up

s
%

HWSSS
HWSSS w/perfect pred
SDSSS
SDSSS w/perfect pred

tions. Prior work has focused primarily on safe code opti-
mizations in the presence of hardware mechanisms such as
predication or trace cache. Rather, SD may be efficiently
implemented through those transformation mechanisms.
The most significant difference between our approach and
these prior experiments is that we relax the safety con-
straint. That is, by employing speculative transformations
that are not conservatively guaranteed to be safe with
respect to program semantics, we expose greater opportu-
nity for performance enhancement and simpler implemen-
tations in a manner compatible with speculative
scheduling. Borch et. al. [13] studied the effect of critical
architectural loops in speculative scheduling and proposed
a hierarchical register file design to shorten the EX pipe-
line. On the other hand, SD reduces contentions in the EX
pipeline by pre-scheduling optimizations and hence it is
less sensitive to the longer EX pipeline than in-core imple-
mentations.

6.1. Memory reference combining
Wilson et. al. [9] proposed a comprehensive evaluation

of several techniques that subsequent accesses to the same
line are satisfied by a single memory access. This approach
discusses on improving the effective memory bandwidth
between the processor core and the data cache with a
restricted number of cache ports. It assumes a generic out-
of-order pipeline with atomic wakeup/select and does not
consider the problems that may occur in speculative sched-
uling. Lopez et. al. suggested a hardware mechanism to
compact two load/stores into a single wide reference with
help of the compiler [10]. This work is conceptually simi-
lar to the approach via SD but the latency needed to detect
references, memory alignment and merging and splitting
values into/from a wider instruction were not discussed.

6.2. Silent store squashing
Molina et. al. [7] and Lepak and Lipasti [5] showed

there is a significant amount of redundancies in store
instructions. [7] proposed to put a simple comparator to
reduce unnecessary cache accesses due to store instruc-
tions. The initial approach to eliminate silent stores in [5] is

converting all stores into store verify operations. [4] pro-
posed several lower-cost store verify approaches: one is
verifying stores using only idle load ports and the other is
exploiting temporal and spatial locality in the load/store
queue, issuing no extra load. Considering the scheduling
distance and contentions in separate load/store schedulers,
we demonstrated that SD is a better approach to implement
this optimization. Yoaz et. al. [11] proposed the path infor-
mation-based silence predictor. They also suggested other
possible applications of detecting silent stores to exploit
dead instructions and enhance memory disambiguation.
Although their silence prediction shows very high cover-
age and accuracy, their work did not discuss the training
cost incurred by verifying silence for every store.

7. Conclusions
We make five major contributions in this work. First,

we describe the difficulties in implementing in-core opti-
mizations in a realistic processor pipeline. Second, we
introduce speculative decode as a feasible mechanism for
implementing late, run-time optimizations. Third, we
present two novel compact predictor designs: memory ref-
erence combining and silence predictors with very low
implementation cost and high coverage and accuracy.
Fourth, we demonstrate that memory reference combining
and silent store squashing implemented via speculative
decode can perform comparably or better than impractical
in-core implementations. Fifth, we study the effect of pipe-
line depth on the overall performance and show that opti-
mizations via speculative decode are less sensitive to a
longer execution pipeline than in-core implementations.

8. Acknowledgements
This work was supported in part by the National Sci-

ence Foundation with grants CCR-0073440, CCR-
0083126, EIA-0103670 and CCR-0133437, and generous
financial support and equipment donations from IBM and
Intel. We would also like to thank the anonymous review-
ers for their many helpful comments.

Figure 18. SD performance varying the decode pipeline depth. Stacked white bars show base execution time when no
optimization is performed (slowdowns in m88ksim indicated as lines).

N
or

m
al

iz
ed

ex
ec

ut
io

n
tim

e

0.5

0.6

0.7

0.8

0.9

1

1.1

co
m

p

gc
c go

ijp
eg

li

m
88

k

pe
rl

vo
rt

ex

bz
ip

gz
ip

m
cf

pa
rs

er vp
r

1 Decode stage

2 Decode stages

3 Decode stages

N
or

m
al

iz
ed

ex
ec

ut
io

n
tim

e

0.5

0.6

0.7

0.8

0.9

1

1.1

co
m

p

gc
c go

ijp
eg

li

m
88

k

pe
rl

vo
rt

ex

bz
ip

gz
ip

m
cf

pa
rs

er vp
r

1 Decode stage

2 Decode stages

3 Decode stages

9. References
[1] Q. Jacobson and J. E. Smith, Instruction Pre-Processing in

Trace Processors, in Proc. of 5th International Symposium on
High Performance Computer Architecture, 1999.

[2] Y. Chou and J. P. Shen, Instruction Path Coprocessors, in Proc.
of 27th International Symposium on Computer Architecture,
June 2000.

[3] G. B. Bell, K. M. Lepak and M. H. Lipasti, Characterization of
Silent Stores, in Proc. of International Conference on Parallel
Architectures and Compilation Techniques, October 2000.

