
.

MACRO-OP SCHEDULING AND EXECUTION

by

Ilhyun Kim

A dissertation submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

(Electrical Engineering)

at the

UNIVERSITY OF WISCONSIN-MADISON

2004

© Copyright by Ilhyun Kim 2004

All Rights Reserved

iAbstract

High-performance microprocessors must attain two elusive goals that are often at

odds with each other: high operating frequency that demands a minimum amount of logic

per pipeline stage, and a high degree of concurrency in the form of instruction-level and

memory-level parallelism, which tends to increase the amount of activity required to exe-

cute each instruction. The logic required to implement all of this complexity can be broken

down into more and more pipeline stages to achieve higher operating frequency, but this

comes at the cost of additional power, pipeline latch overhead, and erosion in IPC due to

increased branch and scheduling penalties.

One promising approach to overcoming this limitation and simplifying the control

logic overhead in an out-of-order processor is to move from the conventional instruction-

level processing towards coarse-grained instruction processing that amortizes these over-

heads over a set of two or more instructions. This thesis proposes and evaluates two

microarchitectural techniques that perform coarse-grained instruction processing in super-

scalar, out-of-order processors: Macro-op Scheduling and Macro-op Execution.

This thesis shows that coarse-grained instruction processing enabled by macro-op

scheduling and execution is a good approach to achieving complexity-effective, high-per-

formance superscalar, out-of-order processor designs. Three key points support this con-

clusion:

• Many instructions do not require fine-grained, instruction-level controls.

Chains of dependent instructions do not require fine-grained, instruction-level con-

trols driven by complex data dependences. Processing dependent instructions in

groups does not sacrifice instruction-level parallelism and potentially provides

greater opportunities for simplifying control logic overhead and reducing conten-

iition due to fewer units to process.

• Pipelined macro-op scheduling performs similarly or better than conventional

atomic scheduling.

Performing coarse-grained instruction scheduling on groups of multiple instruc-

tions enables the pipelined instruction scheduler to hide scheduling delays and to

issue dependent instructions in back-to-back cycles. Also, it reduces issue queue

contention and widens the out-of-order instruction window by handling multiple

instructions as a single unit.

• Macro-op execution increases machine bandwidth using similar or lower complex-

ity hardware.

Macro-op execution enables multiple instructions to be managed as a single unit in

the entire out-of-order execution pipeline. A single execution lane can handle mul-

tiple instructions simultaneously, which increases issue and execution bandwidth.

This thesis makes three main contributions. First, it presents the concept of coarse-

grained instruction processing, which reduces the hardware overhead involved in coordi-

nating all of the concurrent actions in a modern out-of-order superscalar processor. Sec-

ond, it quantifies the degree of abstraction that can be applied to a program for coarse-

grained instruction processing, and shows that a significant portion of the instructions can

be processed together in groups without requiring fine-grained controls for scheduling and

execution. Third, it demonstrates that the proposed techniques for coarse-grained instruc-

tion processing enable complexity and performance benefits in an out-of-order superscalar

processor.

iiiAcknowledgements

I would like to thank my parents, YongChi Kim and BokSoon Shin for their con-

stant support throughout my whole life. Without them, I would not be what I am now. I am

truly grateful for their being encouraging to me all the time. I also thank my family for

their support. I am very grateful with my beloved wife, Hwakyu Lee, for encouraging and

giving me strength to do what I had to do. She brought much love and warmth to my life.

I want to express my deep gratitude to my advisor, Professor Mikko Lipasti for

giving me the opportunity to work with him and for his patience, tolerance, understanding,

and encouragement. Not only about academic engineering research and how to find a way

to a solution, he also taught me how to be a person who other people need. It has been a

great pleasure working with him. I am very thankful to the members of my thesis commit-

tee, Prof. Jim Smith, Prof. Michael Shulte, Prof. David Wood, and Prof. Guri Sohi for their

feedback on my thesis research and stimulating discussions throughout my graduate ten-

ure.

A special thank goes to all members of the PHARM research group. Especially, I

would like to thank Kevin Lepak, Trey Cain and Gordie Bell, who have been Mikko’s first

students. Kevin has always supported and motivated me in academic as well as non-aca-

demic ways. I thank Trey for his substantial efforts on group infrastructure and his persis-

tence that I envy. I thank Gordie for many stimulating discussions and helps. I thank Brian

Mestan, Razvan Cheveresan, and Matt Ramsay for their bringing joy to my monotonous

life.

Finally, I want to thank to all those who helped me through the research. In partic-

ular, I thank the Department of Electrical Engineering staff for their assistance with

ivadministrative tasks throughout my graduate career.

Table of Contents v

Abstract . i

Acknowledgements. iii

Table of Contents . v

List of Figures . xi

List of Tables . xv

Chapter 1: Introduction . 1

1.1 Processing Granularity . 3

1.2 Processing Granularity of Instructions . 4

1.3 Coarse-grained Instruction Processing. 5

1.4 Macro-op Scheduling and Execution . 8

1.5 Thesis Contributions and Outline. 9

Chapter 2: Related Work . 13

2.1 Coarse-grained Instruction Processing. 13

2.2 Instruction Preprocessing and Transformation . 19

2.3 Complexity-effective Instruction Scheduling Logic . 21

2.4 Reducing Complexity in the Register File . 25

2.4.1 Reducing the number of entries . 26

2.4.2 Reducing the number of ports . 27

2.5 Bypass Logic Complexity and Clustered Microarchitecture . 29

Chapter 3: Experimental Framework. 31

3.1 Base Processor Microarchitecture . 31

3.1.1 Pipeline overview . 31

3.1.2 Instruction scheduling logic . 33

3.1.3 Speculative scheduling and replay . 34

3.1.3.1 Source of scheduling misses . 36

3.1.3.2 Scheduling replay. 37

3.1.4 Memory disambiguation . 38

3.2 Simulators. 39

3.2.1 Functional simulator . 39

vi

3.2.2 Timing simulator . 39

3.2.3 Verification and debugging . 42

3.2.4 Machine Parameters . 45

3.3 Benchmarks . 46

3.4 Summary . 53

Chapter 4: Groupability of Instructions . 55

4.1 Definition of Macro-op . 56

4.2 Implications of Grouping Instructions into MOPs . 58

4.3 MOP Dependences . 61

4.4 Issues in Grouping Instructions . 64

4.4.1 Dependences among grouped instructions . 65

4.4.2 MOP size . 67

4.4.3 MOP scope . 67

4.4.4 Merging and branching of dependence chains . 68

4.4.4.1 Dependence merging point . 68

4.4.4.2 Dependence branching point . 69

4.4.5 Cycle conditions . 70

4.5 Quantifying the Groupability of Instructions . 71

4.5.1 Candidate instruction types . 71

4.5.2 MOP scope and size . 72

4.5.3 MOP grouping policies. 74

4.5.4 Caveat . 78

4.6 Results . 79

4.6.1 Coverage of candidate instructions . 79

4.6.2 MOP size distribution. 85

4.6.3 Impact of MOP sizes on MOP coverage . 88

4.6.4 Impact of MOP scope on MOP coverage. 89

4.7 Summary and Conclusions . 91

Chapter 5: Understanding the Effects of Pipelined Scheduling . 93

5.1 Atomicity vs. Scalability . 94

5.2 Variability in Performance Sensitivity to 2-cycle Scheduling . 97

5.3 Performance Insensitivity Caused by Hardware Constraints . 98

.

vii

5.4 Performance Insensitivity Caused by Program Characteristics. 106

5.4.1 Not all dependences are created equal . 107

5.4.2 Dependence edge distance and performance insensitivity . 111

5.5 Correlating Dependence Edge Distance and Performance . 115

5.6 Summary and Conclusions . 117

Chapter 6: Macro-op Scheduling . 119

6.1 Relaxing the Scheduling Atomicity and Scalability via Macro-ops 120

6.1.1 A scenario for macro-op scheduling. 120

6.1.2 An overview of a microarchitecture with macro-op scheduling 122

6.2 Policies to Group Instructions . 124

6.2.1 Candidate instruction types . 125

6.2.2 MOP scope . 125

6.2.3 MOP sizes. 126

6.2.4 MOP dependence tracking . 127

6.3 MOP Detection . 127

6.3.1 Cycle conditions through register dependences . 127

6.3.2 Cycle conditions through memory dependences . 129

6.3.3 MOP detection process. 132

6.3.4 Implementation issues . 135

6.3.5 MOP pointers . 141

6.4 MOP Formation . 143

6.4.1 Locating MOP pairs . 143

6.4.2 MOP dependence translation . 143

6.4.3 Queue stage and insertion policy . 145

6.5 Instruction Scheduling Logic for Macro-op Scheduling . 146

6.5.1 Wakeup logic . 146

6.5.2 Select logic . 147

6.6 Pipeline Considerations . 148

6.6.1 Dispatch stage and sequencing instructions . 148

6.6.2 Branch and load mis-speculation handling. 149

6.7 Performance Considerations . 149

6.7.1 Grouping independent instructions. 149

viii

6.7.2 The effects of last-arriving operands . 152

6.8 Summary and Conclusions . 153

Chapter 7: Experimental Evaluation of Macro-op Scheduling . 155

7.1 Scheduler Configurations . 155

7.2 Microbenchmark Results . 156

7.3 Instructions Grouped . 158

7.4 Performance of Macro-op Scheduling Without Queue Contention 164

7.5 Impact of Independent MOPs . 167

7.6 Performance of Macro-op Scheduling with Queue Contention . 169

7.7 Impact of MOP Formation. 174

7.7.1 MOP scope . 174

7.7.2 MOP size . 177

7.7.3 Extra pipeline stages for MOP formation. 179

7.8 Impact of MOP Detection . 180

7.8.1 MOP detection latency and pipelinability . 180

7.8.2 MOP detection algorithm . 184

7.8.3 Filtering harmful grouping . 185

7.8.4 Cycle detection heuristics for register dependences. 188

7.8.5 Cycle detection heuristics for memory dependences . 188

7.8.6 Control bits in MOP pointers . 191

7.9 Summary and Conclusions . 191

Chapter 8: Macro-op Execution . 195

8.1 Increasing Machine Bandwidth via Macro-op Execution . 196

8.1.1 Limitations of macro-op scheduling. 196

8.1.2 An overview of macro-op execution . 197

8.2 Microarchitecture for Macro-op Execution . 199

8.2.1 Macro-op grouping policy . 199

8.2.2 Macro-op detection. 201

8.2.3 Cycle detection . 202

8.2.4 Macro-op formation . 202

8.2.5 Instruction scheduling logic . 205

8.2.6 Dispatch / Payload RAM Access . 206

.

ix

8.2.7 Register File . 208

8.2.8 Execution stages and bypass network . 208

8.2.9 Resources and Execution Timings . 211

8.2.10 Effective issue and execution bandwidth for macro-op execution. 213

8.3 Summary and Conclusions . 214

Chapter 9: Experimental Evaluation of Macro-op Execution. 217

9.1 Machine Configurations . 217

9.2 Microbenchmark Results . 218

9.3 Instructions Grouped . 221

9.4 Distribution of Effective Execution Bandwidth . 222

9.5 Performance of Macro-op Execution. 225

9.6 Impact of MOP Scope . 232

9.7 Impact of S-L and L-L MOPs . 236

9.8 Macro-op Execution for Wider Machine Bandwidth . 241

9.9 Summary and Conclusions . 250

Chapter 10: Conclusions . 251

10.1 Thesis Summary . 252

10.1.1 Groupability of instructions for coarse-grained instruction processing 252

10.1.2 Macro-op scheduling . 253

10.1.2.1Analysis of pipelined instruction scheduling logic . 254

10.1.2.2A microarchitecture for macro-op scheduling. 255

10.1.2.3Results . 256

10.1.3 Macro-op execution . 257

10.1.3.1A microarchitecture for macro-op execution . 257

10.1.3.2Results . 258

10.2 Future Research . 259

10.2.1 Macro-op detection and dynamic binary translation . 259

10.2.2 Extending coarse-grained instruction processing to the entire pipeline 260

10.2.3 Analyzing the degree of register use . 261

10.2.4 Larger macro-ops . 262

10.2.5 Vertically long instruction word. 262

10.2.6 Macro-op execution for simultaneous multithreading . 263

x

References . 265

List of Figures xi

FIGURE 1-1: An analogy for processing granularity . 3

FIGURE 1-2: Approaches to coarse-grained instruction processing . 7

FIGURE 3-1: Processor pipeline. 32

FIGURE 3-2: An overview of the microarchitecture modeled . 33

FIGURE 3-3: Speculative scheduling and replay . 35

FIGURE 4-1: Examples of macro-op.. 56

FIGURE 4-2: Grouping instructions into MOPs with different sizes . 59

FIGURE 4-3: Offset tracking (a) vs. latency tracking (b) of MOP dependences 63

FIGURE 4-4: Impact of grouping independent instructions . 66

FIGURE 4-5: Impact of grouping a dependence merging point . 69

FIGURE 4-6: Impact of grouping a dependence branching point . 70

FIGURE 4-7: Dependence edge distance from a MOP candidate to the nearest groupable instruction

(measured without load MOP tail) . 73

FIGURE 4-8: Dependence edge distance from a MOP candidate to the nearest groupable instruction

(measured with load MOP tail) . 73

FIGURE 4-9: An example of groupability-performance curve. 75

FIGURE 4-10: Coverage of candidate instructions (bzip ~ gzip, measured without load MOP tail). . . . 81

FIGURE 4-11: Coverage of candidate instructions (mcf ~ vpr, measured without load MOP tail). 82

FIGURE 4-12: Coverage of candidate instructions (bzip ~ gzip, measured with load MOP tail) 83

FIGURE 4-13: Coverage of candidate instructions (mcf ~ vpr, measured with load MOP tail) 84

FIGURE 4-14: MOP size distribution (measured without load MOP tail) . 86

FIGURE 4-15: MOP size distribution (measured with load MOP tail) . 86

FIGURE 4-16: Impact of MOP sizes on MOP coverage (measured without load MOP tail) 88

FIGURE 4-17: Impact of MOP sizes on MOP coverage (measured with load MOP tail) 89

FIGURE 4-18: Impact of MOP scope on MOP coverage (measured without load MOP tail) 90

FIGURE 4-19: Impact of MOP scope on MOP coverage (measured with load MOP tail) 90

FIGURE 5-1: Performance of pipelined scheduling logic with various issue queue sizes. 95

FIGURE 5-2: Execution time and relative performance of 2-cycle scheduling as the machine constraints

are relaxed (bzip ~ gap) . 103

FIGURE 5-3: Execution time and relative performance of 2-cycle scheduling as the machine constraints

are relaxed (gcc ~ parser) . 104

xii

FIGURE 5-4: Execution time and relative performance of 2-cycle scheduling as the machine constraints

are relaxed (perl ~ vpr) . 105

FIGURE 5-5: Impact of 2-cycle scheduling on infinite and base machines . 108

FIGURE 5-6: Cumulative distribution of 1-cycle dependence edges defined in programs 109

FIGURE 5-7: Cumulative distribution of 1-cycle edges that participate in instruction scheduling . . . 110

FIGURE 5-8: Cumulative distribution of 1-cycle edges that participate in instruction scheduling (normal-

ized) . 110

FIGURE 5-9: Cumulative distribution of 1-cycle dependence edges in sensitive benchmarks 112

FIGURE 5-10: Cumulative distribution of 1-cycle dependence edges in insensitive benchmarks 112

FIGURE 5-11: Probability of awakening dependent instructions in sensitive benchmarks 115

FIGURE 5-12: Probability of awakening dependent instructions in insensitive benchmarks 115

FIGURE 5-13: Correlating the fraction of 2-cycle-scheduling-insensitive dependence edges with 2-cycle

scheduling performance . 116

FIGURE 6-1: An example of macro-op scheduling.. 121

FIGURE 6-2: Wakeup and select timings. . 122

FIGURE 6-3: An overview of macro-op scheduling. 123

FIGURE 6-4: Cycle conditions and a detection heuristic. . 128

FIGURE 6-5: Scenarios for cycle conditions created through memory dependences 130

FIGURE 6-6: MOP detection process. 133

FIGURE 6-7: Dependences in MOP detection processes . 136

FIGURE 6-8: Pipelinability of MOP detection. 137

FIGURE 6-9: Impact of pipelining MOP detection on MOP coverage . 138

FIGURE 6-10: Pipelined MOP detection logic with multiple detection queues 139

FIGURE 6-11: Macro-op pointers . 143

FIGURE 6-12: Dependence translation in MOP formation. 144

FIGURE 6-13: Inserting instructions into issue queue. . 145

FIGURE 6-14: Grouped instructions in CAM and wired-OR-style wakeup logic. 147

FIGURE 6-15: Grouping independent instructions and their execution timings. 150

FIGURE 6-16: The effects of last-arriving operands. 152

FIGURE 7-1: The basic structure of the microbenchmark . 156

FIGURE 7-2: Performance of macro-op scheduling with microbenchmarks. 157

FIGURE 7-3: Instruction grouped for macro-op scheduling with microbenchmarks. 157

.

xiii

FIGURE 7-4: Instructions grouped in MOPs (2x, 2-cycle scope, no independent MOP) 159

FIGURE 7-5: Grouped instructions categorized by the source operands mix 161

FIGURE 7-6: Coverage of value-generating candidate instructions. 162

FIGURE 7-7: Performance of macro-op scheduling (no issue queue contention) 164

FIGURE 7-8: Dependence edges that trigger instruction issue in macro-op scheduling 166

FIGURE 7-9: Instructions grouped in MOPs (with independent MOPs) . 168

FIGURE 7-10: Performance impact of independent MOPs (no issue queue contention). 169

FIGURE 7-11: Performance of macro-op scheduling (64-entry issue queue) . 171

FIGURE 7-12: Performance of macro-op scheduling (48-entry issue queue) . 171

FIGURE 7-13: Performance of macro-op scheduling (32-entry issue queue) . 172

FIGURE 7-14: Performance of various instruction schedulers. 172

FIGURE 7-15: Performance impact of independent MOPs (32-entry issue queue). 173

FIGURE 7-16: Impact of MOP scope on MOP coverage (MOP-3src, no independent MOP) 175

FIGURE 7-17: Performance impact of MOP scope (MOP-3src, no independent MOP, no issue queue con-

tention) . 176

FIGURE 7-18: Performance impact of MOP size (32-entry issue queue) . 178

FIGURE 7-19: Performance impact of extra MOP formation stages (32-entry issue queue) 179

FIGURE 7-20: Performance sensitivity to pipelined MOP detection (MOP-3src, no independent MOP,

128-entry issue queue) . 183

FIGURE 7-21: Performance impact of filtering not useful and harmful MOPs (MOP-3src, no independent

MOP, 128-entry issue queue) . 187

FIGURE 8-1: An overview of macro-op execution . 198

FIGURE 8-2: MOP offset tracking for macro-op execution. 204

FIGURE 8-3: An example of scheduling timing for macro-op execution . 206

FIGURE 8-4: Execution pipeline and datapath for macro-op execution . 209

FIGURE 9-1: Performance of macro-op execution with microbenchmarks. 219

FIGURE 9-2: Instructions grouped in MOPs for macro-op execution . 221

FIGURE 9-3: Effective machine bandwidth in macro-op execution (128-entry issue queue) 224

FIGURE 9-4: Effective machine bandwidth in macro-op execution (32-entry issue queue) 224

FIGURE 9-5: Performance of macro-op execution (128-entry issue queue) . 227

FIGURE 9-6: Performance of macro-op execution (64-entry issue queue) . 227

FIGURE 9-7: Performance of macro-op execution (48-entry issue queue) . 228

xiv

FIGURE 9-8: Performance of macro-op execution (32-entry issue queue) . 228

FIGURE 9-9: Contributions to the speedup (2-wide-MOP-3src, 128-entry issue queue) 231

FIGURE 9-10: Contributions to the speedup (2-wide-MOP-3src, 32-entry issue queue) 231

FIGURE 9-11: Performance of the base and macro-op execution machines . 232

FIGURE 9-12: Impact of MOP scope on MOP coverage (2-wide-MOP-3src, 128-entry issue queue). 234

FIGURE 9-13: Performance impact of MOP scope (2-wide-MOP-3src, 128-entry issue queue) 234

FIGURE 9-14: Performance impact of MOP scope (2-wide-MOP-3src, 64-entry issue queue) 235

FIGURE 9-15: Performance impact of MOP scope (2-wide-MOP-3src, 48-entry issue queue) 235

FIGURE 9-16: Performance impact of MOP scope (2-wide-MOP-3src, 32-entry issue queue) 235

FIGURE 9-17: Performance sensitivity of macro-op scheduling to MOP types (2-wide-MOPsched-3src,

128-entry issue queue) . 236

FIGURE 9-18: Performance sensitivity to MOP types (2-wide-MOP-3src, 128-entry issue queue) . . . 239

FIGURE 9-19: Performance sensitivity to MOP types (2-wide-MOP-3src, 64-entry issue queue) 239

FIGURE 9-20: Performance sensitivity to MOP types (2-wide-MOP-3src, 48-entry issue queue) 240

FIGURE 9-21: Performance sensitivity to MOP types (2-wide-MOP-3src, 32-entry issue queue) 240

FIGURE 9-22: Performance of macro-op execution (3- and 4-wide-MOP, 128-entry issue queue) . . . 242

FIGURE 9-23: Performance of macro-op execution (3- and 4-wide-MOP, 64-entry issue queue) 243

FIGURE 9-24: Performance of macro-op execution (3- and 4-wide-MOP, 48-entry issue queue) 243

FIGURE 9-25: Performance of macro-op execution (3- and 4-wide-MOP, 32-entry issue queue) 244

FIGURE 9-26: Performance of 3- and 4-wide macro-op execution with various issue queue sizes . . . 244

FIGURE 9-27: Comparison of effective machine bandwidth. 249

xvList of Tables

TABLE 3-1: Base machine configuration . 45

TABLE 3-2: Benchmarks and their program characteristics . 46

TABLE 3-3: Runtime characteristics . 47

TABLE 3-4: Base IPCs with various scheduler and issue width configurations (32- and 48-entry issue

queue) . 51

TABLE 3-5: Base IPCs with various scheduler and issue width configurations (64- and 128-entry issue

queue) . 52

TABLE 4-1: MOP candidate instruction types . 72

TABLE 4-2: Infinite machine configuration . 76

TABLE 4-3: Performance on the infinite machine compared to the base machine. 78

TABLE 4-4: Average number of instructions grouped in a MOP (8x, 32-inst scope) 87

TABLE 5-1: Performance of 2-cycle scheduling with larger issue queue and ROB. 96

TABLE 5-2: IPC loss due to 2-cycle scheduling at each issue queue size . 97

TABLE 5-3: Comparison of issue queue residency . 114

TABLE 6-1: Cycle avoidance heuristics . 132

TABLE 6-2: Complexity estimation of pipelined MOP detection logic . 140

TABLE 7-1: MOP heads with multiple dependent instructions (MOP-3src) . 163

TABLE 7-2: 1-cycle dependence edges recovered by macro-op scheduling (MOP-3src) 167

TABLE 7-3: Impact of MOP detection latency (MOP-3src, no independent MOP, 128-entry issue queue)

. 181

TABLE 7-4: Configurations for pipelining MOP detection logic . 183

TABLE 7-5: Impact of pipelined MOP detection on MOP coverage (MOP-3src, no independent MOP,

128-entry issue queue) . 183

TABLE 7-6: Impact of MOP detection algorithm (MOP-3src, no independent MOP, 128-entry issue

queue) . 184

TABLE 7-7: Impact of filtering not useful and harmful MOPs (MOP-3src, no independent MOP) . . 187

TABLE 7-8: Performance of the cycle detection heuristic compared with precise detection 190

TABLE 7-9: Impact of store-to-load pair (MOP-3src, no independent MOP, 128-entry issue queue) . 190

TABLE 7-10: Impact of intervening branches (MOP-3src, no independent MOP, 128-entry issue queue) .

. 192

TABLE 8-1: Resources and timings in macro-op execution . 212

xvi

TABLE 8-2: Comparison of hardware complexity in execution pipeline . 213

TABLE 9-1: Performance of the base machine when the execution bandwidth is doubled 246

TABLE 9-2: IPCs of the base machine when hardware constraints are relaxed 249

1Chapter 1

Introduction

A compelling argument in favor of RISC design was that simpler instruction sets

could be realized more efficiently, giving them an inherent performance advantage over

complex instruction sets. Many current-generation microprocessors follow a similar phi-

losophy in their hardware designs. Even in processor implementations for complex

instruction sets such as IA-32, complex instructions are broken into micro-ops running on

RISC-style cores. The principles of these designs can be summarized as regularity,

orthogonality and composability [99], implying that a collection of homogeneous and

atomic instruction primitives perform complex operations. Being faithful to this paradigm,

instructions are usually designed to perform an indivisible amount of useful work that

facilitates efficient hardware implementation with simple controls over instruction and

data flow. Accordingly, the pipeline and many hardware structures in a microprocessor are

also built to handle each instruction as a minimal processing unit. This traditional instruc-

tion-centric hardware design has been considered intuitive and reasonable, since execu-

tion eventually occurs at instruction boundaries where the architectural state should be

preserved.

However, there is increasing demand for reconsidering the premise of instruction-

centric hardware design as microprocessors become prohibitively complex. The complex-

ity of modern superscalar, out-of-order processors comes not only from high operating fre-

quency that demands more pipeline stages to facilitate reducing the gate count per stage,

but also from the sophisticated control logic that is necessary to coordinate all of the con-

2current actions of in-flight instructions in the pipeline. The logic required to implement all

of this activity may be further broken down into multiple pieces to lower the complexity in

each pipeline stage, but this comes at the cost of additional power, pipeline latch overhead,

and erosion in IPC due to increased branch and scheduling penalties.

An instruction is a unit of execution, but may not necessarily be an optimal unit of

processing in the pipeline given the technology trends and the difficulties in providing

sophisticated controls over instructions. Rather, moving from instruction-level processing

towards coarse-grained processing--where multiple instructions are tracked, scheduled

and executed as a single entity--is desirable since such an approach potentially decreases

the number of processing units in the pipeline and reduces logic overhead by reducing the

rate at which the control decisions must be generated.

The purpose of this thesis is to explore the design space of superscalar, out-of-

order microprocessors, to evaluate benefits when varying the granularity of the processing

unit, and to expose a greater opportunity for high-performance and complexity-effective

designs at a coarser processing level by relaxing the microarchitectural design constraints

imposed by instruction-centric hardware designs. Specifically, the thesis proposes and

evaluates microarchitectural techniques to process multiple operations as a single atomic

unit in instruction scheduling logic and execution pipeline. The proposed technique called

macro-op scheduling performs coarse-grained instruction scheduling to relax the atomic-

ity and scalability constraints of conventional approaches, and enables pipelined instruc-

tion scheduling with a wider out-of-order execution window. The other proposed

technique called macro-op execution performs coarse-grained instruction processing in

the execution pipeline to increase the machine bandwidth with similar or lower hardware

.

3

complexity.

1.1 Processing Granularity

Processing granularity is defined as the amount of work associated with a process.

From hardware designer’s perspective, it can be interpreted as the amount of resource

managed by each individual control. A simple analogy is cache block granularity given a

fixed cache size, in which various cache line sizes affect performance differently. In this

case, control can correspond to line transfer from a lower level memory to this cache, and

resource can correspond to the data size per cache line transfer.

Figure 1-1 illustrates a trend of cache miss rates for various cache line sizes [85].

At a finer granularity (the left cache configuration in the figure), the cache is configured to

have fewer bits per line but the number of lines increases. As the cache block granularity

increases toward a coarser level, the cache miss rate will decrease since a coarser granular-

ity incurs fewer data transfers from lower level memory for a certain amount of data.

Beyond a certain point as the granularity is further increased, however, the cache miss rate

will bounce back because the effective cache size is decreased due to redundant data trans-

ferred.

We see that there are trade-offs between resource and control at different process-

FIGURE 1-1. An analogy for processing granularity.

Line size

Miss
rate

finer coarser
cache block granularity

4ing granularities. As the processing granularity increases, fewer controls are required to

perform a certain amount of work, while the resource management may be inefficient.

Conversely, a finer processing granularity tends to increase the number of controls, but the

resource management may become more efficient. In this spectrum of processing granu-

larity, an optimal processing granularity to maximize benefits may be determined by the

goals and constraints of the design. In the previous example of cache block granularity, an

optimal point can be chosen to generate the lowest cache miss rate. If latency or power

consumption is more critical, a different processing granularity may be chosen to meet

such requirements.

1.2 Processing Granularity of Instructions

A conventional superscalar, out-of-order machine processes instructions at an

instruction-level granularity, i.e. generating scheduling decisions at every instruction

boundary. Also, hardware structures are configured to match an instruction’s specifica-

tions so that each control enables instructions to access hardware resources, e.g. the regis-

ter file, without further arbitration. From the perspective of performance, processing

instructions at an instruction-level granularity may provide a high degree of instruction-

level parallelism, since this enables fine-grained controls over the dataflow defined by a

program in the form of register and memory dependences among instructions. Performing

necessary tasks in each pipeline stage at the instruction-level granularity is a reasonable

design decision because execution eventually occurs at instruction boundaries.

A potential limitation of processing instructions at the same granularity as they are

executed is that many hardware parameters are automatically determined by such a granu-

.

5larity, leaving little flexibility in the hardware design space. For example, although the

number of ports to the register file may vary depending on the number or functional units

or machine width, the number in each issue slot is fixed to the worst-case requirement of

an instruction, e.g. two read and one write ports. Similarly, the atomicity constraint of con-

ventional instruction scheduling--a set of wakeup and select operation should occur atom-

ically every clock cycle--comes from the fact that the scheduler should generate

scheduling decisions on a per instruction basis. In other words, instruction-granular pro-

cessing imposes instruction-granular constraints, which often put significant pressures on

the hardware structures that are likely to limit the processor’s cycle time.

Each pipeline stage has different types of design issues. Some structures like the

register file have resource-critical design issues, as the number of entries and ports deter-

mines their complexity. Some other structures, such as instruction scheduling logic, have

control-critical design issues, i.e. completing certain tasks within a fixed number of cycles

is crucial for ensuring a certain level of performance. If instructions are processed at other

granularities coarser or finer than an instruction, the different granularity may compensate

for the critical design issues incurred by instruction-granular processing. For instance,

applying fine-grained, operand-centric processing may resolve resource-critical issues

since resources can be more efficiently managed at the expense of added control complex-

ity. For example, creating scheduling bubbles for sequentially accessing a single register

ports improves the complexity of the register file, as proposed in [56].

1.3 Coarse-grained Instruction Processing

Between the two opposite ends in the spectrum of processing granularities, this

6thesis research explores and evaluates the design space of coarse-grained instruction pro-

cessing. This is motivated by the design trend of superscalar, out-of-order processors.

High-performance microprocessor designs must attain two elusive goals that are often at

odds with each other: high operating frequency that demands a minimum amount of logic

per pipeline stage, and a high degree of concurrency in the form of instruction-level and

memory-level parallelism, which tends to increase the amount of activity required to exe-

cute each instruction. Scaling the current generation processor designs to future perfor-

mance level becomes challenging, since the complexity of control logic to manage all

concurrent actions among instructions would not easily fit in the targeted cycle time with-

out being pipelined over multiple stages and hence losing the capability of instantly react-

ing to dynamic behaviors [6][55]. To overcome this limitation, one promising approach to

simplifying the control logic overhead in an out-of-order processor is to move from the

conventional instruction-level processing towards coarse-grained instruction processing

that amortizes these overheads over a set of two or more instructions. In our approach, this

is enabled by grouping multiple instructions into a single unit that is tracked, scheduled

and executed as an atomic entity.

This basic idea of coarse-grained instruction processing has been proposed or

already realized in several ways. For example, designs like the Alpha 21264 [17] and the

IBM POWER4 [71] accommodate basic-block size groups of instructions in each reorder

buffer entry to reduce the complexity of the dispatch and commit logic. More recent

designs like the AMD Athlon [21] and Intel Pentium M [39] also group some operations

into fused operations in order to reduce the number of operations to process. To reduce the

overhead involved in scheduling and improve execution bandwidth, many machines with

.

7

long instruction words [59][83][79][24] or SIMD vector operations [10][52][22] employ

coarse-grained instruction processing by grouping multiple operations into a single sched-

ulable unit--these are more closely related to what this thesis proposes.

One important aspect of coarse-grained instruction processing that distinguishes

this thesis research from the previous efforts is the direction of granularity. The prior

approaches group independent operations into each unit, whereas the proposed schemes

primarily focus on dependent instructions to achieve coarse-grained processing. Figure 1-

2 illustrates and highlights the differences among instruction processing models. The ver-

tical direction in the figure implies time window (i.e. clock cycles) to perform a certain

operation. The horizontal direction implies the machine bandwidth required. In conven-

tional, instruction-level processing as in superscalar, out-of-order execution (Figure 1-2a),

executing instructions requires the same degree of scheduling decisions (e.g. one cycle per

scheduling decision) and resources (e.g. four issue slots). Coarse-grained parallel process-

ing as in LIW or vector SIMD machines (similar to an out-of-order version of the Itanium

processor [26]) (Figure 1-2b), where each unit contains two independent operations,

reduces the number of schedulable units and issue slots to achieve the equivalent execu-

tion bandwidth, although it still needs the scheduling decisions to be generated at the same

rate as the previous case. In contrast, the proposed approach for coarse-grained serial pro-

cessing (Figure 1-2c) achieves the same benefit as coarse-grained parallel processing,

FIGURE 1-2. Approaches to coarse-grained instruction processing.

S
ch

ed
lo

op
:

2
cy

cl
es

Exe BW: 4

2 issue
slots

Exe BW: 4

S
ch

ed
lo

op
:

1
cy

cl
e

2 issue
slots

Exe BW: 4
S

ch
ed

lo
op

:
1

cy
cl

e 4 issue
slots

Exe BW: 4
S

ch
ed

lo
op

:
1

cy
cl

e 4 issue
slots

(a) (b) (c)

8while it additionally enables finding the next issuable dependent operations at a slower

rate.

1.4 Macro-op Scheduling and Execution

The thesis proposes and evaluates two microarchitectural techniques that perform

coarse-grained instruction processing in superscalar, out-of-order processors: macro-op

scheduling and execution. This is enabled by grouping multiple instructions into a single

schedulable unit called macro-op (MOP), which defines the serial execution order of the

instructions contained in it. Macro-ops are dynamically created by examining register

dependences and grouping matching candidate instructions in a program.

Macro-op scheduling performs coarse-grained instruction scheduling. It performs

non-speculative pipelined scheduling of coarser macro-ops with multi-cycle latencies

while the processor core still executes the original dependent instructions consecutively.

At the same time, the scheduler handles fewer units since the original, multiple instruc-

tions are processed and issued together. This reduces the issue queue contention and wid-

ens the instruction window. An issued macro-op is converted back to the original

instructions, which are sequenced down to the conventional instruction-grained pipeline

and executed serially without complicating many structures and data paths.

Macro-op execution extends the range of coarse-grained instruction processing to

the entire set of out-of-order pipeline stages. Multiple original instructions in a macro-op

are managed and processed together as a single unit throughout the entire execution pipe-

line. The instruction scheduler for macro-op execution is similar to that of macro-op

scheduling, but is able to issue more instructions by eliminating the explicit sequencing

.

9operations required for macro-op scheduling. The original instructions, grouped in macro-

ops, perform the required work in each pipeline stage as a group until they reach the exe-

cution stage, in which stacked ALUs are configured to naturally sequence the macro-op

instructions through the execution stages. This approach enables each execution pipeline

to handle multiple instructions simultaneously.

1.5 Thesis Contributions and Outline

The thesis of my research is that coarse-grained instruction processing enabled by

macro-op scheduling and execution is a good approach to achieving complexity-effective,

high-performance machines that overcome the limitations of conventional superscalar,

out-of-order processor designs. I defend this thesis by demonstrating three key points:

• Many instructions do not require fine-grained, instruction-level controls.

Processing instructions at an instruction-level granularity may best optimize the

dataflow defined by a program in the form of register and memory dependences

among instructions. However, the way programs are written is serial in nature;

chains of dependent instructions do not require fine-grained, instruction-level con-

trols driven by complex data dependences. Processing dependent instructions in

groups does not sacrifice instruction-level parallelism and potentially provides

greater opportunities for reducing contention due to fewer units to process.

• Pipelined macro-op scheduling performs similarly or better than conventional

atomic scheduling.

Instruction scheduling logic is a major obstacle to building high-frequency micro-

processors since wakeup and select operations are not easily pipelined. When the

10conventional scheduler is naively pipelined, it loses the ability of issuing depen-

dent instructions consecutively since extra delays exceeding the instruction’s exe-

cution latency are induced. Performing pipelined scheduling of multi-cycle latency

macro-ops enables the scheduler to hide those extra delays and to issue dependent

instructions in back-to-back cycles. Also, macro-ops contain multiple original

instructions, and hence reduce the issue queue contention and widen the window.

• Macro-op execution increases bandwidth with similar or lower complexity hard-

ware.

In addition to the benefits of macro-op scheduling, i.e. pipelined instruction sched-

uling logic and a wider instruction window, macro-op execution increases the

machine bandwidth through the entire execution pipeline including issue, dispatch,

register file, and bypass logic. The same number of issue slots can handle more

instructions by issuing them in groups. Dispatching a macro-op in effect processes

multiple instructions. The same number of read ports to the register file supports

more instructions since the register dependence that links grouped instructions

does not require a register read access. The execution stages need only partial

bypass network since not all instructions can be issued consecutively.

To support these points, an elaborate study on the dependence structure of the pro-

gram that measures the potential for processing instructions at a coarse granularity is first

performed. Based on the characteristics of the programs measured by this study, I narrow

the design space of the microarchitectural techniques to enable coarse-grained instruction

processing and determine the policies for grouping instructions.

.

11Before I apply coarse-grained instruction processing to the instruction scheduling

logic, the performance impact of pipelined instruction scheduling and the reasons for dif-

ferent performance sensitivities of programs to pipelined scheduling are studied. Then, the

details of macro-op scheduling, its key enablers, and performance and implementation

issues are discussed. The proposed microarchitecture for macro-op scheduling, its perfor-

mance benefits, and trade-offs in its design space are tested and evaluated with extensive

simulations.

The studies on macro-op execution follow the steps similar to those of macro-op

scheduling; after the basic concept, potential benefit and the detailed microarchitecture is

discussed, I test and evaluate the potential of macro-op execution.

The rest of the thesis is organized as follows. Chapter 2 discusses the previous

work related to this research. Chapter 3 describes the experimental framework. Chapter 4

defines a macro-op, describes its implications and potential impacts on program and

microarchitecture, and measures the groupability of instructions. Chapter 5 analyzes the

effects of pipelined instruction scheduling. Chapter 6 details the microarchitecture for

macro-op scheduling. Chapter 7 evaluates macro-op scheduling. Chapter 8 presents

macro-op execution and its microarchitecture. Chapter 9 evaluates macro-op execution.

Finally, Chapter 10 provides conclusions of this thesis and directions for future work.

12

13Chapter 2

Related Work

This chapter outlines previous research that is closely related to the macro-op

scheduling and execution described in this thesis. This chapter first discusses related work

on processing instructions at a coarse-grained level or across multiple instruction bound-

aries. It also discusses related work on preprocessing and transforming instructions into

other forms to achieve performance and / or complexity benefits. Then, it describes related

studies on reducing complexity in many hardware structures that are likely to be a bottle-

neck in current and future microprocessors, such as instruction scheduling logic, register

file, and bypass logic.

2.1 Coarse-grained Instruction Processing

Macro-op scheduling and execution performs coarse-grained instruction process-

ing to reduce the complexity involved in managing instructions in superscalar, out-of-

order processors. There are numerous proposals to exploit coarse-grained instruction pro-

cessing for either reduced hardware complexity or improved performance.

Melvin, Shebanow and Patt [67] discussed the issues in atomic unit sizes and out-

lined the implementation of a front end to construct large atomic units. Their observation

is that larger architectural atomic units potentially decrease the size of the architectural

state of the machine and simplify the design of high performance machines due to fewer

architectural boundaries to preserve. They advocated larger atomic units for higher perfor-

mance and simpler controls. Although this work made important observations on the ben-

14efit of coarse-grained processing that potentially simplifies hardware design, it discussed

neither the direction of granularity (i.e. serial or parallel operations in an atomic execution

unit) nor the benefits of coarse-grained processing units consisting of serial operations.

Extending this basic paradigm, Melvin and Patt [68] proposed combining software or

compiler techniques with dynamically scheduled processors to extract more instruction-

level parallelism from the atomic units coarser than individual instructions. The proposed

ISA, called block-structured ISA, packs multiple instructions into a coarse atomic block

and enables the machine to track fewer architectural states across blocks since only results

that are live upon exit of an atomic block update the architectural states. It also enables

placing instructions within an atomic block in an arbitrary order (as opposed to a sequen-

tial order) to improve dynamic instruction scheduling by widening the instruction supply

bottleneck. The fundamental difference from this thesis research is that the instructions

within an atomic block are scheduled and processed dynamically and individually, which

still require fine-grained controls over instructions. In contrast, macro-op scheduling and

execution performs a coarse-grained control over a set of multiple instructions. Their

approach focuses on reducing the number of architectural states to improve performance,

whereas our approach focuses on reducing non-architected states (e.g. reducing the num-

ber of schedulable units) to lower control logic complexity.

There have been numerous efforts to process a set of computations in a group in

order to minimize the communication cost across multiple groups and to maximize the

processor utilization. In the area of dataflow architectures, the Monsoon processor by Pap-

adopoulos and Culler [75] exploits both fine-grained parallism within an activation frame

that localizes a set of computations within a processing element, and coarse-grained paral-

.

15lelism across different processing elements with low network traffic. The TRIPS architec-

ture by Sankaralingam et al. [72][81] aggregates a group of instructions into an atomic

hyperblock that is mapped to each dataflow-based processor core while coarse-grained

parallelism is exploited by executing multiple hyperblocks. Work in the area of Multisca-

lar processors by Franklin and Sohi [35][36][37], and Sohi, Breach, and Vijaykumar

[7][86] adopts the expandable split window paradigm that considers a window of instruc-

tions as a single unit, and exploits both fine-grained parallelism within a window and

coarse-grained parallelism across multiple windows by overlapping the execution of them.

The proposed processor is composed of a collection of multiple sequential processors,

which execute multiple blocks of instructions in parallel starting from multiple different

points in a sequentially written program. A activation frame in Monsoon processors and a

task in Multiscalar processors can be analogous to the coarse-grained schedulable unit

called macro-op in this thesis, although a macro-op is significantly finer and focuses on

register-level communication within a processor core.

There is a long and rich history of coarse-grained instruction set designs for

improved processing bandwidth with reduced complexity, ranging from classical vector

architectures, to long instruction word architectures, to SIMD instruction sets that have

been adopted as multimedia extensions to many current-generation ISAs

[80][90][15][33][34][10][52][22][59][83][63][79][24]. Since there are numerous propos-

als and working examples for these approaches, I do not discuss in detail the pros and cons

of such parallel instruction set designs. However, an important aspect of the approach pre-

sented here, which sets it apart from most of previous work, is that macro-op execution

exploits natural dependences of programs to extract parallelism whereas other approaches

16primarily search for independent operations to pack into a coarser processing unit1.

As related work on exploiting serial operations, there was an unimplemented

design for a Cray Research processor [18] that packs multiple dependent operations with

an implicit accumulator to chain them together. H. Kim and Smith [53] rearchitected the

implementation set to more explicitly identify dependent instructions sequences with a

shared accumulator register. This enables hardware that can efficiently dispatch dependent

instructions to logically independent datapaths, reducing the overhead of coordination and

synchronization across these distributed execution pipelines and leading to complexity-

effective, high-performance designs. There are also numerous proposals for dependence-

based clustered microarchitectures and techniques for complexity-effective instruction

scheduling, register file and bypass logic. These will be discussed later in their corre-

sponding sections.

From the viewpoint of packing multiple primitive operations into a coarser sched-

ulable unit and performing schedule and execution of macro-ops, the proposed microar-

chitecture employs a counter approach to recent x86 processor implementations that crack

a CISC instruction and convert it into multiple RISC semantics running on RISC-style

cores [21][48][42]. Although I do not propose a new instruction set architecture nor advo-

cate one design strategy over the other, the proposed approach may be closely related to

the endless and recurring debates about whether CISC or RISC is better, due to the simi-

larities between CISC instructions and macro-ops. A recent and relevant debate about the

design philosophy between the two approaches took place in mid 90’s, initiated by the

Cyrix M1 processor [66] that performs “native” execution of complex instructions on a

1. Some vector or SIMD operations such as the dot product operation require a serise of dependent
computations among the elements contained in a single coarse-grained unit.

.

17superscalar out-of-order core specialized for the x86 instruction set, as opposed to the

“RISC-like” approach employed in other x86 implementations by its competitors. Bluhm

and Garibay [5], advocating their native approach in the M1, argued that a RISC-like

approach may require more communication in the data path by creating more boundaries

to preserve, whereas the native approach enables only the architecturally-visible results to

be communicated across different functional units, achieving lower complexity and higher

performance--these are also the advantages of the coarse-grained instruction processing.

Despite their similarities, a fundamental difference between the proposed approach

and native execution of CISC instructions lies in the attributes of coarse-grained schedula-

ble units (either macro-ops or CISC instructions) designed for different purposes. Histori-

cally, one of the purposes of CISC was to reduce the semantic gap between high-level

language operations and machine language primitives [23]. Each instruction is designed

with respect to high code density and ease of programming, resulting in powerful but com-

plex operations that are often unsuitable for efficient hardware implementations. In con-

trast, decisions on which instructions are grouped into macro-ops are based on the

microarchitectural benefits in terms of complexity and performance of the underlying

hardware. Specifically, for complexity, our approach restricts the number of operations,

the number of source operands and the types of operations in macro-ops so that maintain-

ing regularity among macro-ops enable hardware resources to be efficiently utilized. For

performance, a single-cycle operation is placed as a macro-op head so that pipelined

instruction scheduling can achieve compelling performance of conventional atomic sched-

uling. The details of macro-op grouping will be discussed in Chapter 6 and Chapter 8.

Two hardware implementations that process multiple instructions at a coarser

18granularity--the AMD K7 [21] and the Intel Pentium M [39]--fuse multiple RISC ops or

micro-ops to reduce the number of units to be processed. Instead of breaking a complex

x86 instruction into multiple micro-ops, the decoder generates a single, coarse-grained

unit that contains multiple RISC operation semantics. This approach reduces the queue

occupancy in many pipeline stages including instruction scheduler due to fewer micro-ops

to process. In the instruction scheduler, this fused micro-op is broken into multiple RISC

operations and sent down to the execution pipelines according to the readiness of the cor-

responding source operands. The fundamental difference from our work is that the origi-

nal operations are scheduled and processed individually and hence execution of a coarser

unit is interruptible (i.e. partially executing one operation and delaying others in a coarse-

grained unit is allowed). In contrast, our approach forces uninterruptible and deterministic

execution within a macro-op and therefore individual instructions do not require fine-

grained controls for scheduling and execution, which reduces the rate of controls that must

be generated. To reduce complexity involved in tracking architectural states at multiple

instructions boundaries, designs like the Alpha 21264 [17] and the IBM POWER4 [71]

accommodate basic-block size groups of instructions in each reorder buffer entry to

reduce the complexity of the dispatch and commit logic.

Interlock collapsing or dependence collapsing techniques [64][82][38][50][98]

merge a series of dependent instructions into one single-cycle operation with more oper-

ands, reducing execution latency. In a sense, the proposed macro-op scheduling is a sched-

uler-side collapsing technique that exploits a similar grouping process to improve

scheduling latency rather than execution latency itself. Macro-op scheduling alters only

the dependence mapping in the scheduler and unmodified original instructions are exe-

.

19cuted; hence, it requires no changes in the datapath (e.g. special ALUs or 3-source register

read ports), nor any special handling of the intermediate results that other dependent

instructions may consume. Macro-op execution may require changes in the register file to

support three or more source operands if a macro-op allows more than two source oper-

ands. However, the total number of register read ports is lower than what is required to

service the same number of instructions individually. These issues are studied in detail in

Chapter 8.

2.2 Instruction Preprocessing and Transformation

Macro-op scheduling and execution examines register dependences among

instructions and generates macro-op pointers, which later direct macro-op formation pro-

cess to transform multiple instructions into coarse-grained macro-ops. There are numerous

proposals for preprocessing instructions and transforming them into other forms to

improve performance and / or reduce hardware complexity.

Jacobson and Smith [50], Friendly, Patel and Patt [38] proposed transforming

instructions based on peephole optimizations during trace cache line construction to

implement better instruction scheduling, constant propagation, instruction or dependence

collapsing and many other optimizations. Chou and Shen [16] proposed the instruction

path co-processor, which is a programmable internal processor that operates on instruc-

tions of the core processor to transform them into a more efficient stream, and showed the

performance gain from similar optimizations. I. Kim and Lipasti [55] proposed specula-

tive decode that also transforms instructions into a different instruction stream in order to

overcome the limitations of value-based dynamic optimizations under scheduling latency

20constraints.

A translation layer often exists to bridge the gap between the user-visible archi-

tected instructions set and a realizable implementation instruction set. A number of work-

ing examples that perform translation between them, ranging from trap-based translators

where unimplemented instructions are emulated in the operating system’s invalid instruc-

tion exception handler (e.g. Micro VAX or PowerPC 604 [47]); to microcoded emulation

routines stored in an on-chip lookup table (e.g. the Intel Pentium Pro [48] and its deriva-

tives, and the IBM POWER4 [71]); to binary translation approaches [25] like the Trans-

meta Crusoe processor [59] and the IBM DAISY [24], which perform a dynamic binary

translation with supports of virtual machines that translate instructions written in their user

ISAs to an internal VLIW-style instruction set.

Regarding the work on transforming instructions into other sequence considering

data dependences, work on instruction-level distributed processing by H. Kim and Smith

[53][54] proposed an instruction set and its co-designed microarchitecture based on

dynamic binary translation. Vajapeyam, Joseph and Mitra proposed a scheme for dynami-

cally vectorizing ordinary programs based on trace processors [97]. Pajuelo, Gonzalez and

Valero [73] proposed an approach to exploiting SIMD parallelism by dynamically gener-

ating SIMD instructions from regular binaries. An instruction set and its translation

approach that directly supports macro-op scheduling and execution in this thesis was pro-

posed by Hu and Smith [46]. It fuses dependent instructions using a software-based trans-

lator running on a co-designed virtual machine. This approach removes considerable

complexity from the hardware and enables more sophisticated heuristics for forming

macro-ops.

.

212.3 Complexity-effective Instruction Scheduling Logic

Many researchers have found that instruction scheduling logic will be a major bot-

tleneck in future microprocessors due to its poor scalability and atomicity. There have

been numerous proposals to overcome these limitations.

Palacharla, Jouppi and Smith [74] proposed the use of clusters to distribute the

scheduling window and data paths to alleviate the impact of high operating frequency by

introducing delay for inter-cluster communications. Specifically for instruction scheduling

logic, their approach enables a collection of small instruction windows to work as a wider

and deeper instruction window. Instruction steering logic examines data dependences

among instructions and forces chains of dependent instructions to be assigned to the same

cluster. A FIFO-style instruction queue in each cluster only checks the readiness of

instructions located at the head of FIFOs, eliminating expensive hardware mechanisms for

wakeup and broadcast operations and enabling simpler and faster instruction scheduling

logic.

