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Abstract—The mammalian visual system is uniquely capable
of robustly recognizing objects in its field of view regardless of
their orientation, scale, or position, while learning new objects
from a small number of training examples and generalizing
robustly to a broad class of visually similar objects. The cor-
tical structures that implement the visual system have been
successfully emulated in several biologically-inspired synthetic
vision systems. Developmental evidence lends credence to the
claim that visual cortical structures emerge during development,
i.e. they self-organize, when exposed to training stimulus. This
paper demonstrates that a set of simple developmental rules can
govern the emergence of a self-learning variant of a map-seeking
circuit (SL-MSC) in a simulated visual system. The SL-MSC is
capable of the same visual tasks as the original hand-crafted
MSC: object recognition independent of rotation, translation,
and scaling, and the ability to identify and learn new objects.
The SL-MSC learns invariant visual transformations by relying
on temporal association in its visual field, and is able to group
the transformations into independent layers. Experimental results
show that the SL-MSC can generalize the rotation, translation,
and scaling transformations learned for one object to new objects,
leading to learning and recognition of new objects with very few
training samples.

I. INTRODUCTION

The human visual system is very adept at recognizing
objects. Even before a human infant first opens its eyes,
spontaneous retinal activations are driving development of the
visual system [1], [2]. From the very beginning the infant is
able to recognize its mother’s face. An early developmental
task is to organize this input into objects and learn to recognize
them despite variations in scale, rotation, and position in the
visual field. As humans grow they start recognizing objects
moving in complex scenarios. How is it that our eye is able to
learn these transformations and be able to store them so that
we can use them later for object recognition?

The human visual system is efficient in recognizing and
classifying objects, but computers are still not robust enough
to process the visual information in the same way as humans
do [3]. A considerable number of articles have been published
that discuss about how humans are able to recognize objects
based on their invariant features and later extend the concepts
of human visual system to computer visions for robust object
recognition and classification [4], [5], [6] and [7]. One question
that remains to be addressed is how a human being is able to
learn invariant transformations that map the seen object to the
reference object present in the memory. Prior work such as

[8], and [9] have addressed this problem and proposed learning
mechanisms such as Hebbian learning, to answer this question.
To the best of our knowledge, there has been no other work
that has proposed a computational model which explains how
the mammalian visual system learns invariant transformations
such as translation, rotation and scaling, and organizes them
into independent layers.

In [10] and [11] authors have proposed a multi-layer
hierarchical architecture of visual system that discounts image
transformations and generates a discriminative feature vector,
or signature, for learnt images. These signatures are invariant to
local and global affine transformations. Sample complexity of
learning models reduces significantly if these models are able
to factor out image transformations during the development
phase, as a result, achieving the goal of recognition with
one or very few labeled examples. The proposed conjecture
is to find a computational model for the ventral stream that
learns to factor out image transformations. The formalization
and proof of the conjecture was left as an open problem.
The articles state that ventral stream learns and stores a
group of transformations (G) as seen through the aperture
of receptive field. The human eye stores an image as image
patches (tk, where k ∈ [1,K] are the K templates of image
patches stored in the memory) in the memory and simple
cell present in human eye stores the transformed image patch
(gitk, where ∀i, gi ∈ G). This learning operation is performed
through Hebbian learning mechanism. A one-layer architecture
can store all of the transformed image patches and achieve
global invariance, whereas, to achieve local invariance and
robust signatures for different parts of the image, authors have
proposed a multi-layer hierarchical architecture that is similar
to HMAX algorithm [10]. In the implemented models authors
have hardwired translation and scaling transformations.

Using Map-Seeking Circuits (MSC) [12] as our basis, we
present a computational model that demonstrates how a human
is able to learn the invariant transformations and later use them
to recognize various objects. This computational model gives
us an insight into how human beings use invariant features of
the learnt objects and try to learn a combination of independent
invariant transforms to map the memory reference pattern to
the input target pattern.