[4] K. M. Lepak and M. H. Lipasti, Silent Stores for Free, in Proc.
of 33rd International Symposium on Microarchitecture, De-
cember 2000.

[5] K. M. Lepak and M. H. Lipasti, On the Value Locality of Store
Instructions, in Proc. of 27th International Symposium on
Computer Architecture, June 2000.

[6] D. C. Burger and T. M. Austin, The Simplescalar Tool Set, Ver-
sion 2.0, Technical Report CS-TR-97-1342, University of
Wisconsin, Madison, June 1997.

[7] C. Molina, A. Gonzalez and J. Tubella, Reducing Memory Traf-
fic Via Redundant Store Instructions, in Proc. of Conference on
High Performance Computing and Networking, 1999.

[8] D. Friendly, S. Patel and Y. Patt, Putting the Fill Unit to Work:
Dynamic Optimizations for Trace Cache Microprocessors, in
Proc. of 31st International Symposium on Microarchitecture,
December 1998.

[9] K. M. Wilson, K. Olukotun and M. Rosenblum, Increasing
Cache Port Efficiency for Dynamic Superscalar Microproces-
sors, in Proc. of 29th international symposium on Microarchi-
tecture, 1996.

[10] D. Lopez, M. Valero, J. Llosa and E. Ayguade, Increasing
Memory Bandwidth with Wide Buses: Compiler, Hardware

and Performance trade-offs, in Proc. of International Confer-
ence on Supercomputing, 1997.

[11] A. Yoaz, R. Ronen, R. S. Chappell and Y. Almog, Silence is
Golden?, in work-in-progress workshop of 7th High-Perfor-
mance Computer Architecture, January 2001.

[12] R. Hilgendorp and W. Sauer, Instruction Translation for an
Experimental S/390 Processor, in Workshop on Binary Trans-
lation in Parallel Architectures and Compilation Techniques,
October 2000.

[13] E. Borch, E. Tune, S. Manne and J. Emer, Loose Loops Sink
Chips, in Proc. of 8th International Symposium on High Per-
formance Computer Architecture, 2002.

[14] Compaq Computer Corporation, Alpha 21264 Microproces-
sor Hardware Reference Manual, July 1999.

[15] B. Calder, D. Grunwald and J. Emer, Predictive Sequential
Associative Cache, in Proc. of 2nd International Symposium
on High Performance Computer Architecture, 1996.

[16] G. Hinton et. al., The Microarchitecture of the Pentium 4 Pro-
cessor, Intel Technology Journal Q1, 2001.

[17] A. Moshovos and G. S. Sohi, Speculative Memory Cloaking
and Bypassing, in Proc. of 32nd International Symposium on
Microarchitecture, December 1999.

[18] J. M. Tendler et. al., POWER4 System Microarchitecture,
IBM technical white paper, October 2001.

[19] D. A. Patterson and J. L. Hennessy, Computer Architecture: a
Quantitative Approach, 2nd ed., p. 382, Morgan Kaufmann,
1996.

[20] K. Diefendorff, P. Dubey, R. Hochsprung, and H. Scale, Al-
tiVec Extension to PowerPC Accelerates Media Processing,
IEEE Micro, vol. 20, no. 2, pp. 85-95, 2000.

[21] R. M. Tomasulo, An Efficient Algorithm for Exploiting Multi-
ple Arithmetic Units, IBM Journal, Vol. 11, pp. 25-33, January
1967.

(a) Sensitivity to decode pipeline

(b) Sensitivity to EX pipeline

Figure 19. Performance sensitivity to the pipeline depth. The number denoted with ∆ shows the normalized execution
time difference on each case.

compress

0.8

0.85

0.9

0.95

1

1.05

1 2 3 4
number of decode stages

no
rm

al
iz

ed
ex

ec
ut

io
n

tim
e

base
HW SS+C8
SD SS+C8

∆0.061

∆0.064

∆0.063

vortex

0.75

0.8

0.85

0.9

0.95

1

1 2 3 4

∆0.010

∆0.015

∆0.017

mcf

0.8

0.85

0.9

0.95

1

1.05

1 2 3 4

∆0.029

∆0.032

∆0.034

compress

0.8

0.85

0.9

0.95

1

1.05

1.1

1 2 3 4 5 6
number of stages

betw een schedule and w riteback

no
rm

al
iz

ed
ex

ec
ut

io
n

tim
e

base
HW SS+C8
SD SS+C8

∆0.103

∆0.109

∆0.140

vortex

0.75

0.8

0.85

0.9

0.95

1

1.05

1 2 3 4 5 6

∆0.046

∆0.076

∆0.052

mcf

0.8

0.85

0.9

0.95

1

1.05

1.1

1 2 3 4 5 6

∆0.100

∆0.133

∆0.114

	Implementing Optimizations at Decode Time
	Ilhyun Kim and Mikko H. Lipasti
	Dept. of Electrical and Computer Engineering
	University of Wisconsin-Madison
	ikim@cae.wisc.edu, mikko@ece.wisc.edu
	Abstract
	1. Introduction
	Figure 1. Optimizations in various layers. Although optimizations in the execution core may benef...

