
CHARSTAR:
Clock Hierarchy Aware Resource Scaling in Tiled ARchitectures

Gokul Subramanian Ravi Mikko H. Lipasti
Department of Electrical and Computer Engineering

University of Wisconsin - Madison
gravi@wisc.edu,mikko@engr.wisc.edu

ABSTRACT
High-performance architectures are over-provisioned with resources
to extract the maximum achievable performance out of applications.
Two sources of avoidable power dissipation are the leakage power
from underutilized resources, along with clock power from the clock
hierarchy that feeds these resources. Most reconfiguration mecha-
nisms either focus solely on power gating execution resources alone
or in addition, simply turn off the immediate clock tree segment
which supplied the clock to those resources. These proposals neither
attempt to gate further up the clock hierarchy nor do they involve
the clock hierarchy in influencing the reconfiguration decisions. The
primary contribution of CHARSTAR is optimizing reconfiguration
mechanisms to become clock hierarchy aware. Resource gating de-
cisions are cognizant of the power consumed by each node in the
clock hierarchy and additionally, entire branches of the clock tree
are greedily shut down whenever possible.

The CHARSTAR design is further optimized for balanced spatio-
temporal reconfiguration and also enables efficient joint control of
resource and frequency scaling. The proposal is implemented by
leveraging the inherent advantages of spatial architectures, utilizing
a control mechanism driven by a lightweight offline trained neural
predictor. CHARSTAR, when deployed on the CRIB tiled microar-
chitecture, improves processor energy efficiency by 20-25%, with
efficiency improvements of roughly 2x in comparison to a naive
power gating mechanism. Alternatively, it improves performance by
10-20% under varying power and energy constraints.

CCS CONCEPTS
• Hardware → On-chip resource management;

KEYWORDS
Dynamic reconfiguration, Spatial architectures, Clock gating, Power
gating

ACM Reference format:
Gokul Subramanian Ravi Mikko H. Lipasti Department of Electrical
and Computer Engineering University of Wisconsin - Madison . 2017.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ISCA ’17, June 24-28, 2017, Toronto, ON, Canada
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-4892-8/17/06. . . $15.00
https://doi.org/10.1145/3079856.3080212

CHARSTAR: Clock Hierarchy Aware Resource Scaling in Tiled ARchi-
tectures. In Proceedings of ISCA ’17, Toronto, ON, Canada, June 24-28,
2017, 14 pages.
https://doi.org/10.1145/3079856.3080212

1 INTRODUCTION
The demand for highest performance from current-day processing
architectures has resulted in several challenges to achieving opti-
mum energy efficiency. In order to exploit the maximum available
parallelism in applications, these architectures are often significantly
over-provisioned with execution resources. But more often than not,
a significant portion of such resources remain underutilized. An ideal
energy efficient architecture should dynamically avoid incurring any
power or energy overhead from such unused resources.

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

45nm	 32nm	 22nm	 16nm	

Le
ak
ag
e	
fr
ac
*o

n	
(%

)	

1GHz	 w/o	 PG	 1GHz	 w/	 PG	 2GHz	 w/o	 PG	 2GHz	 w/	 PG	

(a)

IO	
23%	

Datapath	
14%	

Random	 Logic	
18%	

Clock	 Tree	
27%	

Memory	
18%	

(b)
Figure 1: (a) Leakage fraction over tech. nodes, (b) Mali GPU
power distribution

The two main sources of avoidable power consumption in a
processing core are excess leakage and clock tree power. Figure 1
illustrates the fractions of leakage power and clock power in mod-
ern architectures. In Fig.1.a leakage power is measured over mul-
tiple technology nodes on McPAT [43, 69] for an IBM POWER7
model [69]. The leakage power forms a formidable fraction of chip
power, especially in designs operating at lower frequencies. It is
evident that in designs without power gating, the leakage fraction
can go even up to 70%. While leakage power is significant, so is the
power dissipated by the clock distribution network - even more so
if the leakage power fraction declines. In Figure 1.b, clock power
is observed to consume more than a quarter of the total power on
ARM Mali GPUs [6]. Prior work has shown that the power con-
sumed by the clock tree (CT) can be as high as 50% of the total
circuit power, or, at the very least, consumes a major portion of the
dynamic power [11, 44, 45, 50]. Such inefficiencies would increase
with architectures designed even more aggressively for greater peak
performance, and intelligent clock/resource aware mechanisms are
necessary to optimize for better energy efficiency.

https://doi.org/10.1145/3079856.3080212
https://doi.org/10.1145/3079856.3080212

ISCA ’17, June 24-28, 2017, Toronto, ON, Canada G. Ravi et al.

Prior work on architecture reconfiguration perform intelligent
power gating to shut down inefficient or underutilized resources dur-
ing particular periods of an application’s execution. When resources
are power gated, the leakage power that they would have dissipated
if awake, is saved. These implementations can naively be extended
to shut down immediate portions of the clock distribution system
(clock gating) which solely feed these particular resources, reducing
clocking power as well. But these proposals neither study gating
further up the clock hierarchy nor do they involve the clock hierarchy
in influencing the reconfiguration decisions, both of which could
have a large impact on energy efficiency.

The primary contribution of this work is optimizing reconfigu-
ration mechanisms to be CT-aware. Shutting down of a particular
resource in a CT-unaware mechanism might only expect a linear
increase in power savings, but if shutting down that resource al-
lows the clock gating of a large portion of the clock hierarchy, then
power savings are more significant. We show that the reconfiguration
decisions made by a CT-aware vs. a CT-unaware mechanism are
reasonably different, with a large impact on energy efficiency. Our
proposed reconfiguration mechanism is aware of the clock hierarchy
and the power consumed by each node in the tree. It selects resources
to power down in a greedy manner and further, appropriately shuts
down entire branches of the clock tree whenever possible.

Apart from proposing clock-aware reconfiguration and analyzing
the same for multiple state of the art clock distribution systems, this
paper makes some secondary contributions as well. First, we argue
that for best benefits from reconfiguration, the mechanism should
operate at the appropriate spatio-temporal granularity to efficiently
capture application characteristics. This balances the ability to adapt
to an application’s needs quickly (temporal granularity) and accu-
rately, in terms of resources, (spatial granularity) and at the same
time, keep overheads to a bare minimum.

Second, we jointly optimize both DVFS and clock-aware power
gating (PG-DVFS) to achieve the ideal configuration for each phase
of an application, in terms of both ILP as well as frequency. Jointly
optimizing reconfiguration and clock rate has been studied for multi-
processors—optimizing Thread Level Parallelism (TLP) vs. clock
rate—but there have been no concrete proposals for intra-core dy-
namic control to balance Instruction Level Parallelism (ILP) against
core frequency.

Finally, our analysis shows that the combined savings from clock
hierarchy aware integrated PG-DVFS is significant, but requires
sophisticated control to predict the most efficient resource configura-
tion for each application phase. We show that standard linear control
mechanisms perform poorly in comparison to an oracular approach.
We advocate the use of a lightweight machine learning-based con-
trol mechanisms by showing near ideal accuracies of a multi-layer
perceptron in this domain of reconfiguration.

While the benefits of clock-aware reconfiguration extend to all
processing frameworks, this work limits complexity of reconfig-
uration control by focusing on spatial architectures. The inherent
advantage of spatial (or tiled) architectures, which cluster resources
into regular groups, is to simplify reconfiguration and thus make
them an appealing fabric for these mechanisms. Moreover, spatial
architectures, with their regular shape and layout, present a well
structured hierarchical clock tree. Spatial architectures encompass

(but are not limited to) GPUs, tiled microarchitectures [27, 34, 56],
general purpose accelerators [24] as well as special functional accel-
erators [9, 18]. The focus of this work is microprocessors, but key
results are broadly applicable to all of the above.

We evaluate CHARSTAR on a high performance tiled microar-
chitecture, in which multiple resource tiles exploit the maximum
available ILP from applications. Our implementation power-gates
one or more of these tiles and their respective clock hierarchies
when such ILP opportunities is limited, improving energy efficiency
and transforming it into a dynamically adaptable heterogeneous
core [29].

The paper is organized as follows. Section 2 discusses clock
distribution systems in modern processors. Section 3 qualitatively
motivates the need for clock-aware reconfiguration. Section 4 dis-
cusses secondary contributions - spatio-temporal adaptivity, PG-
DVFS and dynamic control for reconfiguration. Section 5 discusses
CHARSTAR implementation atop a spatial architecture. Section 6
and beyond discuss quantitative results and conclude the paper.

2 OVERVIEW OF CLOCK DISTRIBUTION
The clock distribution network consumes a significant portion of the
total power in processors and SOCs, prior work claims 30-50% of
total chip power and/or up to 70% of the dynamic power [11, 44, 45,
50]. A clock distribution system (CDS) is typically the largest net
in the circuit netlist and operates at the highest speed of any signal
within the entire synchronous system, hence consuming significant
power [12, 26, 42, 61].

Clock power has increased with technology scaling [15, 42]. First,
long global interconnect wires have become significantly more resis-
tive as wires become thinner [30, 42]. Clock signals are affected by
this increased wire resistance and require precise control of clock-
signal arrival times, as they otherwise severely limit the maximum
performance of the entire system. This has boosted the demand
for repeaters in clock networks, increasing their power profile and
complicating their synthesis. Second, with shrinking cycle times,
the impact of process, voltage and temperature (PVT) variation also
impacts clock skew and reliable clock networks have become more
costly in terms of area and power [42].

2.1 Different Clock Distribution Systems
Clock distribution systems can broadly be divided into 3 styles -
trees, grids (meshes) and hybrids. Different tree distributions and
mesh/hybrid are shown in Fig.2 and Fig.3 respectively.

2.1.1 Trees: H-trees and binary trees are commonly used for
clock distribution. Trees are attractive because of their low power
and low metal usage [68]. If a H-Tree is completely balanced, it
exhibits identical nominal delay and identical buffer and interconnect
segments from the root of the distribution to all branches and thus
would exhibit low skew. But if unbalanced, skew could be very high.
In general, idealized buffer placements associated with a balanced
H-tree may be difficult to achieve.

In the case of a tapered H-tree, the trunk widths increase geo-
metrically toward the root of the distribution to maintain impedance
matching at the T-junctions [22]. This strategy minimizes reflections
of the high-speed clock signals at the branching points. Circuit anal-
ysis shows that the impedance of the conductor leaving each branch

CHARSTAR ISCA ’17, June 24-28, 2017, Toronto, ON, Canada

Figure 2: Clock Trees Figure 3: Hybrid Clock Distribution

Processor Pentium 4 Itanium 2 SPARC IV AMD K7 Alpha EV7 Xeon Opteron POWER6
CDS Spine/Tree/Grid Global/Local Tree Grid B-Tree Tree/Grid Tree/Grid H-Tree/Grid Sym. H-Tree/Grid

Table 1: Commercial Clock Distribution Systems

point must be twice the impedance of the conductor providing the
signal to the branch point in a tapered H-tree structure [22].

A binary tree is uni-directional and delivers the clock in a balanced
manner in either the vertical or horizontal dimension [68]. Similar to
H-Trees, all branches exhibit identical buffer-interconnect segments,
zero structural skew, and similar PVT tracking. In contrast to the
H-tree, the buffers in a binary tree can be placed in close proximity
along a centralized stripe. The closer physical proximity of the
buffers in a binary tree can result in sensitivity to on-die variation
but minimize floor-plan disruptions and are easier to design in a
balanced manner.

2.1.2 Grids/Meshes: The lowest clock skew is achieved with
Grid style networks but they require lot of metal resources and
dissipate a lot of power [68]. A clock grid resembles a mesh with
fully connected clock tracks in both dimensions and grid drivers
located on all four sides (shown in red in Fig.3). Local clocks are
supplied by directly connecting to the grid. The grid effectively
shorts the output of all drivers and helps minimize delay mismatches.
The shorted grid node helps balance the load non-uniformities and
results in a more gradual delay profile across the region.