As presented in [13], MSC is a biologically inspired
algorithm developed by David Arathorn at the Center for
Computational Biology at Montana State University [12]. It is
a model-based approach that assumes that the correspondence



between a model and an observation of it can be represented by
a decomposition of invertible transformations, such as, scaling,
translation and rotation. Unlike the HMAX algorithm [4] and
other similar feedforward models, which simply report the
presence (or absence) of a target object in the reference image
or not, MSC seeks to find an appropriate set of transforms
that maps a stored template to an unknown signal, returning
both the recognition/classification response as well as the
set of maps used to identify the object. The algorithm uses
superposition with an iterative matching process to converge
on the best set of transforms that map a template to a target
in an input signal.

MSC is composed of one or more layers and a set of
templates. Each layer represents a transformation such as
translation, scale or rotation. The algorithm performs a set of
transforms at each layer and sums the result. The result is
then sent to the following layer where the process is repeated
for another set of transformations. The algorithm depends on
The Ordering Principle of Superposition [14]. The principle
states that if matches are computed between a pattern, A, and a
superposition of a set of patterns, the match will be greatest for
the pattern within the superposition that is most like A. The use
of superposition reduces the computational complexity from
exponential growth to linear growth, thus making the problem
tractable.

In this article, we have introduced a self-learning MSC
algorithm which learns invariant transformations during object
recognition, rather than hardwiring these transformations into
pre-assigned layers as described in [12]. The proposed MSC
architecture initially consists of no transformation layers that
would match the input image with the memory reference
images. As the transformed reference images or new objects
are given as input to SL-MSC, the proposed architecture will
learn the required set of transformations or the new input
objects and allocate them to appropriate layer or memory
location. Object permanence in the visual field lends itself
to temporal association across instances of the transformed
image; the transforms themselves are learned by solving for
the maps that connect pairs of transformed instances, similar
to [15].

This algorithm gives us an insight into how we are able
to recognize objects despite the extreme variabilities of the
retinal image they might generate. Prior work such as [8], [10]
and [11] mention that association between target and reference
templates can be learnt through Hebbian learning mechanism
and the learnt image transformations can be stored as group of
transformations. But, such a method suffers from the problem
of combinatorial explosion of template matching. Our model
performs simple matrix algebra and proposes how mappings
emerge in human visual system to be able to distinguish among
independent image transformation functions and is also able to
group similar transformations together. Based on recognition of
object permanence, the proposed algorithm matches reference
pattern with the input pattern by comparing an ordered list
of interesting or invariant features present in the the two
images and later learn the necessary affine transformation
to match the two features. It is argued here that based on
spontaneous activation feature of the eye and its ability to
recognize temporal invariant features of the image, through
object permanence and temporal association, the human brain

Figure 1. Architecture of Map-Seeking Circuits

is able to learn and retain invariant transformations.

We have used the MSC algorithm to focus on the prob-
lem of learning invariant transformations from the stream
of unlabeled examples. It has been shown that through the
use of simple matrix algebra we can group similar invariant
transforms together and assign separate layers to independent
transforms.

II. MAP-SEEKING CIRCUITS (MSC)

The architecture of MSC is shown in Figure 1. Gregoire
and Maher [13] provide a good overview of MSC which
will be paraphrased in this section. The MSC consists of two
paths, viz., the forward path and the backward path, roughly
corresponding to the feedforward and feedback paths present in
the mammalian visual streams. The forward path transforms
the input image along predefined set of independent image
transformations to find out the best set of transformations that
will map the input image to match with the images stored
in memory template. Sequence of transformations on input
image along forward path have been denoted in Figure 1
by Sx−shift, Sy−shift, Srot, and Sscale. Similarly, the back-
ward path transforms the memory images by applying inverse
independent image transformations on them. The backward
path finds out the best set of transformations that will map
memory template image to match with the input image. The
sequence of transformations on memory templates along the
backward path have been denoted in Figure 1 by S−1

scale,
S−1
rot, S

−1
y−shift, and S−1

x−shift. After each set of independent
transforms have been applied on the input image, MSC su-
perimposes the output of image transformations and sends it
to the next transformation layer. The degree of best match
between superimposed results in forward path and backward
path is calculated using dot product operation, as illustrated
in figure 1, by Cx−shift(T

x−shift), Cy−shift(T
y−shift), etc.

As suggested in [11] and [12], a practical and biological
plausible way to match invariances between images is obtained
by taking dot-product between input and memory template.
The templates that have the highest dot-product values indicate
the most promising transforms that map the input to one of the
several stored templates. The most promising transforms are
left unchanged, whereas, rest of the transforms are penalized
on the forward and backward path by virtue of a competition
function.