Canal and Gonzalez [13], Michaud and Seznec [69], and Raasch, Binkert and Rein-

hardt [77] proposed several schemes for data-flow based scheduling that reorders instruc-

tions before they enter a small issue window. These approaches statically or quasi-

statically estimate dynamic issue timing of instructions considering data dependences, and

dispatch instructions into a small dynamic instruction window only when instructions

become soon to be issued. These approaches focus a demonstrably expensive hardware for

dynamic instruction scheduling to only instructions that are likely to be executed, achiev-

ing an effectively larger instruction queue structures.

Brekelbaum, Rupley, Wilkerson and Black [8] proposed the use of hierarchical

22instruction schedulers to achieve a large and deeper instruction window. This technique

exploits the observation that a significant portion of instructions is latency tolerant and

needs not be executed as fast as possible. Initially, all instructions are inserted into a large

and slow instruction window. As instructions are dequeued from the large instruction win-

dow, they are dispatched into either a small and fast window that supports fast consecutive

execution of dependent instructions, or a slow cluster that executes latency tolerant

instruction at a slower rate. By explicitly managing latency-tolerant instructions in a sepa-

rate cluster, the proposed microarchitecture can focus expensive hardware for schedule

and execution on the small number of instructions, leading to lower power consumption

and faster clock cycles at the expense of marginal performance degradation.

Lebeck et al. [61] studied the effect of cache misses on the instruction window and

explored scheduler designs that re-insert chains of dependent instructions after cache

misses are resolved. Draining the instruction queue by removing instructions dependent

on cache misses can increase the effective size of the instruction window by reallocating

issue entries to other newer instructions, overlapping long-latency dynamic events such as

cache misses to the lowest level of the memory system.

Hrishikesh et al. [43] proposed a segmented instruction window in which each seg-

ment has a different scheduling priority. They assumed a shifting or collapsing instruction

queue structure as underlying hardware, which fills the empty queue entries created by

issued instructions with other unissued instructions, and maintains the original program

order among instructions in the instruction queue. Since the older instructions in program

order that are likely to be issued can be found in a physically small section of the window

in this configuration, broadcasting instruction tags can be pipelined to reach different seg-

.

23ments with different priorities, hence potentially improving the cycle time of the schedul-

ing logic.

To break the atomicity of conventional instruction scheduling, Stark, Brown and

Patt [88] described speculative wakeup to stretch the wakeup and select operations over

two cycles. In this technique, each instruction keeps track of readiness of indirectly ante-

cedent instructions by two levels (grandparent instructions), as well as directly antecedent

instructions (parent instructions) as in conventional instruction scheduling logic. When an

instruction detects grandparent instruction become ready by monitoring the wakeup bus

activities, the instruction is speculatively scheduled in the following clock cycle so that

wakeup operations are overlapped with select phases and dependent instructions can be

consecutively issued by pipelined instruction scheduling logic with separate wakeup and

select stages.

Brown, Stark and Patt [9] extended and generalized the prior approach for pipelin-

ing instruction scheduling logic over multiple pipeline stages. This select-free instruction

scheduling moves the select phase of scheduling out of the single-cycle instruction sched-

uling loop. The key observation behind this proposal is that the number of ready instruc-

tions hardly exceeds the issue bandwidth. When all source operands of an instruction

become ready, scheduling logic speculatively broadcasts its own tag through the wakeup

bus without checking structural hazards among the instructions issued in each clock cycle.

Then the select operation is performed on the speculatively issued instructions outside the

instruction scheduling loop and a recovery mechanism later cancels mis-scheduled

instructions when structural hazards are detected. As in [88], this approach allows instruc-

tion scheduling logic to be pipelined without eroding the instruction-level parallelism as

24long as there are not many structural hazards among instructions issued in each cycle.

Ernst and Austin [27] proposed tag elimination, a combined scheme that uses spe-

cialized windows and last-tag speculation to achieve wakeup logic cycle time improve-

ment by reducing load capacitance on the wakeup bus. Their observation is that not many

instructions have two source operands that the instruction set architecture defines. For the

instructions with zero or one source operand, specialized instruction queue entries with

zero or only one tag matching logic are allocated. For the instructions with two source

operands that require two tag comparators, a last-tag predictor speculates which operand is

the one that triggers the actual issue, eliminating half of the tag comparators from the

wakeup bus. The combined benefits are reduced load capacitance on the wakeup bus

achieved by 1) reducing the number of tag comparators wired to the wakeup bus and 2)

shortening the length of the wakeup bus, since not all instructions queue entries need to

monitor the wakeup bus activities. In the cases where the last tag that triggers instruction

issue is mis-speculated and instructions are incorrectly scheduled even before all source

operands become ready, a scoreboard checks the correctness of the scheduling and recov-

ers from the mis-speculation, as similarly in load latency-related replay. In a similar vein,

I. Kim and Lipasti proposed sequential wakeup [56], which predicts last-arriving operands

of instructions with two source operands, and sequentially wakes up the first and the other

half of source operands in two consecutive clock cycles, reducing the load capacitance on

the wakeup bus. A major difference between this and tag elimination scheme is that

sequential wakeup is nonspeculative, and it incurs lower scheduling penalties for the cases

in which last-tag speculation is incorrect or both source operands should be awakened

simultaneously.

.

25Ernst, Hamel and Austin [28] proposed Cyclone, which is composed of a static

instruction scheduler and timed queue structures that circulate instructions through execu-

tion pipelines. When new instructions enter the out-of-order window, they are inserted into

the timed queue entries according to issue timings estimated by the static instruction

scheduling logic that manages time delays among instructions. Instructions in the timed

queue are shifted to the next entries every clock cycle. When they reach the end of the

structure, instructions are dequeued and issued. After instructions are executed, correct-

ness of execution is checked by a scoreboard integrated in the register file and bypass net-

work, which triggers replaying mis-issued instructions by re-inserting them again back to

the timed queue, recirculating instructions in the pipeline until they hit in the scoreboard

and correctly complete. In a similar context, Hu, Vijaykrishnan and Irwin [45] proposed

wakeup-free instruction scheduling.

Most of these studies try to overcome scalability and atomicity constraints in isola-

tion. In contrast, the work in this thesis explores the scheduler design space at a coarser

level with a consistent view to those problems, relaxing both constraints simultaneously.

2.4 Reducing Complexity in the Register File

Macro-op execution enables the same number of register read ports as the conven-

tional case to service more instructions, potentially reducing the total number of register

read ports.

Many researchers including Black and Shen [4], Tremblay, Joy and Shin [92], and

Farkas, Jouppi and Chow [29] studied the complexity of register file and found that the

area of a register file increases quadratically and the latency increases approximately lin-

26early as the number of ports grows. There have been numerous researches on reducing

complexity in the register file and improving its cycle time. This section will divide them

into two categories and briefly discuss them. One category is to reduce the total number of

entries in the register file by either efficiently managing them, or caching a few entries

into a small and separate structure, which can be directly accessed by the execution core

with low latency. The other category is to reduce the number of ports to the register file by

exploiting the fact that the register port requirements are relatively low since a significant

portion of value communications occurs through the bypass network.

2.4.1 Reducing the number of entries

The Cray-I has two sets of two-level register files to improve the cycle time of the

register file structure [80]. This machine needs compiler support to explicitly move values

between different levels of the register file.

Cruz, Gonzalez, Valero and Topham [19] and Balasubramonian et al. [3] studied

two-level hierarchical organizations with various caching policies that enable the smaller

register file to be accessed with lower latency than required for a unified structure. The

basic concept of hierarchical register file is similar to cache hierarchy that exploits locality

in memory accesses. The upper-level portion of the register file is small and highly multi-

ported to support the full execution bandwidth. On the other hand, the lower-level register

file design is slow but large enough to support all in-flight instructions in the machine.

Depending on the register cache management policy, the performance impact due to

upper-level register misses can be minimized while the processor can operate at a higher

clock frequency.

From a different perspective, there have been efforts for reducing the number of

.

27register entries below what is required for supporting all in-flight instructions in the pipe-

line. Monreal, Gonzales, Valero, Gonzalez and Vinals [40][70] proposed virtual-physical

registers, which reduces the size of the register file by delaying the allocation of actual

data storage to the physical registers until instructions become ready to execute. This tech-

nique is based on the fact that the lifetime of a register value generated by executing an

instruction is usually shorter than the period from allocation to deallocation of a physical

register. Lipasti, Mestan and Gunadi proposed physical register inlining [62], which

exploits the portion of the register lifetime from execution to deallocation. Since many

register values can commonly be expressed using fewer bits than the physical register

identifiers, the register identifiers can be directly used to carry such values and physical

register entries can be conserved.

Jourdan, Ronen, Bekerman, Shomar and Yoaz [51] extended the basic concept of

virtual-physical registers and exploited value locality in register values. They introduced

physical register reuse and multiple-to-one mappings in the register rename table in order

to reduce the size of the data storage in the physical register file. In a similar context, Bal-

akrishnan and Sohi [2] refined the previous approaches and optimized value-locality-based

register file design to focus on commonly used values, enabling a simpler implementation.

Borch, Tune, Manne and Emer [6] studied the effects of the load scheduling reso-

lution loop and found that its pipeline depth impacts on performance greater than other

portion of the pipeline. They proposed the distributed register algorithm as a way of

reducing the load resolution loop length, which manages a small register cache to reduce

the schedule-to-execution latency.

2.4.2 Reducing the number of ports

28Balasubramonian et al. [3] and Park, Powell and Vijaykumar [76] proposed tech-

niques to reduce the number of register ports. The fundamental observation behind their

approaches is that the actual register read or write port requirements are usually lower than

the machine execution bandwidth since not all instructions have the maximum number of

source and destination operands that the ISA defines, and also many value communica-

tions are performed through the bypass paths in the out-of-order execution window. For

read ports, their approaches place a fully- or partially-connected crossbar between execu-

tion slots and register ports. In order to multiplex a limited number of register ports, they

require an arbitration mechanism that counts register read port utilizations either at sched-

ule time or in a separate arbitration stage and directs instructions to access the assigned

ports. If the requests exceed the read port bandwidth, the current schedule is canceled and

instructions are replayed when read port conflicts are resolved. Park [76] also proposed a

scheme to reduce the number of write ports to the register file. The proposed macro-op

execution in this thesis in spirit shares the same observation as the previous proposals, and

forces source operands to read values off the bypass network, reducing the number of reg-

ister read ports. However, macro-op execution does not require any crossbar nor port arbi-

tration; the macro-op detection logic can be configured to generate macro-ops with fewer

source operands than those of the original individual instructions.

A real processor implementation, the Alpha 21264 [17] uses duplicated register

files to reduce the number of read ports per each copy of the register file. A similar

approch can be found in VLIW processors such as the TI C62x processor [89] that uses

clustered register files. Our approach is orthogonal to such a replicated register file and

can be applied in conjunction with other complexity-effective register file techniques.

.

292.5 Bypass Logic Complexity and Clustered Microarchitecture

Many proposals for reducing bypass logic complexity are closely related to clus-

tering the machine based on data dependences, since this approach minimizes global com-

munication across independent instructions and also maximizes local communication

within a cluster for a series of dependent instructions. Bypass logic complexity is reduced

by macro-op execution since chains of dependent instructions are grouped into macro-ops

and value communication within a macro-op occurs locally through a specialized bypass

path.

The PEWs architecture by Ranganathan and Franklin [78], and the dependence-

based instruction steering by Palacharla, Jouppi and Smith [74], and the Multicluster

architecture by Farkas, Chow, Jouppi and Vranesic [30] have dependence-based clusters to

reduce hardware complexity in instruction scheduling and bypass logic. In a similar con-

text, the ILDP by H. Kim and Smith [53] is an effort of improving the physical communi-

cation locality. The Alpha 21264 [17] has a clustered microarchitecture with a simpler

bypass network.

A distinctive aspect of the bypass logic used for macro-op execution is that, in a

sense, macro-op execution can be interpreted as vertically clustering (or horizontally slic-

ing across dependence chains) the datapaths and bypass paths, whereas other clustered

microarchitectures horizontally cluster the machine along with the chains of dependent

instructions. This comes from the fact that globally visible values communicated through

bypass paths can be generated only by the tail instruction grouped in a macro-op. Other

values generated by head instructions of macro-ops are communicated through either local

bypass paths or the register file. This approach is orthogonal to the conventional horizon-

30tal clustering along with dependence chains, and they can be used in combination.

31Chapter 3

Experimental Framework

This chapter describes the experimental framework used in this thesis. First, the

base processor microarchitecture assumed in the thesis research is described, which is a

current generation, conventional superscalar out-of-order processor. Then, this chapter

discusses the simulator models and the types of experiments for which they are used.

Finally, the suite of benchmarks, input sets, and their execution characteristics measured

on the baseline timing simulator are presented.

3.1 Base Processor Microarchitecture

The pipeline and the microarchitecture of the processor assumed in this thesis

research is a conventional, current-generation superscalar out-of-order processor.

3.1.1 Pipeline overview

Figure 3-1 presents an overview of the processor pipeline. The pipeline consists of

the following stages: Fetch, Decode, Rename (2), Queue, Schedule, Dispatch (2), Register

File Read (2), Execute, Writeback and Commit. The in-order portion (from fetch to queue

stages) of the processor pipeline is similar to the Alpha 21264 [17], with an additional

stage in register renaming. The out-of-order portion (from schedule to writeback stages) of

the processor pipeline was modeled after the integer pipeline of the Pentium 4 [42]. In the

instruction fetch stage, the branch prediction mechanism generates the next target PC

address and accesses the instruction cache to bring instructions into the pipeline. Decode

logic decodes instruction words and generates necessary control signals depending on

32

instruction types. In the rename stage, the source and target register identifiers are

renamed and physical registers are assigned to remove false dependences. Since the regis-

ter map table is accessed a few clock cycles before instructions enter the out-of-order win-

dow, they need to check the most recent ready status of source operands in the queue

stage, and are inserted into free issue queue entries. At the same time, this stage allocates

the reorder buffer (ROB) entries to the instructions so that the correct architectural state is

maintained in the event of pipeline flushing for branch misprediction or precise exception

handling. In the scheduling stage, a set of wakeup and select operations links data depen-

dences among instructions and speculatively (in terms of assuming that loads will hit in

the cache) issues instructions down to the pipeline. In order to reduce the scheduling logic

complexity, the payload RAM [9] is located next to the scheduling stage (in the dispatch

stage) and the actual register identifiers and other necessary information are accessed from

this separate structure. At the same time, issued instructions are dispatched to the execu-

tion pipeline. In the register file read stage, the register operand values are obtained from

the physical register file. If the source operand values have not been written back and are

unavailable in the physical register file, they will be read off the bypass network. Func-

tional units in the execution stage realize the semantics of instructions. For memory oper-

ations, a load instruction that finishes its address generation proceeds to the memory stage

(not shown in the figure), which is located next to the execute stage. After an instruction

completes execution, its result value is written back to the physical register file. Finally,

FIGURE 3-1. Processor pipeline.

Rename Rename Queue SchedFetch Decode Disp Disp RF RF Exe WB CommitRename Rename Queue SchedFetch Decode Disp Disp RF RF Exe WB Commit

.

33

instructions update architectural state (register and memory) with their result values in the

commit stage in program order when they become the head of the ROB. ROB entries are

also released at this point and become available to other newly fetched instructions. An

overview of the microarchitecture modeled in the timing simulator is illustrated in

Figure 3-2.

3.1.2 Instruction scheduling logic

The function of instruction scheduling logic is to wake up instructions dependent

on the instructions issued in the previous cycle, and to select the next issue candidates

from the pool of ready instructions. This set of wakeup and select operations is performed

every clock cycle to issue dependent instructions consecutively.

This thesis studies macro-op scheduling and execution built on two different styles

of wakeup logic arrays: conventional CAM-style and wired-OR-style [74][9]. CAM-style

wakeup logic usually has two tag comparators to support up to two source operands for

each instruction. Many conventional processor implementations use physical register

specifiers as tags. A scheduling cycle starts when an issued instruction broadcasts its tag

through the wakeup bus. Other instructions in the issue queue compare the tags against

their source operands, and set ready bits if they match. When both source operands

FIGURE 3-2. An overview of the microarchitecture modeled.

cache
portsFetch

Bpred

Decode
&

Rename
Queue

Reorder Buffer

Payload
RAM

Physical
RF

Load / Store queue

Issue
queue

Instruction
Scheduling

Issue
queue

Instruction
Scheduling

Register
Map

34become ready, the instruction sends a request signal to select logic, which selects ready

instructions to issue considering the available resources (i.e. functional units and memory

ports) and the priorities of instructions. The selected instructions are issued and broadcast

their destination tags; at this point, a cycle of scheduling is completed.

The basic operation of wired-OR-style wakeup logic is similar to that of CAM-

style wakeup logic, except that ready status and dependence tracking is managed in a

dependence vector form. Each bit in the vector represents a dependence on a parent

instruction at the corresponding bit location. In order to reduce the number of wires run-

ning vertically through the wakeup array, dependence tracking in this wakeup array is

managed in a separate name space (i.e. issue queue entry number) from physical register

identifiers. This can be enabled by performing a process similar to register renaming, i.e.

register to issue queue entry name conversion. Each instruction monitors the readiness of

source operands every clock cycle by checking if all wakeup lines of matching depen-

dence bits are asserted, and sends a request signal to select logic. When an instruction is

issued, it asserts the wakeup line corresponding to its own issue queue entry. This process

in turn wakes up dependent instructions that have matching bits in their dependence vec-

tors.

3.1.3 Speculative scheduling and replay

Out-of-order processors are built based on Tomasulo’s algorithm [91], in which

instructions that finish execution wake up their dependent instructions and scheduling

logic selects issue candidates from the pool of ready instructions. In recent physical-regis-

ter-based processor designs, the number of pipeline stages between instruction scheduling

and execution has increased to accommodate the latency needed for reading the register

.

35

file and performing other bookkeeping duties. As instruction scheduling and execution

stages are separated, a naive implementation (e.g. based on the original Tomasulo’s algo-

rithm) fails to achieve maximum ILP because back-to-back execution of dependent

instructions is no longer possible. To address this problem, current-generation processor

implementations [17][42][96] use speculative scheduling in which the instruction sched-

uler speculatively wakes up and selects dependent instructions several clock cycles before

the actual execution.

This process is illustrated in Figure 3-3. In the schedule stage, the wakeup and

select operations link data dependences among instructions, and initiate the speculative

execution wavefront [84][57]. This speculative image of execution is projected to the exe-

cution stage and drives the actual instruction execution, creating the real execution wave-

front. Since load latency is not deterministic, instructions dependent on loads are

scheduled assuming the common case cache hit latency. If load instructions incur dynamic

events (e.g. cache misses or memory dependences) unexpected at schedule time, the actual

instruction execution may diverge from the scheduled execution. In this scheduling miss

case, the current execution of load-dependent instructions are canceled and will be

replayed with correct inputs after the mis-scheduling condition is resolved. If the schedul-

FIGURE 3-3. Speculative scheduling and replay.

Fetch Dec Ren Que Sched Disp Disp RF RF Exe Com-
plete

Com-
mitRen

speculative execution
wavefront

real execution
wavefront

instruction flow

verification flow

depencence
linking

data
linking

mis-scheduling
detected

Fetch Dec Ren Que Sched Disp Disp RF RF Exe Com-
plete

Com-
mitRen

speculative execution
wavefront

real execution
wavefront

instruction flow

verification flow

depencence
linking

data
linking

mis-scheduling
detected

WB

36ing is correct and instructions are successfully executed, they become ready for commit so

that the processor’s critical resources, i.e. the issue queue entries, can be reclaimed or a

branch misprediction can be resolved earlier without waiting to reach commit.

3.1.3.1 Source of scheduling misses

Instruction scheduling resolves both data dependences and structural dependences.

Since scheduling is ultimately converted into timing decisions (i.e. time slot allocated for

a certain resource), a scheduling miss occurs when the actual execution diverges from the

speculated order of execution due to dynamic changes in execution latency. This is prima-

rily caused by load instructions with variable execution latency. If the actual load latency

is shorter than what was assumed, this does not create any problem although the real exe-

cution may lose some opportunities to reduce the execution time or to save resource uses.

However, if the actual latency is longer than expected, this should trigger replay opera-

tions because dependent instructions cannot get correct load values in time when they

reach the execution stage. Some processor implementations [42] issue load instructions

assuming that they hit in the first level cache because this is the common case. Alterna-

tively, load latency predictions as in Alpha 21264 can be used to avoid frequent schedul-

ing misses by conservatively issuing instructions with respect to longer load latency (e.g.

L2 access latency) [17][101].

These are the conditions in which load instructions cause scheduling misses:

• Cache miss: this case also includes resource conflicts (e.g. cache bank conflict

[101]) in the cache / memory system

• Data TLB miss

• Store-to-load memory dependence: Since memory dependence is dynamically

.

37detected during execution, a load may not complete with a predetermined fixed

latency if a memory aliasing is detected but the store data is not available, or if a

memory aliasing cannot be determined since preceding store addresses have not

been computed.

Scheduling misses may also be caused by many speculative techniques for perfor-

mance or complexity optimizations but such techniques are beyond the scope of this thesis

research and will not be discussed.

3.1.3.2 Scheduling replay

As mentioned in the previous sections, the purpose scheduling replay is to cancel

the execution of incorrectly issued instructions and to reschedule them when mis-schedul-

ing condition is resolved and correct source values become available. Although there are

many possible implementations of scheduling replay mechanisms, the base machine

model assumed in this thesis uses an issue-queue-based, position-based selective replay

scheme [57].

The issue-queue-based replay is similar to the one used in the Alpha 21264 [17],

where an instruction can leave the issue queue only after it is correctly executed. The

shortcoming of this approach is that many issue queue entries can be unnecessarily held

by correctly scheduled instructions, which reduces the effective size of the window. How-

ever, issued instructions can monitor all wakeup and rescheduling activities, which

enables instructions to be dynamically scheduled after replay events are detected. In order

to track data dependences among instructions and terminate incorrect speculative execu-

tion wavefront propagation, each issue queue entry has a dependence matrix in which each

bit represents the two-dimensional position of a direct and indirect parent load instruction

38in the pipeline. When a load mis-scheduling is detected, all instructions dependent on the

load are selectively invalidated and replayed based on the information stored in depen-

dence matrices. All other instructions independent on the load are unaffected by the

rescheduling event. The details of issue-queue-based, position-based selective replay

mechanism are presented in [57].

3.1.4 Memory disambiguation

In order to resolve memory dependences among instructions in the pipeline, the

base microarchitecture uses a load / store queue (LSQ), which tracks readiness and effec-

tive addresses of load and store instructions. When a load or store instruction enters the

out-of-order window, a LSQ entry is allocated. A load can be issued only after its source

operand dependence is satisfied and all earlier store instructions in program order has been

issued or executed. This policy guarantees that a load can check if it is aliased with the any

of previous stores by the time it reaches the writeback stage. A store instruction is decoded

into two separate operations (e.g. an effective address generation and an actual store oper-

ation), and writes the store data into the memory system when the instruction is commit-

ted. This configuration is similar to the one used in the Pentium 4 [42].

When a store-to-load aliasing is detected during execution, and the store value is

available, the value is forwarded to the load instruction with the cache hit latency so that

this operation does not incur any scheduling replay event. If an aliasing is detected but the

store value is not available, the load and its dependent instructions are replayed. If a load

cannot determine if it is aliased with earlier stores in program order since the store address

operation was issued before the load but has been invalidated due to scheduling replay,

this case is also handled as a scheduling miss; the load and its dependent instructions are

.

39replayed.

3.2 Simulators

The experiments for this thesis research are performed using two types of simula-

tors built based on SimpleScalar-Alpha 3.0a tool set [11], a suite of functional and timing

simulation tools for the Alpha ISA. In order to characterize the groupability of instructions

(Chapter 4), a functional simulator has been developed to collect program characteristics

that are affected by neither machine parameters nor dynamic runtime environments. For

detailed performance analysis of pipelined instruction scheduling and evaluation of

macro-op scheduling and execution (Chapter 7 and Chapter 9), an execution-driven timing

simulator has been developed, which models the details of macro-op scheduling and exe-

cution, as well as the key aspects of the microarchitecture described in Section 3.1.

3.2.1 Functional simulator

The functional simulator models the architectural behavior of the processor at

instruction level. It is derived from sim-profile in the SimpleScalar tool set [11], and has

been extended to collect program characteristics related to macro-op scheduling and exe-

cution. As the original tool set does, this functional simulator executes only user-level

instructions and system-level instructions (e.g. system calls) and operating system codes

are handled by separate proxy routines and hence it does not collect any information on

operating system behavior.

3.2.2 Timing simulator

The execution-driven, timing simulator used in this thesis research is derived from

40sim-outorder in the SimpleScalar tool set [11], and has been extended to model the

detailed base machine microarchitecture and to incorporate the features required for

macro-op scheduling and execution. Just as the functional simulator, this timing simulator

only executes user-level instructions and does not capture system level behaviors. Here

are several key aspects of modifications adopted to the original sim-outorder code:

• Deeper and configurable pipeline: in order to simulate the impacts of branch and

load scheduling resolution loops on performance, modeling more realistic pipeline

structures similar to current-generation processor implementations is essential.

The timing simulator used in this thesis research can simulate extra pipeline stages

added to the in-order portion (from fetch to queue) and the out-of-order portion

(from schedule to execute) of the processor pipeline. In addition, the in-order por-

tion of the pipeline correctly models the back pressure that may be created by e.g.

queue contention, and prevents instructions from advancing to the next pipeline

stages when queue contention is partially resolved (i.e. it does not compress

instructions in the pipeline). All extra stages (in-order as well as out-of-order por-

tion) added to the pipeline increase the branch misprediction penalty. In addition,

the extra pipeline stages added between schedule and execute stages increase the

load mis-scheduling penalty.

• Speculative scheduling: unlike the RUU-based machine model that the original

sim-outorder assumes, the base processor microarchitecture is a physical-register-

based machine in which an issued instruction acquires source values from a sepa-

rate physical register file before execution. Due to the additional pipeline stages

between schedule (issue in the original sim-outorder) and writeback, speculative

.

41scheduling is essential in order to ensure consecutive execution of dependent

instructions in such a pipeline configuration. The timing simulator used in this

research faithfully models speculative scheduling and execution. Instructions are

speculatively awakened and issued several clock cycles before the actual execution

occurs, assuming load instructions have the fixed execution latency (DL1 hit

latency). The speculative scheduling assumed in the base processor microarchitec-

ture is detailed in Section 3.1.3.

• Scheduling replay: when a scheduling miss occurs due to load latency mispredic-

tion, the load and its dependent instructions are invalidated and replayed. The tim-

ing simulator used in this thesis research models three different types of issue-

queue-based scheduling replay schemes: squashing replay, delayed selective

replay, and position-based selective replay [57]. Among those replay schemes, the

base machine model uses the position-based selective replay, which is an ideal

scheme that instantly terminates incorrect speculative execution wavefront and

does not affect independent instructions [57].

• Separate issue queue from ROB: unlike the RUU-based original sim-outorder, the

timing simulator has issue queue structures managed separately from ROB, model-

ing the microarchitectural impact of issue queue contention on performance. The

policy for issue queue management used in the timing model is similar to the one

used in the Alpha 21264 [17]; an issue queue entry is allocated to each instruction

when inserted into the out-of-order window, and deallocated when the instruction

is successfully executed.

• Improved memory disambiguation: the timing simulator has an improved memory

42disambiguation model that correctly handles fully overlapped (i.e. all data bits are

available from a single earlier store that has not updated the memory state) and

partially overlapped (i.e. some data bits are available from prior uncommitted

stores but other bits should be accessed from the memory system) store-to-load

aliasing cases. The instruction scheduler and the datapath were also appropriately

modified so that it supports the memory disambiguation policy described in Sec-

tion 3.1.4. Note that the base machine model assumes a full store-to-load bypass

network that supports partially overlapped aliasing cases within the LSQ by

accessing the data cache and merging cache and uncommitted store values. In

order to validate the heuristics for detecting cycle conditions induced through

memory dependences by grouping instructions in macro-op scheduling and execu-

tion, there is also an alternative configuration in which partially overlapped aliases

are handled only through the memory system. Executing aliased loads is stalled

until after antecedent stores are committed and write store values to the memory

system in this case.

• NOP handling: Alpha binaries contain many no-ops (NOPs) to satisfy certain

instruction alignment requirements. They are filtered out by the decoder without

being executed [17]. We note that NOPs that perform cache prefetching operations

are still executed but do not incur scheduling misses, as described in [17].

3.2.3 Verification and debugging

For the timing simulator that models detailed microarchitectural features such as

speculative scheduling and replay as well as macro-op scheduling and execution, several

difficulties arise in identifying the cause of malfunctions (i.e. deadlocks or livelocks) and

.

43verifying execution behaviors for the following reasons. First, due to the attribute of spec-

ulative scheduling, a single dynamic instruction may incur multiple executions within the

out-of-order window before being committed. Second, the readiness of instructions (out-

put registers) can transition from ‘ready’ to ‘not ready’ state when scheduling replay

occurs, which potentially causes other dependent instructions to complete their execution

even before the parent instruction completes, if handled inappropriately. Third, identifying

the cause of deadlock or livelock conditions should track multiple levels of dependence

chains across instructions in reverse program order, since such conditions generally

emerge many clock cycles after an incorrect simulator behavior occurs. Fourth, livelock

conditions may occur due not only to simulator bugs but also to complicated and com-

bined side-effects of scheduling priority functions, changes in register dependence map-

pings (for macro-op scheduling and execution) and memory access patterns of benchmark

programs.

To verify the execution behavior and debug the timing model that ensures correct

architectural state of the proposed microarchitecture, three standard approaches were used

and implemented in the timing simulator as follows:

• Back-end scoreboard: to verify the correct scheduling and execution behavior of

the timing simulator, a scoreboard is located in the back-end of the pipeline (i.e.

writeback stage) and checks if each instruction is executed with correct source reg-

ister inputs. This approach ensures that the out-of-order execution core runs

dynamic instructions in the correct dependence order. Incorrect behavior observed

during execution automatically terminates simulation, reporting the cause of the

error.

44• Execution trace generation: to track long-period execution behaviors and instruc-

tion movement in the processor pipeline, the timing simulator generates execution

traces and log messages. This execution trace differs from the conventional

dynamic instruction trace in that the execution trace contains unarchitected

machine state, instruction movement and dynamic events in each pipeline stage.

When deadlock or livelock conditions are detected by the watchdog timer that

monitors if no instruction is committed for the predetermined period, the current

simulation is terminated and the simulator is configured to generate the execution

trace when the problematic simulation is performed again, so that long-period exe-

cution behaviors leading up to the emergence point can be tracked and analyzed.

• Microbenchmark test: to ensure the correct behavior of macro-op scheduling and

execution implemented on the timing simulator, several microbenchmark pro-

grams were written and tested. The proposed techniques primarily improve

instruction scheduling driven by register dependences, and are also dependent on

the instructions placement. In these circumstances, a standard approach to generat-

ing microbenchmarks using, e.g. standard C codes compiled with a -O0 (no opti-

mization) option is not suitable for our purpose since we lose full control over both

instruction placement as well as register allocation. Therefore, all microbench-

marks were manually written using an inline assembler in C, and compiled by gcc

using a -O2 option, which does not alter the manually-written assembly code but

minimizes the overhead of other miscellaneous instructions added to the prologue

and epilogue portion of the compiled binary.

.

453.2.4 Machine Parameters

The base machine configuration is summarized in Table 3-1. For the performance

sensitivity study, I also test various machine configurations in later chapters.

Table 3-1: Base machine configuration.

Parameters Configuration

Instruction fetch 4 instructions per cycle. Fetch stops at the first taken branch in a cycle. Can-
not fetch across cache line boundaries in the same cycle. 32-entry fetch
queue.

L1 Instruction Cache 16 Kbytes, 2-way set associative, 64-byte line, 2-cycle hit latency, LRU
replacement policy. 4K-page, 64-entry ITLB.

Branch Predictor Combined branch prediction of bimodal and gShare with a selector. The
bimodal predictor has 4K-entry, 2-bit saturating counters. The gShare pre-
dictor has 4K-entry, 2-bit saturating counters with a 12-bit global history
register. The selector has 4K-entry, 2-bit saturating counters. 16-entry return
address stack (RAS). 4K-entry 4-way branch target buffer (BTB). The glo-
bal history register is speculatively updated at prediction time and later
fixed with correct history when a misprediction is detected. The whole
branch predictor is permanently updated at commit time.

Out-of-order execution 4-wide issue and commit, 128-entry ROB, 128-entry unified issue queue,
128-entry LSQ, speculative scheduling, issue-queue-based and position-
based selective replay.

Functional Units
(latency)

4 integer ALUs (1), 2 floating ALUs (2), 2 integer MULT/DIV (3/20), 2
floating MULT/DIV (4/24), 2 general memory ports (2). A load takes 3
cycles (uncracked AGEN + port access).

L1 Data Cache 16 Kbytes, 4-way set associative, 64-byte line, 2-cycle hit latency, LRU
replacement policy. 4K-page, 128-entry DTLB.

Memory System
(latency)

256 Kbytes, 4-way, 128-byte line unified L2 (8), main memory (100).

463.3 Benchmarks

The benchmark programs that this thesis research uses are the SPEC CINT2000

benchmark suite [87]. Since one of primary goals of this thesis research is to relax the

scheduling atomicity constraints, and macro-op scheduling and execution primarily

focuses on optimizing integer instructions with single-cycle execution latencies (these rea-

sons will be further discussed in Chapter 6 and Chapter 8), floating-point benchmarks

were not tested. All benchmarks were compiled with the DEC C/C++ compilers under the

OSF/1 V4.0 operating system using -O4 optimization. Table 3-2 shows the benchmarks,

input sets, the number of instructions committed, and other program characteristics col-

lected on the functional simulator.

The large reduced inputs sets from [60] were used for all benchmarks except for

crafty, eon and gap. These three benchmarks were simulated with the reference input sets

from beginning (without fast-forward) up to three billion instructions since the reduced

Table 3-2: Benchmarks and their program characteristics.

Bench-
marks

Input sets Inst count
% 1-
cycle
ALUs

%
controls

%
loads

%
stores

%
long-
lat /
FPs

%
NOP

%
Misc

bzip lgred.graphic 2.64B 48.4 11.0 24.5 12.3 0.0 3.7 0.0
crafty crafty.in 3B 49.8 11.2 28.3 5.6 0.4 4.7 0.0

eon chari.con-
trol.cook

3B 25.8 11.4 24.6 17.3 14.2 6.7 0.1

gap ref.in 3B 48.1 6.8 21.2 11.6 7.3 4.9 0.1
gcc lgred.cp-decl.i 5.12B 36.6 14.3 20.1 11.5 0.1 16.9 0.5

gzip lgred.graphic 1.79B 55.7 11.2 19.1 6.5 0.0 7.6 0.1
mcf lgred.in 0.79B 37.3 21.7 23.8 8.7 0.0 8.1 0.4

parser lgred.in 4.52B 45.5 15.9 21.8 9.1 0.1 7.6 0.1
perl lgred.mark-

erand
2.06B 40.1 13.4 24.8 10.2 1.8 9.1 0.0

twolf lgred.in 0.97B 46.7 11.7 21.4 6.9 5.8 7.3 0.0
vortex lgred.raw 1.15B 35.5 16.4 24.2 16.3 0.3 7.1 0.2

vpr lgred.raw 1.57B 42.8 10.8 24.6 7.9 6.5 6.4 0.0

.

47

inputs are not available. All other benchmarks were tested using end-to-end runs. Note

that the number of committed instructions contains NOPs since they still affect the instruc-

tion fetch and occupy decode slots in the in-order portion of the pipeline, although they are

filtered out by the decoder logic without execution.

Table 3-3 shows the runtime characteristics of the benchmarks collected on the

base machine. The details of machine configurations were presented in Table 3-1. Note

that instruction and data cache miss rates (second and third columns) are presented on a

per instruction basis and a per reference (i.e. read or write access) basis, respectively. In

addition, they include speculative accesses of wrong-path instructions. Compared with the

DL1 miss rates (third column), on the other hand, the fourth column (% load replays /

loads) in the table presents the rate of committed loads that incur scheduling replay due to

load misses or store-to-load aliases. These numbers are greater than DL1 miss rates (third

column) because many scheduling misses come from store-to-load aliases, and multiple

accesses to a newly fetched cache line may all be counted as scheduling misses, whereas

Table 3-3: Runtime characteristics.

Bench-
marks

% IL1
misses /

fetched insts

% DL1
misses / refs

% load
replays /

loads

% bpred
misses /
branches

Original
IPC

(w/ 0 extra
stage)

Base
IPC

(w/ 1 extra
stage)

bzip 0.01 1.73 5.01 5.40 1.55 1.53
crafty 1.87 4.21 7.46 5.63 1.57 1.55

eon 0.89 0.68 5.02 4.32 2.16 2.13
gap 0.51 0.66 2.09 5.17 2.11 2.10
gcc 1.15 2.41 4.64 6.32 1.31 1.29

gzip 0.01 3.02 7.90 5.37 2.04 1.99
mcf 0.01 12.61 46.74 3.64 0.38 0.38

parser 0.12 2.96 9.69 4.40 1.14 1.12
perl 0.13 0.19 3.69 18.16 1.37 1.31

twolf 0.26 4.65 19.45 10.62 1.54 1.50
vortex 1.71 0.17 6.89 0.90 1.76 1.75

vpr 0.01 3.10 13.08 12.65 1.70 1.64

48only the first access to the line is counted as a cache miss. Therefore, this load replay rate

is more meaningful since they account for the load misses observed by the processor core.

The fifth column presents the rate of control (i.e. branches, direct / indirect jumps) mispre-

dictions that incur either machine squashing (e.g. due to wrong target PC or direction) or

fetch redirection (e.g. direction hit but BTB miss). In the case of machine squashing, the

branch misprediction penalty is at least 14 clock cycles. The branch predictor configura-

tion is detailed in Table 3-1.

The last two columns require an explanation. The Original IPC column shows the

IPCs (committed instructions / execution cycles) measured on the baseline machine con-

figuration where instruction scheduling logic performs a set of wakeup and select opera-

tion atomically every clock cycle. When scheduling logic is pipelined over two pipeline

stages, the machine will suffer performance degradation primarily from not being able to

issue dependent instructions consecutively. A secondary effect of pipelining instruction

scheduling logic is that an extra stage (i.e. separate select stage) is added to the pipeline,

which increases speculation-related penalties for load scheduling replay and branch

misprediction recovery [6]. Since the secondary effect is dependent on the performance of

branch prediction or load hit / miss prediction [17][101], it is necessary to decouple the

secondary effect from experimental results so that we can measure how effectively the

techniques proposed in this thesis improve pipelined instruction scheduling logic. To do

so, the last column (Base IPC) presents the IPCs measured on the baseline machine with

one extra pipeline stage. Therefore, the total number of pipeline stages in the base (with

conventional instruction scheduling logic) and other comparison cases (with pipelined

scheduling logic) are the same. For the rest of this thesis, all performance data will be

.

49compared to this machine configuration, which will be referred to as the base machine

unless specified otherwise. Note that this approach was also used in other studies on pipe-

lined instruction scheduling logic [9][58]. Since the performance impact of the extra pipe-

line stage is 1.6% on average across the benchmarks, this should not affect the

fundamental conclusions of this research.

In order to simplify our discussion and highlight the key results of the experiments

performed for this thesis study, I frequently present relative performance data compared to

the base case. IPCs of the base machine with various scheduler and issue width configura-

tions used in this thesis can be found in Table 3-4 and Table 3-5. The detailed discussions

on the results here will be presented in the corresponding chapters. In these tables, a

machine with N issue bandwidth and M-cycle scheduling logic is referred to as N-wide-M-

cycle. N-wide-1-cycle is a machine with conventional atomic instruction scheduling that

issues dependent instructions consecutively. N-wide-2-cycle machines have scheduling

logic pipelined over two stages. The details of 2-cycle scheduling will be discussed in

Chapter 5. All machines have the same 4-wide fetch, decode and commit bandwidth as the

base case (4-wide-1-cycle). Other narrow issue bandwidth configurations (3-wide-M-cycle

and 2-wide-M-cycle) will be used to evaluate macro-op execution in Chapter 9.

Before we start evaluating the effectiveness of macro-op scheduling and execu-

tion, the 4-wide-M-cycle machine with the 32-entry issue queue should be discussed,

since its performance is not significantly better than that of 3-wide-M-cycle machines

with the same size issue queue. This is because the machine is unbalanced in that the exe-

cution bandwidth is not fully utilized with such a small issue queue size. In other words, 4-

wide execution bandwidth requires more than 32 issue queue entries (at least 48 entries

50are preferable) given the pipeline and resource configuration. However, the results mea-

sured on this machine are still meaningful since our techniques reduce issue queue conten-

tion and overcome this limitation in many cases.

.

51

Table 3-4: Base IPCs with various scheduler and issue width configurations (32- and 48-
entry issue queue).

Bench-
marks

4-wide
-1-cycle

4-wide
-2-cycle

3-wide
-1-cycle

3-wide
-2-cycle

2-wide
-1-cycle

2-wide
-2-cycle

32-entry issue queue
bzip 1.40 1.30 1.37 1.28 1.22 1.16

crafty 1.45 1.38 1.43 1.36 1.29 1.25
eon 1.86 1.81 1.83 1.78 1.63 1.59
gap 1.73 1.42 1.71 1.41 1.53 1.35
gcc 1.24 1.20 1.22 1.19 1.12 1.10

gzip 1.79 1.48 1.74 1.46 1.49 1.32
mcf 0.34 0.33 0.34 0.33 0.33 0.33

parser 1.06 0.94 1.05 0.93 0.98 0.88
perl 1.22 1.16 1.21 1.15 1.12 1.08

twolf 1.36 1.21 1.34 1.20 1.21 1.12
vortex 1.60 1.56 1.58 1.54 1.43 1.40

vpr 1.48 1.34 1.44 1.31 1.28 1.20
48-entry issue queue

bzip 1.51 1.41 1.44 1.35 1.23 1.18
crafty 1.54 1.48 1.49 1.44 1.30 1.27

eon 2.13 2.05 2.05 1.97 1.67 1.63
gap 1.98 1.56 1.91 1.55 1.56 1.42
gcc 1.29 1.25 1.26 1.23 1.12 1.10

gzip 1.96 1.61 1.82 1.54 1.48 1.31
mcf 0.37 0.36 0.37 0.36 0.36 0.35

parser 1.12 0.99 1.09 0.97 0.98 0.89
perl 1.30 1.26 1.27 1.23 1.15 1.13

twolf 1.47 1.31 1.43 1.28 1.24 1.15
vortex 1.74 1.71 1.70 1.67 1.47 1.46

vpr 1.61 1.44 1.54 1.39 1.30 1.22

52

Table 3-5: Base IPCs with various scheduler and issue width configurations (64- and 128-
entry issue queue).

Bench-
marks

4-wide
-1-cycle

4-wide
-2-cycle

3-wide
-1-cycle

3-wide
-2-cycle

2-wide
-1-cycle

2-wide
-2-cycle

64-entry issue queue
bzip 1.53 1.43 1.45 1.36 1.23 1.18

crafty 1.55 1.50 1.50 1.45 1.30 1.27
eon 2.13 2.07 2.05 1.99 1.67 1.63
gap 2.07 1.66 1.96 1.64 1.57 1.48
gcc 1.29 1.26 1.26 1.23 1.12 1.10

gzip 1.99 1.63 1.82 1.53 1.47 1.30
mcf 0.37 0.37 0.37 0.37 0.36 0.36

parser 1.12 0.99 1.09 0.97 0.98 0.89
perl 1.33 1.29 1.29 1.26 1.15 1.14

twolf 1.49 1.33 1.43 1.29 1.25 1.15
vortex 1.75 1.73 1.72 1.70 1.48 1.47

vpr 1.64 1.47 1.55 1.41 1.28 1.21
128-entry issue queue

bzip 1.53 1.43 1.46 1.37 1.23 1.18
crafty 1.55 1.50 1.50 1.45 1.30 1.27

eon 2.13 2.07 2.05 1.99 1.68 1.64
gap 2.10 1.70 1.98 1.65 1.57 1.49
gcc 1.29 1.26 1.26 1.23 1.11 1.09

gzip 1.99 1.63 1.82 1.55 1.47 1.30
mcf 0.38 0.37 0.37 0.37 0.36 0.36

parser 1.12 0.99 1.09 0.97 0.97 0.89
perl 1.31 1.28 1.29 1.26 1.15 1.14

twolf 1.50 1.33 1.43 1.29 1.24 1.15
vortex 1.75 1.73 1.73 1.70 1.49 1.47

vpr 1.64 1.48 1.55 1.41 1.28 1.20

.

533.4 Summary

This chapter describes the experimental framework used in the thesis. The base

microarchitecture is a current-generation superscalar, out-of-order processor with 4-wide

fetch, decode, issue, dispatch, execute and commit bandwidth. The details of the pipeline

structure and the operations of each stage are also presented.

Two types of the simulators are used in this thesis. The functional simulator mod-

els the architectural behavior of the processor, and is used to measure the program charac-

teristics. The timing simulator models the detailed base machine microarchitecture and is

extended to incorporate the features required for macro-op scheduling and execution. The

key aspects of modifications adopted to the original simulator code are deeper pipeline,

speculative scheduling, scheduling replay, issue queue contention, improved memory dis-

ambiguation and NOP handling. To ensure the correct behavior of the timing simulator

that models the proposed microarchitecture, several verification and debugging

approaches are used: back-end scoreboard, execution trace, and microbenchmark test.

The benchmark programs that this thesis research uses are the SPEC CINT2000

benchmark suite. All benchmarks (except for three benchmarks that use reference input

sets) use the large reduced input sets and are tested using end-to-end runs. The program

characteristics measured on the functional simulator as well as the runtime characteristics

measured on the timing simulator are presented in this chapter.

54

55Chapter 4

Groupability of Instructions

In Chapter 1, the basic concept of coarse-grained instruction processing was dis-

cussed and its potential benefits were described. Before discussing methods to realize the

benefits of coarse-grained instruction processing, we want to measure the potential for

constructing coarse-grained schedulable units from the original program binaries.

The groupability of instructions is the degree of abstraction that can be applied to a

program by grouping instructions into coarse-grained schedulable units. To quantify this,

this chapter begins by defining a macro-op and discussing its implications on program

structure and microarchitecture. We then discuss issues in grouping instructions and mea-

sure the groupability of instructions in terms of the coverage of candidate instructions, the

size of macro-ops and its impact on instruction-level parallelism.

There are several issues in determining which instructions are grouped and pro-

cessed together. For performance, capturing many groupable candidates is needed to max-

imize its potential benefits. At the same time, improper grouping may degrade

performance by serializing instruction execution. The complexity of creating macro-ops

may be significantly affected by macro-op grouping policies such as macro-op size or

grouping scope, i.e. the number of instructions that should be searched and examined to

find groupable instructions. Based on the groupability of instructions measured in this

chapter, macro-op grouping policies will be determined for the proposed microarchitec-

ture.

564.1 Definition of Macro-op

A macro-op (MOP) is defined as an atomic schedulable unit that contains multiple

instructions with a sequential execution order. A MOP must be scheduled either com-

pletely or not at all. This means that 1) a MOP can be issued only after all source

dependences are either satisfied or guaranteed to be satisfied so that every instruction in a

MOP can complete without violating the data dependences defined in a program, and 2)

issuing a MOP guarantees uninterrupted and deterministic execution of the instructions

contained in it1.

Figure 4-1 shows examples of MOPs that contain multiple instructions with data

dependences represented as arrows. Figure 4-1a is a simple form of a MOP, which con-

tains two dependent instructions. In a conventional instruction scheduler that makes

scheduling decisions for each instruction, the dependent instruction may not be issued

FIGURE 4-1. Examples of macro-op.

1. The issues in precise exception handling or branch misprecition recovery will be discussed in
Section 6.6.

9

11

10

4

7

8

12

13

14

9

11

10

4

7

8

12

13

14

(a) (b) (c)

.

57consecutively following the parent instruction because of e.g. resource conflict. In con-

trast, the MOP confines scheduling to a predetermined order (i.e. sequential order) and

forces consecutive issue of those two instructions. Figure 4-1b and Figure 4-1c show other

forms of MOPs with different sizes; Figure 4-1b presents a MOP with a series of four

instructions, which have two source dependences coming from the outside of the MOP;

Figure 4-1c is a MOP of nine instructions with four source dependences. The first and the

last instructions in a MOP are defined as MOP head and MOP tail instructions, respec-

tively. Note that a MOP can contain either dependent or independent instructions. Regard-

less of the actual data dependences, instructions in a MOP are executed in sequential

order, which was predetermined when the MOP was constructed. For example, the MOP

head and the third instructions in Figure 4-1b do not have source dependences and could

be executed sooner than any other instructions if they were not grouped. However, the

four instructions in the MOP are sequentially executed (i.e. in the order of the MOP head,

second, third, and MOP tail) when two source dependences to the second and the MOP

tail instructions are satisfied, or guaranteed to be satisfied by the time each corresponding

instruction is executed.

An important aspect is that MOPs only define an unarchitected state of machine

behavior, i.e. instruction scheduling. The underlying assumption is that source and target

registers of the original instructions have been renamed so that arbitrary instruction place-

ment in a MOP does not reorder instructions nor affect data dependences. However, plac-

ing instructions in a MOP should ensure a legitimate scheduling behavior so that

execution does not violate true data dependences, i.e., a parent instruction should be

placed earlier than its dependent instructions.

58Many x86 processor implementations crack a CISC instruction and convert it into

multiple RISC semantics to run on RISC-style cores [21][48][42]. Despite their similari-

ties, a fundamental difference between a MOP and a CISC instruction is the architectural

visibility of intermediate results. This means that no instruction outside a CISC instruction

can depend on an intermediate result generated during execution unless it is architectur-

ally defined. However, all result values of the instructions in a MOP are architecturally

visible since MOPs define scheduling behaviors but do not alter nor restrict the original

dataflow. Another fundamental difference is that MOPs force uninterrupted execution of

instruction sequences, while CISC instructions do not explicitly define the scheduling

behaviors of multiple operations. For instance, if an x86 instruction is converted into two

micro-ops, their execution timings are not restricted by the original CISC instruction

semantic as long as data dependences between the two instructions are correctly pre-

served.

A MOP is different from a strand [53] in that executing instructions in a strand is

interruptible whereas those grouped in a MOP should follow the predetermined execution

timings. Also, MOPs can contain independent instructions, although we primarily focus

on chains of dependent instructions.

4.2 Implications of Grouping Instructions into MOPs

Grouping multiple instructions into a MOP and processing them as a single sched-

ulable unit has several implications. Figure 4-2 illustrates examples of the original data

dependence graph as well as equivalent data dependence graphs composed of MOPs. To

simplify our discussion, we assume that all instructions are single-cycle operations and

.

59

only register dependences exist.

One implication of grouping instructions into MOPs is dependence abstraction.

Figure 4-2a shows the original dependence graph of 14 instructions. In a conventional out-

of-order processor, instruction scheduling is performed on individual instructions based on

this data dependence graph. Figure 4-2b shows a case when MOPs contain a pair of two

dependent instructions each. Since each MOP defines the execution order of the two

instructions grouped in it and the dependence edge between the two need not be explicitly

observed by others as far as scheduling is concerned, the original data dependence graph

can be abstracted into one with fewer schedulable units (seven MOPs) which preserve the

true dependences among instructions. Figure 4-2c~e show the examples of the same

dependence graph abstracted into larger MOPs that contain more than two instructions. As

the dependence graph is further abstracted, the number of schedulable units and depen-

dence edges involved in scheduling decreases because more instructions and dependence

FIGURE 4-2. Grouping instructions into MOPs with different sizes.