2.1.3 Hybrids: Hybrid clock distribution systems combine one
or more of the above techniques as shown in Fig.3 Some hybrid
systems have different parts of the chip clocked using different dis-
tribution techniques. Most current processors use hybrid techniques
as they simplify skew reduction and have relatively low power dissi-
pation.

Table 1 lists clock distribution systems employed by popular com-
mercial processors from the previous decade [42, 55]. The analysis
in this paper assumes a standard tree-grid hybrid, with the use of
grids to clock local intra-tile resources and a global tree to drive the
local grids. Our results analyze clock aware reconfiguration across
H-Tree, Tapered H-Tree and Binary Tree hierarchies. Portions of the
these global tree topologies can be gated when not in use, while the
local grid can only be gated as a whole.

2.2 Estimating Clock Node Power
In this section, we present a model for clock distribution power [68].
Let us consider the switching power of a single unconditional clock
at the final distribution stage M with capacitance C (load + portion

of interconnect) and voltage V at frequency f .

PClkM =C ∗V 2 ∗ f (1)

Considering there are N clock nodes in the stage, the total dynamic
power in stage M is -

PM = N ∗C ∗V 2 ∗ f (2)

Assuming a fan-out of k at each stage, the power in stage M − 1
would be -

PM−1 = (N/k) ∗C ∗V 2 ∗ f (3)

Summation over all M stages gives the total clock distribution power
-

∑Pi = [
1− (1/k)M

1− (1/k)
]∗N ∗C ∗V 2 ∗ f (4)

If sub-trees within this distribution network are power gated, that
portion of power can be reduced from the above accordingly.

3 CLOCK TREE AWARE POWER GATING
When portions of resources (ALUs, compute nodes, or shader cores)
are not in use, power gating saves leakage power, but gating the
portion of the clock hierarchy supplying these resources (clock
gating) also has huge energy saving potential. Many reconfiguration
mechanisms either focus solely on power gating execution resources
alone or in addition, simply turn off the clock tree segment (local
mesh and global tree’s leaf node) which supplied the clock to those
resources.

Clock tree aware gating techniques, will be capable of further
shutting down upper levels of the global clock tree hierarchy if the
corresponding sub-tree is not in use. In addition, Clock tree aware
reconfiguration mechanisms can make intelligent resource recon-
figuration decisions to maximize gating of resources - providing
best energy efficiency while guaranteeing required performance.
CHARSTAR’s reconfiguration mechanism is aware of the clock tree
hierarchy and the power consumed by each node in the tree, and
selects resources to power down in a greedy manner that shuts off
entire branches of the clock tree whenever possible. Our proposal
is aware of the portion of the clock tree that can be turned off with
every resource configuration. It accounts for the power consumption
of both resources and the clock tree in the reconfiguration algo-
rithm. We present a simple example highlighting how significantly
clock-tree awareness can impact reconfiguration.

ISCA ’17, June 24-28, 2017, Toronto, ON, Canada G. Ravi et al.

Clock Clock Clock
Partition Partition Partition

(a) 10 Partitions (b) 9 Partitions (c) 8 Partitions
Figure 4: Example motivating Clock-Tree aware reconfiguration

Fig. 4 illustrates 3 scenarios with different number of tiles or
partitions (10/9/8) enabled. Light and dark gray squares indicate
awake and gated partitions respectively. Green and red gates indicate
enabled and disabled channels in the clock tree respectively. If the
performance gap between the 3 configurations is within reasonable
limits, the reconfiguration mechanism would have to choose between
the 3 configurations to maximize energy efficiency.

A naive reconfiguration mechanism would assume that transition-
ing from 10 -> 9 -> 8 partitions provides linear savings in power
(proportional to the partitions being power gated). Thus even a mar-
ginal performance improvement with 9 partitions as compared to 8,
might result in the 9-partition configuration being chosen as the ideal
setting providing best energy efficiency. In contrast, the figure shows
that moving from 10 -> 9 partitions, saves just one extra node on the
clock tree (apart from the extra partition) but moving from 9 -> 8
partitions enables the shut down of the entire half of the clock tree
leading to a larger (15x) clock tree savings. The additional partitions
and portions of the clock hierarchy shut down are shown by the blue
shaded regions.

This can also means that even if the drop in performance is not
insignificant from shutting down each partition, choosing the 8-
partition configuration can be largely more energy efficient in com-
parison to the 9 or 10 partition configurations, due to significant
power reduction from a large portion of the clock tree being turned
off. This illustrates that full knowledge of the clock hierarchy can
produce very different results and larger energy savings than prior,
naive mechanisms. Higher power savings from the clock hierarchy
could instead even be used to run at higher frequencies, possibly
providing higher performance than the 9/10 partition scenarios. This
is discussed further in Section 4.1.

It should be noted that clock-tree aware reconfiguration is not
restricted to tiled architectures alone and can be performed on other
compute fabrics as well. The potential benefits as well as complexity
involved would depend on the reconfiguration style and how the
clock tree feeds the different reconfigurable nodes. Architectures
with flat clock trees or non-uniform clock distribution to various
reconfigurable resources may be structurally limited in how large
a portion of the clock hierarchy can actually be power gated. For
instance, an out of order processor power gating some portion of its
Register File, ALUs and/or LSQ, will potentially need a complex
clock-tree gating mechanism and might still provide only limited
gains. On the other hand, a regularly arranged spatial architecture
like a GPU might shut down some number of shader cores based
on the amount of parallelism available, with comparatively lesser

complexity. Finally, clock hierarchies could be designed from the
ground up to better suit reconfiguration. We leave exploration of this
option to future work.

4 DYNAMIC RECONFIGURATION CONTROL
Having motivated the importance of a reconfiguration mechanism
aware of the clock distribution system, we next discuss the imple-
mentation of the control mechanism itself. We raise key questions
needed to be answered to design an efficient control mechanism for a
generic reconfiguration fabric and then discuss them in the following
sub-sections.

1 What global set of resources are made reconfigurable? (Sec
4.1) 2 How often do we want to reconfigure resources? (Sec 4.2)
3 How many different levels of reconfiguration for each resource?

(Sec 4.2) 4 How to group resources to control reconfiguration
efficiently? (Sec 4.3) 5 How to assess requirements dynamically
and perform reconfiguration accurately? (Sec 4.4)

Note that while the following discussion is largely focused on
clock-aware reconfiguration of tiled microprocessors, the overall
approach is applicable to power-gating on a variety of substrates.

4.1 Integrating resource/frequency scaling
CHARSTAR identifies program phases with limited ILP, and power
gates resources that are not necessary for reaching that ILP level.
This leads to more energy-efficient execution under a fixed perfor-
mance constraint. Alternatively, given a fixed power budget, the
savings from power gating can be applied to increase voltage and
frequency to deliver better performance for the baseline power. Our
mechanism integrates the scaling of both resource and frequency
within the core. As we show, joint optimization for both ILP and
clock rate often leads the controller to choose configurations that
provide greater benefit than choosing either in isolation. An inte-
grated PG-DVFS mechanism has significant potential within a single
core because energy/performance gains from frequency variations
are closely dependent on which resources are actually in use.

The following example (Fig. 5) motivates DVFS-PG integration.
The example builds on a baseline processor with four tiles run-
ning at nominal (100%) frequency. If this processor encounters an
application phase wherein ILP is limited, different reconfiguration
mechanisms will affect the processor in different ways. These scenar-
ios are depicted in Fig.5, (a) to (d). Darker and lighter gray shades of
tiles refer to power gated and awake tiles respectively. Also, the per-
centage values within awake cores refers to their running frequency
in proportion to the baseline.

CHARSTAR ISCA ’17, June 24-28, 2017, Toronto, ON, Canada

0 10 20 30 40 50 60 70 80 90 100Time

−1

−0.5

0

0.5

1

IL
P

−1

−0.5

0

0.5

1

0 10 20 30 40 50 60 70 80 90 100

−1

−0.5

0

0.5

1 Close Tracking

TimeTime

Time

High Power

Low Perf

IL
P

IL
P

IL
P

(a)

(c)

(b)

(d)

Figure 5: PG-DVFS Example

0 10 20 30 40 50 60 70 80 90 100Time

−1

−0.5

0

0.5

1

IL
P

−1

−0.5

0

0.5

1

0 10 20 30 40 50 60 70 80 90 100

−1

−0.5

0

0.5

1 Close Tracking

TimeTime

Time

High Power

Low Perf

IL
P

IL
P

IL
P

(a)

(c)

(b)

(d)

Figure 6: Fine grained adaptability across two dimensions.

• If DVFS and resource sizing are completely decoupled, both
mechanisms could kick in independently and shut down multiple
tiles and as well as reduce frequency, unaware of the other. This
results in scenario A wherein two tiles are shut down and the fre-
quency drops to only 0.5x resulting in performance dropping below
what can be ideally achieved.

• If the controller performs resource sizing first, followed by naive
throttling of frequency (in accordance to the baseline power budget),
as shown in scenario B, the increased frequency might be largely
beyond the requirement for maximum performance. For instance,
shutting down 2 tiles may theoretically allow a 50% increase in
frequency at constant power budget, but the 1.5x frequency might
be so high that the memory becomes the bottleneck. This results in
higher than ideal power dissipation.

• An integrated mechanism, on the other hand, acknowledges both
the available ILP and the frequency requirements in conjunction,
resulting in scenario C which has enough tiles (two in this example)
for maximum ILP and the minimum sufficient frequency (1.2x) to
achieve maximum throughput providing better efficiency.

• An integrated mechanism can further increase efficiency if situ-
ations exist (scenario D) wherein shutting down more tiles than the
ILP bound (only one tile awake though max ILP is achieved with
two tiles) and increasing the frequency further (1.7x, in comparison
to scenario D with 1.2x), might actually be more advantageous. This
is akin to the example illustrated in Fig.4 wherein it is possible that
enabling 8 partitions allows large potential power savings in the
clock tree which in turn allows increasing the frequency sufficiently
to provide speedup above the 9/10 enabled partition scenarios (as
described earlier in Section 3).

Prior work in trading off power gating and clock rate (TLP vs.
DVFS) has focused on boosting the frequency of one or more cores
while power-gating others (e.g. Intel Turbo Boost [7]). In contrast,
CHARSTAR targets joint optimization of power gating and DVFS
within a single core, which has not been explored in prior work.
While the parallelism vs. frequency argument is the same in both
cases, the architectural trade-offs, when analyzed, are very differ-
ent. Intra-core PG-DVFS involves higher orders of dependencies
between the usage of intra-CPU resources and the core frequency
(in comparison to TLP vs. clock rate) and requires a sophisticated
control mechanism, as proposed here.

4.2 Design for Spatio-Temporal balance
In order to enable effective reconfiguration of resources, granulari-
ties of adaptivity across the different adaptive dimensions need to
be chosen appropriately. As clearly elucidated by Lee et al. [41], the
adaptive computing paradigm provides flexibility of microarchitec-
ture in two dimensions - temporal and spatial. The temporal dimen-
sion corresponds to the rate at which resources can be efficiently
reconfigured. This could range from domain-level to application-
level to phase-level adaptivity. The spatial dimension represents the
microarchitectural scope of reconfigurations - the number of unique
resources which can be resized and the number of configurations
they are each capable of attaining. This might range from the level
of a cluster or a single core to finer levels like pipeline stages or
resources such as register files and execution units.