As the iterations progress, the mismatched transforms are
attenuated with respect to the better ones. Eventually, the
algorithm forces all transforms to zero except for the best
transform along each dimension. In the end, algorithm is able



to find those set of transformations that will map the input
image to match with the images stored in memory template.
If the algorithm can not find a mapping between the target
and the template, then all the transforms are driven to zero
resulting in a null result.

The MSC algorithm will always converge to either a set of
unique transforms or a null condition where all the transforms
in each layer are driven to zero. In case a unique set of
transforms are found, the similarity of the input and the inverse
transformed template must exceed a threshold for a positive
mapping to result. The threshold is set by comparing the
similarities of several positive inputs to negative inputs during
a training session. Ideally, there will be a large discrepancy
between the two. If there is overlap, then amount of false
rejection errors can be traded for false acceptance errors
depending on which error is considered more valuable for a
given application.

III. LEARNING INVARIANT TRANSFORMS

The proposed algorithm learns new unlabeled objects and
new transformations (maps), and later uses these learnt objects
and maps to recognizing objects in the visual input. Initially,
there are no reference images or maps in the SL-MSC memory.
When a new object is presented to the MSC, it will first notice
that there is no learnt object in its memory to match with.
Thus, the MSC will identify the object of interest and store
this object in its memory. Subsequent presentations of the first
object at different scale, translated location, and rotation are
used to learn generalizable maps that the SL-MSC utilizes to
achieve invariant recognition.

When images with new objects are presented to the SL-
MSC, it will try to map its existing memories to the input
image after performing all the transformations present in
different layers of the SL-MSC. If the SL-MSC does not
converge to a correct solution then the SL-MSC will check
whether the input image is of a new object or whether it
requires a previously-unseen transformation.

Perspective transformations are one of the most common
transformations that visual system has to deal with. Two-
dimensional affine transformations cannot implement perspec-
tive transformations, hence, an object that has undergone a
change in orientation in 3D space will appear as a new object
to SL-MSC. As a result, SL-MSC will learn the perspectively
transformed object and store it in the memory. Due to com-
putational complexity, MSC [16] suggests to store perspective
transformation of rigid objects as separate memory templates.

A. Learning new objects

To check whether the input image is that of a new memory
object, SL-MSC will check all the objects stored in the
memory and, through invariant feature extraction technique,
match the input image against each reference image stored in
the memory. If none of the reference templates match with
the input image, this means that input image is that of a new
object and this object should be stored in the memory.

The process of recognizing objects by matching its in-
variant features with the reference images is similar to the
biological counterpart of how our eye recognizes objects. As

argued in [8] and [17], invariance for novel objects can be
inherited from the invariant detection of templates, which is
accomplished via replicated feature detectors and location- and
scale-invariant pooling performed by algorithms like HMAX
[4]. A realistic model of mammalian vision should be capable
of learning new objects from a very small number of exam-
ples. Reliance on a pre-existing (or previously-developed) set
of invariant transforms can enable this capability, since any
subsequent presentation of the new object can be transformed
to match its initial presentation.

B. Learning new transforms

As the object is translated, rotated or scaled in the visual
input, the dot product between the memory template and
the input template will be less than the dot product of the
input template with itself, as shown in equation 1. This
happens because the visual system has not yet learned the
new transformations that will make the memory image similar
to the input image. And, when the visual system tries to find
the correlation between the input image and the corresponding
image in the memory using dot product, the current visual
system will get a low value for this correlation. The human
visual system experiences similar mismatches due to both eye
movements (saccades, which shift the center of the visual field)
and physical movement of the object with respect to the human
eye. When this occurs, the human visual system learns the
transformation required to map the spatially transformed object
to the temporally-correlated reference object present in the
memory. Correspondingly, the SL-MSC visual system will try
to learn the necessary transformations that will result in higher
dot-product values between input image and its corresponding
memory reference image [9].