1

2

3

5

9

11

6

10

4

7

8

12

13

14

1

2

3

5

9

11

6

10

4

7

8

12

13

14

1

2

3

5

9

11

6

10

4

7

8

12

13

14

1

2

3

5

9

11

6

10

4

7

8

12

13

14

CLK 0

1

2

3

4

5

6

7

8

9

10

11

12

13

1

2

3

5

9

11

6

10

4

7

8

12

13

14

(a) (b) (c) (d) (e)

60edges are included within MOPs. An extreme case is represented in Figure 4-2e; all

instructions are grouped into a single MOP. Since the MOP is constructed in a way that the

sequential order preserves the true dependences among instructions, this MOP still gener-

ates a legitimate execution although no parallelism can be achieved.

Another implication of grouping instructions into MOPs is increased scheduling

determinism. Since MOPs have predetermined scheduling decisions for their instructions,

the execution timing of each instruction can be inferred several clock cycles before the

actual execution occurs. In Figure 4-2a, for example, instruction 1 is issued at CLK 0.

Although instruction 2 becomes ready in the next clock cycle, the instruction scheduler

does not guarantee it to be issued at CLK 1, which makes other dependent instructions

(instructions 3 and 4) unable to determine their scheduling decisions until after their par-

ent instruction 2 is actually issued. In contrast, MOPs enable other dependent instructions

to infer when their source operands become ready several clock cycles before the actual

issue occurs. In Figure 4-2c, issuing the MOP with instruction 1 guarantees instruction 2

to be issued at CLK 1. This in turn enables instructions 3 and 4 to infer when they become

ready to issue, i.e. at CLK 2. Similarly in Figure 4-2e, issuing instruction 1 at CLK 0

determines that other following instructions 2 to 14 will be issued at corresponding clock

cycles from 1 to 13, providing a lookahead of up to 13 clock cycles to instructions poten-

tially dependent on instruction 14.

An important observation to make in grouping instructions is that out-of-order

instruction scheduling does not have to be driven by data dependences defined in a pro-

gram, as long as the dependences within and across MOPs guarantee legitimate execution.

The purpose of out-of-order instruction scheduling is to generate an order of execution

.

61that expedites the value communication defined in a program. Unlike conventional

instruction scheduling that requires fine-grained, instruction-level controls over instruc-

tions, grouping instructions allows scheduling and execution to be performed in two dif-

ferent dependence domains: coarser MOP-level dependences for scheduling, and finer

instruction-level dependences for execution. This enables simpler dependence tracking in

scheduling logic without affecting the actual dataflow, although dependence translations

between two different domains may be required. The basics of constructing and tracking

MOP-level dependences will be discussed in the following sections, while a detailed

implementation is proposed in Section 6.4.

In summary, grouping instructions into MOPs has the following implications:

• Dependence abstraction: grouping instructions reduces the number of schedulable

units. This in turn enables to reduce the queue pressure involved in instruction

scheduling.

• Increased scheduling determinism: grouping instructions restricts scheduling deci-

sions to a subset of all possible scheduling outcomes in a foreseeable manner.

Hardware resources to schedule and execute instructions can look ahead of future

events and therefore have more time to determine the next actions to take.

4.3 MOP Dependences

Scheduling of MOPs must preserve the original data dependences among instruc-

tions so that it does not violate the dataflow defined in a program. The original data depen-

dences can be categorized into two groups as far as MOP formation is concerned:

dependences within a MOP or intra-MOP dependences, and inter-MOP dependences that

62span across MOP boundaries. Intra-MOP dependences are statically preserved at MOP

formation time by placing instructions in a certain execution order. Although there must

be several policies to construct an execution order to satisfy the original data dependences,

statically placing instructions in program order is sufficient since no older instruction in

program order depends on newer instructions. In contrast, inter-MOP dependences need to

be dynamically tracked across MOP boundaries in order to synchronize executions of

instructions grouped in different MOPs in a way to satisfy the original data dependences.

A MOP can be issued only after all source dependences are either satisfied or guaranteed

to be satisfied, as discussed in Section 4.1. Instead of tracking readiness of inter-MOP

dependences of each instruction individually, they are combined and handled as source

operands of a MOP. These combined dependences of MOPs will be referred to as MOP

dependences. Only MOP dependences are visible to the scheduler and dynamically drive

scheduling operations; intra-MOP dependences do not participate in dynamic instruction

scheduling.

The basic concept of a MOP does not confine detailed scheduler implementations,

e.g. how to implement the instructions scheduler nor how MOP dependences are tracked.

To help understand the process of tracking MOP dependences, Figure 4-3 replicates the

data dependence graph in Figure 4-2c and presents two different approaches to construct-

ing MOP dependences and checking their readiness.

Figure 4-3a illustrates an example of the MOP offset tracking approach, in which

execution of multiple dependent MOPs can be overlapped by tracking instruction offsets

within MOPs. When MOPs are initially constructed, each instruction reads the offsets of

parent instructions within their own MOPs, and then calculates timing difference between

.

63

parent and dependent MOPs. For example, MOP3 has three inter-MOP source depen-

dences from MOP1 and MOP2; instructions 9, 11 and 13 depend on instructions 5, 4 and

12, respectively. Instruction 9 is placed at offset 0 in MOP3. Instruction 5 is placed at off-

set 1 in MOP1. The relative offset between the two instructions is 1 (instruction 5) - 0

(instruction 9), which becomes one clock cycle. This means issuing MOP3 should be

delayed by at least one clock cycle after MOP3 observes the tag broadcast by MOP1 (or

MOP3 should be issued at least two clock cycles after MOP1, assuming a 1-cycle delay

for broadcast). Relative timing difference can be a negative value, e.g. -1 between instruc-

tions 4 and 11, which implies that the dependent instruction can be unnecessary delayed

even after the source dependence has already been satisfied. Although multiple depen-

dence edges exist between MOP2 and MOP3, MOP3 tracks only the maximum relative

offset (the dependence between instructions 12 and 13) since this is a sufficient condition

to satisfy other dependences (between instructions 4 and 11). MOP dependences of each

FIGURE 4-3. Offset tracking (a) vs. latency tracking (b) of MOP dependences.

(a) (b)

1

2

3

5

9

11

6

10

4

7

8

12

13

14

CLK 0

1

2

3

4

5

6

7

8

9

CLK 0

1

2

3

4

5

6

7

8

9

True data
dependences

MOP
dependences

1

2

3

5

9

11

6

10

4

7

8

12

13

14

MOP0

MOP1 MOP2

MOP3

MOP0

MOP1 MOP2

MOP3

MOP# Source dependence + rel timing
0 N/A
1 MOP0 + 1
2 MOP0 + 1
3 MOP1 + 1, MOP2 + 1

MOP# Source dependence latency
0 N/A 2
1 MOP0 4
2 MOP0 4
3 MOP1, MOP2 4

64MOP are summarized at the bottom of Figure 4-3a.

From the perspective of scheduler implementation, tracking MOP dependences is

fundamentally no different than the conventional case, except that each issue queue entry

has delay timers (initially set to the relative offset value) for their source operands to check

readiness of parent MOPs, as it already must for multi-cycle instructions in conventional

scheduling logic. However, a single parent MOP may be interpreted to have different exe-

cution latencies by different MOPs dependent on it, and this approach requires each

instruction to calculate relative offsets when MOPs are constructed.

Figure 4-3b shows the MOP latency tracking approach, in which each instruction

in a MOP does not calculate relative offset differences but only checks which MOP is

antecedent. A MOP is simply handled as a multi-cycle operation. For example, instruction

9 in MOP3 is dependent on instruction 5 in MOP1. Instead of identifying the offsets of

instructions 5 and 9, MOP1 and MOP3 simply assume the worst-case latency, as if the

scheduler handles two dependent multi-cycle instructions. All instructions in the parent

MOP (MOP1) are issued before any instruction in the dependent MOP (MOP3). Although

dependence tracking in the scheduling logic is simpler than offset tracking, it does not

allow two dependent MOPs to be partially overlapped and may lose performance.

In later chapters on MOP scheduling and execution, appropriate tracking

approaches will be used depending on the configurations of scheduling logic and MOPs.

4.4 Issues in Grouping Instructions

MOP dependences that drive scheduling of MOPs (shown as solid arrows in

Figure 4-3) are not always consistent with the original data dependences (shown as dashed

.

65arrows) in both approaches. This is because MOP dependences provide sufficient condi-

tions to satisfy multiple original dependences of grouped instructions simultaneously,

while conventional instruction scheduling is driven by individual data dependences that

provide necessary conditions for correct execution. The degree of discrepancy between

MOP dependences and the original dependences can be interpreted as the amount of suffi-

ciency injected into the data dependence graph to enforce correct execution.

These sufficient conditions of MOP dependences potentially flatten the data

dependence graph and may not be beneficial for performance. As instructions are grouped

and the dependence graph is abstracted, the scheduler loses fine-grained, instruction-level

controls over instructions and hence the parallelism extractable among instructions may

decrease; MOPs may force instructions to execute sequentially when they might have exe-

cuted in parallel in the base case. Examples of performance loss due to grouping instruc-

tions are shown in Figure 4-2d and Figure 4-2e, where independent instructions grouped

in MOPs are unnecessarily delayed. To minimize the negative performance impact of

grouping instructions, MOPs must be constructed in a way that MOP dependences resem-

ble the true data dependences as much as possible.

There are some other issues in determining which instructions are grouped and

processed together. The complexity of creating and handling MOPs is dependent on

grouping policies. Also, correctness of scheduling should not be compromised by

improper MOP grouping. The following sections discuss these issues in grouping instruc-

tions into MOPs.

4.4.1 Dependences among grouped instructions

A chain of dependent instructions is more suitable for a MOP than independent

66

instructions because, by definition, a MOP forces consecutive and serial execution of its

grouped instructions. Grouping independent instructions creates unnecessary dependences

that not only serialize two independent instructions, but also causes independent chains to

be tied up together. Consider an example in Figure 4-4a with two separate chains of

dependent instructions. A MOP can be created across two chains, grouping independent

instructions as shown in Figure 4-4b. If the scheduler tracks instruction offsets within

MOPs as discussed in Section 4.3, grouping two independent instructions may not neces-

sarily degrade performance and instructions can be issued and executed with the same

timings as the base case. If an extra delay is incurred in one chain, they will affect the

other chain through the unnecessary dependence edge created by the MOP, delaying

instructions in both chains (Figure 4-4c and Figure 4-4d). Balancing the critical paths that

lead up to a MOP with independent instructions may eliminate this problem but requires

global analysis of register dependences as well as the perfect knowledge of future

dynamic events that skew the dependence tree structure. Therefore, serial portions of the

data dependence tree are the primary candidates for MOP grouping.

FIGURE 4-4. Impact of grouping independent instructions.

A B A B

A B A B

extra delay
in chain A

extra delay in
chain B

unnecessary
dependence

created by MOP

(a) (b) (c) (d)

.

674.4.2 MOP size

MOP size is the number of instructions grouped in a MOP. It determines the gran-

ularity of processing in the scheduler as well as the degree of abstraction applied to the

original data dependences. The more instructions are grouped, the fewer scheduling units

participate in dynamic instruction scheduling, reducing the number of dependences for the

scheduler to track. At the same time, bigger MOPs increase the likelihood of incurring

unnecessary false dependences since MOP dependences should be conservative enough to

satisfy all of the original dependences of the instructions grouped. This problem gets

worse in MOP latency tracking (explained in Section 4.3) where the scheduler is only able

to track MOP execution latencies, because scheduling assumes the worst case delay,

which increases with MOP size.

4.4.3 MOP scope

MOP scope is the number of instructions to be searched and examined to find

groupable instructions. A wider MOP scope is essential for capturing more grouping

opportunities because this increases the probability of observing chains of dependent

instructions within the range. However, there are several difficulties in widening MOP

scope over a certain level. First, a wider MOP scope requires more instructions to be buff-

ered and examined, which increases hardware complexity involved in detecting groupable

candidates. Second, from the perspective of implementation, instructions are processed

sequentially in the front end of the pipeline, where MOP grouping and its miscellaneous

book-keeping duties take place. If the original instructions to be grouped into a MOP are

placed far away from each other in program order, benefiting from the MOP is difficult

because the MOP tail may not have been fetched when the MOP head is ready to execute.

68Therefore, MOP scope should be determined by considering the coverage of groupable

candidate instructions, the complexity of hardware implementation, and its potential

microarchitectural impacts.

4.4.4 Merging and branching of dependence chains

Merging and branching of data dependence chains affects performance as well as

the way MOPs are constructed. Merging of dependence chains occurs in instructions with

multiple source operands. Branching of dependence chains occurs in instructions with

multiple consumers (dependent instructions). Since a MOP contains a single chain of

dependent instructions, whether MOP formation starts a new MOP or terminates an exist-

ing one should be determined at those merging and branching points.

The most restrictive and conservative way to avoid any performance penalty from

grouping instructions is 1) starting a new MOP at merging points, and 2) terminating an

existing MOP at branching points (for the latency tracking case discussed in Section 4.3).

This policy guarantees MOP dependences to exactly match the data dependence edges

without injecting any sufficient conditions nor extra delays, regardless of actual issue and

execution timings. However, it may lose many grouping opportunities even when group-

ing across these points does not negatively affect performance.

When instructions are grouped across merging and branching points, the following

factors should be considered to avoid performance penalty.

4.4.4.1 Dependence merging point

Figure 4-5 illustrates several scenarios for grouping instructions across a depen-

dence merging point located at instruction 3. Without grouping, the execution timing of

instruction 3 is determined by the last arriving operands originating from instructions 1 or

.

69

2. As mentioned, a MOP of instructions 3 and 4 (Figure 4-5a) does not delay execution

regardless of the actual last arriving operand since MOP dependences are consistent with

the true data dependences.

Consider a case shown in Figure 4-5b where instructions 2 and 4 are grouped

across a dependence merging point at instruction 3. As long as the dependence edge from

instruction 1 is not the last arriving operand of the MOP, the execution timings of individ-

ual instructions are the same as the base case (without grouping). This is also true for the

case in Figure 4-5c. However, if the edge from instruction 1 is the last arriving operand of

instruction 3, its grouped and antecedent instructions (instruction 2 in the figure) are nega-

tively affected since they cannot be executed until after all source operands of the MOP

are satisfied. Note that execution of instructions 1 and 2 cannot be overlapped in Figure 4-

5b and Figure 4-5c since the MOP in each figure should observe the tag broadcast by

instruction 1 before determining its issue timing.

Avoiding performance penalty requires knowledge of last arriving operands. Since

it is not always possible to statically detect last arriving operands, creating MOPs may rely

on a history-based prediction mechanism similar to the one used in [56].

4.4.4.2 Dependence branching point

FIGURE 4-5. Impact of grouping a dependence merging point.

(a) (b) (c)

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

cycle n

cycle n+1

cycle n+2

cycle n+3

cycle n+4

MOP
dependence

70

Figure 4-6 illustrates several scenarios for including a dependence branching point

(instruction 2) in a MOP. A dependence branching point placed at the end of a MOP as a

tail instruction (Figure 4-6a) does not affect the execution timings of dependent instruc-

tions since MOP and data dependences are consistent. In the case of MOP offset tracking

(Figure 4-6b), executing instructions dependent on non-tail instructions (instruction 3 in

the figure) are allowed to overlap with other grouped instructions and hence do not incur

extra delays. However, they may be unnecessarily delayed in the MOP latency tracking

approach (Figure 4-6c) because of the MOP dependence between the MOP tail (instruc-

tion 4) and the dependent instructions (instruction 3) in order to guarantee that all instruc-

tions in a MOP are executed ahead of any dependent instructions outside the MOP.

4.4.5 Cycle conditions

Grouping instructions into MOPs may prevent instructions from being executed if

it induces cycles in data dependence chains. Cycle conditions may be induced through

either register dependences or memory dependences when an outgoing dependence edge

from a MOP comes back to itself as a source dependence through other instructions out-

side the MOP. The details of cycle conditions through register and memory dependences,

their detection and avoidance techniques will be further discussed later in Section 6.3.1

and Section 6.3.2.

FIGURE 4-6. Impact of grouping a dependence branching point.

(a) (b) (c)

cycle n

cycle n+1

cycle n+2

cycle n+3

cycle n+4

1

2

43

1

2

43

1

2

4

3

MOP
dependence

.

714.5 Quantifying the Groupability of Instructions

To quantify the groupability of instructions, this section identifies candidate

instruction types and determines policies for grouping. The following sections measure

the number of instructions grouped in MOPs and MOP sizes considering performance

impact, and study sensitivity to various macro-op configurations.

4.5.1 Candidate instruction types

Since one of the primary goals of this thesis research is to relax the atomicity of

instruction scheduling, I focus on grouping single-cycle operations: single-cycle ALU,

control (e.g. branch), and load / store address operations. Load instructions are not explic-

itly cracked into two separate operations and have multi-cycle latencies (i.e. 1-cycle

address generation and 2-cycle cache port access) in our base machine model described in

Section 3.1. Since they are not primary candidates for these reasons, we will separately

measure groupability with and without them.

Grouping instructions with multi-cycle execution latencies (e.g. integer multiply

or floating-point operations) is possible but was not considered here due to the limited

benefits of doing so. Multi-cycle latency instructions do not require single-cycle atomic

instruction scheduling. Further, such instructions (particularly floating-point operations)

are usually scheduled and executed in separate pipelines with dedicated functional units

and datapaths. Finally, handling instructions with different scheduling and resource

requirements is not feasible due to restrictions in the datapath designed for macro-op exe-

cution (this will be discussed in Chapter 8). Since non-candidate instructions account for

relatively a small number of instructions in the majority of integer programs, this policy

for determining candidate instruction types should not affect the fundamental conclusion

72

of this thesis.

Among the MOP candidate instructions, not all instructions can be MOP head or

MOP tail instructions since some instruction types do not have source or target registers.

Integer ALU candidates can be either MOP heads or tails. On the other hand, most branch

instructions can be only MOP tails since they do not have dependent instructions. In the

Alpha ISA [17] studied in this thesis, a few indirect jump instructions can have dependent

instructions to save return addresses in registers and therefore can be MOP heads. Store

address operations can be only MOP tails because they have no dependent instructions

except for the actual memory access operations, which are separately managed by the load

/ store queue in our base microarchitecture. For a similar reason, loads are grouped only as

MOP tails. Table 4-1 summarizes MOP candidate instruction types used in this study.

4.5.2 MOP scope and size

To limit the range of study in determining MOP scope, i.e. the number of instruc-

tions to be searched and examined in program order for groupable candidates, we charac-

terize the dependence edge distance measured in terms of instruction count between two

candidate instructions in Figure 4-7 (without candidate loads) and Figure 4-8 (with candi-

Table 4-1: MOP candidate instruction types.

Instruction types MOP candidate MOP head only MOP tail only

1-cycle integer ALU All types SEXTBI, SEX-
TWI

1-cycle control operations All types BR, BSR BLBC, BEQ, BLT,
BLE, BLBS,
BNE, BGE, BGT

stores Store AGEN Store AGEN
loads Load AGEN Load AGEN

Others (complex integer, float-
ing-point, NOP, syscall, and

etc.)

none

.

73

date loads as MOP tails). In the graph, the y-axis represents all potential MOP head candi-

dates. Their percentage out of total committed instructions is shown on the top of each bar

(% total insts). The stacked bars in each benchmark show the distance between each MOP

head and the nearest potential MOP tail. If there is no MOP tail, we count the MOP head

as either dynamically dead (when there is no dependent instruction) or not MOP candidate

(when the dependent instruction is not a MOP candidate). Note that the data shown here

show program characteristics, and are not dependent on machine configuration.

FIGURE 4-7. Dependence edge distance from a MOP candidate to the nearest
groupable instruction (measured without load MOP tail).

FIGURE 4-8. Dependence edge distance from a MOP candidate to the nearest
groupable instruction (measured with load MOP tail).

0%

20%

40%

60%

80%

100%

bz
ip

cr
af

ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rl

tw
ol

f

vo
rt

ex vp
rT

ot
al

 M
O

P
 h

ea
d

ca
nd

id
at

es
 c

om
m

itt
ed

dynamically dead
not MOP candidate
8+ instructions
4~7 instructions
1~3 instructions

49.2
% total insts

50.9 27.8 48.7 37.4 56.3 40.2 47.5 42.7 47.7 37.6 44.7

0%

20%

40%

60%

80%

100%

bz
ip

cr
af

ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rl

tw
ol

f

vo
rt

ex vp
r

T
ot

al
 M

O
P

 h
ea

d
ca

nd
id

at
es

 c
om

itt
ed

dynamically dead
not MOP candidate
8+ instructions
4~7 instructions
1~3 instructions

49.2
% total insts

50.9 27.8 48.7 37.4 56.3 40.2 47.5 42.7 47.7 37.6 44.7

74The data indicate that many groupable dependent instructions are placed near their

parent instructions. Especially, an 8-instruction scope (shown as 1~3 and 4~7 instructions)

captures a significant portion of groupable instructions. Compared with Figure 4-7 (with-

out load), including loads as MOP tail candidates strengthens this trend because of many

ALU instructions used for stack pointer manipulation. Some benchmarks like vortex and

eon have many dependence edges that span over eight instructions and require a wider

scope to capture groupable instructions. In measuring the groupability of instructions in

the following sections, we limit the MOP scope up to 32 instructions because the number

of grouped instructions saturates at this MOP scope in many cases.

We examine three different configurations for MOP sizes: 2x, 4x and 8x configura-

tions. The 2x configuration allows only two instructions to be grouped. The 4x and 8x

configurations can group up to four and eight instructions, respectively. Hence, they may

group fewer instructions than their limits if insufficient groupable candidates are found

given a MOP scope. Although a MOP can capture as many instructions as the MOP scope

(up to 32 instructions), MOP sizes bigger than eight instructions were not examined

because many dependence chains tend to be much shorter than eight instructions [53].

Note that the MOP scope limits the total length of a dependence chain grouped in a MOP,

i.e. the distance between MOP head and tail instructions should not exceed the MOP

scope.

4.5.3 MOP grouping policies

An important issue in measuring the groupability of instructions is that there is no

optimum solution to generate maximum benefit, since it is a function of not only the num-

ber of grouped instructions but also the impact on performance, which is dependent on

.

75

machine parameters with different hardware constraints. For example, a solution to maxi-

mize the number of grouped instructions may not be beneficial due to the dependence seri-

alization discussed in Section 4.4. On the other hand, a solution that avoids any potential

serialization may not be optimum either because the serialized instructions could be

located off the critical path (from the perspective of both data dependence and hardware

constraint [31]) and hence may not affect performance.

To reflect this issue, our measurement uses four different grouping policies so that

both groupability and performance can be considered. Figure 4-9 illustrates an example of

a groupability-performance curve. In the graph, the y-axis represents relative performance

normalized to an infinite machine (normalized performance of 1 in the figure). This infi-

nite machine assumes infinite fetch and out-of-order execution bandwidth with perfect

cache and branch prediction. Hence, performance is bounded only by true data depen-

dences through registers and memory locations. In fact, this is similar to measuring the

instruction-level parallelism in a program but different in that our infinite machine

assumes different types of instruction latencies, which are set to those used in our finite

base machine. An overview of the infinite machine is presented in Table 4-2.

FIGURE 4-9. An example of groupability-performance curve.

0

1

0% 20% 40% 60% 80% 100%
total insts

IP
C

 n
or

m
al

iz
ed

 to
in

fin
ite

 m
ac

hi
ne

G
ro

up
ab

le
 c

an
di

da
te

s

M
in

 g
ro

up
ed

M
ax

 g
ro

up
ed

N
o

ex
e

tim
in

g
ch

an
ge

G
ro

up
ed

 w
/ I

LP
 im

pa
ct

1 2 3 4 5

76

The x-axis in Figure 4-9 represents the number of instructions grouped. 0%

implies no grouping and hence no performance degradation due to serialization condi-

tions. The first data point denoted as min grouped represents a policy in which instructions

with a dependence merging point (e.g. 2-source instructions or loads with memory depen-

dence) can be grouped only as MOP heads. Stores are handled as 1-source AGEN opera-

tions and hence do not create dependence merging points within a MOP. This policy

avoids any potential performance degradation due to last-arriving operands (discussed in

Section 4.4.4.1). To decouple implementation issues in dependence tracking from charac-

terizing the groupability, the MOP offset tracking approach is assumed so no performance

degradation is incurred by dependence branching points (discussed in Section 4.4.4.2).

The second data point denoted as No EXE timing change is a grouping policy that

allows dependence merging points within a MOP as long as they do not alter the execution

timings of individual instructions observed in the no-grouping case. Note that the solution

acquired from this grouping policy does not guarantee no performance degradation in a

finite machine due to different execution timings. This policy captures more instructions

than the min grouped case, but is still conservative because the execution timing changes

may not necessarily affect performance if they are not in the critical path of the data

dependence graph.

Table 4-2: Infinite machine configuration.

Parameters Configuration

Instruction fetch Infinite, perfect knowledge of control flow
Memory System 2-cycle perfect cache, perfect memory disambiguation, infinite store

buffer. 4-byte granularity for memory dependence detection (simula-
tor limitation)

Execution Infinite instruction window, infinite execution bandwidth, 0 pipeline
stage

Instruction latencies Same as those of the base machine configuration in Table 3-1

.

77To consider this limitation, the third data point denoted as Grouped with ILP

impact is plotted, where changes in execution timing are allowed as long as the delay

incurred by dependence merging points does not exceed a certain threshold (20 clock

cycles in this experiment).

The forth data point denoted as Max grouped represents a greedy grouping policy

that captures MOPs without considering performance degradation. The algorithm used in

this policy is that 1) an instruction with one source operand is grouped with its parent

instruction as long as the MOP size does not exceed its maximum limit, and 2) an instruc-

tion with two source operands first examines the nearest parent instruction in program

order then tries the other parent instruction if the first try was not successful. Note that this

policy still does not guarantee a solution that maximizes the number of grouped instruc-

tions. However, the results measured with other algorithms (e.g. testing farthest instruc-

tions first) are not fundamentally different from the current data. More importantly,

achieving an optimal solution requires global knowledge of the whole data dependence

graph, which is not feasible in a real hardware implementation. Therefore, this data point

should be interpreted as a maximal groupability attainable using an algorithm feasibly

implementable in hardware.

Finally, the fifth data point simply represents the total number of MOP candidates

in a program. The candidate instruction types are presented in Table 4-1. The first set of

results (Figure 4-10 and Figure 4-11) does not include loads as MOP candidates. The sec-

ond set of results (Figure 4-12 and Figure 4-13) includes loads, and hence show a signifi-

cant increase in this data point compared with the first set of results.

From 0% to data point 2, no performance degradation should be observed (normal-

78

ized IPC of 1). Depending on benchmarks, data points 2 and 3 may not be distinguishable

since they are plotted too closely. A dashed curve between data points 3 and 4 is interpo-

lated based on points 2, 3 and 4.

4.5.4 Caveat

Table 4-3 presents IPCs on the infinite machine and compares them to the actual

performance measured on the finite base machine. Note that there is no direct correlation

between the two IPCs because no structural limitation is considered in the infinite

machine. Also note that the performance results in this section do not directly indicate the

degree of actual performance impact on finite machines, because many hardware con-

straints hide negative effects of MOP grouping. Rather, they should be interpreted as

impacts on the instruction-level parallelism of a program, which may or may not be

related to the actual performance on finite machines.

Table 4-3: Performance on the infinite machine compared to the base machine.

Benchmarks Inst count Execution cycles
IPC on infinite

machine

IPC on finite base
machine

(identical to Table 3-3)

bzip 2.64B 63.96M 41.34 1.55
crafty 3B 39.44M 76.06 1.57

eon 3B 83.50M 35.93 2.16
gap 3B 34.05M 88.09 2.11
gcc 5.12B 75.65M 67.64 1.31

gzip 1.79B 74.49M 23.98 2.04
mcf 0.79B 3.04M 261.45 0.38

parser 4.52B 113.03M 40.05 1.14
perl 2.06B 376.91M 5.33 1.37

twolf 0.97B 34.16M 28.47 1.54
vortex 1.15B 43.79M 26.34 1.76

vpr 1.57B 47.20M 33.20 1.70

.

794.6 Results

4.6.1 Coverage of candidate instructions

Figure 4-10 and Figure 4-11 present the percentage of total instructions grouped in

MOPs in each benchmark when loads are not categorized as groupable candidate instruc-

tions. For MOP size and scope, a MOP captures up to eight instructions within a 32-

instruction scope for this measurement. Across the benchmarks, 53 ~ 73% of total instruc-

tions are MOP candidates. When instructions are maximally grouped without considering

performance impact (Max grouped), the percentage of grouped instructions ranges from

27.0% (eon) to 56.2% (gzip) of total instructions (42.6% on average). The variability in

the number grouped instructions is related to the dependence edge distance presented in

Figure 4-7. For example, benchmarks like eon and vortex have relatively long dependence

edges and therefore show low potential since fewer candidate instructions are found in the

same MOP scope than other benchmarks.

Considering the performance impact of MOP groupings, we find that maximally

grouping instructions severely reduces the parallelism in many cases by serializing unnec-

essary instructions. Especially in eon and gap, this inconsiderate and greedy grouping pol-

icy quadruples the execution time on the infinite machine. This impact will not affect the

actual performance in the same degree as shown here because the actual execution is

bounded by not only data dependences but also many other hardware constraints (e.g.

fetch serialization) or dynamic events (e.g. cache misses). However, the results indicate

that avoiding harmful MOPs would be crucial in many cases. In fact, sacrificing a few

grouping opportunities (~10% of maximally grouped instructions) can eliminate the nega-

tive impact of last-arriving operands at dependence merging points, as the data points at

80No EXE timing changes and Grouped with ILP impact indicate.

An interesting result is observed at min grouped data points: allowing only 1-

source instructions still captures many groupable candidates in most benchmarks. This is

because 1-source instructions account for a significant portion of instructions in the

benchmarks we tested [56]. However, this policy tends to capture only short dependence

chains (two instructions in most cases) because of many intervening 2-source instructions

in long dependence chains. The results on MOP sizes will be presented in the following

chapter.

Figure 4-12 and Figure 4-13 show the percentage of grouped instructions includ-

ing loads when the same experiment is performed. This configuration groups noticeably

more instructions in many cases by capturing ALU-to-load pairs frequently. When maxi-

mally grouped, the percentage of grouped instructions ranges from 32.3% (eon) to 64.9%

(gzip) of total instructions (50.9% on average). Since the groupability-performance curve

show similar trends with or without groupable load instructions, we will not further dis-

cuss the detailed results.

In summary, the results in this chapter indicate that 1) there are a significant num-

ber of instructions that can be grouped into MOPs, and 2) a judicious grouping policy is

required to avoid performance penalty from unnecessarily serializing instructions.

.

81

FIGURE 4-10. Coverage of candidate instructions (bzip ~ gzip, measured without load
MOP tail).

bzip

0

0.2

0.4

0.6

0.8

1

1.2

0% 20% 40% 60% 80% 100%
total insts

no
rm

al
iz

ed
 IP

C

G
ro

up
ab

le
 c

an
di

da
te

s

M
in

 g
ro

up
ed

M
ax

 g
ro

up
ed

crafty

0

0.2

0.4

0.6

0.8

1

1.2

0% 20% 40% 60% 80% 100%
total insts

no
rm

al
iz

ed
 IP

C

G
ro

up
ab

le
 c

an
di

da
te

s

M
in

 g
ro

up
ed

M
ax

 g
ro

up
ed

eon

0

0.2

0.4

0.6

0.8

1

1.2

0% 20% 40% 60% 80% 100%
total insts

no
rm

al
iz

ed
 IP

C

G
ro

up
ab

le
 c

an
di

da
te

s

M
in

 g
ro

up
ed

M
ax

 g
ro

up
ed

gap

0

0.2

0.4

0.6

0.8

1

1.2

0% 20% 40% 60% 80% 100%
total insts

no
rm

al
iz

ed
 IP

C

G
ro

up
ab

le
 c

an
di

da
te

s

M
in

 g
ro

up
ed

M
ax

 g
ro

up
ed

gcc

0

0.2

0.4

0.6

0.8

1

1.2

0% 20% 40% 60% 80% 100%
total insts

no
rm

al
iz

ed
 IP

C

G
ro

up
ab

le
 c

an
di

da
te

s

M
in

 g
ro

up
ed

M
ax

 g
ro

up
ed

gzip

0

0.2

0.4

0.6

0.8

1

1.2

0% 20% 40% 60% 80% 100%
total insts

no
rm

al
iz

ed
 IP

C

G
ro

up
ab

le
 c

an
di

da
te

s

M
in

 g
ro

up
ed

M
ax

 g
ro

up
ed

82

FIGURE 4-11. Coverage of candidate instructions (mcf ~ vpr, measured without load
MOP tail).

mcf

0

0.2

0.4

0.6

0.8

1

1.2

0% 20% 40% 60% 80% 100%
total insts

no
rm

al
iz

ed
 IP

C

G
ro

up
ab

le
 c

an
di

da
te

s

M
in

 g
ro

up
ed

M
ax

 g
ro

up
ed

parser

0

0.2

0.4

0.6

0.8

1

1.2

0% 20% 40% 60% 80% 100%
total insts

no
rm

al
iz

ed
 IP

C

G
ro

up
ab

le
 c

an
di

da
te

s

M
in

 g
ro

up
ed

M
ax

 g
ro

up
ed

perl

0

0.2

0.4

0.6

0.8

1

1.2

0% 20% 40% 60% 80% 100%
total insts

no
rm

al
iz

ed
 IP

C

G
ro

up
ab

le
 c

an
di

da
te

s

M
in

 g
ro

up
ed

M
ax

 g
ro

up
ed

twolf

0

0.2

0.4

0.6

0.8

1

1.2

0% 20% 40% 60% 80% 100%
total insts

no
rm

al
iz

ed
 IP

C

G
ro

up
ab

le
 c

an
di

da
te

s

M
in

 g
ro

up
ed

M
ax

 g
ro

up
ed

vortex

0

0.2

0.4

0.6

0.8

1

1.2

0% 20% 40% 60% 80% 100%
total insts

no
rm

al
iz

ed
 IP

C

G
ro

up
ab

le
 c

an
di

da
te

s

M
in

 g
ro

up
ed

M
ax

 g
ro

up
ed

vpr

0

0.2

0.4

0.6

0.8

1

1.2

0% 20% 40% 60% 80% 100%
total insts

no
rm

al
iz

ed
 IP

C

G
ro

up
ab

le
 c

an
di

da
te

s

M
in

 g
ro

up
ed

M
ax

 g
ro

up
ed

.

83

FIGURE 4-12. Coverage of candidate instructions (bzip ~ gzip, measured with load
MOP tail).

bzip

0

0.2

0.4

0.6

0.8

1

1.2

0% 20% 40% 60% 80% 100%
total insts

no
rm

al
iz

ed
 IP

C

G
ro

up
ab

le
 c

an
di

da
te

s

M
in

 g
ro

up
ed

M
ax

 g
ro

up
ed

crafty

0

0.2

0.4

0.6

0.8

1

1.2

0% 20% 40% 60% 80% 100%
total insts

no
rm

al
iz

ed
 IP

C

G
ro

up
ab

le
 c

an
di

da
te

s

M
in

 g
ro

up
ed

M
ax

 g
ro

up
ed

eon

0

0.2

0.4

0.6

0.8

1

1.2

0% 20% 40% 60% 80% 100%
total insts

no
rm

al
iz

ed
 IP

C

G
ro

up
ab

le
 c

an
di

da
te

s

M
in

 g
ro

up
ed

M
ax

 g
ro

up
ed

gap

0

0.2

0.4

0.6

0.8

1

1.2

0% 20% 40% 60% 80% 100%
total insts

no
rm

al
iz

ed
 IP

C

G
ro

up
ab

le
 c

an
di

da
te

s

M
in

 g
ro

up
ed

M
ax

 g
ro

up
ed

gcc

0

0.2

0.4

0.6

0.8

1

1.2

0% 20% 40% 60% 80% 100%
total insts

no
rm

al
iz

ed
 IP

C

G
ro

up
ab

le
 c

an
di

da
te

s

M
in

 g
ro

up
ed

M
ax

 g
ro

up
ed

gzip

0

0.2

0.4

0.6

0.8

1

1.2

0% 20% 40% 60% 80% 100%
total insts

no
rm

al
iz

ed
 IP

C

G
ro

up
ab

le
 c

an
di

da
te

s

M
in

 g
ro

up
ed

M
ax

 g
ro

up
ed

84

FIGURE 4-13. Coverage of candidate instructions (mcf ~ vpr, measured with load
MOP tail).

mcf

0

0.2

0.4

0.6

0.8

1

1.2

0% 20% 40% 60% 80% 100%
total insts

no
rm

al
iz

ed
 IP

C

G
ro

up
ab

le
 c

an
di

da
te

s

M
in

 g
ro

up
ed

M
ax

 g
ro

up
ed

parser

0

0.2

0.4

0.6

0.8

1

1.2

0% 20% 40% 60% 80% 100%
total insts

no
rm

al
iz

ed
 IP

C

G
ro

up
ab

le
 c

an
di

da
te

s

M
in

 g
ro

up
ed

M
ax

 g
ro

up
ed

perl

0

0.2

0.4

0.6

0.8

1

1.2

0% 20% 40% 60% 80% 100%
total insts

no
rm

al
iz

ed
 IP

C

G
ro

up
ab

le
 c

an
di

da
te

s

M
in

 g
ro

up
ed

M
ax

 g
ro

up
ed

twolf

0

0.2

0.4

0.6

0.8

1

1.2

0% 20% 40% 60% 80% 100%
total insts

no
rm

al
iz

ed
 IP

C

G
ro

up
ab

le
 c

an
di

da
te

s

M
in

 g
ro

up
ed

M
ax

 g
ro

up
ed

vortex

0

0.2

0.4

0.6

0.8

1

1.2

0% 20% 40% 60% 80% 100%
total insts

no
rm

al
iz

ed
 IP

C

G
ro

up
ab

le
 c

an
di

da
te

s

M
in

 g
ro

up
ed

M
ax

 g
ro

up
ed

vpr

0

0.2

0.4

0.6

0.8

1

1.2

0% 20% 40% 60% 80% 100%
total insts

no
rm

al
iz

ed
 IP

C

G
ro

up
ab

le
 c

an
di

da
te

s

M
in

 g
ro

up
ed

M
ax

 g
ro

up
ed

.

854.6.2 MOP size distribution

Figure 4-14 and Figure 4-15 present percentages of instructions grouped in differ-

ent MOP sizes, with and without groupable loads. The number of instructions in a MOP is

limited to eight instructions collected within 32 instructions. Each benchmark has three

stacked bars to show MOP size distributions measured by min grouped, no EXE timing

change, and max grouped policies discussed in Section 4.5.3. The 100% point in the y-

axis represents the total instructions grouped using the max grouped policy. The number of

grouped instructions in the other two grouping policies is normalized to the max grouped

policy so that the differences in instruction counts (presented in Figure 4-10 through

Figure 4-19) can be observed. Each stacked bar has 7 categories from 2x (two instructions

grouped in a MOP) to 8x (eight instructions grouped in a MOP). Note that the y-axis does

not represent the number of MOPs but instructions in each category, so the actual number

of MOPs in e.g. the 8x category is four times lower than that of the 2x category.

As briefly discussed in Section 4.6.1, the min grouped policy captures relatively

short chains (two instructions in most cases) due to the restrictions for dependence merg-

ing points. The no EXE timing change and max grouped policies can capture more instruc-

tions, which results in increases in 3x ~ 8x categories. Still, the 2x category is dominant in

most benchmarks except for gap, which contains chains of more than three instructions in

many cases. This result is also correlated to the dependence edge distance (Figure 4-7 and

Figure 4-8); short distances between dependent instructions increase the likelihood of cap-

turing more instructions in a finite detection scope. Similarly, vortex has long dependence

edges and relatively small MOP sizes dominate the distribution, compared to other bench-

marks.

86

FIGURE 4-14. MOP size distribution (measured without load MOP tail).

FIGURE 4-15. MOP size distribution (measured with load MOP tail).

0%

20%

40%

60%

80%

100%

bz
ip

cr
af

ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rl

tw
ol

f

vo
rt

ex vp
r

to
ta

l g
ro

up
ed

 in
st

ru
ct

io
ns

8x

7x

6x

5x

4x

3x

2x

Min Grouped

No EXE timing change

Max Grouped

0%

20%

40%

60%

80%

100%

bz
ip

cr
af

ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rl

tw
ol

f

vo
rt

ex vp
r

to
ta

l g
ro

up
ed

 in
st

ru
ct

io
ns

8x

7x

6x

5x

4x

3x

2x

Min Grouped

No EXE timing change

Max Grouped

.

87

Table 4-4 shows the average number of instructions in a MOP captured with a con-

figuration of 8x, 32-instruction scope. Note that the average numbers with loads tend to be

lower than those without loads. This is because a load terminates grouping and does not

allow any more instructions to be grouped together.

The average numbers do not exceed three instructions in most cases except for gap

and gzip. This result is also consistent with dependent strand length measured in [53],

although the chain length in a MOP tends to be shorter than the strand length because

MOPs cannot group across loads. This implies that building a microarchitecture that

focuses on groups of two instructions can yield most of benefits. Potentially, 3x ~ 8x

MOPs presented in the graphs can be broken into multiple 2x MOPs and hence 2x MOP

grouping should not severely affect its coverage, although it may lose some opportunities

for “leftovers” if a dependence chain contains an odd number (e.g. three, five or seven) of

instructions.

Table 4-4: Average number of instructions grouped in a MOP (8x, 32-inst scope).

Benchmarks

with load MOP tail without load MOP tails

no EXE timing
change

max grouped
no EXE timing

change
max grouped

bzip 2.41 2.48 2.39 2.47
crafty 2.39 2.68 2.40 2.66

eon 2.30 2.39 2.39 2.35
gap 3.18 3.27 3.14 3.15
gcc 2.27 2.45 2.24 2.44

gzip 2.56 2.97 2.63 3.02
mcf 2.28 2.43 2.27 2.43

parser 2.70 3.01 2.70 2.96
perl 2.53 2.74 2.56 2.74

twolf 2.64 2.88 2.62 2.78
vortex 2.25 2.32 2.27 2.38

vpr 2.32 2.62 2.33 2.55

884.6.3 Impact of MOP sizes on MOP coverage

Figure 4-16 and Figure 4-17 show the impact of MOP sizes on the number of

grouped instructions. Each benchmark has three bars that represent 2x (two instructions

only), 4x (up to four instructions) and 8x (up to eight instructions) configurations given a

32-instruction scope. The no EXE timing change policy is used for all cases. The y-axis

represent the number of grouped instructions normalized to the 8x 32s configuration

(grouping up to eight instructions in a 32-instruction scope). In general, capturing only 2x

MOPs loses only ~10% of instructions grouped, compared with the 8x configuration.

From the perspective of exploiting the benefits of grouping instructions, bigger

MOPs will enable greater benefits from fewer schedulable units and increased scheduling

determinism (discussed in Section 4.2). From the perspective of implementation, creating

and handling equally sized MOPs is important due to their regularity. Unfortunately, creat-

ing a sufficient number of equally sized, large MOPs is hard due to short dependence

chains in most benchmarks. For example, ~30% fewer instructions are captured in gap if

grouping allows only 3x MOPs, although the average chain length is around three instruc-

FIGURE 4-16. Impact of MOP sizes on MOP coverage (measured without load MOP
tail).

0

0.2

0.4

0.6

0.8

1

bz
ip

cr
af

ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rl

tw
ol

f

vo
rt

ex vp
r

G
ro

up
ed

 in
st

ru
ct

io
ns

no
rm

al
iz

ed
 to

 8
x

32
s

2x 32s 4x 32s 8x 32s

.

89

tions. Therefore, MOP size should be carefully determined to maximize benefit by consid-

ering both dependence chain length and regularity in hardware implementation.

In summary, the results in this chapter indicate that 1) chains of dependent instruc-

tions groupable into MOPs tend to be short and the vast majorities are two instructions,

and 2) allowing only two instructions in each MOP does not severely degrade coverage.

4.6.4 Impact of MOP scope on MOP coverage

Figure 4-18 and Figure 4-19 present the impact of MOP scope on the number of

grouped instructions, with and without load MOP tail. Each benchmark has three bars that

represent MOP scope of 8, 16 and 32 instructions, respectively. The no EXE timing

change policy is used for all cases. The y-axis represent the number of grouped instruc-

tions normalized to the 8x 32s configuration.

A MOP scope of eight instructions (8x 8s) is measured to lose some grouping

opportunities, ranging from 35.7% (eon) to 10.7% (gap) without load MOP tail. With load

MOP tail, the degree of reduction is alleviated but substantial in some benchmarks. How-

ever, an 8-instruction scope still captures a significant portion of candidate instructions

FIGURE 4-17. Impact of MOP sizes on MOP coverage (measured with load MOP
tail).

0

0.2

0.4

0.6

0.8

1

bz
ip

cr
af

ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rl

tw
ol

f

vo
rt

ex vp
r

G
ro

up
ed

 in
st

ru
ct

io
ns

no
rm

al
iz

ed
 to

 8
x

32
s

2x 32s 4x 32s 8x 32s

90

because dependent instructions tend to be placed near each other within a short range.

Again, this result correlates with the dependence edge distance (Figure 4-7 and Figure 4-

8); short distances between dependent instructions increase the likelihood of capturing

more instructions in a finite detection scope. Eon and vortex have relatively long depen-

dence edges and are most sensitive to MOP scope.

As one might expect, a MOP scope of 16 instructions (8x 16s) captures more can-

didate instructions than the 8x 8s configuration. Although wider MOP scopes will be more

FIGURE 4-18. Impact of MOP scope on MOP coverage (measured without load MOP
tail).

FIGURE 4-19. Impact of MOP scope on MOP coverage (measured with load MOP
tail).

0

0.2

0.4

0.6

0.8

1

bz
ip

cr
af

ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rl

tw
ol

f

vo
rt

ex vp
r

G
ro

up
ed

 in
st

ru
ct

io
ns

no
rm

al
iz

ed
 to

 8
x

32
s

8x 8s 8x 16s 8x 32s

0

0.2

0.4

0.6

0.8

1

bz
ip

cr
af

ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rl

tw
ol

f

vo
rt

ex vp
r

G
ro

up
ed

 in
st

ru
ct

io
ns

no
rm

al
iz

ed
 to

 8
x

32
s

8x 8s 8x 16s 8x 32s

.

91beneficial in that they increase the coverage of candidate instructions, the complexity of

detecting groupable candidate instructions should be also considered, since wider scopes

require more instructions to be buffered and examined.

4.7 Summary and Conclusions

This chapter defines macro-op and describes the implications of grouping instruc-

tions and processing them as single units, which can be summarized as dependence

abstraction and increased scheduling determinism.

Several issues in grouping instructions are discussed. Macro-ops may potentially

reduce instruction-level parallelism by serializing unnecessary instructions. To avoid these

harmful macro-ops, grouping dependent instructions into macro-ops is beneficial, as

opposed to grouping independent instructions. Special considerations should be made at

dependence branching and merging points for negative effects of last-arriving operands.

Also, cycles in data dependence chain may be induced by improper grouping, and hence

should be avoided.

To estimate the potential for macro-op grouping, candidate instruction types are

first determined. Then, dependence edge distances between groupable candidate instruc-

tions are characterized. The results from this characterization indicate that many depen-

dent macro-op candidates are placed near each other within a few instructions in program

order. Based on an infinite machine model that measures the parallelism of programs, the

degree of groupability and its performance impact are measured. The results indicate that

a significant number of instructions can be processed in groups. Also, they show that care-

lessly grouping instructions may significantly degrade parallelism.

92To determine the size of macro-ops, the average number of candidate instructions

in a dependence chain is measured. Our data indicate that dependence chains tend to be

short and that macro-ops with two instructions account for the vast majority of grouping

opportunities. The impact of macro-op scope on groupability is also measured. As more

instructions are searched in a wider scope, more macro-ops are captured and the coverage

increases. However, an 8-instruction macro-op scope captures a significant portion of can-

didate instructions in many cases, compared to wider macro-op scopes.

The groupability of instructions is related to the dependence edge distance among

dependent candidate instructions. Benchmarks with long dependence edges (e.g. eon and

vortex) are measured to have low groupability. In contrast, some other benchmarks with

short dependence edges (e.g. gap) exhibit relatively high potential for macro-op grouping.

Based on these results, the base grouping policy for MOP size and scope that our

experiments with macro-op scheduling and execution focus on is determined to be group-

ing two instructions captured within an 8-instruction scope. However, other policies for

larger MOPs or wider scope will be also discussed and evaluated.

These attributes of macro-ops can be exploited to improve instruction scheduling

logic and increase machine bandwidth. The details of such techniques will be discussed in

Chapter 6 and Chapter 8.

93Chapter 5

Understanding the Effects of Pipelined Scheduling

Conventional instruction scheduling logic performs a set of wakeup and select

operations atomically every clock cycle, to ensure back-to-back execution of dependent

instructions. If pipelined over multiple stages, it loses the capability for issuing dependent

instructions consecutively, resulting in performance degradation. One major benefit of

coarse-grained serial instruction processing, which is realized by macro-op scheduling and

execution in this thesis, is to reduce the rate at which scheduling decisions must be gener-

ated. This enables pipelined instruction scheduling logic to reap most of the performance

of conventional atomic scheduling.

To understand how our techniques compensate for the negative effects of pipelined

instruction scheduling, this chapter examines several aspects of pipelined instruction

scheduling and provides an insight into the reasons for the variability in performance sen-

sitivity to 2-cycle scheduling observed across different programs.

This chapter is laid out as follows: Section 5.1 describes the problems with con-

ventional instruction scheduling and discusses the trade-offs between scheduling atomic-

ity and scalability. Section 5.2 discusses the variability in the performance impact of

pipelined instruction scheduling. Section 5.3 and Section 5.4 study the hardware con-

straints and program characteristics that cause the machine to be tolerant of the negative

effects of pipelined instruction scheduling. Section 5.5 presents the correlation between

the distance distribution of dependence edges and the performance impact of pipelined

instruction scheduling.

945.1 Atomicity vs. Scalability

Ensuring back-to-back execution of dependent instructions in a conventional out-

of-order processor requires scheduling logic that performs a set of wakeup and select

operations every clock cycle. This scheduling atomicity is a major obstacle to building

high-frequency out-of-order microprocessors because it prevents the conventional instruc-

tion scheduling logic from being pipelined over multiple stages. Its complexity is prima-

rily determined by the size of instruction window (i.e. number of entries in the issue

queue). To achieve the target frequency without losing scheduling atomicity, its scalability

should be constrained; the issue queue should be limited to a certain size, which may

result in low architectural performance (i.e. IPC) because of the low capability for extract-

ing parallelism from the program.

If scheduling logic is pipelined, i.e. performs wakeup and select operations in two

different stages, it loses the ability to issue dependent instructions consecutively, and

hence may degrade performance since it creates scheduling bubbles in the dependence

chain (through register dependences) and the critical path of the program is potentially

lengthened. On the other hand, a positive effect is anticipated; the logic complexity is dis-

tributed over multiple pipeline stages and therefore a wider instruction window can be

built to search for more instructions to issue, which may recover the performance degrada-

tion, or enable even better performance.