	2. Speculative decode
	2.1. Speculative scheduling overview
	2.2. Problems with in-core optimizations and speculative scheduling
	Figure 2. Speculative Scheduling.
	Figure 3. Different approaches to optimizations.

	2.3. Enabling in-core optimizations via speculative decode
	Figure 4. SD integrated into a pipeline.

	3. Simulation Environment
	3.1. Base machine model
	3.2. Benchmark programs

	4. Implementing Optimizations via SD
	Table 1: Machine configuration.
	Table 2: Benchmark programs tested.
	4.1. Memory reference combining
	4.1.1. In-core implementations
	Figure 5. A possible in-core implementation for load combining.
	Figure 6. Examples of double-word SD memory reference combining.

	4.1.2. Memory Reference Combining via SD
	Table 3: History bit patterns and their corresponding predictions in double-word combining.
	Figure 7. The structure of the combining predictor and the pipeline front-end.
	Figure 8. Percentage of combined memory instructions captured by a 1024-entry predictor.

	4.2. Silent store squashing
	Figure 9. A possible in-core implementation for silent store squashing.
	4.2.1. In-core implementations
	4.2.2. Silent Store Squashing via SD
	Figure 10. Percentage of silent stores categorized by the last store value.
	Figure 11. The structure of a silence predictor and its state diagram.
	Figure 12. Percentage of silent stores captured by a predictor with 1k entries and 6-bit threshol...
	Figure 13. An example of silent store squashing via SD.

	5. Microarchitectural Evaluations
	5.1. Performance effects incurred by SD
	5.2. Evaluations of SD for memory reference combining
	Figure 14. Normalized DL1 accesses and load/store scheduler full rates in HW and SD memory refere...
	Figure 15. Speedups from HW and SD memory reference combining.

	5.3. Evaluations of SD for silent store squashing
	Figure 16. Improved memory disambiguation via SD silent store squashing.

	5.4. Performance sensitivity to pipeline depth

	6. Related Work
	Figure 17. Speedups from silent store squashing via HW and SD.
	Figure 18. SD performance varying the decode pipeline depth. Stacked white bars show base executi...
	6.1. Memory reference combining
	6.2. Silent store squashing

	7. Conclusions
	8. Acknowledgements
	Figure 19. Performance sensitivity to the pipeline depth. The number denoted with D shows the nor...

	9. References
	[1] Q. Jacobson and J. E. Smith, Instruction Pre-Processing in Trace Processors, in Proc. of 5th ...
	[2] Y. Chou and J. P. Shen, Instruction Path Coprocessors, in Proc. of 27th International Symposi...
	[3] G. B. Bell, K. M. Lepak and M. H. Lipasti, Characterization of Silent Stores, in Proc. of Int...
	[4] K. M. Lepak and M. H. Lipasti, Silent Stores for Free, in Proc. of 33rd International Symposi...
	[5] K. M. Lepak and M. H. Lipasti, On the Value Locality of Store Instructions, in Proc. of 27th ...
	[6] D. C. Burger and T. M. Austin, The Simplescalar Tool Set, Version 2.0, Technical Report CS-TR...
	[7] C. Molina, A. Gonzalez and J. Tubella, Reducing Memory Traffic Via Redundant Store Instructio...
	[8] D. Friendly, S. Patel and Y. Patt, Putting the Fill Unit to Work: Dynamic Optimizations for T...
	[9] K. M. Wilson, K. Olukotun and M. Rosenblum, Increasing Cache Port Efficiency for Dynamic Supe...
	[10] D. Lopez, M. Valero, J. Llosa and E. Ayguade, Increasing Memory Bandwidth with Wide Buses: C...
	[11] A. Yoaz, R. Ronen, R. S. Chappell and Y. Almog, Silence is Golden?, in work-in-progress work...
	[12] R. Hilgendorp and W. Sauer, Instruction Translation for an Experimental S/390 Processor, in ...
	[13] E. Borch, E. Tune, S. Manne and J. Emer, Loose Loops Sink Chips, in Proc. of 8th Internation...
	[14] Compaq Computer Corporation, Alpha 21264 Microprocessor Hardware Reference Manual, July 1999.
	[15] B. Calder, D. Grunwald and J. Emer, Predictive Sequential Associative Cache, in Proc. of 2nd...
	[16] G. Hinton et. al., The Microarchitecture of the Pentium 4 Processor, Intel Technology Journa...
	[17] A. Moshovos and G. S. Sohi, Speculative Memory Cloaking and Bypassing, in Proc. of 32nd Inte...
	[18] J. M. Tendler et. al., POWER4 System Microarchitecture, IBM technical white paper, October 2...
	[19] D. A. Patterson and J. L. Hennessy, Computer Architecture: a Quantitative Approach, 2nd ed.,...
	[20] K. Diefendorff, P. Dubey, R. Hochsprung, and H. Scale, AltiVec Extension to PowerPC Accelera...
	[21] R. M. Tomasulo, An Efficient Algorithm for Exploiting Multiple Arithmetic Units, IBM Journal...