4.2.1 Temporal Granularity: To capture fine grained phases
of applications, in the order of hundreds or thousands of instructions,
recent proposals such as Composite Cores [46, 49] and the Mor-
phCore [37] propose a temporally fine-grained design by building
two contrasting engines within a core. Similar works on resizing
of resources, even at the granularity of tens of cycles [40], enable
doubling or halving of buffer sizes (eg. ROB) to adapt quickly to
the application’s needs. These cores are able to adapt very quickly
largely due to the simplicity of the control mechanism and very
limited resource configurations to choose from (such as the big and
little engines in the Composite Core). Thus, such architectures that
target very fine grained temporal adaptivity are incapable of finer
variations in the spatial dimension.

Moreover, whilst these architectures are theoretically capable of
adapting to the smallest of application changes over time, the ability
is somewhat underutilized. At very small switching intervals on the
order of hundreds of cycles, the minuscule variations within most
applications are not significant enough to warrant shifts between
coarsely granular architectural configurations (such as Big and Lit-
tle engines). Such configurations are far apart on the spectrum of
performance and power, thereby frequently rendering such schemes
ineffective.

4.2.2 Spatial Granularity: At the other end of the adaptability
spectrum, prior works have aimed at protean architectures, capable
of simultaneously resizing multiple processor resources. These re-
sources could range from the front end, to functional units and/or
to the back end [16, 52], to enable the processor to adapt precisely

ISCA ’17, June 24-28, 2017, Toronto, ON, Canada G. Ravi et al.

(resource-wise) to the needs of the application. By varying multiple
microarchitectural parameters, each across a range of values, these
processors often encounter an adaptable design space with billions
of nodes (configurations) [16]. The large design space means that
searching through these nodes to find the ideal configuration can
happen only at a coarse grained temporal granularity of millions of
cycles. Such schemes lose out on finer temporal variations, again
skewing the spatio-temporal adaptivity balance.

It is evident that in designing any reconfiguration control mech-
anism, it is necessary to be able to efficiently capture and adapt
to application characteristics. The ability to achieve extremely fine
granularities of adaptivity in both temporal and spatial dimensions
is limited by complexity of control and power gating mechanisms.
We propose a balanced design over the two dimensions of adaptivity
with the following qualitative analysis. While it is intuitive that bal-
anced fine granularities in both dimensions provides benefits from
both dimensions of adaptivity, we also show that coarse granularity
on one dimension in fact hinders the effectiveness of fine grained
adaptability along the other - the effects of the two dimensions are
not independent.

From Figure 6, we make the following observations:
• Figure 6.a uses a simple sinusoidal curve to illustrate the varia-

tion in ILP of an application over time. Ideally, achieving extremely
fine grained adaptability in both dimensions would allow resizing of
resources, receptive to the smallest application variations, but this is
infeasible due to unreasonable overheads.

• Figure 6.b portrays one solution allowing very fine temporal
granularities but with coarse grained resource levels (only 2 lev-
els, akin to Big/Little). The core can change its configuration very
frequently but is allowed a very limited number of configurations.
Thus, there are considerable periods when the core configurations
overshoot the ideal requirement, resulting in excess power consump-
tion with no performance gain and other periods when the core
configuration undershoots the ideal, causing performance loss.

• Figure 6.c portrays an architecture allowing multiple possible
resource configurations, but large switching times. Many of the
possible resource levels (12 in this example) are never reached due
to averaging across coarse temporal granularities and again, the
large area between the curves show inefficiencies in performance
and energy.

• The optimum solution as present in 6.d is a balance between
adaptability along both dimensions - the adaptability is reasonably
fine grained in both dimensions but not as fine grained as the previous
solutions. It can be seen that the region between curves is minimal
and the core is able to efficiently adapt to the needs of the application.

4.3 Tiled Architectures
The combined savings from clock hierarchy aware integrated PG-
DVFS is significant, but at the same time is complex to implement.
The inherent advantages of tiled architectures, via clustering of re-
sources into small groups can limit these complexities and thus make
them an ideal fabric for reconfiguration. Tiled architectures provide
easy boundaries for powering down clusters of resources with mini-
mal complexity and routing overheads [38]. Resizing resources by
dynamically power-gating and waking up these reasonably sized
clusters allows fine spatial granularities of adaptability. At the same

time, the consolidated structure of these tiles reduces the recon-
figurable design space significantly and their overall well defined
topology minimizes circuit overhead, allowing for reasonably fine
temporal granularities. Moreover, tiled architectures with their reg-
ular shape and arrangement, present a well structured hierarchical
clock tree. This allows straightforward control of disabling branches
of the clock tree as well. In all, a tiled architecture provides inher-
ent advantage for spatio-temporally balanced reconfiguration with
minimal overheads and with enough simplicity and regularity to be
managed by a lightweight prediction mechanism.

In tiled microprocessor architectures, processor resources (func-
tional units, buffer entries, registers and, in some cases, even caches)
are structured in the form of multiple small tiles or partitions. Our
specific focus is on the CRIB architecture [27], though our find-
ings are applicable to a broad class of tiled machines [56, 59, 60].
Other tiled processor architectures which have been proposed with
a variety of objectives in mind include TRIPS [56], RAW [60],
Wavescalar [59], WiDGET [65], Sharing Architecture [70] and Core-
Fusion [34]

Tiled or spatial frameworks are not limited to microprocessor ar-
chitectures and, in fact, are more common among other compute en-
gines. GPUs are a common example. Accelerators are often designed
in a spatial framework as well. For example, neural network acceler-
ators such as NPUs [18], Eyeriss [9], the DiaNao family [8, 14] all
consists of a sea of compute nodes called processing engines(PEs).
General purpose accelerators such as DySER [24] are also organized
as a spatial framework.

Through a comprehensive limit study (Section 5.2), we analyze
the overhead and benefits of fine- vs. coarse-grained spatial and
temporal reconfiguration for tiled architectures, and choose a moder-
ately fine-grained operating point for both dimensions. Our results
indicate that, though CHARSTAR does not exploit the finest possible
adaptive granularity in either dimension, it reaches a balance across
both and minimizes overheads and design complexity, thereby im-
proving ease of actual implementation and achieving benefits nearly
matching the ideal opportunity. While this result is applicable to all
reconfiguration mechanisms, this is especially important in relatively
complex mechanisms targeting multiple optimization opportunities
such as our own clock-aware PG-DVFS.

4.4 Neural Prediction Mechanism
To adapt to application phases, CHARSTAR must predict the best
tile/frequency configuration for each quantum, using as inputs the
behavior of the previous quantum. Studies [20, 35] have shown
that while a first order model of performance prediction based on
microarchitectural events can provide rough estimates (of resource
requirements), they are often inaccurate due to overlap between a
large portion of these events. Moreover, standard controllers with
simple modeling may be sufficient when focused solely on reconfig-
uration or DVFS, whereas in the case of a more complex clock-tree
aware PG-DVFS mechanism, the inaccuracies are further exacer-
bated.

For instance, the Composite Cores architecture [46] feeds multiple
statistics from each quantum into a linear regression model which
predicts the execution mode (big engine vs. little engine) for the next
quantum. But the prediction accuracy is limited (Section 6.3), as

CHARSTAR ISCA ’17, June 24-28, 2017, Toronto, ON, Canada

linear models are unable to understand non-linear relations among
architectural events. Our results show that linear regression models
or those that track a unique microarchitectural resource (related
works are further discussed in Section 8) are inadequate for clock
aware PG-DVFS prediction.

Machine learning techniques are capable of adapting to non-linear
relations in inputs. Prior work in effectively applying machine learn-
ing techniques are described in Section 8. While we believe in the
potential for different ML techniques towards resource reconfig-
uration (eg. decision tree learning etc.), our chosen technique is
a Multi-Layer Perceptron (MLP). This is due to a large resource
of recent prior work in modular design implementation of neural
networks allowing ease of analyzing the trade-off of area/power over-
heads vs. MLP accuracy. Our results show high predictor accuracy
with low effective computation and communication latency along
with reasonable area/power overheads (Sections 5.3.4 and 6.3).

Our predictor makes use of a MLP with one hidden layer, capable
of fitting any finite input-output mapping problem, enabling pre-
diction of configurations with high accuracy. At runtime, the MLP
is dynamically fed with the following statistics for every quantum
of instruction: 1 Branch mispredictions, 2 I-Cache misses, 3
D-Cache misses, 4 L2-Cache misses, 5 Average % of the tiles
occupied, 6 Number of times the tiles were full, 7 IPC, 8 Clock
hierarchy, and 9 Topology overheads, to predict the configuration
for the next quantum. These statistics are selected based on prior
work in performance regression analysis [20, 35, 46].

The MLP is trained using a typical cross-validation approach, by
partitioning the data collected from a testing portion (1%) of each
benchmark into two sets - a training set with 70% of the data, and
a validation set with the remaining 30%. The training is performed
on MATLAB with random seeds using the Levenberg-Marquardt
optimization based back-propagation algorithm. While our training
and prediction is focused on the SPEC CPU2006 benchmark suite,
we expect similar prediction accuracy across a wider range of appli-
cations. In general, a one time offline training with small portions of
the standard applications that an architecture expects to execute, is
sufficient for high prediction accuracy; this conclusion is supported
by our results. This is due to the iterative nature and presence of hot
functions in most applications.

The different metrics used for MLP training are performance,
energy efficiency and energy-delay. The configuration is the com-
bined selection of the enabled (awake) tiles plus the core frequency.
The selection is usually constrained by the power budget - fewer
tiles kept awake would mean that frequency could be raised fur-
ther if it proves beneficial. This power constraint is relaxed in some
cases, discussed in Section 6.2. The clock hierarchy power gating
is completely tied to the number of tiles awake and is not a sepa-
rate reconfigurable resource. The clock tree awareness influences
the energy efficiency while training - enabling different number of
tiles requires considerably different portions of the clock hierarchy
branches to be enabled (as discussed in Section 3). Moreover, the
different clock hierarchies (H-Trees, TH-Trees, B-Trees) affect the
energy metric differently. This would train the MLP differently and
the reconfiguration decisions vary accordingly.

LQ
Bank

LQ
Bank

LQ
Bank

LQ
Bank

SQ
Bank

SQ
Bank

SQ
Bank

SQ
Bank

Cache
Port

ARF

Mult/Div

ARF

ARF

ARF

F
R

O
N

T
 E

N
D

Figure 7: Tiles in the CRIB design [27]

5 CHARSTAR IN A TILED ARCHITECTURE
5.1 The CRIB Architecture
We implement CHARSTAR atop the CRIB tiled architecture [27].
CRIB achieves dramatic power savings by avoiding pipeline latches,
register files, complex scheduling logic, and conventional register
renaming. In the CRIB core, the RAT (register alias table), the
RS (reservation station), and the ROB are consolidated into one
structure namely, the consolidated rename/issue/bypass block, or
CRIB. The CRIB consists of multiple partitions, as shown in Fig.7.
Each partition consists of 4 CRIB entries. Each CRIB entry contains
routing logic that connects logical register columns to an ALU as
well as the ALU result back to the appropriate register column. Each
instruction in the CRIB taps its source operands from the register
columns, evaluates the result and then overwrites its destination
register column accordingly. When all entries in a partition complete
execution, data is written to the Architecture Register File (ARF)
and the partition is committed, after which new instructions are
inserted into it. The partitions are connected in a circular fashion
with instances of ARF between the partitions. Only the ARF at
the head of the partition has the committed state of the program
and as every partition completes execution, the head or commit
pointer is moved to the next ARF instance. Ready instructions across
multiple CRIB partitions can evaluate concurrently, exposing OOO-
like parallelism. The CRIB partitions form the minimum spatial
granularity of reconfiguration in our reconfigurable design.