To evaluate these trade-offs, Figure 5-1 shows the average IPCs of SPEC2K inte-

ger benchmarks measured on the base machine with atomic and pipelined scheduling

logic. The details of the machine configuration (4-wide, 128-entry issue queue and ROB)

are presented in Figure 3-1. The atomic scheduling logic performs a set of wakeup and

.

95

select operations every clock cycle to enable back-to-back execution of dependent instruc-

tions (1-cycle scheduling). The pipeline scheduling logic performs a set of wakeup and

select operations every two cycles (2-cycle scheduling) and hence is unable to issue

instructions dependent on parent instructions with single-cycle execution latency. Note

that it does not introduce scheduling bubbles for other multi-cycle instructions because

they can be hidden behind the execution latency.

With a 32-entry issue queue, the IPC loss due to 2-cycle scheduling is measured to

be 6.6% on average. If we assume that pipelining allows the issue queue size to grow to 48

entries, it outperforms the 32-entry, 1-cycle scheduling case. However, its equivalent win-

dow size is located at a point slightly greater than 32 entries, and even a 128-entry window

is unable to achieve the performance of 1-cycle scheduling with 48 entries. Recovering the

performance loss due to 2-cycle scheduling requires a significantly larger instruction win-

dow to find more instructions to issue. However, increasing the window size needs not

only a larger issue queue structure, but also the pipeline to bring in more instructions

FIGURE 5-1. Performance of pipelined scheduling logic with various issue queue
sizes.

0.9

1

1.1

1.2

1.3

32 48 64 96 128

Issue queue size

A
ve

ra
ge

 IP
C

 (
ha

rm
on

ic
 m

ea
n)

atomic 1-cycle
scheduling

pipelined 2-cycle
schedulingSPEC2K INT benchmarks

96

because insufficient instruction supply prevents the large window from being fully uti-

lized. The IPC curves in Figure 5-1 become saturated at 64 entries in both cases because

of this effect. Improving the instruction supply potentially requires higher fetch bandwidth

and a larger reorder buffer and register file.

Table 5-1 presents the 2-cycle scheduling performance when both reorder buffer

and issue queue are scaled to 256 entries to achieve a wider instruction window, while the

1-cycle scheduling case still has the 128-entry reorder buffer and the 48-entry issue queue.

Although the average IPC indicates that 2-cycle scheduling now outperforms 1-cycle

scheduling due to a larger instruction window powered by the increased reorder buffer

size, still, many benchmarks (e.g. 16.5% performance drop in gzip) cannot recover the

performance gap between the two cases.

In summary, pipelining instruction scheduling logic incurs negative performance

impact, which may not be easily recovered by increasing the instruction window size.

Table 5-1: Performance of 2-cycle scheduling with larger issue queue and ROB.

Benchmarks
IPC with

1-cycle scheduling,
48 IQ, 128 ROB

IPC with
2-cycle scheduling,
256 IQ, 256 ROB

IPC loss

bzip 1.51 1.48 2.3%
crafty 1.54 1.57 -1.9% (speed up)

eon 2.13 2.11 0.7%
gap 1.98 1.91 3.3%
gcc 1.29 1.28 0.9%

gzip 1.96 1.64 16.5%
mcf 0.37 0.42 -13.2% (speed up)

parser 1.12 1.01 10.0%
perl 1.30 1.33 -2.2% (speed up)

twolf 1.47 1.35 8.3%
vortex 1.74 1.83 -5.3% (speed up)

vpr 1.61 1.48 8.0%
Average

(Harmonic mean)
1.2213 1.2232 -0.16% (speed up)

.

97

Therefore, it requires some other way to overcome this limitation.

5.2 Variability in Performance Sensitivity to 2-cycle Scheduling

Before I discuss the ways to overcome the limitation of pipelining the instruction

scheduling logic, it is necessary to analyze the causes for its performance loss. To simplify

our discussion, I first want to define n-cycle dependence edge, which is an output register

dependence edge from a parent instruction with n-cycle execution latency, to its dependent

child instruction. An n-cycle instruction has as many n-cycle dependence edges as the

number of its consumers. As discussed in the previous section, 2-cycle or greater depen-

dence edges are not affected by 2-cycle scheduling. In contrast, 1-cycle dependence edges

are vulnerable to 2-cycle scheduling in which they behave as if they are 2-cycle depen-

dence edges and increase the dependence tree height due to scheduling bubbles. Note that

1-cycle instructions that create 1-cycle dependence edges are MOP head candidates

defined in Section 4.5.1.

Table 5-2: IPC loss due to 2-cycle scheduling at each issue queue size.

Benchmarks 32-entry 48-entry 64-entry 128-entry

bzip 6.9% 6.7% 6.5% 6.4%
crafty 5.0% 3.9% 3.6% 3.5%

eon 2.7% 3.5% 2.9% 2.8%
gap 17.7% 21.0% 19.9% 19.1%
gcc 2.6% 2.7% 2.7% 2.7%

gzip 17.0% 18.2% 18.2% 18.1%
mcf 1.5% 1.5% 1.4% 1.4%

parser 11.4% 11.7% 11.5% 11.6%
perl 5.0% 3.2% 2.8% 1.5%

twolf 10.7% 10.8% 10.8% 10.8%
vortex 2.5% 1.6% 1.3% 1.3%

vpr 9.4% 10.7% 10.1% 9.8%
Average IPC

loss
6.55% 6.75% 6.47% 6.33%

98Table 5-2 presents IPC loss due to 2-cycle scheduling measured for each bench-

mark when the issue queue size varies from 32 to 128 entries. Note that the performance

data here are identical to those of Figure 5-1. An interesting trend exists in the table: the

average numbers in the last row are not representative for the performance losses across

all benchmarks. Some benchmarks (highlighted rows) such as gap, gzip, parser, twolf and

vpr exhibit significant performance degradations over 10% (up to 21% in gap), while the

others are nearly insensitive or less sensitive to 2-cycle scheduling.

The performance insensitivity of some benchmarks is, of course, because many 1-

cycle dependence edges are not in the critical path of the program [31], which is formed

through non-1-cycle dependence edges or other structural dependences created by hard-

ware constraints. In the following sections, likely causes for the performance insensitivity

will be discussed.

5.3 Performance Insensitivity Caused by Hardware Constraints

Hardware constraints that may cause the performance insensitivity can be listed as

follows:

• Branch prediction performance: frequent branch mispredictions increase the total

execution time. Therefore, the performance degradation due to 2-cycle scheduling

become less significant compared with the total execution time.

• Memory performance: instruction and data cache misses cause the same effect as

branch mispredictions. In addition, data cache misses may hide other computations

sensitive to 2-cycle scheduling.

• Execution bandwidth: if a program has many independent ready instructions that

.

99exceed the execution bandwidth, the structural hazards in the execution bandwidth

and resources may hide the performance degradation due to 2-cycle scheduling.

• Fetch bandwidth: if a child instruction is not delivered into the pipeline in time

before its parent instruction is issued due to a limited fetch bandwidth, 2-cycle

scheduling may not affect performance because the child instruction is already

ready to issue when entering the instruction window.

In order to evaluate how much performance degradation is hidden by such con-

straints, each benchmark was tested on the base machine (4-wide, 128 IQ, 128 ROB) with

1- and 2-cycle scheduling as each hardware constraint is relaxed cumulatively in the order

of branch prediction, memory performance, execution bandwidth and fetch bandwidth. In

Figure 5-2 through Figure 5-4, the left graphs present the total execution time differences

between 1- and 2-cycle scheduling, to show the extra cycles induced by 2-cycle schedul-

ing. The right graphs present the same data as the left ones, but show IPCs normalized to

1-cycle scheduling. Note that the unnormalized IPCs are shown in Table 9-2. The reason

for showing two different graphs is to identify the cause of performance insensitivity. For

example, relaxing a certain hardware constraint may increase the performance degradation

for 2-cycle scheduling. If the execution time gap between 1- and 2-cycle scheduling is sta-

ble (observed from the left graph), the relative performance drop (right graph) is caused by

the reduction in the total execution time. If the execution time gap has increased, the result

implies that the extra delays incurred by 2-cycle scheduling have been hidden behind

other delays incurred by the hardware constraint.

The base category in each graph shows the base performance with no hardware

constraint relaxation (same as the 128-entry column in Table 5-2). The bpred category

100shows the case where perfect branch prediction is added. The next mem category further

relaxes the constraint of memory performance. Perfect instruction and data caches (with

the same access latency as the base case) are used on top of the perfect branch predictor.

Note that the processor core still experiences scheduling replays due to store-to-load

aliases although no data cache miss causes loads to replay. From the graphs, we find that

relaxing branch prediction and memory constraints exposes performance degradation due

to 2-cycle scheduling in gap, parser and perl. In particular, perl was relatively insensitive

to 2-cycle scheduling on the base machine but it loses over 10% of IPC when the two con-

straints are relaxed. Note that the execution time gap (left graph) in perl has increased

after relaxing the two constraints, whereas those in gap and parser are stable. This implies

that the exposed performance degradation in perl did not simply come from the reduced

total execution time. Also note that mcf is insensitive to 2-cycle scheduling not simply

because of low cache performance. Although perfect memory improves its performance

by more than seven times, 2-cycle scheduling loses only a small fraction of the IPC. A

similar trend is also observed in other insensitive benchmarks such as eon, gcc and vortex.

Execution bandwidth limits are relaxed in the exe category. In addition to the pre-

vious relaxations, the base machine is configured to have infinite execution resources

(functional units and memory ports) as well as infinite issue and execution bandwidth.

Therefore, the machine can issue and execute instructions any time as long as they are

ready. Except for gap, the execution time difference between 1- and 2-cycle scheduling in

most benchmarks are stable, implying that execution bandwidth and resource conflicts are

not major causes of the insensitivity. One reason for this result is that the machine cannot

fully utilize infinite execution bandwidth because of the finite fetch bandwidth.

.

101The fetch / commit category assumes infinite fetch and commit bandwidth so that

the ROB (128 entries) is always full of instructions. Now, performance is constrained only

by the data dependences (determined by the code structure) and the window size (deter-

mined by the ROB size), ignoring other miscellaneous factors. Instructions are fetched

and committed still in the original program order as in the base machine. The reason why

the commit bandwidth limit is also relaxed as well is because the machine cannot fetch

more instructions than the finite commit bandwidth (four instructions per cycle) which

limits the maximum number of ROB entries that can be reassigned to newly fetched

instructions. It is important to note that finite execution bandwidth has the same effect on

fetch as the commit bandwidth. For this reason, even if the exe and the fetch / commit cat-

egories are measured in reverse order, the performance curves in all benchmarks show the

same trends (with minor variations) as the current ones. In other words, relaxing only one

or two constraints among fetch, execution and commit does not fully improve the machine

bandwidth and therefore the current category should be interpreted as relaxing the con-

straint of the finite machine bandwidth, not just fetch or commit constraints.

An interesting trend is observed after the finite machine bandwidth constraint is

relaxed. The two curves in the left graphs diverge and the execution time gaps increase in

many benchmarks. In particular, crafty, gcc, mcf and vortex become sensitive to 2-cycle

scheduling, although the execution time gaps have been relatively constant until before

this relaxation. This implies that the performance insensitivity to 2-cycle scheduling

comes from a factor related to the machine bandwidth, which determines how fast instruc-

tions are delivered to the instruction window.

Finally, the last two categories labeled as 2x window and 4x window show the

102cases where the size of the ROB and the issue queue increases to 256 and 512 entries,

respectively. Although some benchmarks show more performance drops (seen from the

right graphs) while the others exhibit an opposite trend as the window size increases, the

execution time gaps (which may not seem obvious due to the scale of the left graphs) in all

benchmarks are reduced because extra delays from 2-cycle scheduling are overlapped

with each other as more parallelism is extracted by a deeper instruction window.

In summary, the degree of the performance insensitivity to 2-cycle scheduling dif-

fers significantly from benchmark to benchmark. Some hardware constraints cause pro-

grams to be less sensitive to the negative performance impact of 2-cycle scheduling. In

particular, machine bandwidth that determines how fast instructions are delivered to the

instruction window greatly affects the performance sensitivity.

.

103

FIGURE 5-2. Execution time and relative performance of 2-cycle scheduling as the
machine constraints are relaxed (bzip ~ gap).

0.0E+00

4.0E+08

8.0E+08

1.2E+09

1.6E+09

2.0E+09

base bpred mem exe fetch /
commit

2x
window

4x
window

E
xe

cu
tio

n
tim

e
(c

yc
le

s)

2-cycle

1-cycle

bzip

0

0.2

0.4

0.6

0.8

1

base bpred mem exe fetch /
commit

2x
window

4x
window

IP
C

 n
or

m
al

iz
ed

 to
 1

-c
yc

le

2-cyclebzip

0.0E+00

5.0E+08

1.0E+09

1.5E+09

2.0E+09

2.5E+09

base bpred mem exe fetch /
commit

2x
window

4x
window

E
xe

cu
tio

n
tim

e
(c

yc
le

s)

2-cycle

1-cycle

crafty

0

0.2

0.4

0.6

0.8

1

base bpred mem exe fetch /
commit

2x
window

4x
window

IP
C

 n
or

m
al

iz
ed

 to
 1

-c
yc

le
2-cyclecrafty

0.0E+00

4.0E+08

8.0E+08

1.2E+09

1.6E+09

base bpred mem exe fetch /
commit

2x
window

4x
window

E
xe

cu
tio

n
tim

e
(c

yc
le

s)

2-cycle

1-cycle

eon

0

0.2

0.4

0.6

0.8

1

base bpred mem exe fetch /
commit

2x
window

4x
window

IP
C

 n
or

m
al

iz
ed

 to
 1

-c
yc

le

2-cycleeon

0.0E+00

4.0E+08

8.0E+08

1.2E+09

1.6E+09

2.0E+09

base bpred mem exe fetch /
commit

2x
window

4x
window

E
xe

cu
tio

n
tim

e
(c

yc
le

s)

2-cycle

1-cycle

gap

0

0.2

0.4

0.6

0.8

1

base bpred mem exe fetch /
commit

2x
window

4x
window

IP
C

 n
or

m
al

iz
ed

 to
 1

-c
yc

le

2-cyclegap

104

FIGURE 5-3. Execution time and relative performance of 2-cycle scheduling as the
machine constraints are relaxed (gcc ~ parser).

0.0E+00

1.0E+09

2.0E+09

3.0E+09

4.0E+09

5.0E+09

base bpred mem exe fetch /
commit

2x
window

4x
window

E
xe

cu
tio

n
tim

e
(c

yc
le

s)

2-cycle

1-cycle

gcc

0

0.2

0.4

0.6

0.8

1

base bpred mem exe fetch /
commit

2x
window

4x
window

IP
C

 n
or

m
al

iz
ed

 to
 1

-c
yc

le

2-cyclegcc

0.0E+00

2.0E+08

4.0E+08

6.0E+08

8.0E+08

1.0E+09

1.2E+09

base bpred mem exe fetch /
commit

2x
window

4x
window

E
xe

cu
tio

n
tim

e
(c

yc
le

s)

2-cycle

1-cycle

gzip

0

0.2

0.4

0.6

0.8

1

base bpred mem exe fetch /
commit

2x
window

4x
window

IP
C

 n
or

m
al

iz
ed

 to
 1

-c
yc

le
2-cyclegzip

0.0E+00

5.0E+08

1.0E+09

1.5E+09

2.0E+09

2.5E+09

base bpred mem exe fetch /
commit

2x
window

4x
window

E
xe

cu
tio

n
tim

e
(c

yc
le

s)

2-cycle

1-cycle

mcf

0

0.2

0.4

0.6

0.8

1

base bpred mem exe fetch /
commit

2x
window

4x
window

IP
C

 n
or

m
al

iz
ed

 to
 1

-c
yc

le

2-cyclemcf

0.0E+00

1.0E+09

2.0E+09

3.0E+09

4.0E+09

5.0E+09

base bpred mem exe fetch /
commit

2x
window

4x
window

E
xe

cu
tio

n
tim

e
(c

yc
le

s)

2-cycle

1-cycle

parser

0

0.2

0.4

0.6

0.8

1

base bpred mem exe fetch /
commit

2x
window

4x
window

IP
C

 n
or

m
al

iz
ed

 to
 1

-c
yc

le

2-cycleparser

.

105

FIGURE 5-4. Execution time and relative performance of 2-cycle scheduling as the
machine constraints are relaxed (perl ~ vpr).

0.0E+00

4.0E+08

8.0E+08

1.2E+09

1.6E+09

2.0E+09

base bpred mem exe fetch /
commit

2x
window

4x
window

E
xe

cu
tio

n
tim

e
(c

yc
le

s)

2-cycle

1-cycle

perl

0

0.2

0.4

0.6

0.8

1

base bpred mem exe fetch /
commit

2x
window

4x
window

IP
C

 n
or

m
al

iz
ed

 to
 1

-c
yc

le

2-cycleperl

0.0E+00

2.0E+08

4.0E+08

6.0E+08

8.0E+08

base bpred mem exe fetch /
commit

2x
window

4x
window

E
xe

cu
tio

n
tim

e
(c

yc
le

s)

2-cycle

1-cycle

twolf

0

0.2

0.4

0.6

0.8

1

base bpred mem exe fetch /
commit

2x
window

4x
window

IP
C

 n
or

m
al

iz
ed

 to
 1

-c
yc

le
2-cycletwolf

0.0E+00

2.0E+08

4.0E+08

6.0E+08

8.0E+08

base bpred mem exe fetch /
commit

2x
window

4x
window

E
xe

cu
tio

n
tim

e
(c

yc
le

s)

2-cycle

1-cycle

vortex

0

0.2

0.4

0.6

0.8

1

base bpred mem exe fetch /
commit

2x
window

4x
window

IP
C

 n
or

m
al

iz
ed

 to
 1

-c
yc

le

2-cyclevortex

0.0E+00

2.0E+08

4.0E+08

6.0E+08

8.0E+08

1.0E+09

1.2E+09

base bpred mem exe fetch /
commit

2x
window

4x
window

E
xe

cu
tio

n
tim

e
(c

yc
le

s)

2-cycle

1-cycle

vpr

0

0.2

0.4

0.6

0.8

1

base bpred mem exe fetch /
commit

2x
window

4x
window

IP
C

 n
or

m
al

iz
ed

 to
 1

-c
yc

le

2-cyclevpr

1065.4 Performance Insensitivity Caused by Program Characteristics

In the previous section, we discussed the performance impact of hardware con-

straints on 2-cycle scheduling and found that machine bandwidth greatly affects the per-

formance sensitivity. The next question will be which program characteristic strengthens

or weakens such trends given the hardware constraints.

Instruction mix may partly explain the performance insensitivity of eon, which has

the lowest 1-cycle integer instruction rate among the benchmarks as shown in Table 3-2

(% 1-cycle ALUs category). Since there are fewer 1-cycle instructions in the program than

others, it is also likely that fewer instructions in the critical path of the program are nega-

tively affected by 2-cycle scheduling, assuming that a program and its critical path have a

similar instruction mix. Other benchmarks relatively insensitive to 2-cycle scheduling,

such as gcc, mcf and vortex also have relatively lower percentages of 1-cycle instructions

than other sensitive benchmarks. However, their differences are within 10 ~ 15% of total

instructions so they do not fully explain the observed results, although they are correlated

to some extent.

It is a difficult task to find the exact causes of performance insensitivity from pro-

gram characteristics, since the program structure is not simply defined by only a few

parameters. Instead of formulating a statistical model to predict the performance on 2-

cycle scheduling using multiple parameters that describe the program characteristics, I

will focus on one parameter -- dependence edge distance, and try to find its correlation

with performance, because it is directly related to what the proposed macro-op scheduling

complements for 2-cycle scheduling.

According to the critical path model [31], the critical path is formed through the

.

107data dependences (i.e. memory and register dependences) as well as structural depen-

dences (i.e. hardware constraints discussed in the previous section). To measure the

impact of data dependences on the performance insensitivity, a simple experiment is per-

formed. Figure 5-5 compares the performance of 2-cycle scheduling measured on the infi-

nite machine and the base machine with a finite bandwidth. The performance data are

normalized to the 1-cycle scheduling case on each machine. For controlled experiments,

the base machine has a perfect branch predictor and perfect memory (same as the mem

category in Figure 5-2 through Figure 5-4) so that the base machine result is not affected

by those hardware constraints. The infinite machine does not have any hardware con-

straint so the critical path will be formed only through the data dependences (as opposed

to structural dependences). If performance sensitivity is determined primarily by the data

dependences, we should observe a similar performance trend in both infinite and base

machines, although the degree of slowdown may differ. However, the graph shows that

there is no correlation between the two results. Especially, the benchmarks that show vir-

tually no slowdowns on the base machine, such as eon, gcc, mcf and vortex actually

exhibit more performance degradation on the infinite machine. Therefore, we can infer

that performance sensitivity to 2-cycle scheduling is primarily determined by other fac-

tors, i.e. structural dependences.

5.4.1 Not all dependences are created equal

At this point, it is worth highlighting the difference between the infinite and base

machines. Infinite machine bandwidth implies that all register and memory dependence

edges in the program equally affect performance regardless of their distance (the instruc-

tion count between the parent and the dependent child instructions in program order). In

108

fact, the finite issue queue and ROB sizes limit the scope of dependence edges visible

within the out-of-order window. For example, a dependence edge with a distance greater

than 128 instructions never affects performance on a machine with the 128-entry ROB, no

matter whether the instruction scheduler performs 1-cycle or even 10-cycle scheduling

since the parent instruction should have committed before its dependent instruction enters

the window. Even if the dependence edge is shorter and both parent and dependent

instructions may fit within the ROB, longer-distance dependence edges are less likely to

affect performance than shorter-distance edges because instruction fetch is a serial process

and the parent instruction may have been issued ahead of the arrival of its dependent

instructions into the window. In this case, this dependence edge becomes insensitive to 2-

cycle scheduling because the critical path will not be formed through this edge.

In order to measure this impact of edge distances on instruction scheduling, I first

characterize the cumulative distribution of 1-cycle dependence edges categorized by their

distances in Figure 5-6. Note that this graph shows a program characteristic, and is not

dependent on machine configuration. Also note that the curves in the graph corresponding

FIGURE 5-5. Impact of 2-cycle scheduling on infinite and base machines.

0

0.2

0.4

0.6

0.8

1

bz
ip

cr
af

ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rl

tw
ol

f

vo
rt

ex vp
r

IP
C

 n
or

m
al

iz
ed

 to
 1

-c
yc

le
 s

ch
ed

ul
in

g
on

 e
ac

h
m

ac
hi

ne

infinite 2-cycle base 2-cycle w/ perfect bpred and memory

.

109

to each of the benchmarks may not be distinguishable but showing the differences is not

important at this point. 100% on the y-axis represents the total 1-cycle dependence edges

in a program. The x-axis represents the edge distances, which are shown up to 128 instruc-

tions to match the ROB size of the base machine. The graph indicates that 40~58% of 1-

cycle dependence edges connect dependent instruction pairs placed within eight instruc-

tions in program order (the vertical line labeled as 8-inst scope). The 32-instruction scope

captures at least ~70% of all 1-cycle dependence edges. With a 128-entry ROB, the base

machine will not observe other longer edges (up to 20% of all 1-cycle edges). Source

operands corresponding to these longer edges should be ready when instructions are

fetched into the pipeline, hence not affecting performance.

Now, in Figure 5-7, we will observe the dynamic behavior of 1-cycle dependence

edges on the base machine with a perfect branch predictor and perfect memory. The

scheduler performs 1-cycle scheduling. The issue queue is set to the maximum size that

matches the ROB with 128 entries. The graph is plotted in the same way as Figure 5-6,

except that this graph presents the 1-cycle dependence edges that directly awaken their

FIGURE 5-6. Cumulative distribution of 1-cycle dependence edges defined in
programs.

0%

20%

40%

60%

80%

100%

0 16 32 48 64 80 96 112 128

edge distance

T
ot

al
 1

-c
yc

le
 d

ep
en

de
nc

e
ed

ge
s

in
 p

ro
gr

am
s

bzip
crafty
eon
gap
gcc
gzip
mcf
parser
perl
twolf
vortex
vpr8-

in
st

 s
co

pe

32
-in

st
 s

co
pe

110

dependent instructions in the issue queue (regardless of whether the dependent instruction

is issued or not). We find that only a few 1-cycle dependence edges participate in instruc-

tion scheduling, comparing to the data in Figure 5-6; only 37% (eon) ~ 68% (perl) of the

total 1-cycle edges awaken their dependent instructions (observed at a distance of 128

instructions). The curves in the graph rise rapidly within a short range of distance and then

begin to lose momentum as dependence edges become longer. To better show this behav-

FIGURE 5-7. Cumulative distribution of 1-cycle edges that participate in instruction
scheduling.

FIGURE 5-8. Cumulative distribution of 1-cycle edges that participate in instruction
scheduling (normalized).

0%

20%

40%

60%

80%

100%

0 16 32 48 64 80 96 112 128

edge distance

T
ot

al
 1

-c
yc

le
 d

ep
en

de
nc

e
ed

ge
s

in
 p

ro
gr

am
s

bzip
crafty
eon
gap
gcc
gzip
mcf
parser
perl
twolf
vortex
vpr8-

in
st

 s
co

pe

32
-in

st
 s

co
pe

0%

20%

40%

60%

80%

100%

0 16 32 48 64 80 96 112 128

edge distance

to
ta

l 1
-c

yc
le

 d
ep

en
de

nc
e

ed
ge

s
th

at

aw
ak

en
 d

ep
en

de
nt

 in
st

ru
ct

io
ns

bzip
crafty
eon
gap
gcc
gzip
mcf
parser
perl
twolf
vortex
vpr8-

in
st

 s
co

pe

32
-in

st
 s

co
pe

.

111ior, Figure 5-8 presents the data normalized to the total number of 1-cycle dependence

edges that awakened dependent instructions. An interesting observation from this graph is

that short-distance edges account for most of scheduling activities. Over 80% of 1-cycle

dependence edges are captured within an 8-instruction scope in most benchmarks. These

short-distance dependence edges are more likely to affect 2-cycle scheduling performance

since they are not hidden by structural dependences created by finite fetch bandwidth.

Other longer dependence edges do not directly participate in instruction scheduling

because dependent instructions are fetched into the out-of-order window after parent

instructions have already been scheduled.

5.4.2 Dependence edge distance and performance insensitivity

To present the correlation between 2-cycle scheduling performance and depen-

dence edge distance, I plot the same characterization data as Figure 5-6 for the most sensi-

tive (gap, gzip, perl, twolf) and the least sensitive (eon, gcc, mcf, vortex) benchmarks

using two separate graphs in Figure 5-9 and Figure 5-10.

The graphs clearly show the differences in edge distances between the two groups;

insensitive benchmarks tend to have longer dependence edges than sensitive benchmarks.

This trend does not apply to mcf, which has relatively shorter dependence edges compared

to other insensitive benchmarks. Ignoring mcf, the sensitive benchmarks in Figure 5-9

have 14 ~ 17% more dependence edges captured within an 8-instruction scope than the

other group in Figure 5-10. Note that the vertical line denoted as 8-inst scope is plotted at

the edge distance of 7 on the x-axis, since an n-instruction scope should count the parent

instruction as well. The reasons for choosing an 8-instruction scope as a point of compari-

son are 1) the vast majority of performance-degrading 1-cycle edges are captured within

112

this scope, and 2) fetching eight instructions can be translated into at least a 2-cycle delay

on the base 4-wide machine, which can potentially hide the extra latency for 2-cycle

scheduling.

It is important to discuss the impact of the dependence edge distances on the resi-

dency of instructions in the issue queue. An instruction can leave the issue queue after its

computation is completed. The residency between insertion and eviction of an instruction

FIGURE 5-9. Cumulative distribution of 1-cycle dependence edges in sensitive
benchmarks.

FIGURE 5-10. Cumulative distribution of 1-cycle dependence edges in insensitive
benchmarks.

0%

20%

40%

60%

80%

0 8 16 24 32

edge distance

to
ta

l 1
-c

yc
le

 d
ep

en
de

nc
e

ed
ge

s
in

 p
ro

gr
am

s gap

gzip

parser

twolf

8-
in

st
 s

co
pe

0%

20%

40%

60%

80%

0 8 16 24 32

edge distance

to
ta

l 1
-c

yc
le

 d
ep

en
de

nc
e

ed
ge

s
in

 p
ro

gr
am

s eon

gcc

mcf

vortex

8-
in

st
 s

co
pe

.

113is primarily determined by when it is inserted into the window and when its source oper-

ands become ready. If an instruction I0 waits for its source operands for n cycles in the

issue queue, for example, a dependent instruction I1 inserted in the same cycle as I0

should wait for at least n + MAX (scheduling latency, execution latency of I0) cycles

before it is issued. If another instruction I2, which is dependent on I1, enters the issue

queue earlier than the issue of I1, the residency of the parent instruction I1 will be trans-

ferred along the dependence chain and accumulated, further increasing the residency of

dependent instructions and exposing them to the scheduler’s performance. Conversely, if

the instruction I2 enters the window after the issue of I1, I2 can be immediately issued and

residency accumulation does not occur. So, if many 1-cycle dependence edges in a pro-

gram have distances greater than MAX (scheduling latency, execution latency), the degree

of residency accumulation becomes lower and therefore reduces the probability of long-

distance dependence edges’ involving in the instruction scheduling, because instructions

are likely to leave the queue earlier than their dependent instructions enter the window.

Table 5-3 presents these effects measured on the base machine with a perfect

branch predictor and memory. The average residency from insertion to issue on 1- and 2-

cycle scheduling is presented along with IPCs for two groups of benchmarks. The bench-

marks most sensitive to 2-cycle scheduling show longer residencies than the other group.

Transitioning from 1-cycle to 2-cycle scheduling, the average residencies in the sensitive

benchmarks are more significantly affected than insensitive benchmarks. Note that the

issue queue residency is not simply a reverse metric of IPC, as the numbers in the 1-cycle

scheduling column indicate. As we observed in Figure 5-10, mcf has a relatively longer

residency compared to other benchmarks in the same group, since it has more short-dis-

114

tance 1-cycle edges.

Figure 5-11 and Figure 5-12 present more detailed data on this residency accumu-

lation effect. Each graph shows the probability of awakening dependent instructions at a

given edge distance, plotted for each benchmark group. For example, the datapoint A in

Figure 5-11 indicates that 1-cycle dependence edges with a distance of 88 instructions

awakened their dependent instructions 75% of the time. For the other 25% of the time,

they were issued before dependent instructions arrived in the issue queue. The graph has a

thick black line labeled as average, which is the average probability across all bench-

marks, and given as a reference point for comparing the two graphs. The data indicate that

the benchmarks insensitive to 2-cycle scheduling have much lower probabilities of awak-

ening dependent instructions at any given edge distance, resulting in low performance

impact because many 1-cycle dependence edges negatively affected by 2-cycle scheduling

do not delay their dependent instructions.

Table 5-3: Comparison of issue queue residency.

Benchmarks

1-cycle scheduling 2-cycle scheduling

Residency from
insertion to

issue
(cycles)

IPC

Residency from
insertion to

issue
(cycles)

IPC

Benchmarks most sensitive to 2-cycle scheduling
gap 10.49 2.99 16.64 2.15

gzip 13.58 2.97 22.09 2.31
parser 10.13 2.66 18.98 2.06
twolf 14.99 2.60 22.70 2.19

Benchmarks least sensitive to 2-cycle scheduling
eon 3.29 2.84 4.56 2.73
gcc 3.01 2.84 4.73 2.79
mcf 7.95 2.77 10.39 2.74

vortex 2.87 3.06 4.38 3.00

.

115

5.5 Correlating Dependence Edge Distance and Performance

Based on the observations so far, I correlate the distance distributions of depen-

dence edges and performance. Figure 5-13 compares the fraction of 2-cycle-scheduling-

insensitive dependence edges and performance of 2-cycle scheduling. The purpose of this

study is not to develop a statistical model for 2-cycle scheduling performance, but to show

the correlation between the two different metrics. This result should not be interpreted as a

FIGURE 5-11. Probability of awakening dependent instructions in sensitive
benchmarks.

FIGURE 5-12. Probability of awakening dependent instructions in insensitive
benchmarks.

0

0.2

0.4

0.6

0.8

1

0 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

edge distance

pr
ob

ab
ili

ty
 o

f a
w

ak
en

in
g

de
pe

nd
en

t i
ns

tu
rc

tio
ns

gap

gzip

parser

twolf

average

A

0

0.2

0.4

0.6

0.8

1

0 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

edge distance

pr
ob

ab
ili

ty
 o

f a
w

ak
en

in
g

de
pe

nd
en

t i
ns

tu
rc

tio
ns

eon

gcc

mcf

vortex

average

116

prediction of 2-cycle scheduling performance because it does not take any hardware con-

straint (except for fetch serialization) nor execution latencies into consideration.

The y-axis labeled as 2-cycle IPC normalized to 1-cycle is self-explanatory. The

performance data are measured on the base machine with a perfect branch predictor and

perfect memory. The x-axis labeled as fraction of 2-cycle-insensitive edges represents the

ratio of the register dependence edges unaffected by 2-cycle scheduling out of the total

register dependence edges created by all types of value-generating instructions. These data

were calculated as follows: First, I multiply the 1-cycle dependence edge distribution

shown in Figure 5-6 by the probability of awakening dependent instructions at each dis-

tance presented in Figure 5-11. The sum of the results across all dependence edge dis-

tances becomes the total number of 1-cycle dependence edges that participate in instruc-

tion scheduling. A program with more short-distance dependence edges will have a higher

result since shorter edges have higher probabilities of awakening dependent instructions

than longer edges. Then, I divide the sum by the total number of register dependence

edges. Finally, the result of the previous computation is subtracted from 1, in order to

FIGURE 5-13. Correlating the fraction of 2-cycle-scheduling-insensitive dependence
edges with 2-cycle scheduling performance.

0.7

0.75

0.8

0.85

0.9

0.95

1

0.55 0.6 0.65 0.7 0.75 0.8

fraction of 2-cycle-insensitive edges

2-
cy

cl
e

IP
C

 n
or

m
al

iz
ed

 to
 1

-c
yc

le

bzip

crafty
eon

gap

gcc

gzip

mcf

parser

twolf

perl

vortex

vpr

.

117acquire the fraction of the edges insensitive to 2-cycle scheduling.

Since the first operation (multiplying two vectors) potentially induces a feedback

of the actual performance outcome to our result, the average data across all benchmarks

are used for this calculation, instead of the probabilities measured individually for each

benchmark. Therefore, the generated result will not be dependent on the dynamic behav-

iors of each benchmark. If the actual probability data for each benchmark are used, the

effect of issue queue residency accumulation is reflected to the result and it tends to show

stronger correlations in many cases. Note that the instruction mix has indirectly been fac-

tored in our results as we divide the sum by the total number of register edges.

In the graph, a trend line is plotted for the benchmarks (shown as circles) that show

correlation between the two metrics to some extent. As more dependence edges in the pro-

gram are affected due to shorter dependence edge distances, the program tends to suffer

from 2-cycle scheduling. Compared to them, some other benchmarks including mcf do not

exhibit strong correlation, and are marked separately as squares in the graph. The overall

trend indicates that a reasonable level of correlation exists between performance degrada-

tion and dependence edge distances. This implies that benchmarks with relatively short

dependence edges tend to be more sensitive to 2-cycle scheduling. Conversely, bench-

marks with relatively long dependence edges are tend to be less sensitive to the negative

impact of 2-cycle scheduling.

5.6 Summary and Conclusions

When conventional atomic instruction scheduling logic is pipelined into two sepa-

rate stages, it loses the capability for issuing instructions dependent on a single-cycle

118instruction in the next consecutive clock cycle, resulting in performance degradation. This

chapter examines several aspects of pipelined instruction scheduling and provides an

insight into the reasons for different levels of performance sensitivity to pipelined schedul-

ing observed in various benchmarks. Pipelined scheduling may not significantly degrade

performance. This is primarily caused by hardware constraints that hide the extra delays of

pipelined scheduling. In particular, the machine bandwidth that determines how fast

instructions are delivered to the out-of-order window greatly affects the sensitivity. We

empirically observed that the distributions of dependence edge distances in a program

weaken or strengthen the tendency of performance sensitivity. A program with long

dependence edges tends to be insensitive to pipelined scheduling. This is because given

finite fetch bandwidth, many instructions are issued before their dependent instructions

enter the instruction window and therefore the extra wakeup delays in pipelined schedul-

ing do not directly affect performance. Conversely, a program with short dependence

edges tends to lose performance significantly for the opposite reason. Therefore, a tech-

nique to focus on short-distance dependent pairs is likely to achieve most benefits.

In the following chapters, I will propose techniques to overcome the limitations of

conventional instruction scheduling, and study how they complement pipelined instruc-

tion scheduling, based on the findings made in this chapter.

119Chapter 6

Macro-op Scheduling

In Chapter 4, I characterized the groupability of instructions and found that there

are a significant number of instructions that can be processed together as a single unit that

does not require fine-grained, instruction-level controls for schedule and execution. Chap-

ter 5 described the problems with pipelining instruction scheduling logic and analyzed its

performance impact.

In this chapter, I apply coarse-grained instruction processing to instruction sched-

uling. This technique called macro-op scheduling relaxes the atomicity constraint of con-

ventional instruction scheduling, enabling pipelined scheduling logic that issues

dependent instructions consecutively. In addition, macro-op scheduling relaxes the scal-

ability constraint, increasing the effective size of the window because multiple instruc-

tions are processed as a single unit in the scheduler and hence an issue queue entry can

logically hold multiple original instructions. These combined benefits enable pipelined, 2-

cycle scheduling logic to potentially outperform conventional atomic scheduling logic.

This chapter is laid out as follows: Section 6.1 presents an overview of macro-op

scheduling and its benefits. Section 6.2 discusses the MOP grouping policies. Section 6.3

and Section 6.4 detail the key components in macro-op scheduling: MOP detection and

formation logic. Finally, Section 6.5 to Section 6.7 discuss other performance and imple-

mentation considerations.

1206.1 Relaxing the Scheduling Atomicity and Scalability via Macro-ops

As discussed in Chapter 5, scheduling atomicity is a major constraint in scaling

instruction scheduling logic. This constraint is in fact imposed by the minimal execution

latency of instructions; many ALU operations execute in a single clock cycle and hence

scheduling of dependent instructions should be fast enough to keep up with executing

them. If the execution latencies of all types of instructions were greater than one clock

cycle, the scheduling loop would be no longer restricted to one clock cycle, and the

wakeup and select operations could expand over multiple clock cycles with respect to the

minimal execution latency. However, it is hard to imagine that hardware designers would

give up single-cycle operations even in future microprocessors running at an extremely

high clock speed because instructions can still be issued consecutively by using e.g. stag-

gered adders [44][42] that allow dependent computations to overlap.

The atomicity constraint can be relaxed by increasing the scheduling granularity

from single to multiple instructions. Macro-op scheduling groups multiple instructions

into MOPs with multi-cycle latencies, and forces scheduling decisions to occur at multiple

instruction boundaries.

6.1.1 A scenario for macro-op scheduling

Figure 6-1 shows an example of macro-op scheduling in which each MOP can

contain two instructions. The original data dependence graph was taken from gzip. All

instructions in the figure are single-cycle operations.

Macro-op scheduling relaxes the atomicity constraint of instruction scheduling,

enabling pipelined scheduling logic that issues dependent instructions consecutively. In

the base case (Figure 6-1a), the wakeup and select operations must be performed within a

.

121

single clock cycle to achieve consecutive execution of dependent instructions. In contrast,

a MOP has a two-cycle latency and hence macro-op scheduling (Figure 6-1b) can perform

a set of wakeup and select operations every two clock cycles. Instructions not grouped into

MOPs (instructions 6 and 7 in the figure) behave as in conventional 2-cycle scheduling,

and dependent instructions cannot be issued consecutively. The dependence tree depth for

the example increases from 9 to only 10 clock cycles in macro-op scheduling, while it

becomes 17 clock cycles in conventional 2-cycle scheduling.

Macro-op scheduling increases the effective size of the window because multiple

instructions are processed as a single unit in the scheduler and hence an issue queue entry

can logically hold multiple original instructions. In this example, the macro-op scheduler

consumes only 9 issue queue entries for 16 instructions. This enables the scheduler to bet-

ter tolerate long latency events with the same number of issue queue entries.

Figure 6-2 presents detailed scheduling timings in conventional 1-cycle, 2-cycle,

FIGURE 6-1. An example of macro-op scheduling.

(b) Converted dependence in macro-op scheduling(a) Original dependence

1

3

2

5

4

8
7

10

12

9

11

13

14
15

16

n

cycle

n+1

select
/ wakeup

select
/ wakeup

12

3 45

6

7 98

10 11

12

13

14

15

16

n

cycle

n+1

select
wakeup
select
wakeup

6

MOP
dependence

Macro-op (MOP)

122

and 2-cycle macro-op scheduling. In 2-cycle scheduling, the minimal latency of depen-

dence edges is two clock cycles and the critical path of the data dependence graph is nega-

tively affected due to wakeup delay. In macro-op scheduling, many 1-cycle dependence

edges lengthened by 2-cycle scheduling can be shortened through grouping instructions

into a MOP. In the macro-op scheduling example, instructions 1 and 3 are grouped; the

issued MOP sequences the two instructions so they are effectively scheduled as if 1-cycle

scheduling is performed. However, the MOP itself has a 2-cycle latency from the perspec-

tive of scheduling logic. Instructions dependent on the MOP head perform as in conven-

tional 2-cycle scheduling (instruction 2 in the example); hence, the issue timing is the

same as 2-cycle scheduling. Note that instructions dependent on the MOP tail are sched-

uled consecutively (instruction 4 in the example) since the wakeup operation can be hid-

den behind the execution latency of the MOP.

In summary, macro-op scheduling can relax the atomicity constraint of the instruc-

tion scheduling logic by processing multiple instructions as a single schedulable unit, and

potentially outperforms conventional 1-cycle scheduling due to its improved scalability.

6.1.2 An overview of a microarchitecture with macro-op scheduling

FIGURE 6-2. Wakeup and select timings.

1: add r1 ← ………
2: lw r4 ← 0(r1)
3: sub r5 ← r1, 1
4: bez r5, 0xff

Code example
1: add r1 ← ………
2: lw r4 ← 0(r1)
3: sub r5 ← r1, 1
4: bez r5, 0xff

Code example

n

n+1

n+2

n+3

n+4

select 1

wakeup 2, 3

select 2, 3

wakeup 4

select 4

select MOP(1, 3)

wakeup 2, 4

select 2, 4

select 1

wakeup 2, 3
select 2, 3

wakeup 4
select 4

atomic (1-cycle)
scheduling

2-cycle
scheduling

2-cycle macro-op
schedulingcycle

1

4

1

2 3

4

1

3

2 4

2 3

.

123

Figure 6-3 illustrates an overview of macro-op scheduling and its corresponding

pipeline stages. The MOP detection logic located outside the processor’s critical path

examines register dependences among instructions and creates MOP pointers. MOP point-

ers are stored in the instruction cache, and specify which instructions can be grouped.

When MOP candidate instructions are located based on MOP pointers, the MOP forma-

tion logic converts them into a MOP, which occupies a single issue entry.

Instructions grouped in a MOP behave in the scheduler as a single unit; a MOP can

be issued only when all source dependences are satisfied and it incurs only one tag broad-

cast. For these coarser-level controls over instructions, the source and destination depen-

dences of original instructions need to be coalesced as MOPs are created. When two

dependent instructions are grouped, the maximum number of source dependences is three,

assuming an instruction in this architecture can have up to two source operands. Conven-

tional CAM-style wakeup logic may lose some grouping opportunities if each issue queue

entry has only two source comparators. However, wired-OR-style wakeup logic does not

have this restriction because the bit vector can represent more than two source depen-

FIGURE 6-3. An overview of macro-op scheduling.

Issue
queue
insert

Wakeup

Pipelined scheduling

RFSelect
Payload RAM

Sequencing
instructions

EXEFetch

MOP
detection

Wakeup order information

Dependence
informationMOP

pointers

Fetch / Decode / Rename Queue Scheduling RF / EXE / MEM / WB / Commit

Coarser
MOP-grained

Instruction-grainedInstruction-grained

MEM

cache
ports

MOP
formation

Rename

Disp

WB
CommitI-cache

124dences by marking extra bit locations. In order to handle multiple destination depen-

dences, they are merged into one MOP dependence and hence the dependence between the

MOP head and the MOP tail does not incur a tag broadcast. These dependence conver-

sions replace data dependence edges with MOP dependence edges, abstracting the data

dependence graph without violating the true register dependences.

After the 2-cycle instruction scheduler issues multi-cycle MOPs when all source

MOP dependences become ready, they access the payload RAM [9], which sequences the

original instructions in the instruction-grained execution pipelines. At the same time, the

original register identifiers for source operands are obtained from this structure. In the

execution stage, the two instructions will be executed separately within two clock cycles.

Since macro-op scheduling simply alters the way instructions are scheduled, it ensures

correctness of execution and the register values are accessed based on the original data

dependences. After execution completes, the reorder buffer commits ungrouped original

instructions separately in program order. Therefore, macro-op scheduling still preserves

correct architectural state even when branch misprediction recovery or exception handling

is required.

6.2 Policies to Group Instructions

There are two major issues in determining which instructions are grouped and pro-

cessed together in macro-op scheduling: performance and complexity. For performance,

macro-op scheduling requires a judicious grouping policy to be beneficial, since the

grouping process potentially alters the way instructions are scheduled and improper

grouping may degrade performance by serializing instruction execution. The complexity

.

125of macro-op detection and formation logic may be significantly affected by the MOP

scope, i.e. the number of instructions that should be searched and examined to find group-

able instructions, although a larger scope enables more groupable instructions and would

be more beneficial.

6.2.1 Candidate instruction types

Since the primary goal of macro-op scheduling is to relax the atomicity of the

scheduling loop and to pipeline instruction scheduling logic, macro-op scheduling targets

single-cycle operations: single-cycle ALU, store address generation, and control (e.g.

branch) instructions. Other types such as long-latency integer ALU (e.g. multiply), loads,

and floating-point operations already have multi-cycle latencies and therefore do not

require 1-cycle scheduling. However, grouping these types of instructions can be also ben-

eficial by reducing the number of schedulable units in the scheduler and reducing the issue

queue pressure. Therefore, we will also evaluate the potentials for grouping those instruc-

tions later in Chapter 9, in conjunction with the discussion of macro-op execution.

6.2.2 MOP scope

Macro-op scheduling groups a chain of dependent instructions and converts them

into a multi-cycle latency MOP. As we characterized dependence edge distance between

two instructions in Chapter 4, many dependent instructions are placed near each other and

most cases are captured with an 8-instruction scope. There is also an important perfor-

mance issue in determining the MOP scope. As we measured in Section 5.4.1, the vast

majority of 1-cycle dependence edges that awaken their dependent instructions are cap-

tured within an 8-instruction scope on our base 4-wide machine. This implies that a wider

126scope does not necessarily benefit macro-op scheduling since longer dependence edges

are less likely to degrade performance, although capturing more instructions further

reduces issue queue contention and may improve performance. Therefore, the focus of our

work is on an 8-instruction scope. Later in Chapter 7, I will study the sensitivity of macro-

op scheduling to MOP scope and evaluate the potentials for other configurations.

6.2.3 MOP sizes

The policy for macro-op scheduling is to group two directly dependent instruc-

tions, or two independent instructions with identical source operands into a MOP (2x

MOP configuration). Although bigger MOP sizes may enable the scheduling loop to span

over more clock cycles and further increase the effective machine bandwidth, we charac-

terized the groupability of instructions in Section 4.6 and find that not many MOPs cap-

tures more than two instructions in general. A bigger problem is that irregular MOP sizes

incur low resource utilization of the tag comparators (CAM-style wakeup logic) or in the

payload RAM structure, which should be built to satisfy the worst-case requirement of a

MOP (more than three tag comparators or more than two instructions per entry in the issue

queue or the payload RAM). Therefore, the focus of our work is 2x MOPs. Note that the

low groupability in terms of MOP sizes is not a fundamental limitation of macro-op

scheduling. If a more advanced MOP detection and formation mechanism (e.g. relying on

a software-based dynamic binary translator) can generate more MOPs big enough to fully

utilize the given hardware resources, larger MOPs would be a reasonable design choice.

Later, in Chapter 7, I will study the sensitivity of macro-op scheduling to MOP size and

evaluate the potentials for other configurations.

.

1276.2.4 MOP dependence tracking

Section 4.3 described two approaches for tracking MOP dependences: MOP offset

tracking and MOP latency tracking. The base macro-op scheduling groups only two sin-

gle-cycle instructions and the execution latency of a MOP matches the scheduling latency

of the pipelined 2-cycle scheduling logic. This attribute forces the instruction scheduler to

use MOP latency tracking, since the scheduler cannot track the offset of the instructions

finer than the scheduling latency (i.e. two clock cycles), and therefore the MOP offset

tracking is not feasible for the current scheduling constraints.

6.3 MOP Detection

The purpose of MOP detection logic is to examine the instruction stream to detect

MOP candidates considering data dependences, the number of source operands (for the

wakeup logic with only two tag comparators) and possible cycle conditions, and to gener-

ate MOP pointers that represent MOP pairs. Since MOP detection logic is located outside

the processor’s critical path, it neither increases the pipeline depth nor affects the proces-

sor’s cycle time.

6.3.1 Cycle conditions through register dependences

Macro-op scheduling abstracts true data dependences and creates false dependence

edges when instructions are grouped (explained in Section 4.4 and Section 6.1.1). These

false dependences may prevent instructions from being issued if they induce cycles in data

dependence chains. Figure 6-4 illustrates possible deadlock conditions through register

dependences created by improper MOP grouping. In Figure 6-4a, a MOP that contains

instructions 1 and 3 has both incoming and outgoing edges to instruction 2. Figure 6-4b

128

also shows a cycle condition between two MOPs. In both examples, no instruction can be

issued earlier than the other since the original source dependences cannot be satisfied,

leading to a deadlock. To avoid these conditions, MOP detection logic should filter out

improper MOP groupings that create cycles in the data dependence chains. However, pre-

cisely detecting cycle conditions may significantly increase the complexity of the detec-

tion process because it requires the detection logic to track multiple levels of dependences

along with register dependence chains.

Therefore, MOP detection logic uses a simple heuristic to detect possible cycle

conditions conservatively, as shown in Figure 6-4c; if there is an outgoing dependence

edge from the MOP head to other instructions preceding the MOP tail in program order,

and the MOP tail also has an incoming edge, the detection logic assumes there may be a

potential cycle and foregoes a grouping opportunity. Although some MOPs may be falsely

detected to induce cycles by this conservative detection heuristic, the experimental results

in Section 7.8.4 will present that false detections are negligible and this heuristic achieves

almost all of possible MOP formation opportunities compared to the precise cycle detec-

tion.

FIGURE 6-4. Cycle conditions and a detection heuristic.

1

3

2

1

3

2

1

3

2

4

1

3

2

4

assume a cycle
if both outgoing and
incoming edges are

detected
?

assume a cycle
if both outgoing and
incoming edges are

detected
?

ADD r1 ← r19, 4
LW r2 ← 16 [r1]
ADD r3 ← r1, r2

1: ADD r1 ← r19, 4
2: ADD r2 ← r20, 1
3: ADD r3 ← r1, r2
4: SUB r4 ← r1, r2

(a) (b) (c)

.