〈Tinput, Tmem〉 < δ (1)

Where 〈., .〉 represents the dot product between two vectors,
Tinput is the input image template and Tmem is the memory
image template. If the value of 〈Tinput, Tmem〉 is less than a
threshold, say δ, the MSC will try to map the input template
to the memory template by learning the necessary invariant or
affine transformation. To learn this new affine transformation,
MSC will perform following set of functions

1) Extract the invariant features of the object shown in the
input image Finput and in the memory image Fmemory .
The ordered list of invariant features present in input image
should match the ordered list of invariant features in the
memory image. As presented in [9] and [18], human eyes
will saccade to the interesting or invariant features present
in the image and will try to match the two images by
comparing these features. To successfully match the two
images, human eye would have to learn the necessary set
of transformations that will be later stored in memory.

2) The visual system will learn to map the input image to
the stored memory image by learning the necessary 3X3
affine transformation matrix for forward path and backward
path. These matrices can be learnt by performing division
of coordinates of invariant features between memory image
and the input image. For the forward path MSC will learn
the set of transformations that will map the input image to
match with the memory image as represented in equation 2.



Figure 2. An overview of the algorithm to assign new layer in Map-Seeking
Circuits. (a) First, MSC will compare the input image with memory images
by taking the dot-product between two images. (b) If the value of dot-product
is below a certain threshold, the required transformation is learnt by MSC and
it is either appended to an existing layer of transformations or assigned a new
layer

In the backward path, MSC will learn transformations to
map memory image to match with the input image, as
represented in 3.

T fwd =
Fmemory.[X,Y, 1]

Finput.[X,Y, 1]
(2)

T bkwd =
Finput.[X,Y, 1]

Fmemory.[X,Y, 1]
(3)

3) Check whether the learnt affine transformation is dependent
on previously learnt affine transformations or is it an
independent transformation. If it is dependent on previ-
ously learnt transformations then append it with the set
of transformations on which the new transformation is
dependent, else, assign a new layer in MSC for this new
transformation.

An overview of this algorithm has been presented in
Figure 2. Pseudo-code for the three steps of MSC have been
presented in algorithms 1, 2 and 3.

Algorithm 1 Check whether MSC needs to learn a new
transformation

1: while MSC has not converged to a valid image do
2: ReferenceImage←MSC(Input)
3: if 〈ReferenceImage,Memory〉 < δ then
4: (T fwd

new , T
bkwd
new ) = LEARNTRANSFORMATION

5: ASSIGNLAYER(T fwd
new )

6: ASSIGNLAYER(T bkwd
new )

7: end if
8: end while

C. Assigning thresholds for SL-MSC to learn new object and
transformations

One of the tasks of the proposed SL-MSC is to identify
whether there is any need for MSC to learn the new object
or transformation, or can it recognize the input image from
the reference memory images with the given set of trans-
formations. For this decision SL-MSC relies on equation 1,
thus, selecting the value of threshold is crucial so that the
scaled up images that have more number of pixels than the
original image, do not have an unfair advantage over dot-
product between Tinput and Tmem. To take care of this issue,
the proposed SL-MSC has defined δ in equation 4 as,

Algorithm 2 Learn the new transformation matrices for for-
ward and backward paths
Input: Invariant feature vectors of input image and memory
image
Output: Learnt transformation matrices for forward (T fwd

new )
and backward (T bkwd

new ) paths
1: procedure LEARNTRANSFORMATION

2: T fwd
new =

Fmemory.[X,Y,1]
Finput.[X,Y,1]

3: T bkwd
new =

Finput.[X,Y,1]
Fmemory.[X,Y,1]

4: end procedure

Algorithm 3 Check linear dependence of learnt transformation
Input: learnt transformation matrix Tnew
Output: Tnew was appended to an existing layer or it was
allocated to a new layer

1: procedure ASSIGNLAYER(Tnew)
2: if |~Tnew| 6= 1 then Assign a new layer for Tnew
3: else
4: for i = 1 to L do
5: RLayer ← rank(~Iv, ~T

fwd
i , ~T bkwd

i )

6: RTransf ← rank(~Tnew, ~Iv, ~T
fwd
i , ~T bkwd

i )
7: if RTransf = RLayer + 1 then
8: ~Tnew is linearly independent from transforma-

tions in Layeri
9: else

10: ~Tnew is linearly dependent on transformations
in Layeri

11: break
12: end if
13: end for
14:
15: if ~Tnew is linearly dependent on Layeri then
16: Append Tnew to Layeri
17: else
18: Assign a new layer for Tnew
19: end if
20:
21: end if
22: end procedure