5.2 Granularities of adaptivity
In this section we perform quantitative analysis to choose optimum
temporal and spatial granularities on the CRIB processor, our tiled
architecture of choice. We analyze the gains from spatio-temporally
balanced tile reconfiguration (without DVFS) across both adaptive
dimensions in conjunction. Figure 8 illustrates the energy saving
potential across the two dimensions of adaptivity in comparison to
the ideal case of highly fine granularities in both dimensions - 500
instructions (temporal) and a single partition (spatial). This analysis
is averaged across the SPEC CPU2006 benchmark suite. Note that
darker portions of the heat map indicate higher energy efficiency.
The range of spatial and temporal granularities are in accordance
with prior work.

ISCA ’17, June 24-28, 2017, Toronto, ON, Canada G. Ravi et al.

1p 2p 4p 8p 16p

500

10k

100k

1m

Spatial granularity (CRIB partitions)

Te
m

p
o
ra

l
g
ra

n
u
la

ri
ty

 (
in

st
ru

ct
io

n
s)

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

E
n
e
rg

y
 r

e
la

ti
v
e
 t

o
 (

V
F,

V
F)

1p 2p 4p 8p 16p

500

10k

100k

1m

Energy analysis of spatiotemporal adaptivity

Spatial granularity (in CRIB partitions)

Te
m

p
o
ra

l
g

ra
n

u
la

ri
ty

 (
in

st
ru

ct
io

n
s)

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Energy relative to (VF,VF)

2p 4p 8p 16p

Energy analysis of spatiotemporal adaptivity

Spatial granularity (in CRIB partitions)

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Energy relative to (VF,VF)

Figure 8: Bi-dimensional granularity impact on Energy

Temporal: Moving from coarse (1m instructions) to fine temporal
granularities (500) of resizing improves energy efficiency but the
improvements slowly begin to saturate. Despite low break even
points for gating resources, circuit overheads as well as architectural
steps such as draining/squashing the pipeline start becoming more
significant at very fine granularities.

Spatial: The ability to allocate or cut back on resources at finer
levels without losing out on performance improves energy efficiency
in the case of finer spatial granularities. The benefits slowly satu-
rate due to penalties caused by dependent instructions in different
partitions and increased overhead from prediction mechanisms.

As noted earlier, the ideal configurations at the bottom left -
(500,1p), (500, 2p), (10k,1p) cannot be achieved due to increased
overheads of implementation. Among other options, it is evident
that the balanced configuration of (10k, 2p) is more energy efficient
than the extreme configurations across either dimension - this is in
agreement with our qualitative analysis. Considering the above anal-
yses, we choose a temporal granularity of ten thousand instructions
and a spatial granularity of 2 partitions. This provides a spatio-
temporal balance across both dimensions and sacrifices benefits only
marginally on either dimension.

Fig. 9 illustrates the sweet spot across the two dimensions of adap-
tivity for each benchmark in the SPEC CPU2006 benchmark suite.
It is evident that while a majority of the benchmarks achieve best ef-
ficiency at the balance point of (2p,10k), there are a few differing in
their sweet spot based on the specific benchmark characteristics. We
believe such forms of classification will go a long way in designing
ideal reconfigurable architectures suited to their native applications,
and are a precursor to architectures which can dynamically adapt
their granularities of reconfiguration itself.

In contrast to our observation for the need for balanced adaptivity,
most of the existing proposals cited in Fig.10 propose reconfiguration
techniques that aggressively tackle one dimension of adaptivity, but
usually at the cost of the other, thereby achieving less than ideal
efficiency. In figure, the axes labels denote V - Very, F - Fine, C -
Coarse.

5.3 Quantifying Overheads
5.3.1 Clock tree awareness: Our implementation models the

clock-tree as a binary/H-tree and tracks the per-node power con-
sumption in a manner akin to well established clock-tree power
modeling [11, 13, 58] and as discussed in earlier sections. The per-
node power (as a fraction of the entire clock hierarchy) varies in
proportion to the node’s level in the clock hierarchy as well as its
fan-out. The influence of the clock power adds a layer of hetero-
geneity to a homogeneous set of tiled resources and accordingly
increases the training complexity of the control mechanism. The in-
ference/deployment complexity remains unaffected since the design
space remains the same (in comparison to clock unaware reconfigu-
ration) - tile configuration and frequency level. For instance, if 8 tiles
are required to be enabled, the chosen tiles are as shown in Fig3.c
rather than any other distribution of 8 tiles (as that would enable
more clock tree branches).

5.3.2 Power Gating and Awakening logic: The prediction
mechanism passes resizing directions to the PG/awakening logic
and the specific number of tiles are put to sleep or awoken. Based
on the disabled tiles, the corresponding portions of the clock tree
are also shut down or powered up. The latency overhead involved
in power gating and waking up functional resources is found to
be to the order of 10 or, at most, a 100 cycles [33, 62, 63]. Since
the granularity of resizing in our implementation is every 10,000
instructions, the impact of draining the CRIB partitions followed
by power gating or waking up of partitions are minimal (< 2%).
Moreover, the delays from power gating a subset of partitions have
no impact on the other awake partitions and they are ready to use
without any overheads. Similarly, when partitions need to be awoken,
already ready partitions are first filled up with instructions while
others are being awoken in parallel. Therefore, the overheads from
utilizing the newly awoken ones are reduced. The area overheads are
negligible in comparison to the size of the tiles and the widespread
clock-tree.

5.3.3 Fine-grained voltage-frequency control: The hard-
ware resources required to control the voltage and frequency of
the core for each quantum is minimal. Relative to standard DVFS
techniques, this falls in the realm of fine grained DVFS, achievable
using on-chip voltage regulators [19, 39]. Based on the voltage-
frequency relation established in [28], we require a voltage range
of 1V - 1.2V corresponding to a frequency range of 800 MHz - 1.3
GHz. To enable switching across this entire domain every quan-
tum (an aggressive assumption) we would need fine grained voltage
regulation with a switching capability of 0.2V between quanta. A
quantum size of 10000 instructions and allowing an overhead of 1%
for DVFS would require the ability to switch a maximum of 0.2V
over 35 ns (@ 1.3 GHz), allowing a safe assumption of a design
towards a switching speed of 6 mV/ns. Eyerman et al. [19] consider
voltage switching speeds up to 200 mV/ns while Kim et al. [39] de-
sign regulators capable of switching at 50 mV/ns with a 15% energy
and 2-3% area overhead.

The voltage switching and energy overheads increase super-linearly
at smaller temporal granularities (depicted in Fig.11) due to in-
creased complexity in regulator design. For example, quantum sizes

CHARSTAR ISCA ’17, June 24-28, 2017, Toronto, ON, Canada

Temporal granularity

Sp
at

ia
l g

ra
nu

la
rit

y

VF F

VF

VCC

C

F

VC

[19]

[26] [16] [44,54]

[43]

[60]

[53,21][20]

V: Very, F: Fine, C: Coarse

Temporal granularity

S
pa

tia
l g

ra
nu

la
rit

y

500 10k

1p

1m100k

4p

2p

8p
[400,437,458]

 50%

 50%

 150%

 150%

 120%

 120%

 170%

 110% 110%

16p

[465]

[445,462]

[*]

[416,429,433]

[435,470]

* = [401, 403, 410, 434, 436,
 444, 453, 459, 464, 481, 483]

[454,456]

(a) (b)

(d)(c)

Figure 9: Sweet-spots

Temporal granularity
Sp

at
ia

l g
ra

nu
la

rit
y

VF F

VF

VCC

C

F

VC

[40]

[49] [46] [70]

[53]

[23]

[65,16][52]

V: Very, F: Fine, C: Coarse

Temporal granularity

S
pa

tia
l g

ra
nu

la
rit

y

500 10k

1p

1m100k

4p

2p

8p
[400,437,458]

 50%

 50%

 150%

 150%

 120%

 120%

 170%

 110% 110%

16p

[465]

[445,462]

[*]

[416,429,433]

[435,470]

* = [401, 403, 410, 434, 436,
 444, 453, 459, 464, 481, 483]

[454,456]

(a) (b)

(d)(c)

Figure 10: Prior works

0

200

400

600

800

1000

0

1000

2000

3000

4000

0 20 40 60 80

Clock Tree Complexity

Opt. Clock Tree Complexity

O
pt

. C
on

fi
gs

 @
 O

(n
lo

gn
)

C
on

fi
gu

ra
ti

on
s

@
 O

(n
^

2)

Tiles (n)

0

10

20

30

40

50

60

70

0

200

400

600

800

1000

1200

100 500 10k 100k 1m

Voltage Switching Speed

Energy Overhead

V
ol

ta
ge

 S
w

it
ch

in
g

Sp
ee

d
(m

v/
ns

)

R
el

. E
ne

rg
y

O
ve

rh
ea

d
(%

)

Quantum Size (# Instructions)

(a) (b)Figure 11: Volt. Switching Overheads

of 500 instructions results in energy overheads of 20-25%, prevent-
ing voltage/frequency control at very fine granularities from being a
viable option. Overheads can be marginally controlled if the proces-
sor operates through voltage transitions by either quickly ramping
down frequency before voltage ramps down or quickly switching
to higher frequency just as the voltage is settling at the higher lev-
els [10, 39]. Considering this analysis and the prior work [19, 39],
we believe that our requirement is within reasonable limits, with
insignificant overheads (2%) in energy and even lesser in area.

5.3.4 NPU design and training: Our mechanism searches
within our limited design space representable in 10 bits (8 (1-hot)
bits for tiles + 2 bits for 4 frequency levels) and predicts ideal
configurations with high accuracy. Considering the design space, a
rudimentary predictor managed by a condensed neural network with
few neurons is sufficient. Initial design space exploration showed
that 10 neurons in the hidden layer provided high levels of accu-
racy. The lightweight design with relatively few neurons and only a
single hidden layer keeps complexity and overheads minimal, aptly
suited for architectures aiming to strike a spatio-temporal balance
in adaptivity. The use of a tiled architecture baseline significantly
reduces the design space complexity over prior work since only
two parameters (number of tiles and frequency level) need to be
predicted.

Different implementations of neural processing units (NPU) have
been explored in prior works [17, 18, 25] with varying trade-offs
in performance, power, area and complexity. We adopt a simple
digital NPU implementation proposed by Esmaeilzadeh et al. [18].
Similar to this, we consider communication latency (tightly-coupled
NPU) and computation latency (one hidden layer and 10 neurons)
to both be 10s of cycles. Further, latency could be possibly hidden
by starting the MLP computation marginally before the completion
of the previous quantum. The power overhead is expected to be
marginal (< 1%) as it has few neurons and is used only for 10s
of cycles every 10k cycles and power gated otherwise. Based on
estimates of neural functional unit area [14], processor area [27] and
design synthesis, the area overhead is roughly 0.5%.

Resource Configuration
CRIB 16 x 4-entry Int. CRIB; 16 x 2-entry FP CRIB
Compute Int. ALU (1 cycle); FP add (4); FP mult. (4)
Core Mem. 32 LQ/SQ; 2-way 64KB L1I (2); 4-way 32KB L1D (2)
Uncore Mem. L2: 2MB, 8-way (12); Off-chip mem (168)

Table 2: CRIB Specification

6 RESULTS
We extend the Gem5 Simulator [2] to support CHARSTAR atop the
CRIB architecture. Performance and per-quantum statistics are ob-
tained from Gem5 by running multiple Simpoint [51] slices (of size
100 million instructions) of the entire SPEC CPU2006 benchmark
suite compiled for ARM ISA. The CRIB section of the processor
is implemented in RTL and analyzed with the Synopsys Design
Compiler. Power numbers for other processor resources are obtained
from McPAT [43, 69]. All power and area results are obtained at a
technology node of 22nm. Architecture specifications of CRIB with
16 partitions are presented in Table 2. Our results provide numerical
benefits for the processor portion including tightly coupled L1 and
L2 caches but excludes the rest of the memory subsystem.