1296.3.2 Cycle conditions through memory dependences

Unlike register dependences that directly affect scheduling decisions and force

instructions to execute in correct register dependence order, memory dependences may not

force memory operations (i.e. loads and stores) to be scheduled in correct dependence

order. Instead, the correctness of scheduling is verified later, after they are speculatively

scheduled, since memory dependences cannot be detected at schedule time before effec-

tive addresses are calculated. For example, some processor implementations such as the

IBM POWER4 [71] optimistically schedule loads and stores based only on register depen-

dences when no memory aliasing is expected, and later recover from the dependence mis-

speculation if a dependent load has generated an incorrect result due to an aliased earlier

store. In this memory disambiguation policy, MOP cycle conditions are not induced

through memory dependences since memory dependences are not reflected in scheduling

decisions and hence incorrectly grouped instructions may be executed without leading to a

deadlock, as long as aliasing is properly handled after execution.

However, special considerations should be made if the memory disambiguation

policy used in the underlying microarchitecture affects scheduling decisions and prevents

certain instructions from being executed. In the memory disambiguation policy assumed

in our base machine model (described in Section 3.1.4), which is similar to the one used in

the Pentium 4 [42], a load can be issued only after its source operand dependence is satis-

fied and all prior store instructions in program order have been issued or executed. Due to

this attribute, a deadlock may occur even though stores and loads are not actually aliased

because instruction scheduling logic conservatively creates dependences from an unre-

solved prior store to all load instructions later in program order. Figure 6-5 presents three

130

different scenarios for cycle conditions created through memory dependences by improper

MOP groupings in our memory disambiguation model.

Figure 6-5a shows a cycle through memory dependence induced among three

instructions. This scenario assumes that a load (instruction 3) can be grouped as a MOP

tail, although a MOP grouping policy that disallows loads does not experience this prob-

lem. Regardless of whether SW (instruction 2) and LW (instruction 3) are aliased, the mem-

ory disambiguation policy forces the instruction scheduling logic not to issue LW until

after SW (store AGEN operation) is issued. Since SW is also dependent on ADD, which is

grouped with LW, a deadlock condition similar to Figure 6-4a is encountered. This condi-

tion is not detected by the cycle detection heuristic discussed in Section 6.3.1 since LW

(instruction 3) has only one source register and hence an incoming dependence edge to the

MOP tail is not observed at detection time. To avoid this case, a load should not be

grouped as a MOP tail only when there is an intervening store between the MOP head and

tail in program order.

Problems still exist even though the MOP grouping policy does not consider loads

as MOP candidates. Figure 6-5b illustrates such a scenario in which cycle conditions may

FIGURE 6-5. Scenarios for cycle conditions created through memory dependences.

(a) (b) (c)

1

3

2

1: ADD r1 ← r19, 4
2: SB r2 → 4 [r10]
3: LW r3 ← 0 [r9]
4: SUB r4 ← r1, r3

4

Commit
dependence

Memory
dependence

1

3

2

1: ADD r1 ← r19, 4
2: SW r2 → 4 [r1]
3: LW r3 ← 0 [r9]
4: SUB r4 ← r1, r3

4

Memory
dependence

Cycle condition
detected
through r1

1

2

1: ADD r1 ← r19, 4
2: SW r2 → 4 [r1]
3: LW r3 ← 0 [r9]

3

Memory
dependence

.

131be induced without grouping loads. The memory dependence between SW and LW com-

pletes a closed dependence cycle in this case. Fortunately, the cycle detection heuristic dis-

cussed in Section 6.3.1 captures this cycle condition due to the incoming and outgoing

register dependences of the MOP. Precise cycle detection would fail to detect this case

since memory dependences are not easily determined statically.

A more complicated scenario is illustrated in Figure 6-5c, where the underlying

hardware supports fully overlapped store-to-load forwarding only. This configuration is

similar to the one used in the Pentium 4 [42], where a partially overlapped aliasing (i.e.

some bits for a load are available from a prior store, and others are available from mem-

ory) is handled only through memory; the load can acquire the value by accessing the

cache after the prior store reaches the head of ROB and commits its data to the memory

system. Consider a case in which a partial aliasing is detected between SB and LW. This

restriction in the store-to-load forwarding creates two dependences edges among instruc-

tions in this example: a commit dependence that prevents SW from writing the store value

to memory until after ADD is committed, and a memory dependence that prevents LW from

being executed until after SW writes its store value. Combined with the register depen-

dence between LW and the MOP of ADD and SUB, this MOP grouping induces a cycle

among instructions in the example, which is not captured by the cycle detection heuristic

discussed in Section 6.3.1 because no register dependence exists between ADD and SUB.

In order to correctly support the case in which the partial forwarding is not sup-

ported, the MOP grouping policy can conservatively avoid grouping instructions across

intervening store-and-load pairs, although it may unnecessarily lose some grouping oppor-

tunities. If the underlying hardware supports partial store-to-load forwarding by merging

132

uncommitted store data in the window and memory values, the commit dependence is

removed and hence this scenario does not experience a deadlock.

Table 6-1 summarizes the cycle avoidance heuristics discussed in Section 6.3.1

and Section 6.3.2 for different MOP grouping policies and store-to-load forwarding con-

figurations. We will examine the impact of these heuristics on groupability and perfor-

mance later in Section 7.8.4 and Section 7.8.5.

6.3.3 MOP detection process

Figure 6-6 illustrates an example of instruction streams from cycle n to n+2 sent

from the rename stage to the MOP detection logic, as well as the detection process that

finds candidate pairs and generates MOP pairs using dependence matrices through steps n

to n+2. The dependence-matrix-based detection process described here is to illustrate key

operations to perform for MOP detection, and the detailed implementation issues will be

discussed in the following section. To simplify the discussion, we assume that 1) loads are

not MOP candidates, 2) the underlying microarchitecture supports partial store-to-load

forwarding, 3) the instruction scheduler has matrix-based wakeup logic and therefore

Table 6-1: Cycle avoidance heuristics.

Memory
dependence

Partial store-to-load forwarding is
supported

Partial store-to-load forwarding is
not supported

Grouping
loads is
allowed

A load cannot be grouped as a MOP
tail across intervening stores.

A load cannot be grouped as a MOP
tail across intervening stores.
A MOP cannot be created across
store-load pairs.

Grouping
loads is not
allowed

None A MOP cannot be created across
store-load pairs.

Register
dependence

A MOP cannot be created if there is an outgoing dependence edge from the
MOP head to other instructions preceding the MOP tail in program order, and
the MOP tail also has an incoming edge.

.

133

counting the number of source operands is unnecessary and 4) the MOP scope is eight

instructions. Based on these assumptions, this MOP grouping policy needs the cycle

detection heuristic discussed in Section 6.3.1 for register dependences only.

In the figure, a triangular matrix in each step represents register dependences

among instructions currently being examined. Two rectangular matrices on the top and the

left represent validity and status of the detection process. In fact, these two rectangular

matrices on both sides are identical but showed separately for simplicity of presentation. If

any inval (invalid or not a candidate instruction), head (detected as MOP head) or tail

(detected as MOP tail) bit is marked, the corresponding row or column is not examined for

grouping, which is presented as shadowed boxes.

The basic MOP detection algorithm is to scan column entries vertically and to

FIGURE 6-6. MOP detection process.

1

1 1 1 1

1

1

1

1

1 1

2 2

1inval

1 2 3 4

1

2

3

4

1

1

1 1

2 2

2 2

1

1

1

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

1

1

1

1

1

2

1

2

1

1 1

5 6 7 8 9 10 11 12

5

6

7

8

9

10

11

12

2

1

2

1 1 1 1 1 1

1

1

1

1

1

1

1

1

1

1

1

23:5

7:8

3:5

7:8

9:10

11:121

tail

head

possible
cycle

detected

priority
decoder

picks
one

MOP
pairs

MOP
pairs

MOP
pairs

STEP 1

STEP 2 STEP 3

Original
data

dependence
graph

1

2

3

4

5

6

7

8

9

10

11

12

clk n clk n+1 clk n+2

1

2

3

4

5

6

7

8

9

10

11

12

clk n clk n+1 clk n+2

not
groupable

MOP pairs
detected

after step 3

134select an entry that contains a dependence mark that represents a register dependence. If

there are multiple entries, the priority decoder selects the first entry if possible. A depen-

dence mark can be “1” or “2”, which shows the number of source operands. For example,

in step n of the figure, instruction 2 has one “1” (representing the dependence on instruc-

tion 1) and instruction 3 has two “2” (representing the dependences on instruction 1 and

2). They are used to detect possible cycles; “1” can be selected without any restriction; “2”

can be selected only when it is the first mark in the column. This policy implements the

cycle detection heuristic described in Section 6.3.1.

In step n, instructions 1 to 4 fill the bottom right portion of the triangular matrix.

When instruction 1 scans the corresponding column vertically in order to find a matching

pair, the entry corresponding to instruction 2 is ignored because it is not a MOP candidate

and hence it has an inval bit in its rectangular matrices. Although the next entry also con-

tains a dependence mark, it cannot be selected either because the cycle detection heuristic

does not allow dependence mark “2” to be chosen across other marks, implying that the

MOP head and tail have both incoming and outgoing edges at the same time.

In step n+1, instructions 5 to 8 fill the triangular matrix from the bottom right por-

tion, and instructions 1 to 4 are moved to the top left portion. The bottom left portion of

the matrix represents inter-group dependences and dependence marks are written to corre-

sponding entries. Instructions 3, 4 and 7 find possible matching pairs after scanning their

entries vertically. If an instruction is selected by multiple instructions (e.g. instruction 5 is

selected by both instructions 3 and 4), the priority decoder picks only one, resolving the

conflict. At the end of step n+1, two MOP pairs are generated. Selected instructions mark

corresponding head or tail fields so that they will not be examined again. Similarly,

.

135instructions 9 to 12 are examined in step n+2 and four MOP pairs are finally generated.

To avoid cases in which the number of source operands exceeds the number of tag

comparators in the wakeup array (for CAM-style wakeup logic), MOP detection logic

may need to statically (without considering readiness of operands) count the source oper-

ands of instruction pairs and filter out MOPs with too many sources. Dynamically count-

ing source operands right before inserting instructions in the wakeup logic would increase

opportunities for grouping more instructions, since some operands may not need tag com-

parators due to retired parent instructions. However, our experimental result will show that

they do not occur frequently and the static approach captures almost all opportunities.

6.3.4 Implementation issues

The MOP detection process can be implemented in either hardware or software.

There are tradeoffs between two approaches; a software-based approach (i.e. dynamic

binary translation) may remove considerable complexity from the hardware and enable

more sophisticated detection algorithms with a wider MOP scope. However, it may incur a

high performance overhead if the software-based MOP detection process is frequently

invoked; a hardware-based approach can minimize or completely eliminate extra overhead

required for the detection process, but realizing sophisticated algorithms in hardware

would be challenging, considering the complexity of operations to be performed.

As a study of software-based MOP detection, which is directly related to macro-op

scheduling presented here, Hu and Smith [46] proposed a dynamic binary translator that

cracks x86 instructions into RISC micro-operations, uses heuristics to group or fuse pairs

of dependent micro-ops, and then converts them into an internal ISA running on a co-

designed virtual machine. They demonstrated and concluded that using dynamic binary

136

translation is a reasonable and feasible approach to instruction fusing, especially for

implementing the x86 instruction set. Since many important aspects of software-based

approaches are covered in this work, this section will primarily discuss the issues in hard-

ware-based MOP detection.

In hardware, the MOP detection process can be implemented in a way similar to

prior proposals for instruction preprocessing at trace cache line construction time

[50][38][16]. Since the information on detected MOP pairs can be saved as predecode bits

(e.g. MOP pointers in this study) in IL1 or trace cache, and reused repeatedly until evicted,

a long detection latency may not significantly affect the benefits of grouping instructions.

An important issue in hardware-based MOP detection is pipelinability. Given the

MOP detection scope of S instructions, each MOP head candidate needs S associative

search operations for a dependent groupable MOP tail in forward scan. In backward scan,

each MOP tail needs to examine up to two antecedent instructions to find a groupable

MOP head. The forward and backward scan algorithms will be evaluated in Section 7.8.2.

In either case, operations required for finding one matching pair may not be prohibitively

complex. However, in order to avoid piling up of instructions, the MOP detection logic

FIGURE 6-7. Dependences in MOP detection processes.

0

1 2

3

4

5

6

7

00

11 2

33

44

55

66

77

0

1 2

3

4

5

6

7

0

1 2

3

4

5

6

7

0

1 2

3

4

5

6

7

0

1 2

3

4

5

6

7

0

1 2

3

4

5

6

7

0

1 2

3

4

5

6

7

.

137

should be able to process multiple instructions at the same rate, i.e. four instructions per

cycle, as they are sent from the rename stage. Due to the nature of MOP detection, detect-

ing one MOP pair is dependent on another, which makes it challenging to detect multiple

MOP pairs in parallel and to achieve a pipelined implementation. Figure 6-7 presents an

example of dependent MOP detection processes, in which instruction 3 can be grouped

with multiple possible candidates. Depending on the grouping decision made for instruc-

tion 3, grouping decisions for other instructions are also affected, generating different

combinations of MOP pairs.

Figure 6-8 illustrates this problem with pipelining MOP detection process. In this

figure, the dependence matrices in Figure 6-6 are expanded over time. The numbers in

matrices represent at which cycle the matrices are processed. The arrows represent depen-

dences among matrices.

In an ideal case, both rectangular (which examines inter-rename-group depen-

dences) and triangular (which examines intra-rename-group dependences) matrices should

be processes simultaneously every clock cycle in order to achieve a pipelined implementa-

tion, as shown in Figure 6-8a. This implies that four dependent computations to examine

four instructions should be performed within a cycle. Suppose only one matrix (either

FIGURE 6-8. Pipelinability of MOP detection.

CLK 0

CLK 1

CLK 2

CLK 3

00 00

11 11

22 22

33 33

01

12

23

34

01 01

12 12

23 23

34 34

10

32

54

76

10 10

32 32

54 54

76 76

minimum computation
to complete within a cycle

(a) (b) (c)

138

rectangular or triangular) can be processed at each cycle because processing both matrices

does not fit within a cycle. Since processing each matrix is dependent on one another and

serialized, this incurs piling up of instructions and halves the effective throughput, as

shown in Figure 6-8b.

One possible solution to pipelining the MOP detection process is to start the pro-

cess at multiple points and later resolve dependences in a reverse order. This is possible

since detecting MOP pairs needs not be performed in program order. Figure 6-8c illus-

trates this, where triangular matrices are first examined each cycle and rectangular matri-

ces are examined later, enabling a pipelined implementation. However, the benefit of this

approach comes with a penalty; it potentially reduces the efficiency of the detection pro-

cess. Consider the example shown in Figure 6-9. Figure 6-9a illustrates MOPs detected

using a non-pipelined process, and Figure 6-9b shows the result with the MOP detection

process pipelined in a way discussed with Figure 6-8c. The pipeline interval for this MOP

detection is four instructions, which is the number of instructions between two starting

points of MOP detection processes. Instructions 0 to 3 are examined separately from

instructions 4 to 7. During this process, MOP (0, 1) and MOP (4, 5) are detected in each

FIGURE 6-9. Impact of pipelining MOP detection on MOP coverage.

(a) (b)

00

11 2

33

44

55 6

77

rename
group
boundary

Group n

Group n+1

00

11 2

33

44

55 6

77

00

11 2

33

44

55 6

77

.

139

group. However, instructions 3 and 7 cannot be grouped because of no matching pair; oth-

erwise all eight instructions would have been grouped into four MOPs, as shown in

Figure 6-9a. This negative effect can be reduced by increasing the pipeline interval so that

longer sequences of instructions are examined continuously.

Even though fewer instructions than the machine bandwidth can be processed at a

time (e.g. only one instruction per cycle), the MOP detection mechanism can be config-

ured to achieve the necessary throughput by extending this approach. Figure 6-10 illus-

trates this MOP detection mechanism with multiple detection queues that detect MOP

pairs at multiple points in parallel. As instructions are sent from the rename stage, MOP

detection logic first assigns them to detection queue 0 until the queue becomes full, when

incoming instructions are directed to the next queue. The size of each queue is determined

by the pipeline interval. MOP detection processes are performed in multiple queues in iso-

lation, generating MOP pairs in each queue. The tail of one queue and the head of the next

queue are logically connected so that MOP pairs can be generated across different queues

after the both queues finish examining their own instructions. By the time the last detec-

FIGURE 6-10. Pipelined MOP detection logic with multiple detection queues.

qu
eu

e
0

qu
eu

e
0

qu
eu

e
1

qu
eu

e
1

qu
eu

e
2

qu
eu

e
2

qu
eu

e
n

qu
eu

e
n

queues needed (n)

m
en

tr
ie

s
(=

 p
ip

el
in

e
in

te
rv

al
)

instruction
sequence

m inst (pipeline interval)

140

tion queue becomes full, the first queue completes MOP detection process so that it can

process new incoming instructions.

Table 6-21 summarizes the queue size and the detection latency of the pipelined

MOP detection logic that avoids piling up of instructions on the base 4-wide machine. The

MOP scope is eight instructions in all cases. Each detection queue examines one instruc-

tion per cycle, generating at most one MOP pair. Note that the detection latency and the

total queue entries for the 4-instruction pipeline interval case are not lower than the 8-

instruction interval case. This is because the current MOP scope (eight instructions) is

greater than the pipeline interval (four instructions) and it takes more time to resolve inter-

group dependences. Also note that the number of detection queues in the table (fourth col-

umn) may not be an integer number. The actual implementation may require more detec-

tion queues, e.g. five queues instead of 4.5 queues with a 32-instruction interval.

For instance, if the pipeline interval is 16 instructions, the MOP detection logic

requires five detection queues with 16 entries each, containing maximum 80 in-flight

instructions. The minimum MOP detection latency (for the last instruction in each detec-

Table 6-2: Complexity estimation of pipelined MOP detection logic.

Pipeline interval
(insts)

1 instruction / queue per cycle, 8-inst scope, 4-wide machine

entries in each
queue (m)

Minimum
detection
latency

detection
queues needed

(n)

Total detection
queue entries

4 4 14 14 56
8 8 14 7 56

16 16 20 5 80
32 32 36 4.5 144
64 64 68 4.25 272

1. The minimum detection latency is primarily determined by (pipeline interval) / (throughput of
each detection queue) + (latency for examining inter-queue dependences). The number of total
queue entries is calculated by (detection latency) X (fetch bandwidth).

.

141tion queue) becomes at least 20 cycles.

In Section 7.8, I will measure the impact of MOP detection latency and pipeline

interval on the MOP coverage, and show that they do not significantly degrade the effi-

ciency of the MOP detection process.

6.3.5 MOP pointers

To avoid placing MOP detection logic in the processor’s critical path and to toler-

ate its long detection latency, it is desirable to cache the generated information on MOP

pairs. One issue is how to encode the information on MOP pairs. One approach is to store

a pointer (called MOP pointer in our discussion) in each instruction to its groupable

instruction pair, maintaining the original program order among instructions. Another

approach is to place groupable instructions pairs together in a trace cache or decoded

instruction cache. Since non-adjacent instructions can be grouped, this requires reordering

instructions and may create difficulties in instruction fetch and rename for maintaining

correct architectural state. However, some prior proposals [50][38][16] have studied reor-

dering instructions within a trace cache line to realize their benefits and hence this

approach should not be restricted by those difficulties. Specifically, a software-based

approach proposed by Hu and Smith [46] reorders instructions with the virtual machine

monitor support for reconstructing precise machine state. A software-based approach is

beyond the scope of this thesis, which focuses on the pointer-based approach.

A MOP pointer that specifies a groupable instruction pair can be either backward

or forward:

• Backward MOP pointer: A MOP tail points to the groupable MOP head. The

pointer is stored along with the tail instruction. A downside of this approach is that

142the MOP formation logic cannot determine MOP pairs until the MOP tail is

fetched and therefore grouping instructions across multiple fetch groups may not

be feasible. Moreover, tracking control flow within a groupable pair is complicated

due to possible multiple branch / jump sources.

• Forward MOP pointer: A MOP head points to the groupable MOP tail. The pointer

is stored along with the head instruction. Since the pointer cannot rely on register

specifiers that point to antecedent instructions, it may need more bits to specify

groupable instructions explicitly. However, MOP formation logic can headstart the

grouping process by looking at MOP heads only. Also, tracking control flow

between groupable instructions becomes easier. Therefore, I advocate forward

MOP pointers because of these advantages.

A MOP pointer is composed of two parts: control and offset bits. The control bits

represent possible control flow change between MOP head to tail. We use one control bit

that captures up to one control flow discontinuity created by a single direct branch or

jump. If there is an intervening indirect jump, or there are multiple control instructions and

any of them is taken, MOP detection logic does not generate a pointer and foregoes the

opportunity. The offset bits are simply the instruction count from the MOP head to the tail.

The number of bits in the offset field depends on the MOP scope, e.g. a 3-bit offset field

can cover up to eight instructions. An example of MOP pointers with a MOP scope of

eight instructions is shown in Figure 6-11.

Since each instruction has only one pointer, dynamic control flow changes may

prevent instructions from being grouped. For example, if a MOP pointer is created across

a taken branch (beq in the example), and the branch is later predicted to be not taken,

.

143

MOP formation logic compares the current control flow to the control bit in the pointer,

and does not group with an unexpected instruction in the fall-through path. In this exam-

ple, and can be grouped only with sub across the taken branch but not with others, until

it is re-created across a not-taken branch.

6.4 MOP Formation

MOP formation is responsible for checking control flow, locating MOP pairs using

MOP pointers, and converting register dependences into MOP dependences. Two instruc-

tions are later inserted into a single issue entry in the queue stage, creating a MOP in the

scheduler.

6.4.1 Locating MOP pairs

Locating MOP pairs is the reverse process to MOP pointer generation; it compares

the control flow predicted by the branch predictor and control bits in MOP pointers and

checks if MOP tail instructions are available using offset bits in MOP pointers. If the MOP

pointer is valid, this information is sent to MOP dependence translation logic.

6.4.2 MOP dependence translation

Macro-op scheduling abstracts the original data dependence chains and therefore

FIGURE 6-11. Macro-op pointers.

0 011: add r1 r2, r3

0 000: lw r4 0(r3)

1 010: and r5 r4, r2

0 000: beq r1, 0xff (taken)

0 000: sub r6 r5, 1

control offset

MOP
pointers

0 011: add r1 r2, r3

0 000: lw r4 0(r3)

1 010: and r5 r4, r2

0 000: beq r1, 0xff (taken)

0 000: sub r6 r5, 1

control offset

MOP
pointers

144

requires dependence conversion from register IDs to MOP IDs so that scheduling logic

keeps track of dependences in a separate name space. I do not believe that translating to

this name space will incur much delay. As discussed in Section 3.1.2, a similar name space

conversion is already required for wired-OR-style wakeup logic that specifies register

dependences in terms of issue queue entry numbers rather than physical register IDs.

Figure 6-12 illustrates the register renaming and MOP dependence translation pro-

cesses. In parallel with register renaming, the MOP translation table converts logical reg-

isters into the MOP ID name space. In fact, the process and hardware structure required

for this translation is identical to what is required for register renaming, except that a sin-

gle MOP ID can be allocated to two MOP candidate instructions specified by a MOP

pointer, while in register renaming a physical register is allocated to every destination reg-

ister. For example, a single identifier m5 is assigned to both instructions I1 and I2 so that

FIGURE 6-12. Dependence translation in MOP formation.

I1: 0 001 SUB r3 ← r1, 1
I2: 0 000 ADD r4 ← r3, 5
I3: 0 001 NOT r5 ← r3
I4: 0 000 XOR r6 ← r2, r5

MOP
pointer

I1: 0 001 SUB r3 ← r1, 1
I2: 0 000 ADD r4 ← r3, 5
I3: 0 001 NOT r5 ← r3
I4: 0 000 XOR r6 ← r2, r5

MOP
pointer

1
2
3
4

3
4
5
6

5
6
7
…

7
8
-
-

Logical
reg ID

Physical
reg ID

Register rename table

p5

p6 p7

p8p8

p3

p4

I1

I2 I3

I4

m5

m5

m6

m6

m3

m4

m5

m5

m6

m6

m3

m4

1
2
3
4

3
4
5
5

5
6
7
…

6
6
-
-

Logical
reg ID MOP ID

MOP translation table

a single
MOP ID

is allocated to
two grouped
instructions

I1

I2

I3

I4

Code Example:

.

145

any instruction dependent on them will become a child of the MOP m5. The MOP ID

name space can be issue queue entry numbers, or can even use an arbitrary name space as

big as the number of physical registers. Unlike physical register IDs which are associated

with actual data storage, MOP IDs are only used to track MOP-grained dependences in the

scheduler. Note that register renaming is still performed in parallel and the register values

are accessed based on the original data dependences.

6.4.3 Queue stage and insertion policy

When instructions are fetched and processed in the pipeline, the MOP head and tail

may reside in different pipeline stages because the MOP scope is greater than the machine

bandwidth (i.e. an 8-instruction scope on the 4-wide machine in our experiments). More-

over, dynamic events such as cache misses or control flow changes may complicate

instruction grouping if MOP tails are not delivered to the pipeline in a timely manner.

Therefore, our mechanism groups instructions only when they are in the same or two con-

secutive pipeline stages. Consistent with this policy, the scheduling logic prevents the

MOP head from being scheduled before the MOP tail is subsequently inserted into the

same entry. Figure 6-13 illustrates this non-atomic insertion policy of grouped instructions

FIGURE 6-13. Inserting instructions into issue queue.

Issue
queue

21 3 4

65 7 8

pending

cycle n

X

1
2
4

3

65 7 8

pending

cycle n+1

1
2
4
5
6
8

3

7

pending

cycle n+2

:MOP
pointer

Issue
queue

21 3 4

65 7 8

pending

cycle n

XX

1
2
4

3

65 7 8

pending

cycle n+1

1
2
4
5
6
8

3

7

pending

cycle n+2

:MOP
pointer

146into the issue queue. In cycle n, instructions 1 and 4 have MOP pointers to instructions 3

and 7, respectively. In cycle n+1 when instructions 1 to 4 are inserted into the issue queue,

instructions 1 and 3 occupy a single entry, creating a MOP. Since instruction 7 is in the

next insert group when instruction 4 is inserted, instruction 4 sets a pending bit, indicating

that the entry is waiting for the MOP tail and will not request a grant signal from select

logic. When instruction 7 is inserted in cycle n+2, this completes the MOP of the two

instructions and the pending bit is cleared. The MOP will be issued when all source oper-

ands become ready.

6.5 Instruction Scheduling Logic for Macro-op Scheduling

Although macro-op scheduling affects the scheduling of instructions, it does not

require significant changes in the instruction scheduling logic itself, except that wakeup

and select processes can be pipelined. This section discusses how MOPs are processed in

wakeup and select logic.

6.5.1 Wakeup logic

Figure 6-14 shows issue queue entries occupied by the instructions I1 through I4

grouped in two MOPs (based on the same code example as in Figure 6-12). Each entry has

source identifiers that are the union of all source operands of two original instructions,

except for the operand that links the two instructions. The number of source operands is

not limited for wired-OR wakeup logic, but is limited to two for the wakeup array with

two source comparators. Since MOP detection logic has filtered out 3-source cases for 2-

source CAM-style wakeup logic (discussed in Section 6.3.3), no additional handling is

necessary for source operands in the wakeup logic.

.

147

The basic operation of wakeup logic is the same as the base case: an instruction or

a MOP is issued when all source operands become ready. Since MOPs have multi-cycle

latencies (2-cycle latency in our current configuration), waking up their dependent instruc-

tions should be handled accordingly in the same way as normal multi-cycle operations are

handled. Handling instructions with different execution latencies in a single scheduler

may incur some difficulties in scheduler design. However, some processor implementa-

tions such as the POWER4 [71] schedule all types of integer instructions with different

execution latencies in a unified scheduler and hence this should not be a fundamental lim-

itation. A more important observation to advocate this unified scheduler approach is that

handling 1-cycle instructions is no different than handling 2-cycle instructions in pipelined

2-cycle scheduling logic since they will be treated equally as 2-cycle instructions, from the

wakeup logic’s perspective. Therefore, scheduling MOPs may not necessarily increase the

complexity of wakeup logic due to extra timers for tracking multi-cycle latencies.

6.5.2 Select logic

The basic operation of select logic is same as the base case; when both source

operands become ready, the instruction sends a request signal to select logic that selects

ready instructions to issue considering the available resources and the priorities of instruc-

FIGURE 6-14. Grouped instructions in CAM and wired-OR-style wakeup logic.

.....

5
6
7

entry #
/ MOP ID

result required from entry …

….
8

….0 1 2 3 4 5 6 7 8 9 10
…………

0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0

…………
…………
…………

.....

5
6
7

entry #
/ MOP ID

result required from entry …

….
8

….0 1 2 3 4 5 6 7 8 9 10
…………

0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0

…………
…………
…………

Wired-OR-style

==
== OROR

ready 0 tag m3 ready 1--

==
== OROR

ready 0 tag m4 ready 0tag m5

tag W tag 1
…

… …

… …

CAM-style

dest m5

dest m6

I1,I2

I3,I4

I1,I2

I3,I4

148tions.

A MOP is equivalent to a non-pipelined operation from the select logic’s perspec-

tive; multiple operations in a MOP are sent to the execution pipeline through a selected

issue slot and occupy their execution resources (i.e. ALUs and cache ports). To support

this functionality, select logic blocks the issue slot and does not send other instructions

through the same slot for the execution latency of the MOP.

6.6 Pipeline Considerations

6.6.1 Dispatch stage and sequencing instructions

An issued MOP is converted back to the original instructions that are executed

sequentially. This functionality is achieved by a multiple-entry payload RAM that stores

multiple logical instructions grouped in a MOP in a single line. Note that macro-op sched-

uling requires the same number of read and write ports to the payload RAM as the base

case. When an issued MOP accesses the payload RAM, the opcodes and register specifiers

of the original instructions are acquired, and each instruction is sent down to the appropri-

ate execution pipeline in consecutive cycles. If the base machine does not have a payload

RAM structure, sequencing instructions can still be performed by the scheduling logic,

similar to the AMD K7 or the Intel Pentium M [21][39].

As we discussed in Section 6.5, a MOP is equivalent to a non-pipelined, multi-

cycle operation from the scheduler’s perspective. In order to give time window for the

payload RAM to sequence instructions, the select logic does not select and issue other

instructions through the same issue slot in which a MOP is being sequenced.

.

1496.6.2 Branch and load mis-speculation handling

If two instructions are grouped across a mispredicted branch, the MOP tail is inval-

idated and removed from the issue queue and the payload RAM when instructions are

squashed. At the same time, the source operand fields associated with the MOP tail

instruction are set to ready state so that the MOP head that remains in the issue queue can

be scheduled without waiting for incorrect source operands. Even if the MOP tail has

already been executed before a branch misprediction or even an exception condition is

discovered, this does not affect correctness of the architectural state since the ROB com-

mits ungrouped original instructions separately in program order.

The scheduling replay mechanism invalidates and reschedules instructions depen-

dent on mis-scheduled loads. In this case, all instructions grouped in a MOP are replayed

as a single unit since the scheduler keeps track of dependences in the MOP name space.

Although this policy may replay some instructions unnecessarily, our experiments deter-

mined that the performance impact is negligible.

6.7 Performance Considerations

6.7.1 Grouping independent instructions

So far, I have discussed MOP grouping of dependent instructions (dependent

MOP). As discussed in Chapter 4, grouping dependent instructions is more beneficial than

independent instructions since it relaxes both atomicity and scalability constraints simulta-

neously, without negatively affecting performance by serializing parallel and independent

instructions. However, grouping independent instructions (independent MOP) is also ben-

eficial as long as ILP is not sacrificed, since fewer schedulable units, created from both

150

dependent and independent MOPs, reduce the issue queue pressure.

The first consideration to make is which independent instructions are grouped. In

principle, any instructions that are issued in parallel could be grouped and processed as a

single unit without reducing the ILP. However, detecting such cases can be a complex task

since dynamic events may create distortion in the sets of parallel instructions. Moreover,

finding transitively parallelizable instructions requires multiple levels of dependence

tracking. To avoid these difficulties, macro-op scheduling is restricted to grouping instruc-

tions with either no source operands or identical source operands, which are guaranteed to

execute in parallel as long as there is no structural hazard. Potentially, these conditions can

be relaxed to, e.g. grouping instructions with the same last-arriving operand [27][56] that

triggers instruction issue, but such a relaxation that relies on dynamic information is not

considered in this study.

The second consideration is the performance impact of sequencing instructions.

Serializing independent instructions may affect performance negatively in some timing-

critical cases (e.g. mispredicted branch resolution) because they can be issued in parallel

in the base case. However, due to the attribute of pipelined instruction scheduling which

cannot awaken dependent instructions immediately, instructions dependent on indepen-

FIGURE 6-15. Grouping independent instructions and their execution timings.

1 2

3 4

1
2

3
4

no
dependence

same
dependence

1

3

2n

n+1

n+2

n+3

n+4

2-cycle
scheduling

2-cycle MOP
schedulingcycle

4

1

2

3

4

6 7

5

6

5

7

.

151dent MOPs can be executed in the same clock cycle as the base 2-cycle scheduling case as

long as the execution latency of the MOP is no greater than the scheduling loop delay.

Figure 6-15 shows an example of grouping independent instructions and their exe-

cution timings in base and macro-op cases. Two independent MOPs are created; instruc-

tions 1 and 2 are grouped due to no source operand; instructions 3 and 4 are grouped due

to identical source operands, both of which depend on instruction 1. Although the execu-

tion of the grouped instructions is serialized, the scheduling of their dependent instructions

5 through 7 is not affected because the 2-cycle execution latency of a MOP hides the

wakeup operation, enabling consecutive issue of dependent instructions.

Supporting independent MOPs does not require any fundamental modification in

the base macro-op scheduling; independent MOPs are processed and scheduled in the

same way as dependent MOPs. Independent MOPs are captured by the MOP detection

logic after detecting all possible dependent MOPs, so that it does not lose any of the bene-

fits of grouping dependent instructions. If a pair of instructions is not selected as either

MOP head or MOP tail and has the same source dependences, a MOP pointer is created

and instructions are later grouped in the same way as dependent MOPs. Unlike detecting

dependent MOPs which requires examining dependences, counting the number of source

operands, and checking cycle conditions, independent MOPs require dependence check-

ing only. One exception is for grouping a store address operation and a load. To prevent

them from inducing a cycle through memory dependences (discussed in Section 6.3.2),

such instruction pairs are not allowed.

In Section 7.5, I will present the number of independent MOPs captured by our

proposed mechanism, measure the impact of independent MOPs on performance, and

152

demonstrate that they positively affect performance in many cases.

6.7.2 The effects of last-arriving operands

A MOP may negatively affect performance if the source operand associated with

the MOP tail is the last-arriving operand [27][56] that triggers issue of the MOP. Figure 6-

16 illustrates this scenario, in which the second instruction in each case has a source oper-

and that is awakened at clock 15. The numbers denoted in instructions and dependence

edges represent issue and wakeup timings, respectively. Since instructions dependent on

the MOP tail are scheduled in a consecutive clock cycle, the last-arriving operand in the

MOP tail may not degrade performance compared to the base 2-cycle scheduling (CLK 19

in both Figure 6-16a and b). However, we observed that macro-op scheduling experiences

difficulties in some benchmarks, losing many opportunities for shortening dependence

edges. The worst-case scenario is that instructions dependent on the MOP head are unnec-

essarily delayed (broadcast at CLK 17 in Figure 6-16b).

To avoid harmful grouping, we use a filtering mechanism in the MOP detection

logic; if a last-arriving operand in a MOP tail is observed during execution, MOP detec-

tion logic deletes the MOP pointer in the instruction cache (writing a zero-value pointer)

FIGURE 6-16. The effects of last-arriving operands.

11

16

18

CLK 10

CLK 15

12

17

CLK 19

CLK 12

2-cycle
scheduling

16

17

18

CLK 10

CLK 15

17

CLK 19

CLK 17

last-arriving
in MOP tail

11

16

17

CLK 10

CLK 15

12

CLK 17

CLK 12

last-arriving
in MOP head

(a) (b) (c)

.

153and searches for an alternative pair, as shown in Figure 6-16c.

In Section 7.8.3, I will present the number of harmful MOPs, measure their impact

on performance, and the effectiveness of filtering them.

6.8 Summary and Conclusions

The principles of macro-op scheduling and the details of the microarchitectural

supports for enabling macro-op scheduling are discussed in this chapter. Ensuring back-to-

back execution of dependent instructions requires scheduling logic to perform at the same

rate as they are executed. Macro-op scheduling groups multiple instructions into macro-

ops, and performs non-speculative pipelined scheduling of multi-cycle operations,

enabling back-to-back execution of dependent instructions.

MOP detection logic examines register dependences among instructions and cre-

ates MOP pointers. A MOP pointer is stored in the instruction cache, and specifies which

instructions can be grouped. MOP formation logic reads MOP pointers and groups the

original instructions into macro-op. The instruction scheduler performs pipelined schedul-

ing of multi-cycle MOPs. An issued MOP is converted back to the original instructions,

which are executed consecutively as if conventional atomic scheduling is performed.

There are several issues in implementing macro-op scheduling. Grouping instruc-

tions may induce cycles in the data dependence chain, which result in deadlock. To pre-

vent this, MOP detection logic uses a simple heuristic that detects cycle conditions

conservatively. The complexity of the detection logic is also considered. MOP detection

logic can be pipelined by adopting multiple detection queues that examine instructions

independently at multiple points. Several performance considerations are also made in this

154chapter. A MOP of dependent instructions provides the most benefit since it relaxes the

both scheduling atomicity and scalability simultaneously. A MOP of independent instruc-

tions does not relax the scheduling atomicity but is beneficial since issue queue contention

is reduced. A MOP may degrade performance by unnecessarily delaying instructions due

to last-arriving operands in MOP tail instructions. To prevent this, macro-op scheduling

requires a filtering mechanism in MOP detection logic that depreciates harmful grouping.

In the next chapter, the effectiveness of macro-op scheduling, as well as many

other aspects of detailed implementations and policies, will be evaluated.

155Chapter 7

Experimental Evaluation of Macro-op Scheduling

Several aspects of macro-op scheduling are examined. The simulator as well as the

parameters used for the base machine was described in Section 3.2.2 and Section 3.2.4.

The necessary modifications in the microarchitecture for macro-op scheduling were

described in Chapter 6.

7.1 Scheduler Configurations

To measure the effectiveness of macro-op scheduling, I modeled base scheduling,

2-cycle scheduling, macro-op scheduling with 2-source and 3-source wakeup logic. As

mentioned in Section 3.2.4, base scheduling has ideally pipelined scheduling logic, which

is conceptually equivalent to conventional atomic 1-cycle scheduling with one extra pipe-

line stage. All performance data are normalized to this case. 2-cycle scheduling has pipe-

lined wakeup and select stages, resulting in a one-cycle bubble between a single-cycle

instruction and its dependent instructions.

Macro-op scheduling is built on top of 2-cycle scheduling. The base macro-op

scheduling configuration is as follows: the MOP detection and formation groups two

dependent MOP candidate instructions (excluding loads). The MOP detection and forma-

tion has a 2-cycle scope, which captures up to eight instructions on the base 4-wide

machine. The MOP detection logic is fully pipelined and its latency is three clock cycles

from examining dependences to generating MOP pointers. MOP formation is performed

in parallel with register renaming and hence the total number of pipeline stages is the same

156

in all scheduler configurations. The MOP detection mechanism performs a heuristic-based

cycle detection described in Section 6.3.1. To prevent harmful MOP grouping, a filtering

mechanism is used, as described in Section 6.7.2. In later sections, we will evaluate vari-

ous configurations for MOP detection and formation.

7.2 Microbenchmark Results

To ensure the correct behavior of macro-op scheduling implemented on the timing

simulator and demonstrate its potential, several microbenchmarks are tested. The basic

code structure of the microbenchmark is illustrated in Figure 7-1. The details on compil-

ing microbenchmarks were explained in Section 3.2.3.

In lines 6 to 10, a series of ADDL instruction create multiple dependence chains so

that N instructions in the loop body generate N dependence chains, resulting in an IPC of

N on an infinite machine if other conditions are ignored. For controlled experiments, the

4-wide base machine is configured to have a perfect branch predictor and perfect memory.

Figure 7-2 shows the IPCs measured on 1-cycle, 2-cycle and macro-op scheduling

when N varies from one to eight. Base 1-cycle scheduling scales linearly until dependence

1: /* loop count is 1000 */
2: ADDL $31, 1000, %0
3: Loop:
4:
5: /* N is the number of dependence chains */
6: ADDL %1, 1, %1
7: ADDL %2, 1, %2
8: ADDL %3, 1, %3
9:
10: ADDL %N, 1, %N
11:
12: /* repeat the above 50 times to reduce the loop overhead */
13:
14: SUBL %0, 1, %0
15: BNE %0, Loop

FIGURE 7-1. The basic structure of the microbenchmark.

.

157

chains saturate the machine bandwidth (4-wide) at the point of N=4. 2-cycle scheduling

achieves half the performance of 1-cycle scheduling until N becomes four since the height

of the dependence chains becomes twice long. Macro-op scheduling performs as nearly

well as 1-cycle scheduling, indicating that it successfully enables the pipelined scheduling

logic to issue dependent instructions consecutively. Note that performance gaps between

FIGURE 7-2. Performance of macro-op scheduling with microbenchmarks.

FIGURE 7-3. Instruction grouped for macro-op scheduling with microbenchmarks.

0

1

2

3

4

5

1 2 3 4 5 6 7 8

number of dependence chains (N)

IP
C

1-cycle

2-cycle

MOPsched

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

1 2 3 4 5 6 7 8

number of dependence chains (N)

nu
m

be
r

of
 In

st
ru

ct
io

ns

MOP candidates

Grouped

1581-cycle and macro-op scheduling cases mostly come from warming up MOP detection

logic to generate pointers.

Figure 7-3 presents the MOP grouping coverage in microbenchmarks with differ-

ent number of chains. Almost all candidate instructions are grouped into MOPs until N

becomes seven, where the MOP coverage is significantly degraded. This is because the

repetition of seven instructions frequently places two dependent instructions across three

fetch cycles, while the MOP detection and formation only has a 2-cycle scope. If N

becomes eight, which exceeds the current MOP scope, no dependent pairs are grouped.

However, these cases already have plenty of independent instructions to issue every clock

cycle and hence macro-op scheduling still achieves the maximum performance of the base

machine, although it behaves just as conventional 2-cycle scheduling.

The microbenchmark results indicate that macro-op scheduling enables pipelined

2-cycle scheduling logic to achieve the full performance of conventional 1-cycle schedul-

ing, which is the expected behavior that this study is aiming at. In the following sections,

macro-op scheduling will be evaluated using SPEC2K benchmarks.

7.3 Instructions Grouped

Figure 7-4 shows the percentage of dependent instructions grouped for macro-op

scheduling. Each benchmark has four stacked bars. The first two bars from the left (max

grouped and no EXE timing change) represent the characterization data collected by the

grouping policies described in Section 4.5.3. Compared with Figure 4-10 and Figure 4-11,

the number of grouped instructions in both cases is lower because of the differences in

grouping policy (2x, 8-instruction scope vs. 8x, 32-instruction scope). The third and the

.

159

last bars in each benchmark present the actual instructions grouped by the MOP detection

and formation mechanisms implemented on the base machine configuration (4-wide, 128

ROB, 128 IQ) when the wakeup logic allows three (MOP-3src) or only two (MOP-2src)

sources in a MOP. Therefore, the difference between the data here and the characterization

data in the first two bars should be interpreted as coming from implementation limitations,

such as discontinuous instruction fetch, 2-cycle scope instead of 8-instruction scope, cycle

detection heuristic, and MOP pointer restriction across control instructions. Note that a

MOP created across a mispredicted branch was not included in the MOP grouped cate-

gory.

Across the benchmarks, our mechanism (third and fourth bars) captures 14.4 (eon)

~ 38.6% (gzip) of total instructions. Compared with the max grouped policy (left bar),

some benchmarks lose many grouping opportunities since the max grouped policy does

not consider performance. Compared with the no EXE timing change policy (second bar

FIGURE 7-4. Instructions grouped in MOPs (2x, 2-cycle scope, no independent MOP).

0%

20%

40%

60%

80%

100%

bz
ip

cr
af

ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rl

tw
ol

f

vo
rt

ex vp
r

T
ot

al
 in

st
ru

ct
io

ns
 c

om
m

itt
ed

not MOP candidate

MOP candidate but not grouped

MOP grouped

Characterization (max grouped)

Characterization (no EXE timing change)

MOP-3src

MOP-2src

160from the left), the current mechanism achieves on average 92% and 89% of grouping

opportunities for the 3-source and 2-source MOP cases, respectively. Gzip and perl cap-

ture slightly more MOPs than the characterization data because of the execution timing

difference in the infinite and base machines. In addition, the grouped instructions captured

by our mechanism contain a few harmful MOPs that the filtering mechanism cannot elim-

inate.

It is important to note that the MOP-2src case does not lose many grouping oppor-

tunities of the MOP-3src case. This result comes from the fact that not many instructions

have two unique source operands in the programs we tested [56]. In addition, two instruc-

tions grouped in a MOP may share identical source operands. This result is consistent with

the characterization data presented in Figure 4-10 and Figure 4-11, as the min grouped

policy does not allow 2-source instructions as MOP tails but still captures many grouping

opportunities.

Figure 7-5 categorizes the grouped instructions as a function of the source oper-

ands in MOP head and tail instructions. The y-axis represents the total grouped instruc-

tions in the 3-source case. Each benchmark has two stacked bars that represent the 3-

source and the 2-source MOP cases. The 2-source MOP case is normalized to the 3-source

case so that we can see the reduced grouping opportunities. As the legend illustrates, each

category corresponds to the MOPs with different number of source operands. For exam-

ple, the category labeled as 2-1 implies that the MOP head has two source operands and

the tail has only one operand (except for the source dependence that links the two instruc-

tions). Only the unique source operands are counted and therefore the 2-source MOP case

still has instructions in the 2-1 category since the MOP head and tail may share the same

.

161

source operands (e.g. ADD r1 <- r3, r2 grouped with AND r1 <- r1, r2), resulting in

only two unique source operands. Similarly, some MOPs in the 1-1 category have only

one unique operand for the same reason.

The result in Figure 7-5 indicates that there are not many MOPs with three source

operands (2-1 category) even in the MOP-3src case so the MOP-2src loses only a small

portion of the opportunities. Besides the attribute of instruction mix, this result is also

partly affected by the filtering mechanism to avoid harmful MOPs, which avoids MOP

tails with last-arriving operands and hence discourages MOP detection logic from group-

ing 2-source instructions as MOP tails.

Since the objective is to recover 2-cycle scheduling performance, we want to know

how many value-generating candidate instructions are grouped, since these cases enable

such instructions to be scheduled as if 1-cycle scheduling is performed. Figure 7-6 pre-

sents these data, in which the total value-generating candidate instructions are shown as

dotted lines. The grouped instructions are shown in two separate categories; the MOP-val-

FIGURE 7-5. Grouped instructions categorized by the source operands mix.

0%

20%

40%

60%

80%

100%

bz
ip

cr
af

ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rl

tw
ol

f

vo
rt

ex vp
r

to
ta

l g
ro

up
ed

 in
st

ru
ct

io
ns

2-1

2-0

1-1

1-0

0-1

0-0

3-source MOP

2-source MOP

MOP-3src

MOP-2src

162

uegen category represents value-generating candidate instructions grouped in MOPs; the

MOP-nonvaluegen category represent other candidate instructions grouped as MOP tails

that does not generate register dependences (e.g. branches or store address generations).

Across the benchmarks, the data indicate that MOPs capture 26 ~ 63% of value-generating

candidate instructions, which degrade performance in 2-cycle scheduling by preventing

dependent instructions from being scheduled consecutively. If the MOP head has multiple

dependent instructions that are awakened within the window, the wakeup timing of macro-

op scheduling is identical to the 2-cycle scheduling case, and hence only one 1-cycle

dependence edge between the MOP head and tail is recovered. Note that the MOP tail

instructions do not experience this shortcoming and all dependent instructions will be

scheduled consecutively. Table 7-1 presents the number of MOP head instructions with

multiple dependent instructions. Note that these data do not directly represent the value

degree of use [12] for MOP heads since only the dependence edges observed by their

dependent instructions within the scheduler are measured. The second column of the table

FIGURE 7-6. Coverage of value-generating candidate instructions.

0%

20%

40%

60%

80%

100%

bz

ip

cr
af

ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rl

tw
ol

f

vo
rt

ex vp
r

T
ot

al
 in

st
ru

ct
io

ns
 c

om
m

itt
ed

not MOP candidate
MOP candidate but not grouped
MOP-nonvaluegen
MOP-valuegenM

O
P

-2
sr

c
M

O
P

-3
sr

c

% value generating 1-cycle insts covered by MOPs (MOP-3src)
47.3 43.3 38.4 60.6 41.3 58.5 51.0 56.8 62.9 54.7 26.0 50.7

.

163

represents the percentage of the grouped MOP heads that have multiple consumers (MOP

heads with multiple consumers / total MOP heads). These numbers are correlated to the

degree of use for MOP head candidate instructions, as the percentage of MOP head candi-

dates with multiple consumers (the third column) shows a similar trend with a few excep-

tions. Their actual contribution to the total number of instructions is presented in the

fourth column. Comparing it with the last column that presents the MOP-valuegen in

Figure 7-6, we find that the majority of value-generating candidate instructions grouped in

MOPs truly behave as in the 1-cycle scheduling case. On average 86% of the instructions

in the MOP-valuegen category fully cover their 1-cycle dependence edges. The others

(MOP heads with multiple consumers) cover one edge per each, which still benefits in

many cases since short-distance dependence pairs are likely to be performance-critical, as

discussed in Chapter 5.

Table 7-1: MOP heads with multiple dependent instructions (MOP-3src).

Benchmarks

MOP heads
with multiple
consumers /
total MOP

heads

MOP head candidates
with multiple

consumers / MOP head
candidates with

consumer(s)

MOP heads
with multiple
consumers /

total
instructions

Value-generating MOP
candidates grouped /

total instructions
(same as MOP-

valuegen in Figure 7-6)
bzip 23.2% 20.8% 3.8% 23.2%

crafty 20.5% 15.8% 2.7% 22.0%
eon 40.7% 37.8% 3.0% 10.7%
gap 31.4% 29.2% 5.1% 29.4%
gcc 24.0% 28.6% 2.7% 15.4%

gzip 7.2% 14.8% 1.4% 32.9%
mcf 19.8% 33.2% 2.9% 20.5%

parser 21.0% 21.4% 3.5% 27.0%
perl 24.5% 25.2% 4.1% 26.7%

twolf 20.6% 21.3% 3.1% 26.1%
vortex 25.4% 25.1% 1.9% 9.8%

vpr 11.4% 20.2% 1.6% 22.6%

1647.4 Performance of Macro-op Scheduling Without Queue Contention

Figure 7-7 present macro-op scheduling performance when no issue queue conten-

tion exists (128-entry issue queue and ROB). Here, macro-op scheduling does not benefit

from queue contention reduction. The y-axis represents the performance of 2-cycle sched-

uling, and macro-op scheduling with 2-source and 3-source MOPs. As discussed in Chap-

ter 5, 2-cycle scheduling (shown in the left bars) suffers a performance drop of 1.3%

(vortex) ~ 19.1% (gap).