δ = c

M∑
i=1

Pmem,i

M × Pinput
〈Tinput, Tinput〉 (4)

where,
M∑
i=1

Pmem,i represents the total number of pixels

of all the images stored in the memory, M is the number of
images in the memory and Pinput is the total number of pixels
in the input image. The tunable parameter c ∈ [0, 1] can be
set by the user so that the MSC is able to learn new object or
transformations.

D. Identifying linear independence of learnt transformations

One of the challenging tasks in learning new invariant
transformations is to be able to figure out independent transfor-
mations. Due to the linear nature of affine matrices, we can rep-



resent dependent transformations in terms of linear combina-
tions of learnt matrices, whereas, independent transformations
cannot be expressed as linear combination of learnt matrices.
Thus, after we have identified an independent transformation
we assign it a new layer.

Since the affine transformations can be represented as
linear combination of variables, we use rank and determinant
of matrices to determine whether a new transformation is
dependent on previously learnt transformation.

Given a set of n affine transformation vectors, viz. ~T1,
~T2,...,~Tn (where ~Tn is newly learnt affine transformation), a
linear combination of affine vectors can be represented as

L =

n∑
i=1

αi
~Ti (5)

Where α1, α2,...,αn represent linear coefficients. The trans-
formations are said to be linearly independent if L is equal to
0, and ∀ i, αi is equal to 0. That is, ~Tn cannot be expressed
as a linear combination of any of the previously learnt affine
transformations. We can check the independence of affine
matrices using rank of the vectors.

As we are focusing on rigid body transformations, we
assume that affine transformations do not change shape of
the object. To account for scaling separately, we look at the
determinant of the learnt transformation. If the determinant is
not equal to 1, this indicates that we are performing a scaling
operation or changing the size of the object. Thus, we factor
out the scalar value of the learnt transformation and assign it
to the layer that is responsible for changing the size of the
rigid body.

E. Algorithm for assigning layers to new invariant transfor-
mations

Algorithm 3 presents the pseudo-code of the proposed
algorithm that makes the decision whether Tnew should be
allocated to an existing layer or to a new layer.

To calculate rank of the transformations in Layeri
(RLayer), we convert 3X3 affine matrices, viz., identity matrix,
and transformation matrices of forward and backward paths,
into 9X1 vectors i.e., ~Iv , ~T fwd

i , and ~T bkwd
i , respectively. Rank

of the new transformation matrix (RTransf ) is calculated be-
tween 9X1 vector representation of new transformation matrix,
i.e., ~Tnew and ~Iv , ~T fwd

i , and ~T bkwd
i . If the value of RTransf is

more than RLayer, this implies that the new transformation is
linearly independent from previous transformations. Hence, a
new layer should be assigned. Otherwise, Tnew is linearly de-
pendent on the transformations present in Layeri. Therefore,
there is no need to loop through other layers, and Tnew can
be appended to the current ith layer.

Even though a scaling transformation seems to be linearly
dependent on other affine transformations, we can still treat it
as an independent transformation since multiplication between
a scalar unit and a vector does not depend on the combination
of other vectors. Hence, we factor out the scaling unit from
learnt transformation and assign it to a separate layer.

Claim: To calculate rank of Layeri we need three vectors, viz.,
vector of identity matrix (~Iv), forward transformation matrix
(~T fwd

i ) and backward transformation (~T bkwd
i ).

Proof: As shown in equations 2 and 3, a 3X3 affine transfor-
mation matrix can be learnt by dividing invariant features of
input image, with the invariant features of the image stored in
memory. An affine transformation matrix can be represented
as shown in equation 6

A =

[
sr0 sr1 0
−sr1 sr0 0
X Y 1

]
(6)

Where s is the scaling factor, r0 and r1 are the cosine and
sine factors, respectively, by which an image is rotated, and X
and Y are the amount by which the image is translated along
horizontal direction and vertical direction, respectively.