6.1 Impact of Clock Tree awareness
In this section, we compare results from clock hierarchy aware
power gating, normalized to a baseline of savings obtained from
power gating only (i.e. no clock gating). We show results for 3 tech-
niques: a) Leaf: which naively clock gates only the leaf node of the
clock tree along with power gating the under-utilized resource, b)
Unaware: which gates further up the clock hierarchy but the recon-
figuration mechanism is unaware of (and uninfluenced by) the power
saved from the clock nodes, and c) Aware: which uses our proposed
clock-hierarchy aware gating mechanism. The benefits from these
techniques are stacked upon one another in each of the figures 12, 13
and 14. These results are analyzed across H-Trees, tapered H-Trees
(TH-Tree) and B-Trees for 3 different reconfiguration optimization
goals.

Fig.12 shows increase in energy efficiency (over a PG-only base-
line) obtained from reconfiguration optimized for lowest energy
consumption when constrained by a requirement (or service level
agreement i.e. SLA) that the performance falls no lower than 95%
of the baseline. Key characteristics are highlighted below -

ISCA ’17, June 24-28, 2017, Toronto, ON, Canada G. Ravi et al.
pe

rl
b

bz
ip

2

gc
c

bw
av

es
ga

m
es

s
m

cf

m
ilc

ze
us

m
p

gr
om

ac
ca

ct
us

le
sl

ie
na

m
d

go
bm

k
so

pl
ex

po
vr

ay
ca

lc
ul

hm
m

er
sj

en
g

G
em

s
lib

q

h2
64

to
nt

o
lb

m

om
ne

t
as

ta
r

w
rf

xa

la
nc

M
ea

n

Benchmarks

0

50

100

150

200

250

300

350

400

In
cr

e
a
se

 i
n
 E

n
e
rg

y
 E

ff
ic

ie
n
cy

 (
%

)

Leaf-only gating

Naive hierarchy gating

Aware hierarchy gating

H-Tree

TH-Tree

B-Tree

Figure 12: Clock-gating benefits w/ Perf. Constraint

1 First, it is evident that there are higher energy savings possible
in H-Trees and B-Trees in comparison to the tapered H-Tree. This is
because nodes higher up the clock hierarchy consume more power
in tapered trees, meaning that shutting down an extra lower node
(i.e. a node that is, or is close to, a leaf) has a lower impact on the
overall energy benefits. 2 Results are marginally better for B-Trees
in comparison to H-Trees because there are deeper hierarchies in
B-Trees in comparison to H-Trees (the number of nodes double at
each level in B-Trees, while they quadruple in H-Trees), thereby
providing more opportunities to gate unused common nodes in the
former. 3 Clock gating leaf nodes alone provides 20-45% higher
energy savings in comparison to the PG-only baseline, highlighting
the importance of clock gating. 4 The benefits of gating higher up
the clock tree, even without clock hierarchy aware reconfiguration
provides 20-27% higher energy savings compared to only leaf node
clock gating. This quantitatively reiterates the need for designing
gating mechanisms to shut down clock nodes further up the clock
hierarchies and not just clock gating leaf nodes alone. 5 Finally,
clock hierarchy aware reconfiguration provides a 27-39% increased
energy savings over clock hierarchy unaware reconfiguration in tune
with our qualitative motivation earlier. 6 Overall, optimized CT-
aware reconfiguration provides 65%-111% greater relative energy
savings in comparison to PG-only reconfiguration.

pe
rl
b

bz
ip

2

gc
c

bw
av

es
ga

m
es

s
m

cf

m
ilc

ze
us

m
p

gr
om

ac
ca

ct
us

le
sl

ie
na

m
d

go
bm

k
so

pl
ex

po
vr

ay
ca

lc
ul

hm
m

er
sj

en
g

G
em

s
lib

q

h2
64

to
nt

o
lb

m

om
ne

t
as

ta
r

w
rf

xa

la
nc

M
ea

n

Benchmarks

0

50

100

150

200

250

300

350

In
cr

e
a
se

 i
n
 E

n
e
rg

y
 E

ff
ic

ie
n
cy

 (
%

)

Leaf-only gating

Naive hierarchy gating

Aware hierarchy gating

H-Tree

TH-Tree

B-Tree

Figure 13: Clock-gating benefits w/o Perf. Constraint

We also show benefits for reconfiguration tuned to optimum en-
ergy (Fig. 13) and optimum energy-delay (Fig. 14) when uncon-
strained by any strict performance requirements. The observed bene-
fits are similar to what was described above.

In the unconstrained optimum energy case (Fig. 13), the energy
benefits of gating up the clock hierarchy (Unaware vs. Leaf) is
higher than the constrained performance scenario (improvements are
36-45% here) while benefits of clock aware reconfiguration (Aware
vs. Unaware) is lower (15-20% improvements here). The reason is
that since there is no performance constraint in this scenario, the
chosen configurations are mostly low resource configurations. This
is because the most energy efficient configurations are usually ones
with low resources with low performance - huge power savings at a
loss in performance still provides higher energy savings. Therefore,
there is significant scope to even naively gate higher up the clock hi-
erarchy which increases its benefits in comparison to gating only leaf

nodes. Since naive gating of upper hierarchy already provides con-
siderable benefits, the extra benefits from smarter clock awareness
correspondingly reduces. Overall benefits are higher: optimized CT-
aware reconfiguration provides 72%-118% increased unconstrained
energy savings in comparison to PG-only reconfiguration.

Energy-Delay optimization (Fig. 14) improves both energy effi-
ciency and performance. Performance gains are obtained via boost-
ing the frequency when nodes are power gated (as a part of PG-
DVFS). More details of PG-DVFS benefits are discussed in the
following section. ED improvements range from 21% to 36% in
comparison to PG-only baseline.

pe
rl
b

bz
ip

2

gc
c

bw
av

es
ga

m
es

s
m

cf

m
ilc

ze
us

m
p

gr
om

ac
ca

ct
us

le
sl

ie
na

m
d

go
bm

k
so

pl
ex

po
vr

ay
ca

lc
ul

hm
m

er
sj

en
g

G
em

s

lib
q

h2
64

to
nt

o

lb
m

om

ne
t

as
ta

r

w
rf

xa

la
nc

M
ea

n

Benchmarks

0

10

20

30

40

50

60

70

80

In
cr

e
a
se

 i
n
 E

-D
 E

ff
ic

ie
n
cy

 (
%

) Leaf-only gating

Naive hierarchy gating

Aware hierarchy gating

H-Tree

TH-Tree

B-Tree

Figure 14: Benefits for optimum Energy-Delay

6.2 Impact of integrated PG-DVFS
Next, we examine the performance, energy and E-D efficiency im-
provements from integrated resource-frequency scaling in compari-
son to a baseline without reconfiguration (Fig.15). The results utilize
clock-tree aware reconfiguration, averaging the clock power to be
33% of the total power consumption.

1 Column 1 in figure shows the energy savings from integrated
PG+DVFS, when optimizing for best energy efficiency under a mini-
mum performance target of 95% (SLA) in comparison to the baseline.
2 Columns 2 and 3 show performance gains and energy-delay re-

duction with a control mechanism targeting maximum performance
under the condition that each quantum operates within the baseline
power budget. 3 Columns 4 and 5 show performance gains and
energy-delay reduction when the control mechanism optimizes for
lowest energy-delay over every quantum with no strict constraint on
the power budget (UnC = unconstrained).

In summary, the figure shows energy savings of 19% under a 95%
SLA, performance improvements of 11/18% and ED reduction of
22/26% under power constrained and unconstrained environments.
The utility of the integrated mechanism is evident from significant
improvements in all above metrics. While not shown in the graph,
the energy savings increases by 1.9x when moving from a naive
PG+DVFS mechanism to the integrated mechanism proposed here
(qualitatively discussed via scenarios A-D in Section 4.1).

pe
rl
b

bz
ip

2

gc
c

bw
av

es
ga

m
es

s
m

cf

m
ilc

ze
us

m
p

gr
om

ac
ca

ct
us

le
sl

ie
na

m
d

go
bm

k
so

pl
ex

po
vr

ay
ca

lc
ul

hm
m

er
sj

en
g

G
em

s

lib
q

h2
64

to
nt

o

lb
m

om

ne
t

as
ta

r

w
rf

xa

la
nc

M
ea

n

Benchmarks

0

10

20

30

40

50

60

In
cr

e
a
se

 i
n
 E

ff
ic

ie
n
cy

 (
%

)

Energy

Speedup

Energy-Delay

Speedup (UnC)

Energy-Delay (UnC)

Figure 15: Benefits from integrated PG-DVFS.

CHARSTAR ISCA ’17, June 24-28, 2017, Toronto, ON, Canada

-10%

0%

10%

20%

30%

40%

50%

60%

-1
8

-1
6

-1
4

-1
2

-1
0 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18

483Offline

483Oniine

483Linear

-10%

0%

10%

20%

30%

40%

50%

60%

70%

80%

-1
8

-1
6

-1
4

-1
2

-1
0 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18

4

4

4

-10%

0%

10%

20%

30%

40%

50%

60%

70%

-1
8

-1
6

-1
4

-1
2

-1
0 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18

4

4

4

-10%

0%

10%

20%

30%

40%

50%

60%

70%

-1
8

-1
6

-1
4

-1
2

-1
0 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18

434Offline

434Oniine

434Linear

% quantums % quantums % quantums

Generic

Tailored

Linear

Generic

Tailored

Linear

Generic

Tailored

Linear

434.zeusmp 401.bzip2483.xalancbmk

Prediction error (# partitions) Prediction error (# partitions) Prediction error (# partitions)

Figure 16: Accuracy of prediction: Tailored vs Generic vs Linear

NN CC
CC_c1

CC_c2 MLP

MLP_c1

MLP_c2

MLP_a1

MLP_a2 QQ
QQ_c1

QQ_c2
QQ_c3

Control Mechanisms

0

20

40

60

80

100

B
e
n
ch

m
a
rk

 D
is

tr
ib

u
ti

o
n
 (

%
)

Performance Degradation (%)

<5% 5-10% 10-15% 15-20% >20%

Figure 17: Perf. degradation across mechanisms

6.3 Impact of control mechanism
To motivate the accuracy of a generic one-time offline trained effort
we make the following comparison. We compared the accuracy in
prediction of a generic MLP (trained one-time offline) with a tai-
lored MLP trained on a per benchmark basis and a linear regression
model, across the SPEC CPU2006 benchmark suite. The tailored
MLP provides a limiting model as to the best accuracy achievable
with an MLP based predictor with reasonable overheads. Figure 16
shows the comparison for 3 benchmarks in terms of their prediction
errors. It is evident that the accuracy of generic closely follows that
of the tailored while linear is inaccurate. On average (in 16-partition
CRIB), generic shows error of 0.45 partitions-per-prediction, tai-
lored sees 0.28, and linear sees 1.8. When the training set for generic
is reduced to samples from a random half of the SPEC benchmarks,
error increases to 0.49. Further reduction of the training set to sam-
ples from a random quarter of the SPEC benchmarks increases the
error to 0.67 partitions-per-prediction. These are still significantly
more accurate than the linear predictor. The high accuracy of the
generic MLP predictor suggests that a generalizable non-linear
function, trained offline, captures the behavior of many workloads.

Figure 17 compares the deployment accuracy of multiple predic-
tion mechanisms. It illustrates the performance degradation suffered
due to prediction inaccuracies across the SPEC benchmark suite, for
each prediction mechanism. The degradation is in comparison to the
performance obtained by an ideal oracular predictor. Our proposed
mechanism using a neural network is shown as NN. Existing pre-
diction mechanisms shown are - CC [46], MLP [40](memory level
parallelism) and QQ [53]. To broaden our comparison, we also im-
plement more aggressive (eg. MLP_a1) as well as more conservative
(eg. QQ_c1) versions of these.

Performance degradation from prediction is important to consider
so as to avoid violations of SLAs and issues with tail latency [32].