Macro-op scheduling (middle and right bars) achieves 97.3% of the base perfor-

mance on average. Since macro-op scheduling enables pipelined scheduling logic to issue

dependent instructions in consecutive cycles, the degree of its performance gain over 2-

cycle scheduling tends to increase as 2-cycle scheduling suffers. Specifically, gap, gzip,

parser, twolf and vpr experiences 10% or more performance degradation with 2-cycle

scheduling but macro-op scheduling makes up a significant portion of this. Performance

with 2-source MOPs is almost identical to that with 3-source MOPs, since both cases cap-

FIGURE 7-7. Performance of macro-op scheduling (no issue queue contention).

0.8

0.85

0.9

0.95

1

1.05

bz
ip

cr
af

ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rl

tw
ol

f

vo
rt

ex vp
r

IP
C

 n
or

m
al

iz
ed

 to
 b

as
e

sc
he

du
lin

g
as

df
2-cycle 2-source MOP 3-source MOPMOP-2src MOP-3src

.

165ture a similar number of MOPs as presented in Figure 7-5.

The relatively low coverage of MOP candidates due to long dependence edges

does not severely affect overall performance even though only a few instructions can be

grouped, since the baseline 2-cycle scheduling is already able to find plenty of indepen-

dent instructions to issue in such 2-cycle-scheduling-insensitive benchmarks. In fact,

MOP formation complements 2-cycle scheduling by finding instruction-level parallelism

in cases where the 2-cycle scheduler is not able to do so. Specifically, short-distance

dependence pairs are likely to deteriorate the ILP extractable by 2-cycle scheduling and to

be performance critical. This was presented in Figure 5-8, which indicates that the instruc-

tions within a small range (i.e. eight instructions in program order) account for a signifi-

cant portion of the wakeup activities in the instruction scheduler. The MOP detection

algorithm is set to capture these short-distance dependent pairs, which increases the

chances of complementing many performance-degrading instructions.

Figure 7-8 presents the percentage of 1-cycle dependence edges recovered by

MOP scheduling. The y-axis in the graph represents the total dependence edges that actu-

ally trigger instruction issue. The dependence edges that are not observed by the sched-

uler, not last arriving operands, or cannot trigger issue due to structural hazards were not

included in this graph. Each benchmark has two stacked bar for 2-source and 3-source

MOP cases. Note that the 100% line does not represent the same number of dependence

edges because of the timing difference between the two cases, although they are almost

identical. Similarly, this graph does not strictly present how many dependence edges in 2-

cycle scheduling are shortened by MOPs because of the timing difference between macro-

op scheduling and the base 2-cycle scheduling. Each stacked bar has multiple categories;

166

nonMOPable represents the ones that are created by non-MOP-candidate instructions with

multi-cycle latencies. Hence, they are not negatively affected by 2-cycle scheduling; 1-

cycle represents the ones that MOPs enable to schedule dependence instructions consecu-

tively, as if 1-cycle scheduling is performed. In the base 2-cycle scheduling case, these

dependence edges will be included in the next 2-cycle category. The dependence edges

from a MOP head to its dependent instruction outside the MOP are not included here; 2-

cycle represents the dependence edges not covered by MOP scheduling so they behave as

in 2-cycle scheduling; finally, 3-cycle+ represents the edges that are delayed by the last-

arriving operands in MOP tails (discussed in Section 6.7.2). Since there are extremely few

dependence edges in this category (maximal 0.2% in twolf), they do not show in the graph.

Macro-op scheduling enables 36% (vortex) ~ 68% (gap) of 1-cycle dependence

edges to behave as if 1-cycle scheduling is performed, recovering a significant portion of

the base 1-cycle scheduling performance. To highlight the correlation between perfor-

mance and coverage, Table 7-2 compares the data in Figure 7-8 with the performance

recovered by macro-op scheduling. The second column represents the IPC degradation in

FIGURE 7-8. Dependence edges that trigger instruction issue in macro-op scheduling.

0%

20%

40%

60%

80%

100%

bz
ip

cr
af

ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rl

tw
ol

f

vo
rt

ex vp
r

T
ot

al
 e

dg
es

 th
at

 tr
ig

ge
r

is
su

e

nonMOPable
1-cycle
2-cycle
3-cycle+M

O
P

-2
sr

c
M

O
P

-3
sr

c

.

167

2-cycle scheduling compared with the base case. The third column shows how much IPC

degradation is recovered by macro-op scheduling. The fourth column represents the cov-

erage of value-generating candidate instructions (shown in Figure 7-6). The last column

shows the percentage of 1-cycle dependence edges recovered (shown as 1-cycle category

in Figure 7-8). If we assume that the degree of performance recovery is proportional to the

dependence edge coverage, the numbers in the third and the fifth columns should be simi-

lar. In fact, they follow a similar trend, with a few variations. From the table, we find that

the benchmarks sensitive to 2-cycle scheduling tend to recover slightly more performance

compared to the edge coverage, while the other insensitive benchmarks achieve a lower

degree of performance recovery.

7.5 Impact of Independent MOPs

In Section 6.7.1, I discussed grouping two independent instructions into MOPs and

its potential benefits of reducing queue contention. These independent MOPs are

Table 7-2: 1-cycle dependence edges recovered by macro-op scheduling (MOP-3src).

Bench-
marks

IPC loss due to 2-
cycle scheduling

IPC loss
recovered by

macro-op
scheduling

Value-generating
candidate instructions

grouped in MOPs
(identical to Figure 7-6)

1-cycle dependence
edges recovered by
MOP scheduling

(identical to Figure 7-8)
bzip 6.4% 40.4% 47.3% 46.0%

crafty 3.5% 40.1% 43.3% 47.7%
eon 2.8% 6.0% 38.4% 39.0%
gap 19.1% 86.0% 60.6% 68.0%
gcc 2.7% 50.3% 41.3% 51.8%

gzip 18.1% 70.4% 58.5% 66.7%
mcf 1.4% 37.7% 51.0% 58.8%

parser 11.6% 76.0% 56.8% 61.5%
perl 1.5% 45.0% 62.9% 63.2%

twolf 10.8% 66.2% 54.7% 56.9%
vortex 1.3% 36.0% 26.0% 36.6%

vpr 9.8% 60.4% 50.7% 59.2%

168

restricted to grouping two instructions with either no source operands or identical source

operands, which are guaranteed to execute in parallel as long as there is no structural haz-

ard. Figure 7-9 shows the number of independent instructions grouped into MOPs cap-

tured within the same 2-cycle scope as the base case. The data in this graph are plotted in

the same way as in Figure 7-6, except for an added category of independent MOPs. Inde-

pendent MOPs increase the total number of grouped instructions to 32.4% (from 28%

when no independent instructions are grouped). This potentially achieves an average

16.2% reduction in the number of instructions inserted into the scheduler.

Since the base machine configuration has the 128-entry issue queue and the same

size ROB, no issue queue contention exists, so the increase in the number of grouped

instructions does not help improve performance. Rather, the negative effects of indepen-

dent MOPs (discussed in Section 6.7.1) may degrade performance in some timing-critical

cases. To measure this effect, Figure 7-10 presents the performance of macro-op schedul-

ing with independent MOPs and compares it against the base macro-op scheduling case.

In each benchmark, the first three bars are identical to those of Figure 7-7. The last two

FIGURE 7-9. Instructions grouped in MOPs (with independent MOPs).

0%

20%

40%

60%

80%

100%

bz

ip

cr
af

ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rl

tw
ol

f

vo
rt

ex vp
r

T
ot

al
 in

st
ru

ct
io

ns
 c

om
m

itt
ed

not MOP candidate
MOP candidate but not grouped
independent MOP
MOP-nonvaluegen
MOP-valuegenM

O
P

-2
sr

c
M

O
P

-3
sr

c

.

169

bars represent the effect of independent MOPs (MOP-2src and -3src with indep). Macro-

op scheduling experiences slight performance degradation over the base case in some

benchmarks. In particular, eon shows even worse performance than 2-cycle scheduling,

although the difference is not significant and the performance gain from base macro-op

scheduling is marginal. The overall performance is almost identical with or without inde-

pendent MOPs and the negative performance impact of independent MOPs is negligible.

7.6 Performance of Macro-op Scheduling with Queue Contention

As the issue queue size is reduced and the contention increases, macro-op schedul-

ing starts benefiting from relaxed scalability, since fewer schedulable units will be inserted

into the issue queue. To measure this effect, the graphs in Figure 7-11 through Figure 7-13

present the performance of macro-op scheduling as the issue queue size is reduced down

to 64, 48 and 32 entries. The average macro-op scheduling performance with various issue

queue sizes is also plotted in Figure 7-14. For these experiments, both independent and

FIGURE 7-10. Performance impact of independent MOPs (no issue queue
contention).

0.8

0.85

0.9

0.95

1

1.05

bz
ip

cr
af

ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rl

tw
ol

f

vo
rt

ex vp
r

IP
C

 n
or

m
al

iz
ed

 to
 b

as
e

sc
he

du
lin

g
as

df

2-cycle 2-src MOP 3-src MOP 2-cycle 2-src MOP w/ indep 3-src MOP w/ indepMOP-2src MOP-3src MOP-2src MOP-3src

170dependent MOPs are used to maximize the benefits of reducing issue queue contention.

The benefits of macro-op scheduling are the relaxed atomicity and scalability con-

straints. The graph in Figure 7-14 indicates that macro-op scheduling performs better

when issue queue contention is higher. With a 32-entry issue queue, macro-op scheduling

performs even better than the base 1-cycle scheduling because of high degrees of issue

queue contention. As the issue queue size increases to 48 entries or more and the conten-

tion is reduced, the benefit from the relaxed scalability also decreases and therefore the

two performance curves of 1-cycle and macro-op scheduling diverge. Although macro-op

scheduling compensates for only on average ~60% of the IPC degradation due to 2-cycle

scheduling with the 64- or 128-entry issue queue, it is effective especially for the bench-

marks sensitive to 2-cycle scheduling.

Comparing the 2-source and 3-source macro-op scheduling cases, the result shows

that 2-source MOPs reap most of the benefits of the 3-source case. Hence, macro-op

scheduling does not necessarily require tag matching logic to support three source oper-

ands for better performance. In some benchmarks, the MOP-2src case performs slightly

better than the MOP-3src case although slightly less MOPs are captured. This comes from

the negative effect of last-arriving operands in the MOP tail, even though the detection

logic filters out many MOPs exhibiting this behavior.

.

171

FIGURE 7-11. Performance of macro-op scheduling (64-entry issue queue).

FIGURE 7-12. Performance of macro-op scheduling (48-entry issue queue).

0.8

0.85

0.9

0.95

1

1.05

bz
ip

cr
af

ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rl

tw
ol

f

vo
rt

ex vp
r

IP
C

 n
or

m
al

iz
ed

 to
 b

as
e

sc
he

du
lin

g
as

df

2-cycle 2-source MOP 3-source MOPMOP-2src MOP-3src

0.8

0.85

0.9

0.95

1

1.05

bz
ip

cr
af

ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rl

tw
ol

f

vo
rt

ex vp
r

IP
C

 n
or

m
al

iz
ed

 to
 b

as
e

sc
he

du
lin

g
as

df

2-cycle 2-source MOP 3-source MOP

0.
79

MOP-2src MOP-3src

172

FIGURE 7-13. Performance of macro-op scheduling (32-entry issue queue).

FIGURE 7-14. Performance of various instruction schedulers.

0.8

0.85

0.9

0.95

1

1.05

bz
ip

cr
af

ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rl

tw
ol

f

vo
rt

ex vp
r

IP
C

 n
or

m
al

iz
ed

 to
 b

as
e

sc
he

du
lin

g
as

df

2-cycle 2-source MOP 3-source MOPMOP-2src MOP-3src

1.05

1.1

1.15

1.2

1.25

32 48 64 128

Issue queue size

A
ve

ra
ge

 IP
C

 (
ha

rm
on

ic
 m

ea
n)

1-cycle

MOP-3src

MOP-2src

2-cycle

.

173

In order to show the performance benefit from independent MOPs when the queue

contention is high, Figure 7-15 compares the performance of macro-op scheduling with

and without independent MOPs. The base machine has the 32-entry issue queue for this

measurement. The first three bars from the left in each benchmark are identical to those in

Figure 7-13, in which both dependent and independent MOPs are generated. The last two

bars (2-src and 3-src w/o indep) represent performance when independent MOPs are not

generated and hence the queue contention is reduced less compared with the previous

case. A few benchmarks such as eon, mcf and vortex show measurable performance gaps

over 1% (up to 2.0% in vortex). This result is consistent with the data in Figure 7-9 where

those benchmarks capture more independent MOPs than the others. Vpr shows a slight

slowdown due to a secondary effect of independent MOPs, as we already observed in

Figure 7-10. Although the current result indicates that the performance benefits from inde-

pendent MOPs are not significant, they are still effective in reducing queue contention and

achieving better performance for some cases. Especially, they are critical in increasing the

FIGURE 7-15. Performance impact of independent MOPs (32-entry issue queue).

0.8

0.85

0.9

0.95

1

1.05

bz
ip

cr
af

ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rl

tw
ol

f

vo
rt

ex vp
r

IP
C

 n
or

m
al

iz
ed

 to
 b

as
e

sc
he

du
lin

g
as

df

2-cycle 2-src w/ indep 3-src w/ indep 2-cycle 2-src w/o indep 3-src w/o indep

174machine bandwidth for macro-op execution, which will be discussed in Chapter 8.

7.7 Impact of MOP Formation

7.7.1 MOP scope

In Section 6.2.2, I characterized the distribution of the dependence edges that wake

up their dependent instructions, and found that capturing a short range of instructions, i.e.

an 8-instruction scope covers the vast majority of those edges. The current macro-op

scheduling is configured to capture MOPs with a 2-cycle scope based on this result. To

measure the impact of MOP scope on coverage and performance, we vary the scope from

one cycle (capturing up to four instructions) to four cycles (capturing up to 16 instruc-

tions). The base machine has the 128-entry issue queue and hence macro-op scheduling

does not benefit from reduced queue contention, although a wider scope increases the

number of MOPs and reduces more contention.

Figure 7-16 shows the number of dependent instructions grouped in MOP-3src

(without independent MOPs) with various MOP scopes. The graph was plotted in the

same way as Figure 7-4. Each benchmark has four stacked bars that represent MOP

scopes of one cycle through four cycles. With the 1-cycle scope, macro-op scheduling

loses a significant portion of grouping opportunities compared to other wider scopes. Note

that the result may not seem consistent with other characterization data of the dependence

edge distance between MOP candidate instructions shown in Figure 4-7, where many of

them are placed within four instructions. This is because the MOP detection and formation

logic uses a 1-cycle scope (instead of a 4-instruction scope), which creates discontinuity in

detecting and formatting MOPs. For example, if a candidate instruction is placed in the

.

175

fourth slot in a fetch group on the base 4-wide machine, it cannot be grouped as a MOP

head with other candidate tail in the following pipeline stage. If we ignore other secondary

effects, a 1-cycle scope is similar to an effective 2.5-instruction scope1, which decreases

the effectiveness of MOP formation.

Although the 2-cycle MOP scope cannot fully achieve an 8-instruction scope for

the same reason, its effective scope of 6.5 instructions2 is large enough to capture many

candidate pairs. Wider 3- or 4-cycle scopes achieve measurable increases over the 2-cycle

scope in some cases, although they may not be significant. Compared with the 4-cycle

FIGURE 7-16. Impact of MOP scope on MOP coverage (MOP-3src, no independent
MOP).

1. Assuming that instruction fetch fills all instruction slots (four instructions) every clock cycle, a
MOP head can be placed in one of the four slots with the probability of 0.25 each. If a MOP
head is placed in the first instruction slot, an effective MOP scope is four instructions. If the
MOP head placed in the second or third slot, the effective MOP scope is reduced to three or
two instructions, respectively. Therefore, the combined MOP scope is in effect 0.25 X (4 + 3+
2 + 1), which is 2.5 instructions.

2. Based on the same reasoning as the previous case, a 2-cycle scope captures 0.25 X (8 + 7 + 6 +
5), which is 6.5 instructions.

0%

20%

40%

60%

80%

100%
bz

ip

cr
af

ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rl

tw
ol

f

vo
rt

ex vp
r

T
ot

al
 in

st
ru

ct
io

ns
 c

om
m

itt
ed

not MOP candidate

MOP candidate but not grouped

MOP grouped

1-cycle scope (up to 4 instructions)

2-cycle scope (up to 8 instructions)

3-cycle scope (up to 12 instructions)

4-cycle scope (up to 16 instructions)

176

scope, the 2-cycle scope achieves 92% of MOP grouping opportunities captured by the 4-

cycle scope on average.

Figure 7-17 presents the performance sensitivity of macro-op scheduling to vari-

ous MOP scopes. The first bar on the left in each benchmark represents the base 2-cycle

scheduling performance with a 128-entry issue queue. The remaining four bars correspond

to 1-cycle to 4-cycle scopes, where the 2-cycle scope (middle bar) is identical to the MOP-

3src case in Figure 7-7. MOP detection captures dependent MOPs only. The negative

impact of the 1-cycle scope is substantial. The differences between 1-cycle and 2-cycle

scopes in gap and gzip are particularly significant since the 1-cycle scope achieves only

52% and 59% of MOPs that the 2-cycle scope captures for the two benchmarks, respec-

tively. The 2-cycle scope achieves most benefits of wider scope in all benchmarks except

gzip where the 3- and 4-cycle scopes further improve its benefit, achieving 97.5% of the

performance in the base 1-cycle scheduling case. Note that a wider scope does not neces-

sarily improve performance over the 2-cycle scope in some cases. This result partly comes

FIGURE 7-17. Performance impact of MOP scope (MOP-3src, no independent MOP,
no issue queue contention).

0.8

0.85

0.9

0.95

1

1.05

bz
ip

cr
af

ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rl

tw
ol

f

vo
rt

ex vp
r

IP
C

 n
or

m
al

iz
ed

 to
 b

as
e

sc
he

du
lin

g
as

df

2-cycle scheduling 1-cycle scope 2-cycle scope 3-cycle scope 4-cycle scope

.

177from the negative effects of harmful MOP grouping (Section 6.7.2). In addition, the inser-

tion policy to put instructions into the issue queue (Section 6.4.3) may negatively affect

performance. When the MOP head is inserted, it sets the pending bits and waits for the

matching MOP tail to be inserted. If the two instructions are placed far away from each

other in a wider MOP scope case, issuing the MOP head can be unnecessarily delayed,

degrading performance compared to the base case. It is also important to note that the ben-

efit of reduced queue contention due to more MOPs captured in wider scopes was not

reflected in this experiment, since the current base machine (128-entry issue queue) does

not have any issue queue contention. It may be critical to capture more MOPs on a

machine with high issue queue contention.

7.7.2 MOP size

Figure 7-18 shows performance when macro-op scheduling allows bigger MOP

sizes. The base macro-op scheduling uses 2x MOPs that group two instructions each. Two

larger MOP sizes are tested; the 3x MOP configuration allows up to three instructions.

Grouping two instructions are allowed; the 8x MOP configuration allows up to eight

instructions grouped in a MOP. Fewer than eight instructions are also allowed. For the 3x

and 8x MOP cases, four and nine source operands in a MOP should be allowed to achieve

their full benefits, respectively. Although these configurations potentially create difficul-

ties in MOP pointer generation and formation process, I optimistically assume that the

existing mechanism can correctly handle bigger MOPs for this experiment. The perfor-

mance data in Figure 7-18 are normalized to the base macro-op scheduling (MOP-3src)

with the 32-entry issue queue. Independent MOPs are generated in all configurations to

maximize the benefit of reducing issue queue contention.

178

Since the characterization data of bigger MOP sizes shown in Figure 4-14 and

Figure 4-16 indicate that capturing more than three instructions in a MOP is not frequent

enough, further relaxing the scheduling atomicity constraint (i.e. deeper pipelining the

scheduling logic) is not considered for this experiment. Therefore, the performance bene-

fits in this experiment come only from further reducing queue contention. Note that 3x

macro-op scheduling with 3-cycle scheduling provides only a marginal performance bene-

fit due to a limited number of bigger MOPs.

The results indicate that larger MOP sizes do not always improve performance.

Gap, gzip and twolf benefit from bigger MOPs, whereas bzip, eon, gcc and vpr show slight

performance degradations. This is primarily because bigger MOPs do not necessarily cap-

ture significantly more instructions in many cases but rather increase the probability of

instruction serialization. Considering the extra complexity incurred by bigger MOPs and

marginal performance benefits, the current policy of grouping two instructions would be a

good design choice for the programs that we tested.

FIGURE 7-18. Performance impact of MOP size (32-entry issue queue).

0.94

0.96

0.98

1

1.02

1.04

bz
ip

cr
af

ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rl

tw
ol

f

vo
rt

ex vp
r

IP
C

 n
or

m
al

iz
ed

 to
 2

x
M

O
P

-3
sr

c

3x MOP 8x MOP

.

1797.7.3 Extra pipeline stages for MOP formation

Although the MOP formation process can be overlapped with register renaming,

possible extra logic complexity may require a few pipeline stages to be added to the front-

end of the pipeline. To measure its performance impact, I evaluate macro-op scheduling

with one or two extra stages between the rename and the queue stage, which increases the

branch resolution loop [6] and hence potentially degrades performance due to the

increased branch misprediction penalty. The branch predictor performance in each bench-

mark, as well as other runtime characteristics was presented in Table 3-3.

Figure 7-19 presents the performance of macro-op scheduling with zero, one or

two extra pipeline stages, measured on the base machine with a 32-entry issue queue.

Independent MOPs are included for this measurement. In the graph, the solid bars repre-

sent performance with one extra MOP formation stage, and the error bars indicate perfor-

mance with zero or two extra stages. The performance with zero stage (presented with

upper error bars) is identical to that of Figure 7-13. The benchmarks with low branch pre-

FIGURE 7-19. Performance impact of extra MOP formation stages (32-entry issue
queue).

0.8

0.85

0.9

0.95

1

1.05

bz
ip

cr
af

ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rl

tw
ol

f

vo
rt

ex vp
r

IP
C

 n
or

m
al

iz
ed

 to
 b

as
e

sc
he

du
lin

g

2-cycle 3-source MOPMOP-3src

180diction performance such as perl, twolf and vpr show relatively high sensitivity to the

extra pipeline stages. Perl is measured to be the most sensitive because of the highest

misprediction rate (18.16%) among the benchmarks. Other benchmarks with higher pre-

diction performance lose less than 2% of IPC even with two extra stages.

7.8 Impact of MOP Detection

7.8.1 MOP detection latency and pipelinability

So far, I assumed fully-pipelined MOP detection logic with an optimistic 3-cycle

latency from starting MOP detection to generating MOP pointers. Because of the com-

plexity of the detection process, the actual hardware implementation may require longer

latency. The complexity issues in implementing MOP detection logic were discussed in

Section 6.3.4. In this section, I will first measure the impact of detection latency on perfor-

mance, and then evaluate its pipelinability.

Table 7-3 presents the impact of detection latency on the number of MOPs and

performance. The base macro-op scheduling has fully pipelined MOP detection logic with

0 extra detection latency (in addition to the base 3-cycle latency, which is unavoidable in

the current simulator implementation). For the comparison cases, we test pessimistic 50-

and 100-cycle extra latencies for the detection process. The second and third columns in

the table show the number of MOPs and IPCs normalized to the base case.

On average, macro-op scheduling with 50-cycle and 100-cycle detection latencies

achieve 98.2% and 97.4% of the MOPs in the base case, respectively. The worst case is

measured to be 94% in twolf. Bzip exhibits a slight increase within the noise. The IPC deg-

radation due to longer detection latency is on average 0.23% and 0.31% on the 50- and

.

181

100-cycle cases, respectively (worst 1.2% in parser). The data in the table indicate that the

MOP detection latency does not significantly affect macro-op scheduling, since MOP

pointers stored in the instruction cache are used repeatedly.

A more important issue in MOP detection logic implementation is its pipelinabil-

ity. To measure the impact of pipelining the logic by creating discontinuity in the process

and reversing the order of dependence checking, we test several detection logic configura-

tions with various pipeline intervals, as shown in Table 7-4. The details of each parameter

in the table were discussed in Section 6.3.4. The MOP generation rate is fixed to one

instruction per cycle in each detection queue, assuming that each instruction serially looks

up a table to find its matching MOP head. The MOP detection and formation scope is

fixed to two cycles (up to eight instructions) for all configurations.

Table 7-5 presents the impact of the pipelined MOP detection on the number of

MOPs captured. Figure 7-20 presents the performance impact of pipelined MOP detection

logic. The 4-interval case loses many opportunities since the discontinuous detection pro-

Table 7-3: Impact of MOP detection latency (MOP-3src, no independent MOP, 128-entry
issue queue).

Bench-
marks

MOPs with extra latency
/ # MOPs in the base case

IPC with extra latency
/ IPC in the base case

50 cycles 100 cycles 50 cycles 100 cycles

bzip 1.001 1.001 1.000 1.000
crafty 0.961 0.943 0.999 0.999

eon 0.994 0.983 0.999 0.998
gap 0.977 0.963 0.996 0.988
gcc 0.968 0.945 0.999 0.998

gzip 0.998 0.998 1.000 1.000
mcf 0.999 0.998 1.000 1.000

parser 0.954 0.945 0.989 0.988
perl 0.999 0.999 0.999 0.999

twolf 0.947 0.940 0.989 0.989
vortex 0.987 0.978 0.999 0.999

vpr 0.997 0.997 0.999 0.999

182cess creates many “left-overs” in the instruction stream, as explained in Section 6.3.4. The

intervals of eight or 16 instructions achieve most of the benefit of the fully pipelined

detection logic. Note that longer pipeline intervals do not further improve the MOP cover-

age and performance over 8- or 16-interval cases since they increase the detection latency.

The result indicates that pipelining the MOP detection logic with an interval of eight or

more instructions does not significantly degrade the efficiency of the MOP detection pro-

cess. Considering the number of queue entries required and performance, a pipeline inter-

val of eight instructions would be a good design choice.

.

183
Table 7-4: Configurations for pipelining MOP detection logic.

Configuration
MOP detection
scope (cycles)

Pipeline
interval

(= # entries /
queue)

MOP
generation rate
(MOPs / cycle)

Extra detection
latency (base 3

cycles)

Total detection
queue entries

4-interval 2 4 1 14 56
8-interval 2 8 1 14 56

16-interval 2 16 1 20 80
32-interval 2 32 1 36 144
64-interval 2 64 1 68 272

Table 7-5: Impact of pipelined MOP detection on MOP coverage (MOP-3src, no
independent MOP, 128-entry issue queue).

Benchmarks
MOPs captured / # MOPs in the base case (3 cycles, fully pipelined)

4-interval 8-interval 16-interval 32-interval 64-interval

bzip 0.842 1.012 1.001 1.000 1.001
crafty 0.788 0.967 0.971 0.967 0.953

eon 0.709 0.981 0.989 0.994 0.985
gap 0.876 0.988 0.990 0.983 0.970
gcc 0.850 0.974 0.980 0.975 0.959

gzip 0.853 1.027 1.000 0.999 0.998
mcf 0.907 1.002 1.000 0.999 0.998

parser 0.870 0.968 0.964 0.959 0.951
perl 0.732 0.998 0.999 0.999 0.998

twolf 0.933 0.968 0.959 0.954 0.945
vortex 0.847 0.978 0.988 0.989 0.983

vpr 0.906 0.999 0.998 0.998 0.996

FIGURE 7-20. Performance sensitivity to pipelined MOP detection (MOP-3src, no
independent MOP, 128-entry issue queue).

0.9

0.92

0.94

0.96

0.98

1

bz
ip

cr
af

ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rl

tw
ol

f

vo
rt

ex vp
r

IP
C

 n
or

m
al

iz
ed

 to
 b

as
e

sc
he

du
lin

g

fully-pipelined
interval-4
interval-8
interval-16
interval-32
interval-64

1847.8.2 MOP detection algorithm

For the MOP detection process, each MOP head candidate searches for a matching

MOP tail candidate in the forward scan algorithm. In contrast, MOP tail candidates search

for matching MOP heads in the backward scan algorithm. The base macro-op scheduling

uses the backward scan algorithm, in which the nearest parent instruction is chosen for a

matching MOP head, if the instruction has two source operands.

Table 7-6 presents the efficiency of the forward scan algorithm compared with the

backward scan algorithm. The second and third columns show the number of MOPs and

IPCs in forward scan normalized to the backward scan case. The results indicate that the

two scan algorithms perform similarly. From the perspective of hardware complexity, the

backward scan algorithm would be preferable since MOP detection logic can be config-

ured to examine only the instructions that correspond to source operands, without examin-

ing all instructions within the given MOP scope.

Table 7-6: Impact of MOP detection algorithm (MOP-3src, no independent MOP, 128-entry
issue queue).

Benchmarks
MOPs with forward scan

/ # MOPs with backward scan
IPC with forward scan

/ IPC with backward scan

bzip 1.001 1.000
crafty 1.004 1.000

eon 0.999 0.999
gap 1.005 0.998
gcc 0.997 0.999

gzip 1.019 0.998
mcf 1.001 1.000

parser 0.997 0.997
perl 0.999 1.000

twolf 0.996 0.998
vortex 0.994 0.999

vpr 1.000 1.000

.

1857.8.3 Filtering harmful grouping

In Chapter 4 where the groupability of instructions is measured, we observed that

inconsiderate MOP grouping reduces parallelism by serializing instructions. In Section

6.7.2, I discussed the negative effect of last-arriving operands in MOP tails. The MOPs

unnecessarily delayed can be divided into two categories: not useful and harmful MOPs. If

the MOP head has only the MOP tail as dependent instruction, it is not useful but does not

degrade performance compared with 2-cycle scheduling since the execution timing of

instructions dependent on the MOP does not change. If the MOP head has other dependent

instructions outside the MOP, it is harmful and degrades performance by delaying other

instructions.

Table 7-7 presents the impact of filtering not useful and harmful MOPs on MOP

grouping. The second column in the table shows the number of MOPs captured after filter-

ing, compared with the no-filtering case. Some benchmarks such as gap and twolf are sen-

sitive to the filtering, and lose 8~9% of grouping opportunities. On average, the filtering

mechanism reduces the number of MOPs by 2.6% across benchmarks. The third and

fourth columns present the percentage of not useful and harmful MOPs out of the total

MOPs, with and without filtering them. With filtering, harmful MOPs (third column)

account for a relatively small portion of total MOPs; they are less than 0.4% of total MOPs

in all benchmarks except for twolf, where 1.1% of MOPs are measured to be harmful. This

result is consistent with the data shown in Figure 7-8, where few 3-cycle+ dependence

edges are observed (1.1% in twolf here is equivalent to 0.2% of 3-cycle+ edges in

Figure 7-8). The percentage of not useful MOPs (fourth column) is higher; they account

for 4.7% of MOPs on average across benchmarks (worst 7.7% in gzip). Note that such

186MOPs can still be beneficial since they reduce issue queue contention.

Comparing this result to the without filtering case in the table, we find that our fil-

tering mechanism is very effective in reducing not useful and harmful MOPs. There are

significantly more not useful and harmful MOPs generated without the filtering mecha-

nism. Especially, not useful MOPs in gap increase from 3.2% (with filtering) to 34.8%

(without filtering), which reduces the efficiency of macro-op scheduling significantly.

Remember that the no filtering case captures 9.1% more MOPs in gap. The difference

between the two numbers (34.8% vs. 9.1%) implies that the filtering not only eliminates

not useful MOPs but also helps the detection logic to find other alternative pairs that are

useful.

The negative effects of not useful and harmful MOPs are reflected in performance.

Figure 7-21 presents the performance of macro-op scheduling with and without filtering

those MOPs. The left and middle bars in each benchmark are identical to Figure 7-7. The

middle bars (MOP with filtering) represent macro-op scheduling with filtering. The right

bars (MOP without filtering) show performance drops in most benchmarks compared with

the filtering case, ranging from 0.02% in vpr to 7.41% in gap.

In summary, avoiding not useful and harmful MOPs is critical to ensure the bene-

fits of macro-op scheduling. The filtering mechanism used in the base macro-op schedul-

ing is effective in reducing their negative impact.

.

187

Table 7-7: Impact of filtering not useful and harmful MOPs (MOP-3src, no independent
MOP).

Benchmarks

MOPs with
filtering

/ # MOPs
without
filtering

with filtering without filtering

harmful MOPs /
total MOPs

not useful
MOPs / total

MOPs

harmful MOPs /
total MOPs

not useful
MOPs / total

MOPs

bzip 0.970 0.2% 6.9% 1.1% 10.9%
crafty 0.974 0.4% 6.8% 1.5% 13.3%

eon 0.997 0.0% 2.0% 0.5% 4.1%
gap 0.909 0.1% 3.2% 0.5% 34.8%
gcc 0.994 0.1% 3.8% 7.5% 15.0%

gzip 0.967 0.3% 7.7% 0.8% 17.7%
mcf 0.994 0.0% 3.8% 3.2% 9.1%

parser 0.986 0.4% 5.0% 2.7% 8.9%
perl 1.000 0.0% 3.5% 2.2% 13.1%

twolf 0.922 1.1% 7.1% 2.5% 13.5%
vortex 0.995 0.1% 7.3% 0.4% 10.6%

vpr 0.974 0.4% 3.6% 2.5% 8.4%

FIGURE 7-21. Performance impact of filtering not useful and harmful MOPs (MOP-
3src, no independent MOP, 128-entry issue queue).

0.8

0.85

0.9

0.95

1

1.05

bz
ip

cr
af

ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rl

tw
ol

f

vo
rt

ex vp
r

IP
C

 n
or

m
al

iz
ed

 to
 b

as
e

sc
he

du
lin

g
as

df

2-cycle MOP with filtering MOP without filtering

1887.8.4 Cycle detection heuristics for register dependences

In Section 6.3.1, I discussed the problems with cycles induced by improper MOP

grouping, and cycle detection heuristics to avoid tracking dependences through multiple

levels of instructions. The cycle conditions falsely detected by the heuristics may degrade

performance due to lost grouping opportunities. In order to measure how many grouping

opportunities are lost due to the heuristics used in MOP detection logic, the simulator is

configured to detect cycles precisely by tracking multiple levels of dependent instructions.

Table 7-8 compares cycle detection heuristics with precise detection in terms of

the number of MOPs and IPC. The base machine has the 128-entry issue queue. To elimi-

nate other secondary effects, macro-op grouping captures dependent MOPs only. In the

table, the second and the third columns present the number of MOPs and IPCs normalized

to the precise detection case. I find that the lost grouping opportunities due to the heuristic

is negligible. The detection heuristic captures slightly more MOPs in some benchmarks

but they are still within the noise. This result comes from the fact that 1) the vast majority

of instructions have only one dependent instruction [12], 2) even though an instruction has

multiple consumers, the MOP detection mechanism may not observe them between the

two grouped instructions because of long dependence edge distances, 3) not many instruc-

tions have two source dependences [56], and 4) the filtering mechanism to avoid harmful

grouping tends to avoid two-source instructions as MOP tails.

7.8.5 Cycle detection heuristics for memory dependences

The details of cycle avoidance heuristics for memory dependences on various

macro-op scheduling and machine configurations were summarized in Table 6-1. Since

the base machine supports partial store-to-load forwarding, MOP detection logic does not

.

189check intervening store-to-load pairs to avoid cycles through memory dependence. If the

base machine does not support partial store-to-load forwarding, those pairs should be

avoided to prevent deadlock.

Table 7-9 presents the impact of disallowing intervening store-to-load pairs on

MOP coverage and performance. In order to make the result consistent with other data, the

base machine still allows partial store-to-load forwarding, since changing this potentially

affects the base performance. Note that this heuristic is tested on a machine with partial

store-to-load forwarding paths in order to ensure correct behavior.

From the table, I find that the impact of disallowing those pairs is negligible; less

than 1% of MOPs are lost for this restriction. The worst case IPC degradation is measured

to be 0.5% in gap. This result indicates that the effectiveness of macro-op scheduling does

not significantly rely on the policies for store-to-load forwardings. Note that this result

may not hold for register-starved ISAs like IA-32 [48].

190

Table 7-8: Performance of the cycle detection heuristic compared with precise detection.

Bench-
marks

MOPs with the heuristic / # MOPs with
precise detection

IPC with the heuristic / IPC with precise
detection

MOP-2src MOP-3src MOP-2src MOP-3src

bzip 0.988 0.988 0.999 0.999
crafty 1.001 1.001 0.999 1.000

eon 0.999 0.999 1.000 1.000
gap 0.999 0.999 0.999 0.999
gcc 0.999 0.998 0.999 1.000

gzip 0.999 0.999 1.000 1.000
mcf 0.974 0.974 0.999 0.999

parser 1.000 0.999 1.000 1.000
perl 0.995 1.004 0.981 0.983

twolf 0.994 1.000 0.997 0.999
vortex 0.999 0.999 1.000 1.000

vpr 0.998 0.997 0.999 0.999

Table 7-9: Impact of store-to-load pair (MOP-3src, no independent MOP, 128-entry issue
queue).

Benchmarks
MOPs without SL pair
/ # MOPs in base case

IPC without SL pair
/ IPC in base case

bzip 0.994 1.000
crafty 1.000 1.000

eon 0.990 0.999
gap 0.996 0.995
gcc 0.999 1.000

gzip 0.994 1.000
mcf 0.991 1.000

parser 0.999 1.000
perl 1.000 1.000

twolf 1.000 1.000
vortex 1.000 1.000

vpr 0.999 1.000

.

1917.8.6 Control bits in MOP pointers

A MOP pointer has a single control bit to represents a control flow change

between MOP head and tail, and captures one control flow discontinuity created by a sin-

gle direct branch or jump. If there is an intervening indirect jump, or there are multiple

control instructions and any of them is taken, the MOP is not created. To find the efficacy

of the control bit, Table 7-10 shows the impact on the MOP detection efficiency and per-

formance when no intervening branch or jump is allowed. The second and third columns

show the percentage of MOPs that contain intervening taken or not taken control instruc-

tions. The fourth and fifth columns show the impact on the number of MOPs and IPC if no

intervening control instruction is allowed. Note that the lost MOP opportunities in the

fourth column tend to be lower than the sum of the second and third columns because

MOP detection may find alternative pairs.

The results indicate that allowing intervening control instructions is critical in

terms of the number of MOPs, although their performance impact is not that severe. The

benefits of disallowing intervening control instructions are 1) the MOP detection and for-

mation logic becomes simpler, and 2) branch misprediction recovery becomes simpler

since the issue queue entries do not have to partially evict instructions grouped across the

mispredicted branch. The effectiveness of macro-op scheduling does not significantly rely

on grouping across control instructions. However, the performance impact may be higher

if issue queue contention is a major performance bottleneck.

7.9 Summary and Conclusions

In this chapter, I evaluate the effectiveness of the proposed macro-op scheduling

192

and measure its sensitivity to various formation and detection policies. Given the policy of

grouping two instructions within a 2-cycle scope, macro-op formation captures a signifi-

cant portion of performance degrading instructions on 2-cycle scheduling, which are

scheduled consecutively as if 1-cycle scheduling is performed. Without issue queue con-

tention, macro-op scheduling recovers the performance drop of 2-cycle scheduling in

many cases. Macro-op scheduling is effective in recovering performance of the bench-

marks sensitive to 2-cycle scheduling since it enables consecutive issue of dependent

instructions and reduces queue contention. I find that grouping independent instructions

further improves the effectiveness of macro-op scheduling. Macro-op scheduling can out-

perform the base 1-cycle scheduling with the 32-entry issue queue due to these benefits.

The restriction in the number of source operands does not significantly affects the effec-

tiveness of macro-op scheduling. Macro-op scheduling that allows only two source oper-

ands in a MOP still achieves most benefits of the 3-source case, which implies that macro-

op scheduling can be built without modifying the conventional CAM-style wakeup logic

Table 7-10: Impact of intervening branches (MOP-3src, no independent MOP, 128-entry
issue queue).

Benchmarks

MOPs with
intervening taken
branches in base

MOPsched

MOPs with
intervening not

taken branches in
base MOPsched

MOPs without
branch

/ # MOPs in base
MOPsched

IPC without
branch

/ IPC in base
MOPsched

bzip 1.4% 1.6% 0.974 0.997
crafty 2.1% 2.7% 0.979 0.999

eon 4.7% 7.0% 0.894 1.000
gap 3.2% 1.6% 0.962 0.990
gcc 1.2% 5.3% 0.958 0.999

gzip 0.5% 2.7% 1.001 0.998
mcf 11.0% 6.4% 0.832 0.999

parser 2.8% 3.0% 0.949 0.998
perl 1.4% 4.3% 0.958 1.000

twolf 1.4% 4.1% 0.950 0.999
vortex 1.4% 11.3% 0.877 0.999

vpr 0.6% 2.0% 0.975 0.993

.

193with only two tag comparators.

I also examine several aspects of macro-op scheduling in terms of macro-op detec-

tion and formation policies. A 2-cycle scope that captures up to eight instructions achieves

most benefits compared with other wider MOP scope. This result is consistent with the

characterization data that show most data dependence edges that trigger instruction issue

tend to be clustered within a small range of instructions. Regarding the pipelinability of

MOP detection process, pipelining the process with 8- or 16-instruction intervals provides

most of the benefit of fully pipelined detection logic. Also, the detection latency is not

critical since MOP pointers are stored in the instruction cache and reused repeatedly. The

negative effects of last-arriving operands in MOP tails may significantly degrade perfor-

mance. The proposed filtering mechanism is effective in avoiding not useful and harmful

MOPs, achieving significant performance gain over the no-filtering case. The effective-

ness of macro-op scheduling is not particularly dependent on MOP detection and forma-

tion policies, nor potential restrictions in the underlying microarchitecture.

In conclusion, macro-op scheduling compensates for the performance loss due to

2-cycle scheduling by enabling consecutive issue of dependent instructions and widening

the instruction window. The benefits of macro-op scheduling can be summarized as relax-

ing atomicity and scalability constraints of conventional instruction scheduling. The per-

formance results indicate that pipelined, 2-cycle macro-op scheduling can achieve similar

or better performance than atomic 1-cycle scheduling.

194

195Chapter 8

Macro-op Execution

In Chapter 6, I proposed macro-op scheduling that processes instructions at a

coarser level by grouping them into a single schedulable unit. This approach relaxes the

atomicity and scalability constraints of conventional instruction scheduling. In Chapter 7,

I showed that macro-op scheduling is a good approach to achieving pipelined instruction

scheduling with similar or better performance than conventional scheduling.

One question that arises in macro-op scheduling is why macro-ops should be con-

verted back to the original instructions immediately after they are issued. Of course, this is

a benefit of macro-op scheduling since the technique does not require any major changes

in the data path nor alter the way register values are communicated. However, it does not

fully exploit the benefits of coarse-grained instruction processing. Macro-ops reduce the

control overhead required for synchronizing the activities of individual instructions not

only in instruction scheduling but also in complex out-of-order execution pipelines. More-

over, they potentially localize the register value communication among the grouped

instructions.

In this chapter, I extend coarse-grained instruction processing to include the entire

pipeline for out-of-order execution from instruction scheduling to execution stages. In

addition to the benefits of macro-op scheduling, the proposed technique, macro-op execu-

tion, increases the effective machine bandwidth with similar or even less complexity in

instruction scheduler, dispatch, register file access and bypass logic.

This chapter is laid out as follows: Section 8.1 discusses an overview of macro-op

196execution and highlights its benefits. Section 8.2 details the key components and microar-

chitectural modifications for macro-op execution. The experimental evaluation of macro-

op execution will be presented later in Chapter 9.

8.1 Increasing Machine Bandwidth via Macro-op Execution

8.1.1 Limitations of macro-op scheduling

In macro-op scheduling discussed in Chapter 6, a MOP that contains two single-

cycle operations is handled as a non-pipelined, 2-cycle operation from the scheduler’s per-

spective. Instructions are sequenced by the dual-entry payload RAM in the dispatch stage,

which sends the two original instructions in two consecutive clock cycles. Since macro-op

scheduling enables only the scheduler to operate at a MOP granularity, the benefits of

coarse-grained instruction processing are limited to instruction scheduling. However,

there are several observations to make about the way instructions behave in macro-op

scheduling, which can potentially be exploited to achieve further benefits. First, a MOP

forces a predetermined execution order among the grouped instructions. This determinis-

tic execution implies that the way values are bypassed becomes simpler and therefore

some datapaths for value communication may become unnecessary. Second, due to the

attribute of instruction sequencing, the two original instructions flow in the same path with

a delay of one clock cycle, which can be modified to force the two instructions to be man-

aged together within a single instruction slot in one execution lane. Third, macro-op

scheduling blocks the issue slot for one clock cycle to create the time window for sequenc-

ing instructions. These idle cycles in the select logic can potentially be utilized to achieve

wider issue bandwidth.

.

1978.1.2 An overview of macro-op execution

Macro-op execution extends the range of coarse-grained processing to the whole

out-of-order portion of the pipeline, including scheduling, dispatch, register access and

bypass logic in the execution stage. Instead of sequencing the original instructions in the

dispatch stage, macro-op execution processes MOPs until they reach the execution stage.

Here, the functional units and bypass paths are configured in such a way that the original

instructions are naturally sequenced as MOPs move through the datapath. In addition to

the benefits of macro-op scheduling (i.e. larger instruction window and pipelined schedul-

ing logic), moving the sequencing point further down to the execution stage enables nar-

rowing the issue, dispatch and register access bandwidth while sustaining equivalent

execution bandwidth. Moreover, the bypass logic complexity, which may be one of the

major bottlenecks in current and future-generation microprocessors, can also be reduced

by exploiting the nature of macro-op scheduling. Conversely, in a wider machine configu-

ration, macro-op execution can improve execution bandwidth without significantly

increasing hardware complexity.

Figure 8-1 illustrates macro-op execution and its corresponding pipeline stages.

The basic operations to group instructions into MOPs are similar to those of macro-op

scheduling; the MOP detection logic located outside the processor’s critical path examines

register dependences among instructions and creates MOP pointers. A MOP pointer is

stored in the instruction cache, and specifies which instructions can be grouped. When

MOP candidate instructions are located based on MOP pointers, a MOP is created by allo-

cating a single issue queue entry to those instructions. In the scheduling stage, wakeup and

select operations can be pipelined because MOPs have multi-cycle execution latencies.

198

When all source operands of a MOP become ready, a MOP is issued as a single unit to the

execution lane. Until this point, macro-op execution shares most of the key components

and operations required for macro-op scheduling.

In the dispatch stage, each entry in the payload RAM has multiple fields for the

original instructions grouped in a MOP. The actual register identifiers and opcodes of the

original instructions are accessed in parallel using a single port. In the register access

stage, the MOP accesses the register read ports for source values of the original instruc-

tions in parallel. Instruction sequencing occurs in the execution stage, which has stacked

functional units that execute two original instructions sequentially. If a MOP contains load

operations, the computed effective addresses are sent to data cache ports. Result values of

two original instructions are individually written back to the register file. Back-to-back

execution of two dependent instructions can occur either within a MOP or after the MOP

tail is executed, which guarantees that no other instruction dependent on a MOP head is

issued consecutively. Due to this attribute of macro-op scheduling, the bypass paths can

also be simplified, since not all output ports of functional units need to be connected to all

FIGURE 8-1. An overview of macro-op execution.

Issue
queue
insert

Wakeup

Pipelined scheduling
/ fewer issue slots

RFSelect
Payload RAM

EXEFetch

MOP
detection

Dependence
informationMOP

pointers

Fetch / Decode / Rename Queue Scheduling RF

Coarser MOP-grainedInstruction-grained

MEM

cache
ports

MOP
formation

Rename

Disp

WB
CommitI-cache

Instruction-grained

EXE / MEM / WB / Commit

fewer DISP / RF slots stacked ALUs
/ simpler bypass

Wakeup order information

.

199of their input ports.

As in the macro-op scheduling case, the reorder buffer commits ungrouped origi-

nal instructions separately in program order. Therefore, macro-op execution maintains

correct architectural state even if a branch misprediction or even an exception occurs

between two grouped instructions.

8.2 Microarchitecture for Macro-op Execution

In the previous section, I discussed the benefits of processing instructions at a

coarser granularity throughout the entire execution pipeline and presented the principles

of macro-op execution. In order to simplify the discussion, I set as the primary goal the

ability to reap the IPC of a conventional 4-wide machine with atomic scheduling by using

a machine with 2-instruction issue bandwidth and pipelined (2-cycle) instruction schedul-

ing.

This section describes MOP grouping policy, the details of macro-op execution,

and the proposed microarchitecture. Section 8.2.1 to Section 8.2.4 discuss the MOP

grouping policy for macro-op execution. Note that the details of MOP detection and for-

mation logic, which are the key components for grouping instructions, have been dis-

cussed in Section 6.3 and Section 6.4, so I will focus on describing the modifications

required to support macro-op execution. Section 8.2.5 to Section 8.2.9 present how the

pipeline stages from scheduling to execution process macro-ops, and highlight the benefits

of macro-op execution. Section 8.2.10 estimates the effective machine bandwidth

increased by macro-op execution.

8.2.1 Macro-op grouping policy

200In order to enable consecutive execution of dependent instructions in the pipelined

scheduling logic, and to increase issue bandwidth, macro-op detection and formation tar-

gets single-cycle operations: single-cycle ALU, control (e.g. branch), and load and store

address operations. Since load instructions are not explicitly cracked into two separate

operations (address generation and actual cache port access) on the base machine model

described in Section 3.1.1, I will simply classify loads as groupable candidate instructions.

Other types such as integer multiply or floating-point operations are not grouped into

MOPs, and will require separate functional units.

The policy for macro-op execution is to group two directly dependent instructions

into a dependent MOP, or two independent instructions with identical source operands into

an independent MOP. Although bigger MOP sizes may enable the scheduling loop to span

over more clock cycles and further increase the effective machine bandwidth, the charac-

terized groupability of instructions in Section 4.5 indicates that not many MOPs capture

more than two instructions in general. A bigger problem is that irregular MOP sizes incur

low resource utilization. Unlike macro-op scheduling, macro-op execution requires modi-

fications in the datapath and functional units, potentially placing more resources in each

execution lane, although the total number of execution lanes can be reduced. Since each

execution lane must satisfy the maximum resource requirement of a MOP, increasing the

MOP size will result in wasting many resources such as functional units or register ports.

Also, the bypass network complexity should be considered for bigger MOP sizes. Hence,

this thesis studies the potential for 2x MOPs.

Due to the restrictions in the datapath in the execution stage (which will be dis-

cussed in Section 8.2.8), the possible combinations of grouped instructions are two depen-

.

201dent or independent single-cycle operations (S-S), two independent loads (L-L), and a

single-cycle operation and a dependent load (S-L). Note that independent MOPs for an S-

L pair is also possible, but were not considered for macro-op execution because initial

experiments determined that the number of such MOPs is not significant and that they

tend to degrade performance when load issue is blocked by unresolved earlier store

address operations. Also note that a machine with separate schedulers for different types

of instructions would not be able to process S-L MOPs. However, the experimental results

in Chapter 9 will show that this inability does not severely reduce the effectiveness of

macro-op execution.