To calculate the rank of transformations at Layeri, the
transformation matrices are first converted to their respective
9X1 vector forms. For example, the fwd and bkwd transfor-
mation matrices for rotation are shown in equation 7.

~T fwd
rot =



r0
r1
0
−r1
r0
0
0
0
1


~T bkwd
rot =



r0
−r1
0
r1
r0
0
0
0
1


(7)

Equation 7 tells us that ~T fwd
rot and ~T bkwd

rot represent rotations
in opposite directions. Considering the concept of MSC, if we
learn to rotate the input image in clockwise direction so that it
can match with the image stored in the memory, then we would
have to rotate memory image in counter-clockwise direction
so that it can match with the input image.

If a new rotation transformation is learnt by the MSC, we
would not be able to find independence/dependence of the
learnt transformation with the two forward path and backward
path transformation vector. That is, MSC would not be able
to find independence/dependence of ~Tnew with just ~T fwd

i

and ~T bkwd
i . Let us assume, that Trot is the learnt rotation

transformation and its vector representation is ~Trot. As per
equation 5, if ~Trot is dependent on ~T fwd

rot and ~T bkwd
rot , then, L

can be equal to 0, even though α1, α2 and α3 are not equal
to 0. But this is not true. With all three vectors representing
rotation transformations, L is equal to 0, only when α1, α2 and
α3 are all equal to 0. Therefore, to show dependence among
similar transformation matrices, we add identity matrix or ~Iv
as a correctional matrix for each layer.

Equation 9 provides an algebraic proof as to why three
vectors are required to check dependence of learnt matrix,
and equation 10 proves that even with three vectors MSC
will be able to distinguish among linearly independent affine
transformations using rank of the matrices. Let the vector ~Trot
represent the learnt rotational matrix and ~Ty−shift represents
the learnt vertical shift matrix. The two vectors, viz., ~Trot and



~Ty−shift are presented in equation 8, where x1 and x2 are
the cosine and sine values of unknown rotation angle and Y
represents the vertical shift of the image.

~Trot =



x1
x2
0
−x2
x1
0
0
0
1


~Ty−shift =



1
0
0
0
1
0
0
Y
1


(8)

α1
~Iv + α2

~T fwd
rot + α3

~T bkwd
rot + α4

~Trot = 0

⇒ α1 + α2 + α3 + α4 = 0

α1 + α2r0 + α3r0 + α4x1 = 0

α2r1 − α3r1 + α4x2 = 0

(9)

α1
~Iv + α2

~T fwd
rot + α3

~T bkwd
rot + α4

~Ty−shift = 0

⇒ α1 + α2 + α3 + α4 = 0

α1 + α2r0 + α3r0 + α4 = 0

α2r1 − α3r1 = 0

α4Y = 0

(10)

Equation 9 can be satisfied with α1, α2, α3, and α4 6= 0.
Hence, ~Trot can be appended with the layer that contains the
rotational matrices. But, equation 10, can be true if α1, α2, α3,
and α4 are all equal to zero. Or, equation 10, can be true when
r1 is 0, which means that we are learning rotational layer with
0 degree rotation, a contradiction. This implies, that rank of
the set of vectors, ~Iv , ~T fwd

i , ~T bkwd
i and ~Ty−shift has a value

one more than rank of Layeri, so, matrix representation of
~Ty−shift will be either appended to another layer or will be
assigned a new layer.

As a result, we have proved that to calculate rank of
Layeri we need three vectors, viz., vector of identity matrix
(~Iv), forward transformation matrix (~T fwd

i ) and backward
transformation (~T bkwd

i ). �

F. Arrangement of transformation layers

The preceding sections described an algorithm that detects
new transformations and later assigns them to appropriate,
linearly independent layers. Another important part that needs
to be discussed is how these layers have to be arranged so that
the proposed MSC is able to learn the transformations in a
way that is similar to how the human visual system behaves.