For instance, if we consider an SLA criterion that requires at least
75% of benchmarks in the suite to fall within 10% performance
degradation, the only prediction mechanisms meeting these criteria
are our own mechanism (NN), along with CC_c2 and QQ_c3. It is
important to note that even within this limit, only NN meets an almost
ideal prediction accuracy of 70% of the benchmarks within 5%
degradation and 100% of the benchmarks within 10% degradation.
Analysis of ED2 product [4, 36], also shows that the NN predictor
closely matches an ideal predictor and provides roughly 20% better
ED2 compared to the competing mechanisms.

7 DISCUSSION
Some key discussion points are put forth below:

Firstly, the ideas of PG-DVFS and using MLP based control for
reconfiguration are applicable to any general architecture, and not
limited to tiled architectures alone. The ideas of clock tree awareness
and spatio-temporal balance are suited to any architecture with well
defined clock hierarchy and resource clusters - so suited to all tiled
architectures.

Second, the focus of this work is on single-threaded applica-
tions. CHARSTAR could be equally useful in a multi-threaded or
multi-programmed context, but MLP complexity would increase
based on number of threads/programs allowed simultaneously. Each
thread’s activity (cache misses, branches etc) would ideally need to
be uniquely monitored and resources should be uniquely controlled
(in terms of DVFS and PG). This could increase the complexity
of the MLP super-linearly. But the current size of the MLP is very
small (10 neurons) so the increase in its size to control a reason-
able number of threads may not cause a huge overhead. Our future
work hopes to enable running multi-programmed and multi-threaded
workloads on tiled architectures with the proposed optimizations.

Third, it is also important to note that there are also other param-
eters that can affect tile configuration, such as inter-tile communi-
cation latency, thermal hot spots, etc. In designs with distributed
shared memory, data reuse across tiles is another influential fac-
tor. Clock hierarchy aware configuration selection bodes well with
keeping inter-tile communication latency low and spatial data reuse,
but may not be the best configuration thermally. Further, if the tiles
themselves are heterogeneous, then some tiles could be prioritized
over others even if it might detrimental to clock power, communi-
cation latency, hot spots and so on. Designing a control mechanism
that is cognizant of all these aspects could achieve the best overall
reconfiguration efficiency and is potential future work.

Finally, we discuss some topological constraints. In the CRIB
architecture, when dependent instructions lie in different partitions,

ISCA ’17, June 24-28, 2017, Toronto, ON, Canada G. Ravi et al.

there is a one cycle overhead per partition to transfer data from
older to younger dependent instructions. When a number of the
partitions are power gated, the overhead involved in transferring
data across multiple power gated partitions becomes significant.
Such overheads are applicable to all tiled architectures. In order
to minimize this overhead, we make use of shortcut links between
partitions to bypass the penalty of transferring data across power
gated partitions. Exploration of different topologies shows increasing
overheads with more shortcut links due to increasing size of routers,
input buffers, crossbars and allocation logic etc. Optimizing for the
right amount of bypassing for a control mechanism cognizant of the
different configuration-influencing parameters (discussed above) is
also worthy of future exploration.

8 RELATED WORK
Core folding and DVFS are implemented in CMPs, but usually in a
decoupled manner. Works such as [47], in fact, suggest that per-core
power gating and DVFS should be implemented in a decoupled
fashion due to increased complexity and difference in characteris-
tics between the mechanisms. On the other hand, others [64] have
shown the smart combination of both mechanisms can only improve
efficiency at the CMP level. The few works exploring these as cou-
pled mechanisms [54, 64] are restricted to the CMP level and only
perform heuristic based control. In contrast, CHARSTAR targets
joint optimization of power gating and DVFS within a single core
using an MLP.

Within a single core, Albonesi et al. [1] have studied complexity-
adaptive hardware i.e. the dynamic control of clock-rate/latency vs.
resource size for particular resources such as issue queue and caches.
Sen et al. [57] explore opportunities in shutting down portions of
cache resources and increasing the core clock frequency. Instead,
CHARSTAR takes an integrated and more comprehensive approach.
At the circuit level, significant prior work analyzes various features
of clock trees, their gating and related design optimizations [11, 13,
48, 58, 66].

Prior reconfiguration works include prediction mechanisms that
track unique resources, such as the occupation of the instruction
queue [53], IPC variation [5], multiple L1 cache misses [31], L2
caches misses [40] or the contribution of the most recently enabled
tile [21], but these are less effective in modeling performance. Prior
work towards CMPs include improving uncore energy efficiency
via DVFS [67], anticipating the system-level performance impact
of resource allocation across multiple cores at runtime [3], adapting
multiple cores with lanes to suit stringent power budgets by sampling
on multiple configurations [52] and to uniformly scale multiple cores
and their resources [23]. As far as a single core is concerned, Dubach
et al. [16] propose a high-end multi-dimensional machine learning
based scheme to perform a limits analysis in spatial granularity -
scaling a large number of resources within a single core, each with
multiple resource sizes.

The underlying constraint in all of these works is that they make
use of very complex (and often online-based) ML models as they
generally target fine grained architectural (spatial) variations. This
requires searching through a complex design space making them
unsuited to fine temporal granularities.

9 CONCLUSION
This paper explores novel techniques to improve energy efficiency
and/or performance through dynamic reconfiguration by effectively
reducing both leakage and clock power. We introduced CHARSTAR,
integrated power gating and DVFS within the core while also consid-
ering the power consumed by each node in the clock tree hierarchy.
Our control mechanism is aware of the power consumption of each
node in the clock tree, thereby choosing an ideal resource configura-
tion which minimizes the combination of clock tree power and leak-
age power. Varying benefits are analyzed for different types of clock
trees. Integrated PG-DVFS scaling is shown to be more effective at
saving energy and/or achieving higher performance in compared to
naive decoupled mechanisms, achieving optimum configuration per
application phase in terms of both ILP and frequency. We explored
the inherent advantages of tiled architectures towards dynamic recon-
figurability and optimized it for balanced spatio-temporal adaptivity.
Finally, we make use of a lightweight MLP predictor, suited to fine
temporal granularities, to accurately predict the configurations for
each application phase.

CHARSTAR, when deployed on the spatial CRIB architecture,
shows improved processor energy efficiency by 20-25% in compar-
ison to an unoptimized baseline, with efficiency improvements of
roughly 2x in comparison to naive power gating mechanism. Our op-
timization can alternatively improve performance by 10-20% under
varying power/energy constraints.

ACKNOWLEDGEMENTS
The authors would like to thank anonymous reviewers for their
insights and comments, Essan Swain for relevant CRIB RTL de-
sign and Michael Mishkin for CRIB topology generation, all of
which have improved the contributions of this work. This work was
supported in part by NSF grants CCF-1318298 and CCF-1615014.
Mikko Lipasti has a financial interest in Thalchemy Corp.

REFERENCES
[1] David H. Albonesi. 1998. Dynamic IPC/Clock Rate Optimization. In Proceedings

of the 25th Annual International Symposium on Computer Architecture (ISCA
’98). IEEE Computer Society, Washington, DC, USA, 282–292. https://doi.org/
10.1145/279358.279397

[2] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali
Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna, Somayeh
Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish, Mark D.
Hill, and David A. Wood. 2011. The Gem5 Simulator. SIGARCH Comput. Archit.
News 39, 2 (Aug. 2011), 1–7. https://doi.org/10.1145/2024716.2024718

[3] Ramazan Bitirgen, Engin Ipek, and Jose F. Martinez. 2008. Coordinated Man-
agement of Multiple Interacting Resources in Chip Multiprocessors: A Machine
Learning Approach. In Proceedings of the 41st Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO 41). IEEE Computer Society, Washing-
ton, DC, USA, 318–329. https://doi.org/10.1109/MICRO.2008.4771801

[4] D.M. Brooks, P. Bose, S.E. Schuster, H. Jacobson, P.N. Kudva, A. Buyukto-
sunoglu, J.-D. Wellman, V. Zyuban, M. Gupta, and P.W. Cook. 2000. Power-aware
microarchitecture: design and modeling challenges for next-generation micropro-
cessors. Micro, IEEE 20, 6 (Nov 2000), 26–44. https://doi.org/10.1109/40.888701

[5] Alper Buyuktosunoglu, David Albonesi, Stanley Schuster, David Brooks, Pradip
Bose, and Peter Cook. 2001. A Circuit Level Implementation of an Adaptive
Issue Queue for Power-aware Microprocessors. In Proceedings of the 11th Great
Lakes Symposium on VLSI (GLSVLSI ’01). ACM, New York, NY, USA, 73–78.
https://doi.org/10.1145/368122.368807

[6] Inc. Cadence Design Systems. 2013. Best Practices for Implementing ARM
Cortex(R)-A12 Processor and MaliTM-T6XX GPUs for Mid-Range Mobile SoCs.
(2013). http://www.armtechforum.com.cn/2013/3_Cadence.pdf

[7] James Charles, Preet Jassi, Narayan S Ananth, Abbas Sadat, and Alexandra
Fedorova. 2009. Evaluation of the Intel® Core(TM) i7 Turbo Boost feature. In

https://doi.org/10.1145/279358.279397
https://doi.org/10.1145/279358.279397
https://doi.org/10.1145/2024716.2024718
https://doi.org/10.1109/MICRO.2008.4771801
https://doi.org/10.1109/40.888701
https://doi.org/10.1145/368122.368807
http://www.armtechforum.com.cn/2013/3_Cadence.pdf

CHARSTAR ISCA ’17, June 24-28, 2017, Toronto, ON, Canada

Workload Characterization, 2009. IISWC 2009. IEEE International Symposium
on. IEEE, 188–197.

[8] Tianshi Chen, Zidong Du, Ninghui Sun, Jia Wang, Chengyong Wu, Yunji Chen,
and Olivier Temam. 2014. DianNao: A Small-footprint High-throughput Ac-
celerator for Ubiquitous Machine-learning. In Proceedings of the 19th Inter-
national Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS ’14). ACM, New York, NY, USA, 269–284.
https://doi.org/10.1145/2541940.2541967

[9] Yu-Hsin Chen, Joel Emer, and Vivienne Sze. 2016. Eyeriss: A Spatial Architecture
for Energy-efficient Dataflow for Convolutional Neural Networks. In Proceedings
of the 43rd International Symposium on Computer Architecture (ISCA ’16). IEEE
Press, Piscataway, NJ, USA, 367–379. https://doi.org/10.1109/ISCA.2016.40

[10] L.T. Clark, E.J. Hoffman, J. Miller, M. Biyani, Yuyun Liao, Stephen Strazdus, M.
Morrow, K.E. Velarde, and M.A. Yarch. 2001. An embedded 32-b microprocessor
core for low-power and high-performance applications. Solid-State Circuits, IEEE
Journal of 36, 11 (Nov 2001), 1599–1608. https://doi.org/10.1109/4.962279

[11] Monica Donno, Alessandro Ivaldi, Luca Benini, and Enrico Macii. 2003. Clock-
tree Power Optimization Based on RTL Clock-gating. In Proceedings of the 40th
Annual Design Automation Conference (DAC ’03). ACM, New York, NY, USA,
622–627. https://doi.org/10.1145/775832.775989

[12] Monica Donno, Enrico Macii, and Luca Mazzoni. 2004. Power-aware Clock
Tree Planning. In Proceedings of the 2004 International Symposium on Physical
Design (ISPD ’04). ACM, New York, NY, USA, 138–147. https://doi.org/10.
1145/981066.981097

[13] Monica Donno, Enrico Macii, and Luca Mazzoni. 2004. Power-aware Clock
Tree Planning. In Proceedings of the 2004 International Symposium on Physical
Design (ISPD ’04). ACM, New York, NY, USA, 138–147. https://doi.org/10.
1145/981066.981097

[14] Zidong Du, Robert Fasthuber, Tianshi Chen, Paolo Ienne, Ling Li, Tao Luo,
Xiaobing Feng, Yunji Chen, and Olivier Temam. 2015. ShiDianNao: Shifting
Vision Processing Closer to the Sensor. In Proceedings of the 42Nd Annual
International Symposium on Computer Architecture (ISCA ’15). ACM, New York,
NY, USA, 92–104. https://doi.org/10.1145/2749469.2750389

[15] D. Duarte, V. Narayanan, and M. J. Irwin. 2002. Impact of technology scaling
in the clock system power. In Proceedings IEEE Computer Society Annual Sym-
posium on VLSI. New Paradigms for VLSI Systems Design. ISVLSI 2002. 52–57.
https://doi.org/10.1109/ISVLSI.2002.1016875

[16] Christophe Dubach, Timothy M. Jones, Edwin V. Bonilla, and Michael F. P.
O’Boyle. 2010. A Predictive Model for Dynamic Microarchitectural Adaptivity
Control. In Proceedings of the 2010 43rd Annual IEEE/ACM International Sym-
posium on Microarchitecture (MICRO ’43). IEEE Computer Society, Washington,
DC, USA, 485–496. https://doi.org/10.1109/MICRO.2010.14

[17] Hadi Esmaeilzadeh, Pooya Saeedi, Babak Nadjar Araabi, Caro Lucas, and
Sied Mehdi Fakhraie. 2006. Neural network stream processing core (NnSP)
for embedded systems. In Circuits and Systems, 2006. ISCAS 2006. Proceedings.
2006 IEEE International Symposium on. IEEE, 4–pp.