8.2.2 Macro-op detection

The purpose of MOP detection logic is to examine the instruction stream, to detect

MOP candidates considering data dependences, the number of source operands and possi-

ble cycle conditions, and to generate MOP pointers that represent MOP pairs. Generated

MOP pointers are stored in the first-level instruction cache along with instruction words,

and later direct the MOP formation process. The basic operations of MOP detection for

macro-op execution are identical to those of macro-op scheduling. A few modifications

are required to support macro-op execution. The detection logic should be able to capture

S-L and L-L pairs, which were not allowed in the base macro-op scheduling. Including

loads as candidate instructions does not fundamentally alter the detection process,

although it requires detection of cycle conditions through memory dependences (this will

be discussed in the following section). The added complexity to the detection logic should

not significantly affect cycle time since the logic can be pipelined, as described in Section

6.3.4 and Section 7.8.1.

2028.2.3 Cycle detection

Section 6.3.1 and Section 6.3.2 discussed the cycle conditions induced by

improper MOP grouping, and avoidance heuristics that do not require multiple levels of

tracking register and memory dependences. Since macro-op execution allows grouping

load instructions as MOP tails, the cycle detection heuristics for memory dependences

described in Section 7.8.5 will be used together with the one for register dependences.

Therefore, L-L and S-L MOP pairs are not created across intervening store instructions to

avoid cycles through memory dependences.

8.2.4 Macro-op formation

The basic operation of MOP formation for macro-op execution is identical to

macro-op scheduling. MOP formation is responsible for checking control flow, locating

MOP pairs using the MOP pointers, and converting register dependences into MOP

dependences. Two instructions are then inserted into a single issue entry in the queue

stage, creating a MOP in the scheduler.

An important modification required for macro-op execution is the dependence

tracking process described in Section 4.3. The base macro-op scheduling groups only two

single-cycle instructions to match the scheduling latency of the pipelined 2-cycle schedul-

ing logic. This attribute forces the instruction scheduler to use MOP latency tracking for

register dependences, since the MOP offset tracking becomes meaningless. In macro-op

execution, S-S pairs have the same execution latency (i.e. two clock cycles) as the sched-

uling loop so the MOP latency tracking approach can process them without incurring extra

delay. However, L-L and S-L pairs need special consideration because their execution

latency is greater (four clock cycles) than the scheduling latency (two clock cycles). MOP

.

203latency tracking may unnecessarily delay other instructions dependent on the MOP head

until after the two instructions grouped in a MOP completes, which incurs one or two

clock cycles of extra delay for L-L or S-L MOPs, respectively.

To avoid this penalty, the MOP formation logic is configured to support MOP off-

set tracking. An extra field is added to each entry in the MOP translation table discussed in

Section 6.4.2; when MOP IDs are assigned to the instruction during the dependence trans-

lation and stored into the MOP translation table, each instruction marks a single-bit extra

field, indicating whether it is grouped as a MOP head or tail, so that dependent instruc-

tions that access the MOP translation table know whether they are dependent on which

instruction in the MOP. If the map table for register renaming already keeps track of the

execution latency for the parent instructions on the base microarchitecture, storing extra

information of the execution latencies into the MOP translation table is not necessary.

When an instruction or a MOP is inserted into the issue queue entry, it adjusts the execu-

tion latency of the parent instructions corresponding to source operands, based on the

extra field in the MOP translation table, and sets an appropriate execution latency in the

timer logic that tracks the readiness of source operands.

An example of MOP offset tracking is illustrated in Figure 8-2. There are four

instructions I1 ~ I4, among which MOP detection logic created a S-L MOP of I1 and I3.

When the two instructions are registered to the translation table, the instruction I1 sets the

MOP head bit, indicating that the instruction is grouped as the MOP head. The instruction

I3 does not set the bit, indicating it is a MOP tail. At the same time, their execution laten-

cies are also stored into EXE lat fields (assuming that the MOP translation table also

tracks execution latencies). The dependent instructions I2 and I4 access to the MOP trans-

204

lation table and acquire the same MOP ID of m5 but two different execution latencies.

Since the MOP scheduler performs pipelined 2-cycle scheduling, adjustments in the exe-

cution latencies are required to correctly track the readiness of source operands. The effec-

tive delay for a source operand grouped as a MOP head is one clock cycle less than its

execution latency, since broadcasting a tag takes one clock cycle. However, if the source

operand is an instruction grouped as a MOP tail, this adjustment is unnecessary because

the effective issue timing of this instruction will be same as the clock cycle when its tag is

broadcast. Therefore, the effective delay for source operand tracking becomes the differ-

ence between two values in EXE lat and MOP head fields. Note that this type of delay

adjustment is already required for conventional pipelined instruction schedulers to reflect

their scheduling latencies to the execution latencies.

After instructions are inserted into the issue queue, instructions I2 and I4 will

observe the tag broadcast of m5 from MOP (I1, I3). However, they will interpret the same

tag differently due to the two different delay values (zero and three clock cycles for the

head and tail, respectively), and correctly track the readiness of the corresponding source

FIGURE 8-2. MOP offset tracking for macro-op execution.

1

2 3

4

MOP
head?

load
1

3

2 4

Logical
reg ID MOP ID

MOP translation table

S-L MOP
1
2
3
4

m5
m6
m5
m7

- -

1
1
0
1
-

1
1
3
1
-

1
2
3
4

m5
m6
m5
m7

- -

1
1
0
1
-

1
1
3
1
-

EXE lat

I2
I4

MOP(I1, I3)
-
5
6
7

-
m1
m5
m5

- -

-
0
0
3
-

-
-
-

m2
-

Issue queue

Entry # Src 0 Src 1

-
-
-
2
-

-
m5
m6
m7
-

DestDelay Delay

I2
I4

MOP(I1, I3)
-
5
6
7

-
m1
m5
m5

- -

-
0
0
3
-

-
-
-

m2
-

Issue queue

Entry # Src 0 Src 1

-
-
-
2
-

-
m5
m6
m7
-

DestDelay Delay

Effective delay after
tag broadcast

= (EXE lat) – (MOP head)

1-1 = 0
1-1 = 0
3-0 = 3
1-1 = 0

.

205operands.

8.2.5 Instruction scheduling logic

In macro-op scheduling, two instructions are sequenced by the payload RAM that

sends two original instructions within two consecutive clock cycles, and during which the

issue slot is blocked in order to prevent other instructions from being sent to the same exe-

cution lane. To support this, a MOP is handled as a multi-cycle latency, non-pipelined

operation from the scheduler’s perspective. This implies that issue bandwidth is wasted

because the select logic is idle during the sequencing operation. Macro-op execution

exploits these unnecessary bubbles in the select logic to increase issue bandwidth by han-

dling a MOP as a pipelined operation and moving the point of sequencing instructions fur-

ther down to the EXE stage.

The scheduling and execution timings are illustrated in Figure 8-3. In this exam-

ple, we assume that the scheduler has only one issue slot and therefore no other operations

can be issued in parallel. In the base macro-op scheduling case (Figure 8-3a), the select

logic is blocked after issuing a macro-op in order to provide a time window for the pay-

load RAM to sequence the original instructions. In the scheduler for macro-op execution

(Figure 8-3b), the select logic does not have idle cycles and can issue a MOP every clock

cycle, which effectively doubles the issue bandwidth. We note that this scheduling logic

still guarantees that MOP m2 (instructions 3 and 4) is correctly scheduled two cycles after

MOP m1 (instructions 1 and 2) is issued since a MOP is handled as a pipelined multi-cycle

operation from the scheduler’s perspective.

One complication in the select logic is the handling of load instructions. If the

MOP tail instruction is a load, the select logic should be able to avoid possible cache port

206

conflicts with other loads or MOPs issued in the following clock cycle. This simply needs

the select logic to keep track of the load port uses in the previous clock cycle for correct

resource management. Although this may complicate the select logic, I believe that its

impact on the cycle time is not significant, especially considering that the scheduling logic

is pipelined and the select logic can use the full clock cycle period.

8.2.6 Dispatch / Payload RAM Access

An issued MOP accesses the payload RAM and acquires the original register spec-

FIGURE 8-3. An example of scheduling timing for macro-op execution.

1

2

3

4

5

6

m1 m3

m2

broadcast
/ wakeup

issue
/ select

CLK

n

n+1

n+2

n+3

n+4

m1

m1

m2

m2

m3

m3n+5

issue timing

idle

idle

idle

idle

idle

1

2

3

4

5

6

execution
timing

1 2

5 6

3 4

broadcast
/ wakeup

issue
/ select

CLK

n

n+1

n+2

n+3

n+4

m1

m1

m2

m2

m3

m3n+5

issue timing

idle

idle

idle

idle

idle

1

2

3

4

5

6

execution
timing

1 21 2

5 65 6

3 43 4

(a) base macro-op scheduling

g

1

2

3

4

5

6

execution
timing

g

1

2

3

4

5

6

execution
timing

broadcast
/ wakeup

issue
/ select

CLK

n

n+1

n+2

n+3

n+4

m1

m1

m2

m2

n+5

m3

m3

1 2

5 6

3 4

issue timing execution
timing

1

2

3

4

5

6

broadcast
/ wakeup

issue
/ select

CLK

n

n+1

n+2

n+3

n+4

m1

m1

m2

m2

n+5

m3

m3

1 21 2

5 65 6

3 43 4

issue timing execution
timing

1

2

3

4

5

6

(b) macro-op execution

.

207ifiers, opcodes, and other necessary information needed for execution. Each payload RAM

line has two entries for two grouped instructions. Although this configuration will double

the number of bits to be accessed by a single request, two instructions grouped in a macro-

op can use only a single port, reducing the number of payload RAM read ports compared

to a case with the same effective issue bandwidth. For example, a 2-wide machine with

macro-op execution has two payload RAM read ports that support up to four original

instructions accessed in parallel. Note that macro-op execution does not sequence the orig-

inal instructions in this stage, while macro-op scheduling uses the dispatch stage to

sequence instructions. The two original instructions grouped in a MOP are dispatched

together to an appropriate execution lane.

Payload RAM entries are allocated when instructions are inserted into the issue

queue in the queue stage. Since the original instructions are inserted individually at the

original instruction granularity while the execution core processes instructions at a MOP

granularity, macro-op execution needs an equivalent number of write ports to the payload

RAM. The number of write ports is determined by the insertion bandwidth (e.g. four

instructions per cycle on the base machine) of the queue stage. The write ports can poten-

tially be reduced if the coarse-granular instruction processing is fully extended to the

front-end of the pipeline, i.e. fetch, decode and rename stages, but this optimization is not

considered for this thesis research, since this may require a complex algorithms to reorder

instructions and place groupable instruction pairs together while maintaining the sequen-

tial semantics of the original program. With support from a software-based dynamic trans-

lator that places fused instructions together [46], rename and insertion bandwidth can also

be reduced, along with the write ports to the payload RAM.

2088.2.7 Register File

A MOP accesses the register file for the source operands of the original instruc-

tions in parallel. The maximum number of source operands is three when two dependent

instructions are grouped, assuming that an instruction has up to two source operands in

this architecture. Although each MOP may need three register ports for source values, the

MOP detection logic can prevent 3-source MOPs from being created and hence it does not

necessarily increase the number of read ports needed for each execution lane. I showed in

Section 7.3 that not many MOPs have three source operands and restricting them to only

two sources does not significantly degrade the MOP coverage. This is also beneficial for

CAM-style wakeup logic, which needs to support up to three source operands of 3-source

MOPs. However, in either case, the total number of register read ports are reduced com-

pared to the base case with the same effective execution bandwidth since fewer instruc-

tions (or MOPs) are processed simultaneously in this stage. Macro-op execution better

utilizes register read ports by implicitly specifying that the result value of the MOP head

will be read off the bypass path by the MOP tail.

Note that macro-op execution does not improve write port utilization and will

require the same number of write ports as the base case, since this is a function of execu-

tion bandwidth and result values are written back to the register file individually by each

instruction. Macro-op execution can potentially be extended to reduce write port require-

ments by performing liveness analysis of register communications or predicting and track-

ing the value degree of use [12], but these optimizations were not considered for this thesis

because of the complexity required for implementing them in hardware.

8.2.8 Execution stages and bypass network

.

209

Figure 8-4a illustrates functional units and bypass paths in the execution stage for

macro-op execution. When a MOP reaches the first execution stage (EXE_head), the

MOP head starts execution. At same time, the waiting station (WS0 and WS1 in the figure)

latches the MOP tail and its source values acquired from the register file. After the MOP

head finishes execution, the result value is written back to the register file and also for-

warded to the input ports of the stacked ALU in the EXE_tail stage. Since this forwarding

occurs within a MOP (between the MOP head and tail) and no other instruction dependent

on the MOP head (S-S and S-L MOP cases) is scheduled consecutively, it does not require

full bypass paths across all functional units and therefore can be simply implemented by

connecting two ALUs. Although instructions dependent on the MOP head of an L-L MOP

may be scheduled consecutively, the output of the MOP head (a load instruction) becomes

available at the cache ports, which have full bypass paths to the functional units ALU0 and

ALU1 so this case is correctly handled. The waiting station sends the MOP tail to the

FIGURE 8-4. Execution pipeline and datapath for macro-op execution.

Wakeup

Select

Disp

RF

EXE_head

WB_head /
EXE_tail

WB_tail

Sched

Disp

RF

Exe

WB

Payload slot 0
dual entry

Payload slot 1
dual entry

2-cycle Macro-op Scheduler

issue slot
0

issue slot
1

RF slot 0
2 or 3 read ports

RF slot 1
2 or 3 read ports

Payload

slot 0

Payload

slot 2

Payload

slot 3

Payload

slot 1

1-cycle atomic Scheduler

issue
slot
0

issue
slot
2

issue
slot
3

issue
slot
1

RF slot 0
2 read
ports

RF slot 1
2 read
ports

RF slot 2
2 read
ports

RF slot 3
2 read
ports

ALU0 ALU1

ALU2 ALU3

ALU0 ALU1 ALU2 ALU3WS0 WS1

Mem
port 1

Mem
port 0

Mem
port 1

muxmux muxmux

Mem
port 0

(a) 2-wide macro-op execution machine (b) conventional 4-wide machine

210EXE_tail stage and the MOP tail starts its execution. After the MOP tail is executed, its

result value is written back to the register file and is forwarded to two other functional

units (ALU0 and ALU1) in the EXE_head stage, enabling consecutive execution of

dependent instructions.

Compared to macro-op scheduling, macro-op execution does not degrade perfor-

mance (ignoring other secondary effects incurred by narrowing the machine bandwidth or

different grouping policies) due to the lost opportunities for bypassing or forwarding reg-

ister values through these restrictive data paths. Rather, macro-op scheduling wastes

bypass bandwidth even though the restrictive scheduling behavior created by MOPs that

forces the deterministic execution prevents the bypass paths from being fully utilized. In a

sense, the macro-op execution model can be interpreted as vertically clustering (or hori-

zontally slicing across dependence chains) the datapaths and bypass network to improve

their complexity, whereas other proposals for clustered microarchitecture [78][74][30]

horizontally cluster the machine along with the chains of dependent instructions. In fact,

the both horizontal and vertical clusterings are complementary and can potentially be

implemented in combination without significantly interfering each other.

In Figure 8-4, the timing-critical bypass paths in the macro-op execution and the

base 4-wide machine are highlighted. The complexity of the bypass paths for macro-op

execution (Figure 8-4a) is similar to the conventional 2-wide machine case, in which the

output ports of two ALUs are connected to the input ports of two ALUs. Note that the

bypass paths in the actual circuit layout do not necessarily expand across two functional

units vertically (as shown in the figure). Macro-op execution enables more routing flexi-

bility due to the fewer number of input and output ports to be connected, and potentially

.

211shortens the worst-case path. In contrast, the conventional 4-wide machine with full

bypass network (Figure 8-4b) needs to connect them across all input and output ports.

Also note that MOP tails may need to acquire source values from the critical bypass path,

although the instruction scheduling guarantees that MOP tails and their parent instructions

outside the MOPs are not scheduled consecutively. This is because MOP tails access the

register file two cycles before execution, creating a two-cycle bypass window. Since MOP

tails in the waiting station do not perform any useful operations, this forwarding path can

be routed further using a full clock period without severely affecting the bypass logic

delay (e.g. through bus repeaters).

8.2.9 Resources and Execution Timings

Table 8-1 presents resources and effective execution timings for different types of

instructions and MOPs. “S” represents a single-cycle candidate instruction. “L” represents

a load instruction that is composed of an address generation and a cache port access oper-

ation. All types of instructions and MOPs are assumed to execute in the left execution lane

in the Figure 8-4a. When they are executed in the right execution lane in the figure, the

corresponding resources are ALU1, ALU3, MEM1 and WS1.

Macro-op execution achieves maximum benefit when two dependent instructions

are grouped because this case reduces the issue queue contention, increases issue band-

width, and enables consecutive execution of two dependent instructions, all at the same

time. In the case of independent MOPs in which two independent instructions are

grouped, it may negatively affect performance by serializing execution of two instruc-

tions; these may have executed in parallel through two different issue slots if they are

multi-cycle operations like loads. In contrast, independent MOPs of single-cycle instruc-

212

tions do not affect performance negatively compared with the 2-cycle scheduling case, in

terms of execution timings of their dependent instructions, as described in Section 6.7.1.

Aggressive grouping of independent instructions may degrade performance for this rea-

son, if issue bandwidth is not a major performance bottleneck. However, in cases where

limited issue bandwidth is a bottleneck, performance is improved as more instructions are

grouped, since the benefits of increased machine bandwidth can compensate for their neg-

ative effects on data dependences.

Table 8-2 estimates and compares hardware complexity of conventional and

macro-op execution machines. All machine configurations have the same machine band-

width of four instructions in fetch, decode, rename, and instruction commit. The machine

with macro-op execution is configured to have an effective execution bandwidth of four

instructions per cycle when two MOPs are issued in parallel, followed by another two

instructions in the following clock cycle. In the table, the complexity of macro-op execu-

tion (with 2-source MOPs) is similar to a conventional 2-wide machine case with 1-cycle

scheduling, except that more functional units and register write ports are required. From

the perspective of instruction scheduling logic complexity, macro-op execution is similar

to the conventional 2-wide machine with 2-cycle scheduling, which has a scheduler pipe-

lined over two pipeline stages.

Table 8-1: Resources and timings in macro-op execution.

Instruction /
Macro-op

types
S L S-S MOP S-L MOP L-L MOP Others

Resources &
execution

timing
(for the left

execution slot)

dedicated
functional

units

ALU0 ALU0

MEM0

ALU0

ALU2

WS0 ALU0

ALU2

MEM0

ALU2

MEM0

WS0 ALU0

MEM0
ALU2

MEM0

ALU2

MEM0

WS0

.

213

A machine with macro-op execution can potentially be configured to have wider

execution bandwidth with the same number of execution lanes, i.e. 8-wide execution

bandwidth using four execution lanes with two functional units each. In order to evaluate

the potentials for macro-op execution later in Chapter 9, macro-op execution will be tested

with various execution bandwidths.

8.2.10 Effective issue and execution bandwidth for macro-op execution

Macro-op execution increases issue and execution bandwidth by processing multi-

ple instructions as a single unit. Theoretical issue and execution bandwidth for macro-op

execution is based on can be calculated using the following equation, which is similar to

Amdahl’s law [1]:

Table 8-2: Comparison of hardware complexity in execution pipeline.

HW
component

4-wide-1-cycle 2-wide-1-cycle 2-wide-2-cycle 2-wide-MOP

Fetch /
decode /
commit

4 instructions per cycle

Scheduler atomic 1-cycle
scheduling, 4
issues / cycle

atomic 1-cycle
scheduling, 2
issues / cycle

pipelined 2-
cycle schedul-
ing, 2 issues /
cycle

pipelined 2-cycle schedul-
ing, 2 issues / cycle

Dispatch /
payload
RAM

4 read ports, 4
write ports

2 read ports, 4
write ports

2 read ports, 4
write ports

2 read ports, 4 write ports,
each entry has 2 fields

Register
file

(for 1-cycle
ALUs and
load ports)

8 read ports, 6
write ports (4
for ALUs, 2
for loads)

4 read ports, 4
write ports (2
for ALUs, 2
for loads)

4 read ports, 4
write ports (2
for ALUs, 2
for loads)

4 (2-src) or 6 (3-src) read
ports, 6 write ports (4 for
ALUs, 2 for loads)

Bypass
network

(for 1-cycle
ALUs and
load ports)

6 outputs (4 for
ALUs, 2 for
loads) con-
nected to
inputs of 4
ALUs

4 outputs (2 for
ALUs, 2 for
loads) con-
nected to
inputs of 2
ALUs

2 outputs (for
loads) con-
nected to
inputs of 2
ALUs

4 outputs (2 for ALUs in
EXE_tail stage, 2 for loads)
connected to inputs of 2
ALUs (EXE_head stage),
local bypass paths between
EXE_head and EXE_tail
stages

214

MOP coverage is the fraction of instructions grouped into MOPs for macro-op

execution. Issue BW is the issue bandwidth of the base machine. Since the current policy

groups two instructions in a MOP, MOP size is two for our case.

Note that the machine can achieve this theoretical issue and execution bandwidth

when there are plenty of instructions to fill all the issue slots every clock cycle. In fact, the

actual issue and execution bandwidth may be lower, because a wider execution bandwidth

is achieved only when MOPs are issued followed by other instructions in the next clock

cycle. On the 2-wide macro-op execution machine, for example, when two MOPs are

issued and no other instructions are issued in the following clock cycle, the effective issue

bandwidth is four and zero (for each cycle) and the effective execution bandwidth is two

and two, losing the benefits of macro-op execution. Therefore, this equation should be

interpreted as the upper limit of the macro-op execution.

8.3 Summary and Conclusions

The principles of macro-op execution and the details of microarchitectural support

for enabling macro-op execution are discussed in this chapter. Macro-op execution

extends coarse-grained instruction processing to the entire execution pipeline including

instruction scheduling, dispatch, payload RAM and register file accesses, and execution

stages. A key difference between macro-op scheduling and execution is where instructions

are sequenced. The proposed macro-op execution moves the instruction sequencing point

down to the execution stage and enables the original instructions grouped in MOPs to be

Effective BW
issue BW()

1 MOP coverage()–
MOP coverage()

MOP size()
---+

--=

.

215naturally sequenced as they flow through the datapath. Combined with the benefits of

relaxed atomicity and scalability constraints of conventional instruction scheduling

achieved by macro-op scheduling, the proposed macro-op execution increases the effec-

tive machine bandwidth using similar or even lower complexity hardware. Macro-op exe-

cution shares many key components to create MOPs with macro-op scheduling, such as

MOP detection and formation logic. Some modifications to support macro-op execution

are also described. For grouping loads instructions, MOP detection logic needs to detect

cycle conditions through memory dependences. MOP formation logic also needs some

modifications for MOP offset tracking. Macro-op execution enables narrowing the pro-

cessing bandwidth (especially for read accesses) of many structures and datapaths. The

number of issue slots in the scheduler can be reduced by issuing multiple instructions as a

single MOP without sequencing them, and exploiting idle cycles in select logic. The read

ports to the payload RAM and register file can be better utilized by processing multiple

requests in groups. Bypass logic can be simplified by exploiting the attribute of macro-ops

that forces predetermined and restrictive execution of instructions grouped, compared to

the conventional case with a full bypass network and the same effective execution band-

width.

216

217Chapter 9

Experimental Evaluation of Macro-op Execution

Several aspects of macro-op execution are examined. The description of the simu-

lator along with the parameters used for the base machine was described in Section 3.2.2

and Section 3.2.4. The necessary microarchitectural modifications for macro-op execution

were described in Section 8.2. Since macro-op execution builds on macro-op scheduling

and shares many mechanisms, this chapter will focus on evaluating its performance poten-

tial, as opposed to its sensitivity to various MOP detection and formation configurations,

which were extensively discussed in Chapter 7.

9.1 Machine Configurations

To measure the effectiveness of macro-op execution, I simulate several machine

models. In order to simply the discussion, I will refer to a machine with N issue bandwidth

and M-cycle scheduling logic as N-wide-M-cycle. 4-wide-1-cycle is the base machine

(detailed in Section 3.2.4) and all performance data are normalized to this case, unless

specified otherwise. 2-wide-1-cycle has the same configuration as the base machine except

that the issue bandwidth is halved and the execution pipelines are configured accordingly.

Although this machine has the same number of functional units and memory ports in order

to keep all other configurations the same, only two instructions can start execution in par-

allel each clock cycle and hence it cannot fully utilize its execution resources. 2-wide-2-

cycle has the same configuration as the 2-wide-1-cycle case except that it has pipelined

scheduling logic with two separate wakeup and select stages. Similarly, I also test 3-wide-

2181-cycle and 3-wide-2-cycle machines with the issue bandwidth of three instructions.

Macro-op execution is built on top of the N-wide-2-cycle machine: N-wide-MOP-2src and

N-wide-MOP-3src, which support 2-source and 3-source MOPs, respectively. In the 2-

wide-MOP-2src and 2-wide-MOP-3src cases, the number of functional units and memory

ports are the same as the base case. Other macro-op execution configurations have more

functional units than the base machine, which are configured accordingly based on

Figure 8-4 (two simple ALUs per execution lane). Other complex integer, FP, and memory

ports are the same as the base case. 2-wide macro-op execution can fully utilize 4-wide

execution bandwidth only when two instructions or MOPs are issued following two MOPs

issued in the previous clock cycle. 3- and 4-wide macro-op execution can execute up to six

and eight instructions per cycle, as long as plenty of MOPs are issued. The detailed execu-

tion resource configuration and bypass paths were presented in Section 8.2.5 through Sec-

tion 8.2.8. The base MOP detection and formation has a 2-cycle scope, which captures

MOPs within up to eight instructions in program order on the 4-wide machine configura-

tion. The details on their operation and structure were discussed in Section 8.2.2 through

Section 8.2.4. MOP detection logic is fully pipelined, and has a latency of three clock

cycles from examining register dependences to generating MOP pointers. In later sections,

I will also evaluate other various configurations of macro-op execution. The IPCs of N-

wide-M-cycle machines were presented in Table 3-4 and Table 3-5.

9.2 Microbenchmark Results

To ensure the correct behavior of macro-op execution implemented on the timing

simulator and demonstrate its potential, several experiments similar to Section 7.2 are per-

.

219

formed. The basic code structure of the microbenchmark was illustrated in Figure 7-1. The

details on compiling microbenchmarks were explained in Section 3.2.3. For controlled

experiments, the base machine is configured to have a perfect branch predictor and perfect

memory. The base machine still fetches and commits four instructions per cycle but its

issue bandwidth is narrowed down to two instructions or two MOPs per cycle.

Figure 9-1 presents the IPCs measured on 2-wide-1-cycle, 2-wide-2-cycle and 2-

wide-MOP-2src machines when the number of dependence chains (N) varies from one to

eight. The performance curves in both 1-cycle and 2-cycle scheduling cases saturate at an

IPC of two because of the issue bandwidth of two instructions per cycle. The IPC for 2-

cycle scheduling is lower than that of 1-cycle scheduling because scheduling bubbles are

created and it cannot issue and execute dependent instructions consecutively. To achieve

an equivalent performance to 1-cycle scheduling, 2-cycle scheduling needs twice many

independent instructions to completely fill the scheduling bubbles.

Macro-op execution achieves the full execution bandwidth of four instructions per

FIGURE 9-1. Performance of macro-op execution with microbenchmarks.

0

1

2

3

4

5

1 2 3 4 5 6 7 8

number of dependence chains (N)

IP
C

2-wide-1-cycle

2-wide-2-cycle

2-wide-MOP-2src w/ 2-cycle scope

2-wide-MOP-2src w/ 4-cycle scope

220cycle using a pipelined 2-cycle scheduler and a 2-wide issue bandwidth. This trend is sus-

tained until N becomes six. The 2-cycle MOP scope case (2-wide-MOP-2src w/ 2-cycle

scope) significantly loses performance when N is seven or eight, since the MOP detection

process cannot detect long-distance dependence edges over seven or eight instructions and

loses grouping opportunities. This result was also shown in Figure 7-3 in conjunction with

macro-op scheduling. In contrast, the 4-cycle MOP scope case (2-wide-MOP-2src w/ 4-

cycle scope) does not experience this difficulty and therefore fully achieve an IPC near

four instructions per cycle when N is seven or eight. Compared with Figure 7-2, its perfor-

mance curve (4-cycle scope) is almost identical to the 1-cycle scheduling performance

with a full, 4-wide issue bandwidth, which is the expected behavior that the proposed

microarchitecture aims to achieve.

It should be noted that a wider macro-op execution (i.e. 3-wide or 4-wide-MOP-

2src) will achieve the same performance curve as presented here, and does not further

improve performance. This is because the fetch and commit bandwidth is fixed to four

instructions per cycle and wider issue width cannot be utilized. However, with real bench-

mark programs, wider macro-op execution machines may benefit from the increased issue

bandwidth to some extents since the actual IPC is far lower than its maximum, i.e. IPC of

four, although the degree of benefits will be still limited by the fetch and commit bottle-

necks.

In the following sections, macro-op execution will be evaluated using SPEC2K

benchmarks.

.

2219.3 Instructions Grouped

Figure 9-2 shows the percentage of grouped instructions for macro-op execution.

Each benchmark has two bars: MOP with two sources (MOP-2src) and three sources

(MOP-3src) cases. The y-axis shows the total dynamic instructions committed. Not MOP

candidate and MOP candidate but not grouped bars are self-explanatory. Comparing with

the macro-op scheduling case shown in Figure 7-6, the percentage of candidate instruc-

tions is higher since macro-op execution includes loads as groupable candidates. If an

instruction is not grouped and is a single-cycle operation, its dependent instructions will

not be issued consecutively since the scheduling logic is pipelined. The other four stacked

bars represent grouped instructions, categorized by instruction types and their depen-

dences; L-L indep is two independent loads with the same base register; S-S indep is two

independent single-cycle operations with identical source operands; S-L dep is a single-

cycle operation followed by a dependent load; S-S dep is two dependent single-cycle oper-

FIGURE 9-2. Instructions grouped in MOPs for macro-op execution.

0%

20%

40%

60%

80%

100%

 b
zi

p

cr
af

ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rl

tw
ol

f

vo
rt

ex vp
r

to
ta

l i
ns

tr
uc

tio
ns

 c
om

m
itt

ed

not MOP candidate

MOP candidate but
not grouped

L-L indep

S-S indep

S-L dep

S-S dep

MOP-2src
MOP-3src

222ations. The data indicate that the MOP-2src case captures almost all grouping opportuni-

ties as MOP-3src, which allows three source operands in a MOP. This is consistent with

the previous result in the macro-op scheduling in Figure 7-6. Comparing with the number

of grouped instructions for macro-op scheduling shown in Figure 7-6 and Figure 7-9, S-S

dep and S-S indep portions are almost identical. Combinations of a single-cycle ALU and

a load (S-L dep), and two independent loads (L-L indep) account for a significant portion

of the grouped instructions, which will help increasing the effective queue size and issue

bandwidth. L-L indep MOPs are frequently generated from a sequence of instructions for

stack manipulations. Note that these additional types of MOPs do not necessarily improve

performance for macro-op scheduling and may degrade performance in some timing-criti-

cal cases, since issuing loads can be dynamically delayed by unresolved prior stores,

memory port conflicts, store-to-load aliases or cache misses. These dynamic events create

the same negative effect as the last-arriving operand in MOP tails, as shown in

Figure 6.7.2. I will discuss the performance impacts of those MOPs shortly. Across the

benchmarks, 41.2 ~ 59.5% of instructions are grouped, potentially increasing issue queue

capacity by 24.1% on average.

9.4 Distribution of Effective Execution Bandwidth

Macro-op execution increases the machine bandwidth by issuing and executing

multiple instructions in groups. Figure 9-3 and Figure 9-4 show the fraction of execution

time categorized by the effective execution bandwidth in the base (4-wide-1-cycle) and

macro-op execution (2-wide-MOP-3src) machines with 128-entry and 32-entry issue

queues, respectively. The total execution time in each benchmark is normalized to that of

.

223the 4-wide-1-cycle machine, so stacked bars in 2-cycle-MOP-3src may be plotted over or

below the 100% line, depending on the relative performance. Note that these data were

measured in terms of the number of instructions that start execution, as opposed to how

many instructions are issued in a certain clock cycle. For example, if two MOPs are

issued, and no other instructions are issued in the following clock cycle, the effective exe-

cution bandwidth in each cycle is measured to be two and two, as opposed to four and

zero.

The results show that macro-op execution frequently achieves execution band-

width greater than two instructions. This result clearly shows that the proposed approach

to coarse-grained instruction processing is able to extract parallelism by exploiting serial

portions of program. Compared to the base 4-wide-1-cycle machine, macro-op execution

levels performance over time and utilizes execution resource more steadily, reducing 0-

instruction execution cycles.

224

FIGURE 9-3. Effective machine bandwidth in macro-op execution (128-entry issue
queue).

FIGURE 9-4. Effective machine bandwidth in macro-op execution (32-entry issue
queue).

0%

20%

40%

60%

80%

100%

120%

 b

zi
p

cr
af

ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rl

tw
ol

f

vo
rt

ex vp
r

to
ta

l c
yc

le
s

on
 4

-w
id

e-
1-

cy
cl

e

4

3

2

1

0

4-wide-1-cycle
2-wide-MOP-3src

0%

20%

40%

60%

80%

100%

120%

 b

zi
p

cr
af

ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rl

tw
ol

f

vo
rt

ex vp
r

to
ta

l c
yc

le
s

on
 4

-w
id

e-
1-

cy
cl

e

4

3

2

1

0

4-wide-1-cycle
2-wide-MOP-3src

.

2259.5 Performance of Macro-op Execution

Figure 9-5 through Figure 9-10 present the IPCs of various machine configura-

tions normalized to the base case (4-wide-1-cycle), as the issue queue size varies from 32

to 128. In the graphs, the first two bars from the left (2-wide-1-cycle and 2-wide-2-cycle)

represent the 2-wide issue machines with 1-cycle and 2-cycle scheduling, respectively.

They suffer significant performance drops due to the limited issue and execution band-

width. Mcf shows the least performance degradation since its performance is mostly

bounded by frequent cache misses. Compared to the performance data shown for macro-

op scheduling in Figure 7-7, atomic instruction scheduling becomes less important in

many benchmarks because the limited issue and execution bandwidth is the most signifi-

cant performance bottleneck in this 2-wide issue configuration. It should be noted that the

performance with the 32-entry issue queue is offset by 3~9% compared with other

machine configurations with 48-entry or greater issue queues, exhibiting less performance

degradations. This is because the 32-entry issue queue becomes the bottleneck of the base

4-wide-1-cycle machine and hence narrowing the machine bandwidth affects performance

less significantly, as described in Section 3.3.

The third bar (2-wide-MOPsched-3src) represents the performance of macro-op

scheduling, which does not increase the effective machine bandwidth. For this case, the

same MOP grouping policies as those of current macro-op execution is used. By compar-

ing performance data for macro-op execution with this bar, the additional benefits of

increased machine bandwidth can be estimated. As briefly discussed in Section 9.3, the

current grouping policies were not chosen for macro-op scheduling but focus on maximiz-

ing the benefits of increased machine bandwidth. So, macro-op scheduling in this chapter

226does not perform as efficiently as in Chapter 7 with different MOP configurations,

although it is still effective for recovering the performance degradation incurred by 2-

cycle scheduling in many benchmarks.

The last two bars on the right (2-wide-MOP-2src and 2-wide-MOP-3src) represent

macro-op execution with two or three source operands. These two cases perform similarly

since the groupability is not fundamentally affected by the number of source operands, as

presented in Figure 9-2. Macro-op execution improves performance over the 2-wide-1-

cycle and 2-wide-2-cycle cases, recovering significant portions of performance drops that

come from narrower machine bandwidth and pipelined instruction scheduling. Compared

to the base 4-wide-1-cycle case with the 32-entry issue queue, the worst case is measured

to be 6.7% of IPC loss in gzip (2-wide-MOP-2src). In other configurations with a bigger

queue, the same benchmark loses up to 16.3% of the base IPC (128-entry). However, this

case still achieves a significant performance boost over the 2-wide-1-cycle (13.1%

speedup) and 2-wide-2-cycle (27.8% speedup) cases. The average IPC loss of macro-op

execution is measured to be less than 8.2% for all issue queue configurations.

.

227

FIGURE 9-5. Performance of macro-op execution (128-entry issue queue).

FIGURE 9-6. Performance of macro-op execution (64-entry issue queue).

0.6

0.7

0.8

0.9

1

1.1

bz
ip

cr
af

ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rl

tw
ol

f

vo
rt

ex vp
r

IP
C

 n
or

m
al

iz
ed

 to
 4

-w
id

e-
1-

cy
cl

e
2-wide-1-cycle 2-wide-2-cycle 2-wide-MOPsched-3src 2-wide-MOP-2src 2-wide-MOP-3src

0.6

0.7

0.8

0.9

1

1.1

bz
ip

cr
af

ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rl

tw
ol

f

vo
rt

ex vp
r

IP
C

 n
or

m
al

iz
ed

 to
 4

-w
id

e-
1-

cy
cl

e

2-wide-1-cycle 2-wide-2-cycle 2-wide-MOPsched-3src 2-wide-MOP-2src 2-wide-MOP-3src

228

FIGURE 9-7. Performance of macro-op execution (48-entry issue queue).

FIGURE 9-8. Performance of macro-op execution (32-entry issue queue).

0.6

0.7

0.8

0.9

1

1.1

bz
ip

cr
af

ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rl

tw
ol

f

vo
rt

ex vp
r

IP
C

 n
or

m
al

iz
ed

 to
 4

-w
id

e-
1-

cy
cl

e
2-wide-1-cycle 2-wide-2-cycle 2-wide-MOPsched-3src 2-wide-MOP-2src 2-wide-MOP-3src

0.6

0.7

0.8

0.9

1

1.1

bz
ip

cr
af

ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rl

tw
ol

f

vo
rt

ex vp
r

IP
C

 n
or

m
al

iz
ed

 to
 4

-w
id

e-
1-

cy
cl

e

2-wide-1-cycle 2-wide-2-cycle 2-wide-MOPsched-3src 2-wide-MOP-2src 2-wide-MOP-3src

.

229Figure 9-9 and Figure 9-10 present the contributions to the speedup over the 2-

wide-2-cycle machine, categorized by the benefits of either macro-op scheduling or the

additional benefit of macro-op execution (3-src case). In the graphs, the sum of the two

stacked bars in each benchmark represents the speedup of macro-op execution over the 2-

wide-2-cycle machine. Since macro-op scheduling and execution in this chapter share the

same grouping policies, macro-op scheduling should account for two benefits of macro-op

execution: consecutive issue of dependent instructions and reduced issue queue conten-

tion. They are shown as the lower stacked bars (MOP scheduling), which are the speedup

of macro-op scheduling (2-wide-MOPsched-3src cases in Figure 9-5 and Figure 9-8) over

the 2-wide-2-cycle case.

In addition, macro-op execution increases the issue and execution bandwidth. This

benefit is presented in a separate category of increased BW, which is the performance dif-

ference between macro-op execution and macro-op scheduling (2-wide-MOP-3src and 2-

wide-MOPsched-3src in Figure 9-5 and Figure 9-8). The data indicate that increased issue

and execution bandwidth accounts for a significant portion of performance improvement.

With the 128-entry issue queue, some benchmarks suffer from macro-op scheduling and

show a few percentage of performance drops, which are plotted in the negative direction.

Again, this is because the current macro-op grouping policies are set to maximize the

number of MOPs and increase the machine bandwidth, although they may unnecessarily

serialize instructions; otherwise, instructions would have been issued in parallel through

different slots. Potentially, MOP execution can employ adaptive grouping policies to

dynamically disable certain MOPs that are likely to degrade performance based on issue

bandwidth contention. The study of such optimizations is left to future work.

230Figure 9-11 presents the average IPCs (harmonic mean) across the benchmarks on

4-wide-1-cycle, 3-wide-1-cycle, 2-wide-1/2-cycle and 2-wide macro-op execution

machines with various issue queue sizes from 32 to 128. Macro-op execution with 2- and

3-source MOPs does not show a significant difference in performance, although the 3-

source case slightly performs better. Its performance saturates around 48 or more issue

queue entries, which is a similar trend compared to other 2-wide-1-cycle or 2-wide-2-

cycle cases. Compared with 3-wide-1-cycle, 2-wide macro-op execution achieves 95 ~

96% of its performance, with an exception of the case with the 32-entry issue queue in

which the benefit from reduced queue contention enables macro-op execution to outper-

form the 3-wide-1-cycle case in many benchmarks. This performance trend is an expected

behavior, since the MOP formation groups on average 48% of total instructions and this

can be translated into, in theory, a 2.63-wide issue and execution bandwidth based on the

equation presented in Section 8.2.10. Compared with 2-wide-1-cycle and 2-wide-2-cycle

cases, macro-op execution achieves on average 7 ~ 8% and 11 ~ 13% of speedups over

each case across all issue queue sizes, respectively.

In summary, macro-op execution increases the effective issue and execution band-

width by processing multiple instructions as a single unit throughout the entire execution

pipeline, with similar or even less hardware complexity in scheduler, dispatch, register file

and bypass logic.

.

231

FIGURE 9-9. Contributions to the speedup (2-wide-MOP-3src, 128-entry issue
queue).

FIGURE 9-10. Contributions to the speedup (2-wide-MOP-3src, 32-entry issue
queue).

-5%

0%

5%

10%

15%

20%

25%

30%

35%

bz
ip

cr
af

ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rl

tw
ol

f

vo
rt

ex vp
r

sp
ee

du
p

ov
er

 2
-w

id
e-

2-
cy

cl
e

increased BW

MOP scheduling

0%

5%

10%

15%

20%

25%

30%

35%

bz
ip

cr
af

ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rl

tw
ol

f

vo
rt

ex vp
r

sp
ee

du
p

ov
er

 2
-w

id
e-

2-
cy

cl
e

increased BW

MOP scheduling

232

9.6 Impact of MOP Scope

The current macro-op execution is configured to capture as many MOPs as possi-

ble to maximize the benefits of wider machine bandwidth. Base macro-op detection and

formation logic captures MOPs with up to three sources within a 2-cycle scope (up to

eight instructions). To measure the impact of MOP scope on macro-op execution perfor-

mance, the MOP scope is increased from the base two cycles to three (up to 12 instruc-

tions) or four cycles (up to 16 instructions). In addition, the issue queue size changes from

32 to 128 entries so that its detailed performance impact can be observed.

Figure 9-12 shows the number of grouped instructions in the 2-wide-MOP-3src

case with various MOP scopes. The graph does not categorize instructions into different

types of MOPs since their differences are not significant. Each benchmark has three

stacked bars that represent MOP scopes of two, three and four cycles. The base 2-cycle

FIGURE 9-11. Performance of the base and macro-op execution machines.

0.95

1.05

1.15

1.25

32 48 64 128

Issue queue size

A
ve

ra
ge

 IP
C

 (
ha

rm
on

ic
 m

ea
n)

4-wide-1-cycle

3-wide-1-cycle

2-wide-MOP-3src

2-wide-MOP-2src

2-wide-1-cycle

2-wide-2-cycle

.

233scope achieves a compelling grouping efficiency compared to wider 3- or 4-cycle scopes,

with a maximum difference of 6.6% in bzip.

Figure 9-13 through Figure 9-16 present the performance sensitivity of macro-op

execution to various MOP scopes when the issue queue sizes change from 128 to 32. In

each benchmark, two bars correspond to the IPCs of 3- and 4-cycle scopes normalized to

the base 2-cycle scope. The average performance of 3- and 4-cycle scopes is slightly better

than the 2-cycle scope case, although the difference is not significant. However, some

benchmarks such as bzip, gap and gzip are measured to be more sensitive than other

benchmarks. An interesting result is observed in gap, where the benefits of wider MOP

scopes reduce as the issue queue becomes smaller. With the 32-entry issue queue, 3- or 4-

cycle MOP scopes degrade performance compared with the 2-cycle MOP scope. This

behavior is related to 2-cycle scheduling performance. In gap, a larger issue queue incurs

more issue bandwidth contention, which hides the performance degradation due to 2-cycle

scheduling. As the queue becomes smaller, the impact of 2-cycle scheduling becomes

more significant, and therefore the performance gap between 1- and 2-cycle scheduling

becomes bigger. The benefits of aggressively grouping instructions do not exceed the their

negative impacts on scheduling performance, resulting in a slight performance degrada-

tion.

234

FIGURE 9-12. Impact of MOP scope on MOP coverage (2-wide-MOP-3src, 128-entry
issue queue).

FIGURE 9-13. Performance impact of MOP scope (2-wide-MOP-3src, 128-entry issue
queue).

0%

20%

40%

60%

80%

100%

bz
ip

cr
af

ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rl

tw
ol

f

vo
rt

ex vp
r

to
ta

l i
ns

tr
uc

tio
ns

 c
om

m
itt

ed

not grouped

MOP grouped

2-cycle scope (up to 8 instructions)

3-cycle scope (up to 12 instructions)

4-cycle scope (up to 16 instructions)

0.94

0.96

0.98

1

1.02

1.04

bz
ip

cr
af

ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rl

tw
ol

f

vo
rt

ex vp
r

IP
C

 n
or

m
al

iz
ed

 to
 2

-c
yc

le
 s

co
pe

3-cycle scope

4-cycle scope

.

235

FIGURE 9-14. Performance impact of MOP scope (2-wide-MOP-3src, 64-entry issue
queue).

FIGURE 9-15. Performance impact of MOP scope (2-wide-MOP-3src, 48-entry issue
queue).

FIGURE 9-16. Performance impact of MOP scope (2-wide-MOP-3src, 32-entry issue
queue).

0.94

0.96

0.98

1

1.02

1.04

bz
ip

cr
af

ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rl

tw
ol

f

vo
rt

ex vp
r

IP
C

 n
or

m
al

iz
ed

 to
 2

-c
yc

le
 s

co
pe

3-cycle scope

4-cycle scope

0.94

0.96

0.98

1

1.02

1.04

bz
ip

cr
af

ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rl

tw
ol

f

vo
rt

ex vp
r

IP
C

 n
or

m
al

iz
ed

 to
 2

-c
yc

le
 s

co
pe

3-cycle scope

4-cycle scope

0.94

0.96

0.98

1

1.02

1.04

bz
ip

cr
af

ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rl

tw
ol

f

vo
rt

ex vp
r

IP
C

 n
or

m
al

iz
ed

 to
 2

-c
yc

le
 s

co
pe

3-cycle scope

4-cycle scope

2369.7 Impact of S-L and L-L MOPs

The grouping policy that determines the combinations of instructions in MOPs

should be carefully considered since it may affect performance negatively. In addition to

the MOPs of two single-cycle instructions (S-S dep and S-S indep, referred to as depen-

dent and independent MOPs used for macro-op scheduling in Chapter 6), two additional

types of MOPs are used for macro-op execution: S-L and L-L MOPs. To evaluate how

these MOPs affect performance, I first measure the performance of macro-op scheduling

without those additional MOP types. This experiment decouples the benefit of increased

issue bandwidth so that it affects instruction scheduling only. Then, I measure the perfor-

mance of macro-op execution without them to determine whether they are beneficial.

Figure 9-17 shows the result of the first experiment for measuring the performance

sensitivity of macro-op scheduling. The base machine has the 128-entry issue queue. Each

benchmark has three bars that represent the cases in which S-L, L-L or the both types are

not generated. All performance is normalized to the base macro-op scheduling case with

FIGURE 9-17. Performance sensitivity of macro-op scheduling to MOP types (2-wide-
MOPsched-3src, 128-entry issue queue).

0.9

0.92

0.94

0.96

0.98

1

1.02

bz
ip

cr
af

ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rl

tw
ol

f

vo
rt

ex vp
r

IP
C

 n
or

m
al

iz
ed

 to
 2

-w
id

e-
M

O
P

sc
he

d-
3s

rc

without S-L without L-L without S-L and L-L

.

237the same grouping policy as the one for 2-wide-MOP-3src. The base macro-op scheduling

performance was presented as 2-wide-MOPsched-3src categories in Figure 9-5. If the nor-

malized performance exceeds one when a certain MOP type is removed, the result indi-

cates that it negatively affects instruction scheduling for some reason, e.g. unnecessarily

delaying MOP head instructions. Conversely, normalized performance below one implies

that the MOP type further improves scheduling performance. Note that the base machine

with a 2-wide issue bandwidth and the 128-entry issue queue is less sensitive to 2-cycle

scheduling than the machine with a smaller issue queue, as the data in Figure 9-5 indicate.

This is because a wider instruction window can easily find ready instructions to fill two

issue slots. Although a smaller window makes the machine more sensitive to 2-cycle

scheduling, the current issue queue size is chosen to decouple the benefit of reduced issue

queue contention.

The results in the without S-L category indicate that S-L MOPs do not always

improve macro-op scheduling, although they shorten 1-cycle dependence edges between a

single-cycle instruction and a load, which implies that the memory disambiguation policy

used in the current machine model delays many loads and turns them into not useful and

harmful MOPs. In contrast, they positively affect some benchmarks; the IPC in perl drops

by 6.5% without S-L MOPs.

L-L MOPs contain two independent load instructions and therefore do not addi-

tionally enable back-to-back instruction scheduling for macro-op scheduling. Rather,

grouping independent instructions tends to degrade performance, as discussed in Section

6.7.1. Twolf loses 2% of the IPC due to this effect. In contrast, perl is positively affected

by L-L MOPs, which is not an expected behavior. This result simply comes from a sec-

238ondary effect of the changes in scheduling timings.

When neither MOP types are generated (without S-L and L-L), macro-op schedul-

ing tend to perform slightly better in many cases with the exception of perl, although the

negative effects are not significant.

Figure 9-18 to Figure 9-21 show how S-L and L-L MOPs affect macro-op execu-

tion. The performance impacts are measured and plotted in the same way as the previous

experiment, except that 2-wide macro-op execution is used for this experiment. All perfor-

mance is normalized to the 2-wide-MOP-3src case, which was presented in Figure 9-5.

With the 128-entry issue queue (Figure 9-18), the issue bandwidth contention is

high enough for S-L and L-L types to compensate for the negative impacts on scheduling

performance. As the issue queue size and the issue bandwidth contention is reduced

(Figure 9-19 to Figure 9-21), the issue bandwidth benefits tend to decrease. However, the

combined effects (without S-L and L-L) improve macro-op execution in most cases.

In summary, the additional types of S-L and L-L MOPs may degrade the perfor-

mance of instruction scheduling but are still beneficial in macro-op execution because

they increase machine bandwidth.

.

239

FIGURE 9-18. Performance sensitivity to MOP types (2-wide-MOP-3src, 128-entry
issue queue).

FIGURE 9-19. Performance sensitivity to MOP types (2-wide-MOP-3src, 64-entry
issue queue).

0.9

0.92

0.94

0.96

0.98

1

1.02

bz
ip

cr
af

ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rl

tw
ol

f

vo
rt

ex vp
r

IP
C

 n
or

m
al

iz
ed

 to
 2

-w
id

e-
M

O
P

-3
sr

c

without S-L without L-L without S-L and L-L

0.9

0.92

0.94

0.96

0.98

1

1.02

bz
ip

cr
af

ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rl

tw
ol

f

vo
rt

ex vp
r

IP
C

 n
or

m
al

iz
ed

 to
 2

-w
id

e-
M

O
P

-3
sr

c

without S-L without L-L without S-L and L-L

240

FIGURE 9-20. Performance sensitivity to MOP types (2-wide-MOP-3src, 48-entry
issue queue).

FIGURE 9-21. Performance sensitivity to MOP types (2-wide-MOP-3src, 32-entry
issue queue).