As shown in figure 1, when an input image appears, MSC
first performs translation on it, followed by rotation, and then
scaling. In biological sense, eyes will first saccade to the
location of the object through translation, then rotate it and
scale it so that input image matches the image in the memory.
As presented in [18], when humans look at an image, the
visual system uses rapid eye movements (saccades) to actively
scan the image. During these movements their eyes fixate
on interesting or invariant parts of the image. Because the

central part of the retina, the fovea, has a higher resolution
than surrounding areas, the invariant locations are examined
with high precision, because the entire picture is not processed.
Hence, the human eye tends to learn scaling and rotational
transformations first because the eye quickly saccades to the
invariant positions for these two transformations. As the object
moves closer to the periphery of the vision, the human eye
starts learning about the translational transformations so that
eye can later saccade to the interesting portions of the object.

Furthermore, visual acuity is initially poor, and hence best
suited for learning the scaling transform, e.g. as the infant’s
mother’s face approaches and recedes. Acuity improves rapidly
during the first six postnatal months [19], gradually providing
enough resolution to support learning of rotation of familiar
objects, and eventually translation, as peripheral vision pro-
vides enough acuity to sustain temporal association for objects
as they move to and from the receptive field periphery.

IV. RESULTS

The proposed SL-MSC algorithm was simulated in MAT-
LAB. For detecting new transformations and new input images,
SURF feature extraction technique was used, which is a part
of MATLAB’s computer vision toolbox [20]. SURF was used
to get the matching feature descriptors present in input image
and corresponding reference memory image. Based on these
feature descriptors, the required affine transformation was
learned using the formula presented in equations 2 and 3. The
algorithm was implemented on thirty different objects from
ALOI dataset [21] as shown in figure 3. ALOI dataset consists
of images that have varying illumination direction, illumination
color and object viewpoint for real world objects. Since MSC
requires sparse data representation, edge-detection in pre-
processing step was implemented using the steps mentioned
in [22].

Table I. AFFINE TRANSFORMATIONS FOR WHICH SL-MSC WAS
TRAINED

Affine transformation Values

Scaling factor 0.6, 0.8, 1.2 and 1.6
Rotation Clockwise and counter-clockwise 15◦, 30◦, 45◦, 60◦,

75◦ and 90◦.
x-translation five along positive x-direction and five along negative

x-direction.
y-translation five along positive y-direction and five along negative

y-direction.

To train the proposed SL-MSC, those images from ALOI
dataset are selected that do not have any variations in il-
lumination direction, illumination intensity and orientation,
shown in figure 3. To train the proposed architecture for
affine transformations, sequences of image frames were used,
that were created in Adobe photoshop [23]. These training
images had undergone only one transformation, i.e., the input
images were either scaled, rotated or translated, and never
a combination of two or more transformations. To get the
architecture as shown in figure 1, SL-MSC was first trained
with scaling, followed by rotation and finally translation. It was
trained for 26 different affine transformations as shown in table
I. These image frames are meant to simulate the environment
where a human eye learns new objects and transformations
by continuously saccading to moving objects and later use
combination of these learnt values to identify transformations
and objects.



Figure 3. ALOI images that were used to train and test the proposed SL-MSC

Figure 4. Represents the case when a horizontally translated duck image
was given as input to SL-MSC. (a), (b) and (c) Show the scenario where SL-
MSC is trying to get the memory image converge to a solution so that the
result matches with the input image. (h), (i) and (j) Show the scenario where
SL-MSC is trying to get the input image converge to a solution so that the
result maps to one of the memory reference images. After SL-MSC learns
the necessary transformation it restarts and tries to match the two images. (d),
(e), (f) and (g) show the steps where memory reference images converge to
a solution that is similar to the input image. Similarly, (k), (l), (m) and (n)
represent the steps where input image converges to a solution that maps to
the smiling duck image stored in memory template.

Figure 5. The white car image was used to test the proposed SL-MSC. (a)-(d)
show the steps where memory reference template converges to a solution to
exactly match the input image. Similarly, (e)-(h) show the steps where input
image converges to a solution to exactly match the memory reference template.

The proposed algorithm was tested by randomly selecting
an object from ALOI dataset that we had used to train our MSC
and applying random combinations of affine transformations
on it. We also used different variations of ALOI dataset
objects to test whether SL-MSC is able to converge to correct
solution even though there is different illumination direction,
illumination intensity and orientation applied on the object.
Threshold parameters that were set while training and testing
SL-MSC have been summarized in table II.

Figure 4 shows the case when SL-MSC was not able to
find the object and learned the required transformation to map
input image to the memory reference image. Figure 5 shows
the case when input image is present in the memory and SL-
MSC converges to the correct solution after all the necessary
transformations have been learned.