[18] Hadi Esmaeilzadeh, Adrian Sampson, Luis Ceze, and Doug Burger. 2012. Neural
Acceleration for General-Purpose Approximate Programs. In Proceedings of the
2012 45th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO-45). IEEE Computer Society, Washington, DC, USA, 449–460. https:
//doi.org/10.1109/MICRO.2012.48

[19] Stijn Eyerman and Lieven Eeckhout. 2011. Fine-grained DVFS Using On-chip
Regulators. ACM Trans. Archit. Code Optim. 8, 1, Article 1 (Feb. 2011), 24 pages.
https://doi.org/10.1145/1952998.1952999

[20] Stijn Eyerman, Lieven Eeckhout, Tejas Karkhanis, and James E. Smith. 2006.
A Performance Counter Architecture for Computing Accurate CPI Components.
In Proceedings of the 12th International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS XII). ACM, New
York, NY, USA, 175–184. https://doi.org/10.1145/1168857.1168880

[21] Daniele Folegnani and Antonio González. 2001. Energy-effective Issue Logic. In
Proceedings of the 28th Annual International Symposium on Computer Architec-
ture (ISCA ’01). ACM, New York, NY, USA, 230–239. https://doi.org/10.1145/
379240.379266

[22] E. G. Friedman. 2001. Clock distribution networks in synchronous digital inte-
grated circuits. Proc. IEEE 89, 5 (May 2001), 665–692. https://doi.org/10.1109/
5.929649

[23] Hamid Reza Ghasemi and Nam Sung Kim. 2014. RCS: Runtime Resource and
Core Scaling for Power-constrained Multi-core Processors. In Proceedings of the
23rd International Conference on Parallel Architectures and Compilation (PACT
’14). ACM, New York, NY, USA, 251–262. https://doi.org/10.1145/2628071.
2628095

[24] V. Govindaraju, C. H. Ho, T. Nowatzki, J. Chhugani, N. Satish, K. Sankaralingam,
and C. Kim. 2012. DySER: Unifying Functionality and Parallelism Specialization
for Energy-Efficient Computing. IEEE Micro 32, 5 (Sept 2012), 38–51. https:
//doi.org/10.1109/MM.2012.51

[25] Beayna Grigorian, Nazanin Farahpour, and Glenn Reinman. 2015. BRAINIAC:
Bringing reliable accuracy into neurally-implemented approximate computing. In

High Performance Computer Architecture (HPCA), 2015 IEEE 21st International
Symposium on. IEEE, 615–626.

[26] Paul E Gronowski, William J Bowhill, Ronald P Preston, Michael K Gowan, and
Randy L Allmon. 1998. High-performance microprocessor design. IEEE Journal
of Solid-State Circuits 33, 5 (1998), 676–686.

[27] Erika Gunadi and Mikko H. Lipasti. 2011. CRIB: Consolidated Rename, Issue,
and Bypass. In Proceedings of the 38th Annual International Symposium on
Computer Architecture (ISCA ’11). ACM, New York, NY, USA, 23–32. https:
//doi.org/10.1145/2000064.2000068

[28] H. Hanson, S.W. Keckler, S. Ghiasi, K. Rajamani, F. Rawson, and J. Rubio. 2007.
Thermal response to DVFS: analysis with an Intel Pentium M. In Low Power
Electronics and Design (ISLPED), 2007 ACM/IEEE International Symposium on.
219–224. https://doi.org/10.1145/1283780.1283827

[29] Mark D. Hill and Michael R. Marty. 2008. Amdahl’s Law in the Multicore Era.
Computer 41, 7 (July 2008), 33–38. https://doi.org/10.1109/MC.2008.209

[30] R. Ho, K. W. Mai, and M. A. Horowitz. 2001. The future of wires. Proc. IEEE
89, 4 (Apr 2001), 490–504. https://doi.org/10.1109/5.920580

[31] Houman Homayoun, Avesta Sasan, Jean-Luc Gaudiot, and Alex Veidenbaum.
2011. Reducing Power in All Major CAM and SRAM-Based Processor Units via
Centralized, Dynamic Resource Size Management. IEEE Trans. Very Large Scale
Integr. Syst. 19, 11 (Nov. 2011), 2081–2094. https://doi.org/10.1109/TVLSI.2010.
2064185

[32] Chang-Hong Hsu, Yunqi Zhang, Michael A Laurenzano, David Meisner, Thomas
Wenisch, Lingjia Tang, Jason Mars, Ron Dreslinski, Vinicius Petrucci, Michael A
Laurenzano, and others. 2015. Adrenaline: Pinpointing and reining in tail queries
with quick voltage boosting. Proceedings of the 2015 IEEE 21st International
Symposium on High Performance Computer Architecture (HPCA), HPCA 15
(2015).

[33] Zhigang Hu, Alper Buyuktosunoglu, Viji Srinivasan, Victor Zyuban, Hans Jacob-
son, and Pradip Bose. 2004. Microarchitectural Techniques for Power Gating of
Execution Units. In Proceedings of the 2004 International Symposium on Low
Power Electronics and Design (ISLPED ’04). ACM, New York, NY, USA, 32–37.
https://doi.org/10.1145/1013235.1013249

[34] Engin Ipek, Meyrem Kirman, Nevin Kirman, and Jose F. Martinez. 2007. Core Fu-
sion: Accommodating Software Diversity in Chip Multiprocessors. In Proceedings
of the 34th Annual International Symposium on Computer Architecture (ISCA ’07).
ACM, New York, NY, USA, 186–197. https://doi.org/10.1145/1250662.1250686

[35] Tejas S. Karkhanis and James E. Smith. 2004. A First-Order Superscalar Processor
Model. In Proceedings of the 31st Annual International Symposium on Computer
Architecture (ISCA ’04). IEEE Computer Society, Washington, DC, USA, 338–.
http://dl.acm.org/citation.cfm?id=998680.1006729

[36] Stefanos Kaxiras and Margaret Martonosi. 2008. Computer Architecture tech-
niques for power-efficiency. Synthesis Lectures on Computer Architecture 3
(2008), 1–207.

[37] Khubaib, M. Aater Suleman, Milad Hashemi, Chris Wilkerson, and Yale N.
Patt. 2012. MorphCore: An Energy-Efficient Microarchitecture for High Perfor-
mance ILP and High Throughput TLP. In Proceedings of the 2012 45th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO-45). IEEE
Computer Society, Washington, DC, USA, 305–316. https://doi.org/10.1109/
MICRO.2012.36

[38] Jason Sungtae Kim, Michael Bedford Taylor, Jason Miller, and David Wentzlaff.
2003. Energy Characterization of a Tiled Architecture Processor with On-chip
Networks. In Proceedings of the 2003 International Symposium on Low Power
Electronics and Design (ISLPED ’03). ACM, New York, NY, USA, 424–427.
https://doi.org/10.1145/871506.871610

[39] Wonyoung Kim, M.S. Gupta, Gu-Yeon Wei, and D. Brooks. 2008. System level
analysis of fast, per-core DVFS using on-chip switching regulators. In High
Performance Computer Architecture, 2008. HPCA 2008. IEEE 14th International
Symposium on. 123–134. https://doi.org/10.1109/HPCA.2008.4658633

[40] Yuya Kora, Kyohei Yamaguchi, and Hideki Ando. 2013. MLP-aware dynamic
instruction window resizing for adaptively exploiting both ILP and MLP. In
Proceedings of the 46th Annual IEEE/ACM International Symposium on Microar-
chitecture. ACM, 37–48.

[41] Benjamin C. Lee and David Brooks. 2008. Efficiency Trends and Limits from
Comprehensive Microarchitectural Adaptivity. In Proceedings of the 13th In-
ternational Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS XIII). ACM, New York, NY, USA, 36–47.
https://doi.org/10.1145/1346281.1346288

[42] Dong Jin Lee. 2011. High-performance and Low-power Clock Network Synthesis
in the Presence of Variation. Ph.D. Dissertation. Citeseer.

[43] Sheng Li, Jung Ho Ahn, Richard D. Strong, Jay B. Brockman, Dean M. Tullsen,
and Norman P. Jouppi. 2009. McPAT: An Integrated Power, Area, and Timing
Modeling Framework for Multicore and Manycore Architectures. In Proceedings
of the 42Nd Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO 42). ACM, New York, NY, USA, 469–480. https://doi.org/10.1145/
1669112.1669172

https://doi.org/10.1145/2541940.2541967
https://doi.org/10.1109/ISCA.2016.40
https://doi.org/10.1109/4.962279
https://doi.org/10.1145/775832.775989
https://doi.org/10.1145/981066.981097
https://doi.org/10.1145/981066.981097
https://doi.org/10.1145/981066.981097
https://doi.org/10.1145/981066.981097
https://doi.org/10.1145/2749469.2750389
https://doi.org/10.1109/ISVLSI.2002.1016875
https://doi.org/10.1109/MICRO.2010.14
https://doi.org/10.1109/MICRO.2012.48
https://doi.org/10.1109/MICRO.2012.48
https://doi.org/10.1145/1952998.1952999
https://doi.org/10.1145/1168857.1168880
https://doi.org/10.1145/379240.379266
https://doi.org/10.1145/379240.379266
https://doi.org/10.1109/5.929649
https://doi.org/10.1109/5.929649
https://doi.org/10.1145/2628071.2628095
https://doi.org/10.1145/2628071.2628095
https://doi.org/10.1109/MM.2012.51
https://doi.org/10.1109/MM.2012.51
https://doi.org/10.1145/2000064.2000068
https://doi.org/10.1145/2000064.2000068
https://doi.org/10.1145/1283780.1283827
https://doi.org/10.1109/MC.2008.209
https://doi.org/10.1109/5.920580
https://doi.org/10.1109/TVLSI.2010.2064185
https://doi.org/10.1109/TVLSI.2010.2064185
https://doi.org/10.1145/1013235.1013249
https://doi.org/10.1145/1250662.1250686
http://dl.acm.org/citation.cfm?id=998680.1006729
https://doi.org/10.1109/MICRO.2012.36
https://doi.org/10.1109/MICRO.2012.36
https://doi.org/10.1145/871506.871610
https://doi.org/10.1109/HPCA.2008.4658633
https://doi.org/10.1145/1346281.1346288
https://doi.org/10.1145/1669112.1669172
https://doi.org/10.1145/1669112.1669172

ISCA ’17, June 24-28, 2017, Toronto, ON, Canada G. Ravi et al.