0.9

0.92

0.94

0.96

0.98

1

1.02

bz
ip

cr
af

ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rl

tw
ol

f

vo
rt

ex vp
r

IP
C

 n
or

m
al

iz
ed

 to
 2

-w
id

e-
M

O
P

-3
sr

c

without S-L without L-L without S-L and L-L

0.9

0.92

0.94

0.96

0.98

1

1.02

bz
ip

cr
af

ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rl

tw
ol

f

vo
rt

ex vp
r

IP
C

 n
or

m
al

iz
ed

 to
 2

-w
id

e-
M

O
P

-3
sr

c

without S-L without L-L without S-L and L-L

.

2419.8 Macro-op Execution for Wider Machine Bandwidth

So far, macro-op execution has been tested using a narrow 2-wide issue machine

that achieves a peak bandwidth of four instructions per cycle. In reality, MOP detection

and formation cannot group all instructions nor achieve 100% of MOP coverage, so the

actual machine bandwidth that macro-op execution achieves is between two and three

instructions (theoretical bandwidth of on average 2.63 instructions, ignoring other factors

like pipelined instruction scheduling or reduced issue queue contention).

If we build macro-op execution on a 3-wide or wider machine, macro-op execution

may achieve an even greater execution bandwidth than the base 4-wide machine, at the

expense of more register write ports and read ports (for 3-source MOPs) and functional

units. The theoretical effective execution bandwidth of 3-wide and 4-wide macro-op exe-

cution, given the MOP coverage of 48%, is 3.95 and 5.27 instructions, respectively. From

the perspective of other hardware resources such as scheduling logic, issue ports and dis-

patch bandwidth, macro-op execution achieves similar hardware complexity to a conven-

tional machine with the same issue bandwidth and 2-cycle scheduling logic. Bypass logic

complexity is similar to that of a conventional machine with the same issue bandwidth and

conventional 1-cycle scheduling.

The performance of 3-wide and 4-wide macro-op execution is presented in from

Figure 9-22 to Figure 9-25 when the issue queue size varies from 128 to 32 entries. In

each graph, all performance is normalized to the 4-wide-1-cycle case. Each benchmark

has five bars: 3-wide-1-cycle, 3-wide-2-cycle, 3-wide-MOP-2src, 3-wide-MOP-3src, and

4-wide-MOP-3src. The first two bars from the left (3-wide-1-cycle and 3-wide-2-cycle)

represent the performance when the issue bandwidth of the base machine is reduced to

242three instructions, with 1-cycle and 2-cycle scheduling logic, respectively. The next two

bars (3-wide-MOP-2src and -3src) represent the performance of macro-op execution built

on the 3-wide-2-cycle case, with 2- and 3-source MOPs. The last bar on the right presents

an extreme case, in which macro-op execution is configured to achieve a peak bandwidth

of eight instructions, built based on the base 4-wide-2-cycle machine. Note that only the

number of functional units for simple integer operations is increased in macro-op execu-

tion. Other functional units for complex operations or memory ports are the same with or

without macro-op execution. Figure 9-26 presents the average performance of 3-wide and

4-wide macro-op execution with various issue queue sizes.

FIGURE 9-22. Performance of macro-op execution (3- and 4-wide-MOP, 128-entry
issue queue).

0.6

0.7

0.8

0.9

1

1.1

bz
ip

cr
af

ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rl

tw
ol

f

vo
rt

ex vp
r

IP
C

 n
or

m
al

iz
ed

 to
 4

-w
id

e-
1-

cy
cl

e

3-wide-1-cycle 3-wide-2-cycle 3-wide-MOP-2src 3-wide-MOP-3src 4-wide-MOP-3src

.

243

FIGURE 9-23. Performance of macro-op execution (3- and 4-wide-MOP, 64-entry issue
queue).

FIGURE 9-24. Performance of macro-op execution (3- and 4-wide-MOP, 48-entry issue
queue).

0.6

0.7

0.8

0.9

1

1.1

bz
ip

cr
af

ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rl

tw
ol

f

vo
rt

ex vp
r

IP
C

 n
or

m
al

iz
ed

 to
 4

-w
id

e-
1-

cy
cl

e
3-wide-1-cycle 3-wide-2-cycle 3-wide-MOP-2src 3-wide-MOP-3src 4-wide-MOP-3src

0.6

0.7

0.8

0.9

1

1.1

bz
ip

cr
af

ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rl

tw
ol

f

vo
rt

ex vp
r

IP
C

 n
or

m
al

iz
ed

 to
 4

-w
id

e-
1-

cy
cl

e

3-wide-1-cycle 3-wide-2-cycle 3-wide-MOP-2src 3-wide-MOP-3src 4-wide-MOP-3src

244

FIGURE 9-25. Performance of macro-op execution (3- and 4-wide-MOP, 32-entry issue
queue).

FIGURE 9-26. Performance of 3- and 4-wide macro-op execution with various issue
queue sizes.

0.6

0.7

0.8

0.9

1

1.1

bz
ip

cr
af

ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rl

tw
ol

f

vo
rt

ex vp
r

IP
C

 n
or

m
al

iz
ed

 to
 4

-w
id

e-
1-

cy
cl

e
3-wide-1-cycle 3-wide-2-cycle 3-wide-MOP-2src 3-wide-MOP-3src 4-wide-MOP-3src

1

1.05

1.1

1.15

1.2

1.25

32 48 64 128

Issue queue size

A
ve

ra
ge

 IP
C

 (
ha

rm
on

ic
 m

ea
n)

4-wide-1-cycle

4-wide-MOP-3src

3-wide-MOP-3src

3-wide-MOP-2src

3-wide-1-cycle

3-wide-2-cycle

.

245With the exception of the 32-entry and 48-entry issue queue cases in Figure 9-26

where macro-op execution greatly benefits from reduced issue queue contention, 3-wide

macro-op execution does not significantly improve performance over 3-wide-1-cycle.

Even 4-wide macro-op execution does not outperform the base performance (4-wide-1-

cycle) in most cases. Considering the theoretical bandwidth of 3.95 or 5.27 instructions for

each case, the actual results are somewhat disappointing.

The performance of macro-op execution is bounded by many factors. Among the

three major benefits of macro-op execution--reduced issue queue contention, consecutive

instruction issue and increased machine bandwidth, macro-op execution benefits least

from the first benefit (reduced issue queue contention) on a machine with a large issue

queue, because queue contention is not a major performance bottleneck. Since macro-op

execution is built based on 2-cycle scheduling and macro-op scheduling cannot fully

achieve the performance of 1-cycle scheduling although the second benefit (consecutive

instruction issue) recovers a significant portion of the performance loss, the third benefit

(increased machine bandwidth) should be greater than the performance loss from macro-

op scheduling, in order for macro-op execution to outperform the base case. Unfortu-

nately, the benefit from increased machine bandwidth is not significant in many bench-

marks on the current base machine.

Table 9-1 presents the performance gain achieved by doubling the execution band-

width from four to eight instructions (128-entry issue queue). The performance of the 8-

wide-1-cycle configuration is the upper limit that the 4-wide macro-op execution can

achieve. The maximum speedup is measured to be 2.71% of IPC improvement in gzip.

Most benchmarks achieve less than 1% of performance gain (on average 0.98%). This

246

result implies wider issue and execution bandwidth is not fully utilized and there are few

cases where instructions are delayed due to limited execution bandwidth.

To compare the degree of execution bandwidth utilization, Figure 9-27 presents

the fraction of execution time categorized by the effective execution bandwidth in 4-wide-

1-cycle, 8-wide-1-cycle and macro-op execution (4-wide-MOP-3src) cases. The total exe-

cution time in each benchmark is normalized to that of the 4-wide-1-cycle machine, so the

total height of the stacked bars in the 8-wide-1-cycle and 8-cycle-MOP-3src cases may be

lower or higher than the 100% line, depending on relative performance. The graph indi-

cates that macro-op execution infrequently utilizes the wider execution bandwidth and

performs slightly worse than the base 4-wide-1-cycle case. Even the 8-wide-1-cycle case

spends only ~10% of the total cycles executing more than four instructions in many

benchmarks.

The result comes primarily from the fact that instruction supply to the out-of-order

window is limited by the finite fetch bandwidth (i.e. 4-wide fetch on the base machine). In

Table 9-1: Performance of the base machine when the execution bandwidth is doubled.

Benchmarks
4-wide fetch,

4-wide-1-cycle,
128-entry IQ

4-wide fetch,
8-wide-1-cycle,

128-entry IQ
Speedup

bzip 1.53 1.55 1.01%
crafty 1.55 1.57 0.94%

eon 2.13 2.14 0.71%
gap 2.10 2.13 1.39%
gcc 1.29 1.30 0.76%

gzip 1.99 2.04 2.71%
mcf 0.38 0.38 0.19%

parser 1.12 1.13 0.83%
perl 1.31 1.34 2.00%

twolf 1.50 1.52 1.89%
vortex 1.75 1.75 0.26%

vpr 1.64 1.67 1.95%

.

247Section 5.3, the performance of the base machine (4-wide, 128-entry issue queue and

ROB) was measured as its hardware constraints are relaxed. Table 9-2 presents the IPCs

measured in that experiment. Comparing the fourth column (no constraints for branch pre-

diction and memory) and the fifth column (no constraints for branch prediction, memory

and execution bandwidth), providing unlimited execution bandwidth improves perfor-

mance by only 12.2% on average across the benchmarks, whereas relaxing the fetch band-

width enables a much greater improvement.

More importantly, the fundamental benefits of transitioning to a wider machine

should be considered. The IPCs in the fourth column in Table 9-2 can be interpreted as

performance of the base machine running at a full speed in a steady state when no branch

misprediction or cache miss occurs. Even in this case, the IPC usually does not exceed

three instructions per cycle. These results explain why 3- or 4-wide macro-op execution

does not perform well, while 2-wide macro-op execution performs substantially better

than the conventional case. Reducing the issue bandwidth below those numbers (i.e. three

instructions) may create a significant amount of contention, and macro-op execution is

efficient at resolving it. In contrast, an issue bandwidth of three or more instructions, given

the hardware constraints in this pipeline, may be sufficient to run many programs and

therefore the machine does not have enough issue bandwidth contention for macro-op

execution to matter.

Due to these limitations, an 8-wide machine bandwidth across the entire pipeline

stages including fetch, decode, execute and commit, does not provide twice or near twice

the performance of a 4-wide machine. For example, doubling all of the machine band-

width, queue sizes and resources achieves only on average 27% of IPC improvement

248(ranging from 16.3% to 47.8%). If the queue sizes (including issue queue and ROB) and

the number of memory ports do not change, it improves performance by only 2% ~ 16%.

Consequently, when a machine with 8-wide fetch bandwidth is tested, macro-op execution

with 4-wide issue bandwidth provides only a marginal benefit over a conventional

machine with 4-wide issue bandwidth.

In summary, macro-op execution achieves only marginal performance benefits on

a 3-wide or 4-wide issue machine when issue queue contention is not significant. This is

partly because of the limited fetch bandwidth, and partly because of the characteristics of

the benchmark programs, which have little demand for additional execution bandwidth.

A potential application of macro-op execution for wider machine bandwidth

would be simultaneous multithreading (SMT) [94][95][20][100][49][65]. Since the shared

instruction queue can extract more parallelism from multiple independent threads than

from a single thread, many execution resources in the processor can be better utilized.

Meanwhile, wire delay constraints are forcing hardware designers to divide pipeline

resources into clusters to exploit physical communication locality [78][74][30][53][17].

When SMT is applied to such clustered designs, it is necessary to efficiently partition

resources to different threads to improve the processor’s ability to share execution

resources. The macro-op execution model may provide a good approach to partitioning

execution resources; a macro-op efficiently localizes value communications through

chains of dependent instructions within a single thread with limited instruction-level par-

allelism, while multiple macro-ops enable increasing machine bandwidth by scheduling

multiple independent threads in an interleaved fashion. The study of macro-op execution

on SMT processors is left to future work.

.

249

FIGURE 9-27. Comparison of effective machine bandwidth.

Table 9-2: IPCs of the base machine when hardware constraints are relaxed.

Benchmarks Base
- Branch

prediction
- Memory

- Execution
BW

- Fetch /
commit

bzip 1.57 1.76 2.95 3.24 4.72
crafty 1.71 1.88 3.33 3.56 6.24

eon 2.38 2.54 2.84 3.40 4.34
gap 2.24 2.35 2.99 3.30 3.60
gcc 1.38 1.57 2.84 3.51 6.45

gzip 2.04 2.66 2.97 3.26 3.95
mcf 0.38 0.40 2.77 3.12 5.50

parser 1.13 1.29 2.66 2.93 3.65
perl 1.34 2.17 2.48 2.66 2.68

twolf 1.55 2.18 2.60 2.89 3.11
vortex 1.97 1.82 3.06 3.56 5.14

vpr 1.70 2.73 3.13 3.47 3.98
Average

(harmonic
mean)

1.29 1.49 2.87 3.21 4.16

0%

20%

40%

60%

80%

100%

120%

bz
ip

cr
af

ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rl

tw
ol

f

vo
rt

ex vp
r

to
ta

l c
yc

le
s

on
 4

-w
id

e-
1-

cy
cl

e

8

7

6

5

4

3

2

1

0

4-wide-1-cycle
8-wide-1-cycle

5
or

 m
or

e

4-wide-MOP-3src

2509.9 Summary and Conclusions

Macro-op execution is evaluated and several aspects are examined. The experi-

mental results indicate that macro-op detection and formation captures a significant por-

tion of instructions. This enables a 2-wide machine (with 4-wide fetch bandwidth) to work

as a wider machine with a peak bandwidth of four instructions, with similar or less com-

plexity in many pipeline stages.

Macro-op execution is effective when issue bandwidth is limited and issue queue

contention is high. On a machine with 2-wide issue bandwidth, macro-op execution recov-

ers a significant portion of 4-wide machine performance. With a 32-entry issue queue,

macro-op execution can nearly achieve the performance of the base 4-wide machine with

1-cycle scheduling. I also study the performance impact of MOP scope. Wider MOP

scopes generally improve macro-op execution, but the 2-wide scope achieves most of the

benefits, and the performance difference compared with wider scopes is not significant.

The performance impact of additional macro-op types is also studied. Grouping loads as

either macro-op heads or tails may not improve instruction scheduling, but it is beneficial

for macro-op execution since it further increases machine bandwidth as well as reduces

issue queue contention.

Macro-op execution exhibits only a marginal performance benefit when imple-

mented on a 3- or 4-wide issue machine because performance benefits for wider machine

bandwidth are constrained by fetch bandwidth as well as the limited parallelism of the

benchmark programs tested.

251Chapter 10

Conclusions

In this thesis, I make three main contributions. First, I present the concept of

coarse-grained instruction processing, which reduces the hardware overhead involved in

coordinating all of the concurrent actions in a modern out-of-order superscalar processor.

Second, I quantify the degree of abstraction that can be applied to a program for coarse-

grained instruction processing, and find that a significant portion of the instructions can be

processed together in groups without requiring fine-grained, instruction-level controls for

scheduling and execution. Third, I propose and study two microarchitectural techniques

called macro-op scheduling and macro-op execution, for exploiting the benefits of coarse-

grained instruction processing in the scheduling and execution pipeline stages in an out-

of-order superscalar processor.

Coarse-grained instruction processing is enabled by grouping multiple instructions

into macro-ops. A macro-op is an atomic schedulable unit that contains multiple instruc-

tions with a sequential execution order. Grouping instructions into macro-ops has two

major benefits. First, it reduces the number of schedulable units, among which fewer

dependences and boundaries are tracked and preserved. Second, it restricts scheduling and

executing instructions to a subset of the possible outcomes in a foreseeable manner. These

properties can be applied towards reducing hardware complexity involved in instruction

scheduling and execution.

Macro-op scheduling performs coarse-grained instruction scheduling. To ensure

back-to-back execution of dependent instructions, the conventional instruction scheduling

252performs a set of wakeup and select operations atomically every clock cycle. This in turn

prevents the out-of-order window from growing beyond a certain size, restricting its scal-

ability. To overcome these limitations, macro-op scheduling groups multiple instructions

and forces scheduling decisions to occur at coarser macro-op boundaries. Macro-op

scheduling performs pipelined scheduling of multi-cycle macro-ops while the processor

core still executes dependent instructions consecutively. Combined with the relaxed scal-

ability constraint due to fewer schedulable units, it achieves comparable or better perfor-

mance than conventional atomic scheduling.

Macro-op execution extends the range of coarse-grained instruction processing to

the entire pipeline for out-of-order execution. Multiple original instructions in a macro-op

are managed and processed together in the pipeline as a single unit until they reach the

execution stage in which the functional units and bypass paths are configured in such a

way that the original instructions are naturally sequenced. In addition to the benefits of

macro-op scheduling, i.e. larger instruction window and pipelined scheduling logic,

macro-op execution increases the machine bandwidth in instruction scheduling, dispatch,

register access and execution with similar or less hardware complexity.

10.1 Thesis Summary

The following sections summarize the work performed for this thesis study on

macro-op scheduling and execution.

10.1.1 Groupability of instructions for coarse-grained instruction processing

The benefits from grouping instructions can be summarized as dependence

abstraction and increased scheduling determinism. Several issues in grouping instructions

.

253into macro-ops are discussed. Grouping chains of dependent instructions is more benefi-

cial than independent instructions since a macro-op forces sequential execution of the

instructions. Macro-op grouping may reduce instruction-level parallelism by unnecessar-

ily serializing instructions. Therefore, macro-op grouping requires a judicious policy to

maximize its benefits.

To evaluate the degree of grouping instructions into macro-ops and measure its

potential, several experiments are performed. The dependence edge distances are first

characterized to determine the scope of searching for groupable candidate instructions.

The characterization result indicates that many dependent macro-op candidates are placed

near each other, and the vast majority is captured within eight instructions in program

order. The groupability of instructions are quantified in terms of the fraction of instruc-

tions that can be grouped, the number of instructions in each macro-op, and the impact of

macro-op grouping on the instruction-level parallelism. For a set of SPEC2K integer

benchmarks, a significant number of instructions can be processed in groups -- 27 ~ 65%

of total instructions, depending on benchmarks and grouping policies. The data also indi-

cate that carelessly grouping instructions significantly degrades instruction-level parallel-

ism. To determine the size of macro-ops, the average number of candidate instructions in a

dependence chain is measured. Dependence chains tend to be short and macro-ops with

two instructions account for the vast majority of grouping opportunities, although three or

more instructions can be grouped in many cases.

10.1.2 Macro-op scheduling

This work is divided into three categories. First, I analyze the impact of pipelining

instruction scheduling logic on performance, and find the reasons for different perfor-

254mance sensitivities to it across benchmarks. Second, the basic concept of macro-op sched-

uling and its microarchitecture is detailed. Finally, several aspects of macro-op scheduling

and its performance benefits are studied and evaluated.

10.1.2.1 Analysis of pipelined instruction scheduling logic

When conventional atomic instruction scheduling logic (referred to as 1-cycle

scheduling) is pipelined over two separate stages (referred to as 2-cycle scheduling), it

loses the capability to issue instructions dependent on a single-cycle instruction in the con-

secutive clock cycle. The average IPC loss due to 2-cycle scheduling is measured to be

6.5% on a 4-wide machine that this study is based on. The performance loss due to 2-cycle

scheduling is not easily recovered by a wider instruction window potentially enabled by

pipelining the logic. An experimental result shows that 2-cycle scheduling with a 256-

entry issue queue achieves only 83.5% of the performance of 1-cycle scheduling with a

48-entry issue queue in gzip.

Not all benchmarks are sensitive to 2-cycle scheduling. On our base machine

model, some benchmarks lose more than 10% of performance (up to 21%) while some

others show virtually no performance degradation. This performance insensitivity can be

caused by many hardware constraints that hide the extra delays incurred by 2-cycle sched-

uling. Among those hardware constraints, the machine bandwidth that determines how

fast instructions are delivered to the out-of-order window greatly affects the sensitivity.

Some program characteristics strengthen or weaken the trend of insensitivity given the

hardware constraints. The results of several experiments show that the performance sensi-

tivity is correlated to dependence edge distances. A program with long dependence edges

(i.e. a value-generating instruction and its dependent instructions are placed across many

.

255intervening instructions in program order) tends to be insensitive to 2-cycle scheduling.

This is because given a finite fetch bandwidth, many instructions are issued before their

dependent instructions enter the instruction window and therefore the extra delays in 2-

cycle scheduling do not directly affect performance. Conversely, a program with short

dependence edges tends to lose performance significantly for the opposite reason.

Experimental results show that a significant percentage (around 90%) of the

wakeup activities in the scheduler are incurred by short-distance dependence edges within

eight instructions. This is primarily because dependent instructions pairs are placed near

each other. Also, long-distance dependence edges may not even be observed by the sched-

uler, or do not directly awaken dependent instructions. Therefore, a technique to focus on

short-distance dependent pairs is likely to achieve most benefits.

10.1.2.2 A microarchitecture for macro-op scheduling

Ensuring back-to-back execution of dependent instructions requires scheduling

logic to perform at the same rate as they are executed. Macro-op scheduling systematically

removes instructions with single-cycle latency from the machine by grouping multiple

instructions into macro-ops, and performs non-speculative pipelined scheduling of multi-

cycle operations.

A microarchitecture for macro-op scheduling has MOP detection logic located

outside the processor’s critical path, which examines register dependences among instruc-

tions and creates MOP pointers. A MOP pointer is stored in the instruction cache, and

specifies which instructions can be grouped. MOP formation logic reads MOP pointers

and groups the original instructions into macro-ops. During this process, MOP depen-

dence translation is performed for the scheduler to track dependences at a coarser MOP

256level. The instruction scheduler performs pipelined scheduling of multi-cycle macro-ops.

An issued macro-op accesses the payload RAM, which sequences the original instructions

in the original instruction-grained execution pipelines.

There are several issues in determining groupable candidate instructions in the

MOP detection process. Macro-op grouping abstracts the original dependences and poten-

tially induce cycles in the data dependence chain. To prevent this, MOP detection logic

uses a simple heuristic that detects cycle conditions conservatively. The complexity of the

detection logic is also considered. The logic can be pipelined by adopting multiple detec-

tion queues that examine instructions independently at multiple points.

Several performance considerations are made. A macro-op of dependent instruc-

tions provides the most benefit since it relaxes both scheduling atomicity and scalability

constraints simultaneously. A macro-op of independent instructions does not relax sched-

uling atomicity but can be beneficial since issue queue contention is reduced. A macro-op

may degrade performance by unnecessarily delaying instructions due to last-arriving oper-

ands in macro-op tail instructions. To prevent this, macro-op scheduling requires a filter-

ing mechanism in MOP detection logic that depreciates the harmful macro-ops.

10.1.2.3 Results

Given the policy of grouping two single-cycle instructions within a 2-cycle scope

that captures up to eight instructions, macro-op scheduling groups on average 32.4% of

total instructions, which enables 26% ~ 63% of single-cycle instructions to behave as if 1-

cycle scheduling is performed. Without issue queue contention, macro-op scheduling

achieves on average 97.3% of 1-cycle scheduling performance. Macro-op scheduling

tends to be more effective in recovering the performance of the benchmarks sensitive to 2-

.

257cycle scheduling, such as gap and gzip. With issue queue contention, macro-op scheduling

outperforms the base 1-cycle scheduling. The performance gain over 1-cycle scheduling is

measured to be on average 1.5% of IPC improvement, which is an 8.5% improvement

over the conventional 2-cycle scheduling case.

Several aspects of macro-op scheduling are examined. Limiting the number of

source operands of a macro-op to two does not significantly reduce the effectiveness of

macro-op scheduling. Regarding MOP detection and formation scope, a 2-cycle scope that

captures up to eight instructions achieves most benefits compared with other wider scopes.

Pipelining the detection process with 8- or 16-instruction intervals gives most benefits of

fully-pipelined detection logic. Also, the detection latency is not critical since MOP point-

ers are stored in the instruction cache and reused repeatedly. Without filtering out harmful

MOPs, macro-op scheduling may lose significant amount of performance benefits. The

proposed filtering mechanism is effective in avoiding them.

10.1.3 Macro-op execution

This work is divided into two categories. First, the basic concept of macro-op exe-

cution and its microarchitecture is detailed. Then, several aspects of macro-op execution

and its performance benefits are studied and evaluated.

10.1.3.1 A microarchitecture for macro-op execution

The range of coarse-grained instructions processing is extended from the instruc-

tion scheduling logic to the entire execution pipeline in macro-op execution. Unlike

macro-op scheduling that sequences the original instructions in the dispatch stage, macro-

op execution moves it down to the execution stage and enables the original instructions

grouped in macro-ops to be naturally sequenced as they flow through the datapaths. To

258support this, the execution stage has stacked functional units that execute two original

instructions sequentially in two consecutive cycles. When multiple macro-ops that contain

two instructions each are consecutively issued, the effective execution bandwidth is dou-

bled by fully utilizing two functional units in each execution lane.

For grouping load instructions, MOP detection logic needs to detect cycle condi-

tions through memory dependences. The number of issue slots in the scheduler can be

reduced by issuing multiple instructions as a single macro-op without sequencing them,

and utilizing idle cycles in select logic. The read ports to the payload RAM and register

file can be better utilized by processing multiple requests in groups. The bypass logic can

be simplified by exploiting the attribute of macro-ops that force predetermined and restric-

tive execution of instructions grouped, compared to the conventional case with full for-

warding paths and the same effective execution bandwidth.

10.1.3.2 Results

Given the policy of grouping two candidate instructions (single-cycle ALU, con-

trol, store address and load instructions) within a 2-cycle scope that captures up to eight

instructions in program order, macro-op execution groups on average 48% of total instruc-

tions, which potentially enables a 2-wide machine (with 4-wide fetch bandwidth) to work

as a 2.63-wide machine with a peak bandwidth of four instructions. Without issue queue

contention, narrowing the issue bandwidth down to two instructions reduces performance

by an average of 14.5% and 17.8% with 1-cycle and 2-cycle scheduling logic, respec-

tively. A 2-wide issue machine with macro-op execution, which has pipelined 2-cycle

scheduling logic, loses 8.2% of the performance of a full, 4-wide issue bandwidth. When

issue queue contention is high (32-entry issue queue), 2-wide macro-op execution reaps

.

259the most of the performance (98.8%) of the base 4-wide machine, whereas an equivalent

2-wide machine with 2-cycle scheduling loses 13.2% of the base performance.

Several aspects of macro-op execution are examined. Limiting the number of

source operands in a macro-op does not significantly reduce the effectiveness of macro-op

execution. This enables an execution lane to achieve increased execution bandwidth with-

out additional read ports to the register file. Regarding MOP detection and formation

scope, a wider scope tends to further benefit macro-op execution, although the difference

is not significant. The performance difference between 2-cycle and 4-cycle formation

scopes is on average 0.7% across the benchmarks. The benefits of additional macro-op

types used for macro-op execution are also evaluated. Grouping loads instructions into

macro-ops tends to degrade the performance of instruction scheduling, but the benefits

from increasing machine bandwidth overcompensate the degradation and hence they tend

to positively affect performance.

Macro-op execution exhibits only a marginal performance benefit when imple-

mented on a 3- or 4-wide issue machine because performance benefits for wider machine

bandwidth are constrained by fetch bandwidth as well as limited parallelism of programs.

10.2 Future Research

Macro-op scheduling and execution has many aspects and this thesis does not

cover the entire range of its design space completely. Also, the basic concept of coarse-

grained instructions processing can be extended to wide range of areas besides the core

microarchitecture. I describe several future avenues of research.

10.2.1 Macro-op detection and dynamic binary translation

260The current macro-op detection is based on a greedy algorithm that searches for

groupable instruction pairs without considering performance impact or other factors.

Although the filtering mechanism successfully removes not useful or harmful macro-op, it

is a dynamic approach and may not be suitable when the information on the dynamic

behavior is limited or when macro-ops are cached in a decoded instruction cache or trace

cache [38][50].

The complexity of macro-op detection can be significantly reduced by a software

approach such as dynamic binary translation on a co-designed virtual machine

[53][54][46] because finding dependent operations that can be grouped into macro-ops

and checking their suitability is a relatively complex task that requires analysis of data

dependences. In this approach, a more judicious and complex detection algorithm can be

used to generate macro-ops. This approach may require a co-designed internal ISA spe-

cially designed for macro-op scheduling and execution, which improves its grouping effi-

ciency and also facilitates the macro-op formation process to further reduce hardware

complexity. Hu and Smith presented an initial work on the co-designed ISA that supports

macro-op scheduling and execution [46].

10.2.2 Extending coarse-grained instruction processing to the entire pipeline

Extending coarse-grained instruction to the entire processor pipeline provides

additional advantages. First, the instruction fetch bandwidth can be potentially increased,

if the ISA efficiently encodes macro-ops into instruction words with fewer bits. Second,

the rename bandwidth can be increased because 1) the dependence between macro-op

head and tail instructions does not require intra-rename-group dependence checking nor

map table access, and 2) the maximum number of source operands in a macro-op is lower

.

261than the number in individual instructions. Therefore, the additional complexity incurred

by renaming two instructions in a macro-op should be much lower than naively doubling

the rename bandwidth. Third, the dispatch bandwidth can also be increased since two

instructions in a macro-op require only a single access to the issue queue, register map

table and the payload RAM in the queue stage. Finally, the entries in the reorder buffer can

be shared by multiple instructions in macro-ops. To enable this, it is essential to place

groupable instructions pairs together in the instruction cache (or some other structures like

trace cache [38][50][16]) and to reorder instructions. A downside of this approach is that

the original program order is no longer maintained and therefore other mechanisms are

required to preserve precise machine state. An initial proposal for enabling coarse-grained

instruction processing in the entire processor pipeline, based on a co-designed virtual

machine, is presented in [46].

10.2.3 Analyzing the degree of register use

Although macro-op execution is efficient in reducing the hardware complexity

involved in handling source operands, it does not reduce the register write ports since the

results values should be written back individually at the original instruction level. If the

macro-op tail is the only consumer of the result value generated by the macro-op head

instruction, register write ports can be also reduced since the head’s result is available

through the private bypass path that connects the two functional units. To enable this,

MOP formation logic should ensure that no other instruction is dependent on the value,

which requires the knowledge of the value degree of use [12].

There are several difficulties in this approach. First, it requires global analysis of

data dependences. Second, statically analyzing register live-out or the degree of register

262use may not be feasible since dynamic control flow changes the degree of register use.

Finally, there should be some mechanisms to preserve the precise architectural state for

branch misprediction recovery or exception handling, since the register value should be

architecturally visible when those conditions occur between the two grouped instructions.

10.2.4 Larger macro-ops

Although processing more instructions in larger macro-ops provides more benefits

of further relaxing scheduling atomicity and increasing the size of the instruction window

as well as machine bandwidth, dependence chains in the SPEC2K integer benchmarks we

tested tend to be short and do not provide many opportunities for grouping more than two

instructions. However, compilers may efficiently support larger macro-ops by placing

multiple instructions together in a manner suitable for larger macro-ops or generating

instructions sequences to maximize the utilization of instruction slots for macro-ops.

10.2.5 Vertically long instruction word

Macro-op scheduling and execution shares some philosophy with native execution

of CISC instructions adopted in some x86 implementations such as the Cyrix M1 proces-

sor [66], although macro-ops focus on reducing hardware complexity and improving per-

formance rather than high code density and ease of programming that many CISC

instruction sets try to achieve. Our proposed approach motivates revisiting the philosophy

behind instruction set architecture designs. Does the RISC approach really enable faster

and more efficient hardware implementations than the CISC approach? How will CISC

instruction sets look if the regularity of operations is maintained? Is it possible to reap the

benefits of both worlds?

.

263New instruction set architectures may be designed based on the coarse-grained,

macro-op execution model. A possible approach would be similar to the conventional

VLIW approach that moves burden of complex instruction scheduling from hardware to

compiler. An instruction word or bundle contains multiple instructions selected by the

complier. However, an instruction word in this ISA contains a series of instructions

(potentially dependent chains) that are executed sequentially, while packing instructions in

the VLIW approach requires independent instructions that are executed in parallel. This

ISA, vertically long instruction word, can incorporate the possible benefits of macro-op

scheduling and execution.

10.2.6 Macro-op execution for simultaneous multithreading

A potential application of macro-op execution for wider machine bandwidth

would be simultaneous multithreading (SMT) [94][95][20][100], which is a technique that

permits multiple threads to execute in parallel within a single processor. The IBM

POWER5 and the Hyper-threaded Pentium 4 [49][65] are the examples of SMT proces-

sors. An SMT processor usually uses shared instruction queues to collect instructions from

the different threads so that the processor core can find both fine-grained parallelism

within a thread and coarse-grained parallelism across different threads. When multiple

independent threads are running, it is likely that issue bandwidth becomes more critical

than when only a single thread (with limited parallelism) is scheduled because the instruc-

tion scheduler may be able to find more instructions to issue in each clock cycle; this is the

situation where macro-op execution benefits most, since macro-op execution model issues

multiple independent strands in an interleaved fashion to increase machine bandwidth

while value communication through chains of dependent instructions within a single

264thread can be efficiently localized.

265References

[1] G. M. Amdahl, Validity of the Single Processor Approach to Achieving Large Scale
Computing capabilities, in Proc. of AFIPS Spring Joint Computer Conference, April
1967.

[2] S. Balakrishnan and G. S. Sohi, Exploiting Value Locality in Physical Register File, in
Proc. of 36th International Symposium on Microarchitecture, San Diego, December
2003.

[3] R. Balasubramonian et at., Reducing the Complexity of the Register File in Dynamic
Superscalar Processors, in Proc. of 34th International Symposium on Microarchitec-
ture, 2001.

[4] B. Black and J. P. Shen, Scalable Register Renaming via the Quack Register File, Tech
report, CMuART-2000-01, Carnegie Mellon University, Pittsburgh, 2000.

[5] M. Bluhm and R. A. Garibay jr., Going Native!, Microprocessor Report, vol. 9, no. 12,
pp. 17-20, September 1995.

[6] E. Borch, E. Tune, S. Manne and J. Emer, Loose Loops Sink Chips, in Proc. of 8th In-
ternational Symposium on High Performance Computer Architecture, Boston, 2002.

[7] S. Breach, Design and Evaluation of a Multiscalar Processor, PhD Thesis, University
of Wisconsin-Madison, February 1999.

[8] E. Brekelbaum, J. Rupley II, C. Wilkerson and B. Black, Hierarchical Scheduling Win-
dows, in Proc. of 35th International Symposium on Microarchitecture, 2002.

[9] M. Brown, J. Stark and Y. Patt, Select-free Instruction Scheduling Logic, in Proc. of
34th International Symposium on Microarchitecture, 2001.

[10] W. Buchholz, The IBM System/370 Vector Architecture, IBM Systems Journal, vol
25, No. 1, 1986

[11] D. C. Burger and T. M. Austin. The Simplescalar Tool Set, Version 2.0, Technical re-
port, University of Wisconsin Computer Sciences, 1997.

[12] J. A. Butts and G. S. Sohi, Characterizing and Predicting Value Degree of Use, in
Proc. of 35th International Symposium on Microarchitecture, December 2002.

[13] R. Canal and A. Gonzalez, A Low-Complexity Issue Logic, in Proc. of 14th Interna-
tional Conference on Supercomputing, 2000.

[14] B. Catanzaro, Multiprocessor system architectures: A technical survey of multiproces-
sor/multithreaded systems using PSPARC, multi-level bus architectures and Solaris
(sunos). Sun Microsystems, 1997.

266[15] CDC Cyber 200 Model 205 Computer System Hardware Reference Manual, Arden
Hills, MN: Control Data Corporation, 1981.

[16] Y. Chou and J. P. Shen, Instruction Path Coprocessors, in Proc. of 27th International
Symposium on Computer Architecture, June 2000.

[17] Compaq Computer Corporation. Alpha 21264 Hardware Reference Manual, 2000.

[18] CRAY-2 Central Processor, http://www.ece.wisc.edu/~jes/papers/cray2a.pdf, unpub-
lished document, circa 1979.

[19] J. L. Cruz, A. Gonzalez, M. Valero and N. P. Topham, Multiple Banked Register File
Architecture, in Proc. of 27th International Symposium on Computer Architecture,
2000.

[20] G. E. Daddis Jr. and H. C. Torng, The Concurrent Execution of Multiple Instruction
Streams on Superscalar Processors, in Proc. of International Conference of Parallel
Processing, August 1991.

[21] K. Diefendorff, K7 Challenges Intel, Microprocessor Report, vol. 12, No. 14, October
26, 1998.

[22] K. Diefendorff, P. K. Dubey, R. Hochsprung and H. Scales, AltiVec Extension to
PowerPC Accelerates Media Processing, IEEE Micro, pp 85-95, 2000

[23] D. R. Ditzel and D. A. Patterson, Retrospective on High-level Language Computer Ar-
chitecture, in Proc. of the 7th International Symposium on Computer Architecture,
1980.

[24] K. Ebcioglu, E. R. Altman, DAISY: Dynamic Compilation for 100% Architectural
Compatibility, in Proc. of International Symposium on Computer Architecture, 1997.

[25] K. Ebcioglu et al. Dynamic Binary Translation and Optimization, IEEE Transactions
on Computers, vol. 50, no 6, pp. 529-548, June 2001.

[26] M. Eng, H. Wang, P. Wang, A. Ramirez, J. Fung and J. Shen, Mesocode: Optimiza-
tions for Improving Fetch Bandwidth of Future Itanium Processors, Workshop on Com-
plexity-effective Design in conjunction with 29th International Symposium on Computer
Architecture, May 2002.

[27] D. Ernst and T. Austin, Efficient Dynamic Scheduling through Tag Elimination, in
Proc. of 29th International Symposium on Computer Architecture, 2002.

[28] D. Ernst, A. Hamel and T. Austin, Cyclone: A Broadcast-Free Dynamic Instruction
Scheduler with Selective Replay, in Proc. of 30th International Symposium on Comput-
er Architecture, San Diego, June 2003.

.

267[29] K. I. Farkas, N. P. Jouppi and P. Chow, Register File Design Considerations in Dy-
namically Scheduled Processors, WRL Research Report 95/10, 1995.

[30] K. I. Farkas, P. Chow, N. Jouppi and Z. Vranesic, The Multicluster Architecture: Re-
ducing Cycle Time through Partitioning, in Proc. of 30th International Symposium on
Microarchitecture, December 1997.

[31] B. Fields, S. Rubin and R. Bodik, Focusing Processor Policies via Critical-path Pre-
diction, in Proc. of 28th International Symposium on Microarchitecture, 2001.

[32] B. Fields, R. Bodik and M. D. Hill, Slack: Maximizing Performance under Technolog-
ical Constraints, in Proc. of 29th International Symposium on Computer Architecture,
May 2002.

[33] J. A. Fisher, Trace Scheduling: A Technique for Global Microcode Compaction, IEEE
Transaction on Computers, vol. C-30, pp. 478-490, July 1981.

[34] J. A. Fisher, Very Long Instruction Word Architectures and the ELI-512, in Proc. of
10th Annual Symposium on Computer Architecture, June 1983.

[35] M. Franklin and G. S. Sohi, The Expandable Split Window Paradigm for Exploiting
Fine-grain Parallelism, in Proc. of 19th Annual International Symposium on Computer
Architecture, Gold Coast, June 1992.

[36] M. Franklin and G. S. Sohi, Register Traffic Analysis for Streamlining Inter-Operation
Communication in Fine-grain Parallel Processors, in Proc. of 25th International Sympo-
sium on Microarchitecture, November 1992.

[37] M. Franklin, The Multiscalar Architecture, PhD Thesis, University of Wisconsin-
Madison, November 1993.

[38] D. Friendly, S. Patel and Y. Patt, Putting the Fill Unit to Work: Dynamic Optimiza-
tions for Trace Cache Microprocessors, in Proc. of 31st International Symposium on Mi-
croarchitecture, 1998.

[39] S. Gochman et al., The Intel Pentium M processor: Microarchitecture and Perfor-
mance, Intel Technology Journal, vol. 7, issue 2, 2003.

[40] A. Gonzalez, J. Gonzalez and M. Valero, Virtual-Physical Registers, in Proc. of the
4th International Symposium on High Performance Computer Architecture, 1999.

[41] J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quantitative Approach,
2nd Ed., p 394, Morgan Kaufmann Publishers, Inc., San Mateo, CA, 1996.

[42] G. Hinton et al., The Microarchitecture of the Pentium 4 Processor, Intel Technology
Journal, Q1, 2001.

268[43] M. Hrishikesh, N. Jouppi, K. Farkas, D. Burger, S. Keckler and P. Shivakumar, The
Optimal Logic Depth Per Pipeline Stage is 6 to 8 FO4 Inverter Delays, in Proc. of 29th
International Symposium on Computer Architecture, 2002.

[44] P. Y. -T. Hsu, J. T. Rahmeh, E. S. Davidson and J. A. Abraham, TIDBITS: Speedup
via Time-delay Bit-Slicing in ALU Design for VLSI Technology, in Proc. of 12th Inter-
national Symposium on Computer Architecture, 1985.

[45] J. S. Hu, N. Vijaykrishnan and M. J. Irwin, Exploring Wakeup-free Instruction Sched-
uling, in Proc. of 10th International Symposium on High Performance Computer Archi-
tecture, February 2004.

[46] S. Hu and J. E. Smith, Using Dynamic Binary Translation to Fuse Dependent Instruc-
tions, in Proc. of the 2nd International Symposium on Code Generation and Optimiza-
tion, March 2004.

[47] IBM Microelectronics Division, PowerPC604 RISC Microprocessor User’s Manual,
1994.

[48] Intel corporation, Pentium Pro Family Developers Manual, December 1995.

[49] Intel Corporation, Intel Pentium 4 and Intel Xeon Processor Optimization: Reference
Manual, October 2002.

[50] Q. Jacobson and J. E. Smith, Instruction Pre-processing in Trace Processors, in Proc.
of 25th International Symposium on Computer Architecture, 2000.

[51] S. Jourdan, R. Ronen, M. Bekerman, B. Shomar and A. Yoaz, A Novel Renaming
Scheme to Exploit Value Temporal Locality Through Physical Register Reuse and Uni-
fication, in Proc. of the 31st International Symposium on Microarchitecture, 1998.

[52] M. Kagan, S. Gochman, D. Orenstien and D. Lin, MMX Microarchitecture of Pentium
Processors with MMX technology and Pentium II Microprocessors, Intel Technology
Journal, 3rd quarter, 1997.

[53] H. Kim and J. E. Smith, An Instruction Set and Microarchitecture for Instruction Level
Distributed Processing, in Proc. of 29th International Symposium on Computer Archi-
tecture, May 2002.

[54] H. Kim and J. E. Smith, Dynamic Binary Translation for Accumulator-Oriented Ar-
chitectures, in Proc. of the 1st International Symposium on Code Generation and Opti-
mization, March 2003.

[55] I. Kim and M. H. Lipasti, Implementing Optimizations at Decode Time, in Proc. of
29th International Symposium on Computer Architecture, May 2002.

[56] I. Kim and M. H. Lipasti, Half-price Architecture, in Proc. of the 30th International

.

269Symposium on Computer Architecture, June 2003.

[57] I. Kim and M. H. Lipasti, Understanding Scheduling Replay Schemes, in Proc. of 10th
International Symposium on High Performance Computer Architecture, February 2004.

[58] I. Kim and M. H. Lipasti, Macro-op Scheduling: Relaxing Scheduling Loop Con-
straints, in Proc. of International Symposium on Microarchitecture, December 2003.

[59] A. Klaiber, The Technology Behind Crusoe Processors, Transmeta Technical Brief,
2000.

[60] A. KleinOsowski, J. Flynn, N. Meares and D. J. Lilja, Adapting the SPEC2000 Bench-
marks Suite for Simulation-based Computer Architecture Research, Workshop on work-
load characterization in International Conference on Computer Design, 2000.

[61] A. R. Lebeck et al, A Large, Fast Instruction Window for Tolerating Cache Misses, in
Proc. of 29th International Symposium on Computer Architecture, 2002.

[62] M. H. Lipasti, B. R. Mestan and E. Gunadi, Physical Register Inlining, in Proc. of 31st
International Symposium on Computer Architecture, June 2004.

[63] P. Lowney, S. Freudenberger, T. Karzes, W. Lichtenstein and R. Nix, The Multiflow
Trace Scheduling Compiler, The Journal of Supercomputing, July 1993.

[64] N. Malik, R. Eickemeyer and S. Vassiliadis, Interlock Collapsing ALU for Increased
Instruction-level Parallelism, in Proc. of 25th International Symposium on Microarchi-
tecture, 1992.

[65] D. T. Marr, F. Binns, D. L. Hill, G. Hinton, D. A. Koufaty, J. A. Miller, and M. Upton,
Hyper-threading Technology Architecture and Microarchitecture, Intel Technology
Journal, 6(1), February 2002.

[66] S. C. Mcmahan, M. Bluhm and R. A. Garibay jr., 6x86: The Cyrix Solution to Excut-
ing x86 Binaries on a High Performance Microprocessor, Proceedings of the IEEE, vol.
83, no. 12, December 1995.

[67] S. Melvin, M. Shebanow and Y. Patt, Hardware Support for Large Atomic Units in
Dynamically Scheduled Machines, in Proc. of 21st Annual Workshop on Micropro-
gramming and Microarchitecture, San Diego, California, November 1988.

[68] S. Melvin and Y. Patt, Enhancing Instruction Scheduling with a Block-Structured ISA,
in International Journal of Parallel Programming, vol. 23, no. 3, 1995.

[69] P. Michaud and A. Seznec, Data-flow Prescheduling for Large Instruction Windows
in Out-of-order Processors, in Proc. of 7th International Symposium on High Perfor-
mance Computer Architecture, 2001.

270[70] T. Monreal, A. Gonzales, M. Valero, J. Gonzalez and V. Vinals, Delaying Physical
Register Allocation through Virtual-Physical Registers, in Proc. of 32nd International
Symposium on Microarchitecture, November 1999.

[71] C. Moore. POWER4 System Microarchitecture. In Proc. of the Microprocessor Fo-
rum, October 2000.

[72] R. Nagarajan, K. Sankaralingam, D. Burger and S. Keckler, A Design Space Evalua-
tion of Grid Processor Architectures, in Proc. of International Symposium on Microar-
chitecture, 2001.

[73] A. Pajuelo, A. Gonzalez and M. Valero, Speculative Dynamic Vectorization, in Proc.
of International Symposium on Computer Architecture, May 2002.

[74] S. Palacharla, N. P. Jouppi and J. E. Smith, Complexity-Effective Superscalar Proces-
sors, in Proc. of 29th International Symposium on Computer Architecture, 2002.

[75] G. Papadopoulos and D. Culler, Monsoon: An Explicit Token-Store Architecture, in
Proc. of International Symposium on Computer Architecture, 1990.

[76] I. Park, M. Powell and T. Vijaykumar, Reducing Register Ports for Higher Speed and
Lower Energy, in Proc. of 35th International Symposium on Microarchitecture, 2002.

[77] S. E. Raasch, N. L. Binkert and S. K. Reinhardt, A Scalable Instruction Queue Design
Using Dependence Chains, in Proc. of 29th International Symposium on Computer Ar-
chitecture, 2002.

[78] N. Ranganathan and M. Franklin, Complexity-effective PEWs Microarchitecture, Mi-
croprocessors and Microsystems, 1998.

[79] B. R. Rau, D. Yen, W. Yen, and R. A. Towle, The Cydra 5 Departmental Supercom-
puter: Design Philosophies, Decisions and Trade-offs, IEEE Computer, 22, 1989.

[80] R. M. Russell, The CRAY-1 computer system, Communications of the ACM 21, No.
1, 63-72, January 1978.

[81] K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim, J. Huh, D. Burger, S. Kecker and C.
Moore, Exploiting ILP, TLP, and DLP with the Polymorphous TRIPS Architecture, in
Proc. of International Symposium on Computer Architecture, 2003.

[82] Y. Sazeides, S. Vassiliadis and J. E. Smith, The Performance Potential of Data Depen-
dence Speculation and Collapsing, in Proc. of 29th International Symposium on Mi-
croarchitecture, 1996.

[83] H. Sharangpani, K. Arora, Itanium Processor Microarchitecture, IEEE MICRO, vol.
20, No. 5, 2000.

.

271[84] J. P. Shen and M. H. Lipasti, Modern Processor Design: Fundamentals of Superscalar
Processors, beta edition, pp. 400-402, McGraw-Hill, 2002.

[85] A. J. Smith, Line (block) Size Choice for CPU Cache Memories, IEEE Transactions
on Computers, vol. 36, 9, pp. 1063-1075, September 1987.

[86] G. S. Sohi, S. Breach, and T. N. Vijaykumar, Multiscalar Processors, in Proc. of 22nd
International Symposium on Computer Architecture, pp. 414-425, June 1995.

[87] Standard Performance Evaluation Corporation, http://www.specbench.org.

[88] J. Stark, M. Brown and Y. Patt, On Pipelining Dynamic Instruction Scheduling Logic,
in Proc. of 33th International Symposium on Microarchitecture, 2000,

[89] Texas Instruments, TMS320C6000 CPU and Instruction Set Reference Guide,
SPRU189F, October 2000.

[90] D. J. Theis, Special Tutorial: Vector Supercomputers, IEEE Computer, pp. 52-61,
April 1974.

[91] R. M. Tomasulo, An Efficient Algorithm for Exploiting Multiple Arithmetic Units,
IBM Journal, vol. 11, pp. 25-33, January 1967.

[92] M. Tremblay, B. Joy and K. Shin, A Three Dimensional Register File for Superscalar
Processors, in Proc. of 28th Hawaii International Conference on System Sciences, pp.
191-201, 1995.

[93] J. Tseng and K. Asanovic, Banked Multiported Register Files for High-Frequency Su-
perscalar Microprocessors, in Proc. of 30th International Symposium on Computer Ar-
chitecture, San Diego, June 2003.

[94] D. Tullsen, S. Eggers and H. Levy, Simultaneous Multithreading: Maximizing On-
chip Parallelism, in Proc. of 22nd International Symposium on Computer Architecture,
June 1995.

[95] D. Tullsen, S. Eggers, J. Emer, H. Levy, J. Lo, and R. Stamm, Exploiting Choice: In-
struction Fetch and Issue on an Implementable Simultaneous Multithreading Processor,
in Proc. of 23rd International Symposium on Computer Architecture, May 1996.

[96] United States Patent #6,212,626, Computer Processor Having a Checker, A. A. Mer-
chant and D. J. Sager, assigned to Intel Corporation, issued April 3, 2001.

[97] S. Vajapeyam, J. P. Joseph and T. Mitra, Dynamic Vectorization: A Mechanism for
Exploiting Far-flung ILP in Ordinary Programs, in Proc. of the 26th International Sym-
posium on Computer Architecture, May 1999.

[98] L. Wu, C. Weaver and T. Austin, Cryptomaniac: A Fast Flexible Architecture for Se-

272cure Communication, in Proc. of the 28th International Symposium on Computer Archi-
tecture, 2001.

[99] W. A. Wulf, Compilers and Computer Architecture, IEEE Computer, vol 14(8), pp.
41-47, 1981.

[100] W. Yamamoto and M. Nemirovsky, Increasing Superscalar Performance through
Multistreaming, in Proc. of Conference on Parallel Architecture and Compilation Tech-
niques, June 1995.

[101] A. Yoaz, M. Erez, R. Ronen and S. Jourdan, Speculation Techniques for Improving
Load Related Instruction Scheduling, in Proc. of 26th International Symposium on
Computer Architecture, 1999.