The results obtained after using the images from ALOI
dataset suggest that SL-MSC is invariant to changes in illu-
mination temperatures. Plots of figure 6 show the percentage
of number of objects that SL-MSC was able to recognize
under varying illumination directions. Figure 6 also shows the
setup of the experiment conducted under ALOI dataset [21]
to observe variation of illumination direction on real world
objects. The object was kept on a rotating table and 5 light
sources were mounted on a light bow that is perpendicular
to the plane of the table. The five light sources were kept
at angles -30◦, -60◦, 0◦, 60◦, and 30◦, respectively, on the
light bow. l1, l2, l3, l4, and l5 represent the case where
exactly one light source was on. Lighting condition l6 means
that lights l1 and l2 were on and l7 means that lights l4
and l5 were on. In case of l8, all of the five lights were
illuminating the object. The images of objects were taken
with cameras kept at three different azimuthal angles, viz.,
c1 (0◦), c2 (-15◦), and c3 (-30◦). As stated earlier, MSC
relies on sparse data representation to match the input object
with the stored memory templates, thus, edge detection while
performing image pre-processing becomes an important step.
If the edge detection algorithm is not able to detect the proper
edges of the input object either due to illumination differences
or due to low brightness of colors, SL-MSC fails to converge
on a correct solution. As observed from figure 6, since camera
c3 is in front of the object and l1 and l2 light sources are
behind the object, significant amount of lights gets cut off. As
a result, a considerable portion of objects were not visible for
ALOI conditions l1c3, l2c3 and l6c3, and edges of the object
are not properly detected. As the light source l5 is closer to
the object and camera c3, images are able to capture complete
shape of the object, hence, SL-MSC gives 100% recognition
since it is able to detect all of the edges of the object.

Table II. THRESHOLD PARAMETERS AND THEIR VALUES FOR SL-MSC

Threshold parameter Value of the parameter

Edge Detection (Prewitt Algorithm in MATLAB) 0.012
Tunable parameter for competition functions 0.5
Tunable parameter for detecting new transforma-
tion or object (c in eqn. 4)

0.1

V. CONCLUSION

SL-MSC proposes an algorithm of how a human visual
system might be able to find the mappings between the brain
and the eye to match the input images with the images stored in
the memory, by looking for the correct set of transformations
and pruning out all of the other transformations. In this article
we have presented how a human visual system might be able
to learn the set of invariant transformations given the visual
stimuli that we get bombarded with when we open our eyes.
The main contributions of this paper are as follows:-

1) The proposed SL-MSC algorithm provides us with an



Figure 6. This graph shows the percentage of objects that SL-MSC can
detect when illumination directions on the objects in varied. l1, l2, l3, l4 and
l5 represent the case where only one of the 5 lights was on. In l6 lights l1
and l2 were on, whereas in l7, lights l4 and l5 were on and in l8 all of the 5
lights were on.

intuitive sense of how we learn invariant transformations.
The visual system learns about new objects by saccading
to the interesting features present in it. As the objects move
in space, the spatial location of features in the object will
also change. Therefore, the visual system would learn the
transformation required to map the spatially transformed
object to the temporally correlated reference objects present
in its memory.

2) Once the visual system has learnt the invariant trans-
formations, these transformations will be remembered in
the memory and will be referred to again for mapping
different objects to the corresponding reference objects in
the memory.

3) The human eye is able to map independent transforma-
tions in separate layers; using linear algebra MSC can do
the same by allocating independent functions to separate
layers.

4) The arrangement of invariant transformations in the MSC
is based on the higher resolution present around the fovea
of the human eye and the movement of objects along
the periphery of human vision, as well as evidence for
improvement of visual acuity over the first six post-natal
months of development [19].

Since the proposed algorithm uses simple matrix alge-
bra to learn new transforms, instead of a Hebbian learning
mechanism, it can be easily and efficiently implemented on
conventional computing hardware to emulate the development
and function of the human visual system. Future work will in-
vestigate thorough comparison of SL-MSC with object recog-
nition algorithms and neural implementations of the proposed
learning rules, along the lines suggested in [12].
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