[44] Hong-Ting Lin, Yi-Lin Chuang, and Tsung-Yi Ho. 2011. Pulsed-latch-based
Clock Tree Migration for Dynamic Power Reduction. In Proceedings of the
17th IEEE/ACM International Symposium on Low-power Electronics and Design
(ISLPED ’11). IEEE Press, Piscataway, NJ, USA, 39–44. http://dl.acm.org/
citation.cfm?id=2016802.2016813

[45] Jingwei Lu, Wing-Kai Chow, and Chiu-Wing Sham. 2012. Fast Power- and Slew-
aware Gated Clock Tree Synthesis. IEEE Trans. Very Large Scale Integr. Syst. 20,
11 (Nov. 2012), 2094–2103. https://doi.org/10.1109/TVLSI.2011.2168834

[46] Andrew Lukefahr, Shruti Padmanabha, Reetuparna Das, Faissal M. Sleiman,
Ronald Dreslinski, Thomas F. Wenisch, and Scott Mahlke. 2012. Composite
Cores: Pushing Heterogeneity Into a Core. In Proceedings of the 2012 45th
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO-45).
IEEE Computer Society, Washington, DC, USA, 317–328. https://doi.org/10.
1109/MICRO.2012.37

[47] Kai Ma and Xiaorui Wang. 2012. PGCapping: Exploiting Power Gating for
Power Capping and Core Lifetime Balancing in CMPs. In Proceedings of the 21st
International Conference on Parallel Architectures and Compilation Techniques
(PACT ’12). ACM, New York, NY, USA, 13–22. https://doi.org/10.1145/2370816.
2370821

[48] Jaewon Oh and Massoud Pedram. 2001. Gated clock routing for low-power mi-
croprocessor design. Computer-Aided Design of Integrated Circuits and Systems,
IEEE Transactions on 20, 6 (2001), 715–722.

[49] Shruti Padmanabha, Andrew Lukefahr, Reetuparna Das, and Scott Mahlke. 2013.
Trace Based Phase Prediction for Tightly-coupled Heterogeneous Cores. In
Proceedings of the 46th Annual IEEE/ACM International Symposium on Mi-
croarchitecture (MICRO-46). ACM, New York, NY, USA, 445–456. https:
//doi.org/10.1145/2540708.2540746

[50] Jatuchai Pangjun and Sachin S. Sapatnekar. 2002. Low-power Clock Distribution
Using Multiple Voltages and Reduced Swings. IEEE Trans. Very Large Scale
Integr. Syst. 10, 3 (June 2002), 309–318. https://doi.org/10.1109/TVLSI.2002.
1043334

[51] Erez Perelman, Greg Hamerly, Michael Van Biesbrouck, Timothy Sherwood,
and Brad Calder. 2003. Using SimPoint for Accurate and Efficient Simulation.
In Proceedings of the 2003 ACM SIGMETRICS International Conference on
Measurement and Modeling of Computer Systems (SIGMETRICS ’03). ACM,
New York, NY, USA, 318–319. https://doi.org/10.1145/781027.781076

[52] Paula Petrica, Adam M. Izraelevitz, David H. Albonesi, and Christine A. Shoe-
maker. 2013. Flicker: A Dynamically Adaptive Architecture for Power Limited
Multicore Systems. In Proceedings of the 40th Annual International Sympo-
sium on Computer Architecture (ISCA ’13). ACM, New York, NY, USA, 13–23.
https://doi.org/10.1145/2485922.2485924

[53] Dmitry Ponomarev, Gurhan Kucuk, and Kanad Ghose. 2006. Dynamic Resizing
of Superscalar Datapath Components for Energy Efficiency. IEEE Trans. Comput.
55, 2 (2006), 199–213. https://doi.org/10.1109/TC.2006.23

[54] Ramya Raghavendra, Parthasarathy Ranganathan, Vanish Talwar, Zhikui Wang,
and Xiaoyun Zhu. 2008. No "Power" Struggles: Coordinated Multi-level
Power Management for the Data Center. In Proceedings of the 13th Inter-
national Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS XIII). ACM, New York, NY, USA, 48–59.
https://doi.org/10.1145/1346281.1346289

[55] Nitya Ranganathan and Norman P Jouppi. 2007. Evaluating the potential of
future on-chip clock distribution using optical interconnects. Hewlett-Packard
Development Company, Tech. Rep. HPL-2007-163, Oct (2007).

[56] Karthikeyan Sankaralingam, Ramadass Nagarajan, Haiming Liu, Changkyu Kim,
Jaehyuk Huh, Nitya Ranganathan, Doug Burger, Stephen W. Keckler, Robert G.
McDonald, and Charles R. Moore. 2004. TRIPS: A Polymorphous Architecture
for Exploiting ILP, TLP, and DLP. ACM Trans. Archit. Code Optim. 1, 1 (March
2004), 62–93. https://doi.org/10.1145/980152.980156

[57] Rathijit Sen and David A Wood. 2013. Cache Power Budgeting for Performance.
Technical Report UW-CS-TR-1791. University of Wisconsin - Madison Computer
Sciences Department.

[58] Weixiang Shen, Yici Cai, Xianlong Hong, and Jiang Hu. 2010. An effective gated
clock tree design based on activity and register aware placement. Very Large Scale
Integration (VLSI) Systems, IEEE Transactions on 18, 12 (2010), 1639–1648.

[59] Steven Swanson, Ken Michelson, Andrew Schwerin, and Mark Oskin. 2003.
WaveScalar. In Proceedings of the 36th Annual IEEE/ACM International Sympo-
sium on Microarchitecture (MICRO 36). IEEE Computer Society, Washington,
DC, USA, 291–. http://dl.acm.org/citation.cfm?id=956417.956546

[60] Michael Bedford Taylor, Walter Lee, Jason Miller, David Wentzlaff, Ian Bratt,
Ben Greenwald, Henry Hoffmann, Paul Johnson, Jason Kim, James Psota, Arvind
Saraf, Nathan Shnidman, Volker Strumpen, Matt Frank, Saman Amarasinghe,
and Anant Agarwal. 2004. Evaluation of the Raw Microprocessor: An Exposed-
Wire-Delay Architecture for ILP and Streams. In Proceedings of the 31st Annual
International Symposium on Computer Architecture (ISCA ’04). IEEE Computer
Society, Washington, DC, USA, 2–. http://dl.acm.org/citation.cfm?id=998680.
1006733

[61] V. Tiwari, D. Singh, S. Rajgopal, G. Mehta, R. Patel, and F. Baez. 1998. Reducing
power in high-performance microprocessors. In Design Automation Conference,
1998. Proceedings. 732–737. https://doi.org/10.1145/277044.277227

[62] James W Tschanz, Siva G Narendra, Yibin Ye, Bradley A Bloechel, Shekhar
Borkar, and Vivek De. 2003. Dynamic sleep transistor and body bias for active
leakage power control of microprocessors. Solid-State Circuits, IEEE Journal of
38, 11 (2003), 1838–1845.

[63] Kimiyoshi Usami, Tatsunori Hashida, Satoshi Koyama, Tatsuya Yamamoto,
Daisuke Ikebuchi, Hideharu Amano, Mitaro Namiki, Masaaki Kondo, and Hiroshi
Nakamura. 2010. Adaptive power gating for function units in a microprocessor.
In Quality Electronic Design (ISQED), 2010 11th International Symposium on.
IEEE, 29–37.

[64] Augusto Vega, Alper Buyuktosunoglu, Heather Hanson, Pradip Bose, and Srini-
vasan Ramani. 2013. Crank It Up or Dial It Down: Coordinated Multiprocessor
Frequency and Folding Control. In Proceedings of the 46th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO-46). ACM, New York,
NY, USA, 210–221. https://doi.org/10.1145/2540708.2540727

[65] Yasuko Watanabe, John D. Davis, and David A. Wood. 2010. WiDGET: Wisconsin
Decoupled Grid Execution Tiles. In Proceedings of the 37th Annual International
Symposium on Computer Architecture (ISCA ’10). ACM, New York, NY, USA,
2–13. https://doi.org/10.1145/1815961.1815965

[66] Shmuel Wimer and Israel Koren. 2012. The Optimal fan-out of clock network
for power minimization by adaptive gating. Very Large Scale Integration (VLSI)
Systems, IEEE Transactions on 20, 10 (2012), 1772–1780.

[67] Jae-Yeon Won, Xi Chen, Paul Gratz, Jiang Hu, and Vassos Soteriou. 2014. Up
by their bootstraps: Online learning in artificial neural networks for CMP uncore
power management. In High Performance Computer Architecture (HPCA), 2014
IEEE 20th International Symposium on. IEEE, 308–319.

[68] Thucydides Xanthopoulos. 2009. Clocking in Modern VLSI Systems (1st ed.).
Springer Publishing Company, Incorporated.

[69] Sam Likun Xi, Hans Jacobson, Pradip Bose, Gu-Yeon Wei, and David Brooks.
2015. Quantifying sources of error in McPAT and potential impacts on architec-
tural studies. In High Performance Computer Architecture (HPCA), 2015 IEEE
21st International Symposium on. IEEE, 577–589.

[70] Yanqi Zhou and David Wentzlaff. 2014. The Sharing Architecture: Sub-core
Configurability for IaaS Clouds. In Proceedings of the 19th International Con-
ference on Architectural Support for Programming Languages and Operat-
ing Systems (ASPLOS ’14). ACM, New York, NY, USA, 559–574. https:
//doi.org/10.1145/2541940.2541950

http://dl.acm.org/citation.cfm?id=2016802.2016813
http://dl.acm.org/citation.cfm?id=2016802.2016813
https://doi.org/10.1109/TVLSI.2011.2168834
https://doi.org/10.1109/MICRO.2012.37
https://doi.org/10.1109/MICRO.2012.37
https://doi.org/10.1145/2370816.2370821
https://doi.org/10.1145/2370816.2370821
https://doi.org/10.1145/2540708.2540746
https://doi.org/10.1145/2540708.2540746
https://doi.org/10.1109/TVLSI.2002.1043334
https://doi.org/10.1109/TVLSI.2002.1043334
https://doi.org/10.1145/781027.781076
https://doi.org/10.1145/2485922.2485924
https://doi.org/10.1109/TC.2006.23
https://doi.org/10.1145/1346281.1346289
https://doi.org/10.1145/980152.980156
http://dl.acm.org/citation.cfm?id=956417.956546
http://dl.acm.org/citation.cfm?id=998680.1006733
http://dl.acm.org/citation.cfm?id=998680.1006733
https://doi.org/10.1145/277044.277227
https://doi.org/10.1145/2540708.2540727
https://doi.org/10.1145/1815961.1815965
https://doi.org/10.1145/2541940.2541950
https://doi.org/10.1145/2541940.2541950

	Abstract
	1 Introduction
	2 Overview of Clock Distribution
	2.1 Different Clock Distribution Systems
	2.2 Estimating Clock Node Power

	3 Clock Tree Aware Power Gating
	4 Dynamic Reconfiguration Control
	4.1 Integrating resource/frequency scaling
	4.2 Design for Spatio-Temporal balance
	4.3 Tiled Architectures
	4.4 Neural Prediction Mechanism

	5 CHARSTAR in a Tiled Architecture
	5.1 The CRIB Architecture
	5.2 Granularities of adaptivity
	5.3 Quantifying Overheads

	6 Results
	6.1 Impact of Clock Tree awareness
	6.2 Impact of integrated PG-DVFS
	6.3 Impact of control mechanism

	7 Discussion
	8 Related Work
	9 Conclusion
	References

