1174

IEEE TRANSACTIONS ON COMPUTERS, VOL. 50, NO. 11,

NOVEMBER 2001

Silent Stores and Store Value Locality

Kevin M. Lepak, Student Member, IEEE, Gordon B. Bell, Student Member, IEEE, and
Mikko H. Lipasti, Member, IEEE

Abstract—Value locality, a recently discovered program attribute that describes the likelihood of the recurrence of previously seen
program values, has been studied enthusiastically in the recent published literature. Much of the energy has focused on refining the
initial efforts at predicting load instruction outcomes, with the balance of the effort examining the value locality of either all register-
writing instructions or a focused subset of them. Surprisingly, there has been very little published characterization of or effort to exploit
the value locality of data words stored to memory by computer programs. This paper presents such a characterization, including
detailed source-level analysis of the causes of silent stores, proposes both memory-centric (based on message passing) and
producer-centric (based on program structure) prediction mechanisms for stored data values, introduces the concept of silent stores
and new definitions of multiprocessor false sharing based on these observations, and suggests new techniques for aligning cache
coherence protocols and microarchitectural store handling techniques to exploit the value locality of stores. We find that realistic
implementations of these techniques can significantly reduce multiprocessor data bus traffic and are more effective at reducing
address bus traffic than the addition of Exclusive state to a MSI coherence protocol. We also show that squashing of silent stores can
provide uniprocessor speedups greater than the addition of store-to-load forwarding.

Index Terms—Value locality, value prediction, store optimization, false sharing, cache coherence.

1 INTRODUCTION

flurry of recent publications have examined the

program attribute of value locality. Value locality
describes the likelihood of recurrence of previously seen
program values within computer storage locations. Most of
this work has focused on exploiting this property to
accelerate the processing of instructions within a super-
scalar processor, with the goal of exposing greater instruc-
tion-level parallelism and improving instruction
throughput. In fact, value locality makes it possible to
exceed the classical dataflow limit, which is defined as the
program performance obtained when machine instructions
execute as soon as their operands are available. Indeed,
value locality allows instructions to execute before their
operands are available by enabling the prediction of the
operand values before they are computed. As a few
examples of recent work, value prediction has been
proposed and examined for the purpose of reducing
average memory latency by predicting load instruction
outcomes [10], improving throughput of all register-writing
instructions by predicting the outcomes of all such instruc-
tions [11], as well as focusing prediction on only those
computations that help resolve mispredicted branches [7] or
occur on some other critical path [2]. All of these proposed
uses of value prediction share the common goal of
accelerating the processing of instructions within a super-
scalar processor.

o The authors are with the Department of Electrical and Computer
Engineering, University of Wisconsin, Madison, WI 53706.
E-mail: {lepak, gbell}@cae.wisc.edu, mikko@engr.wisc.edu.

Manuscript received 5 Dec. 2000; revised 25 May 2001; accepted 31 May
2001.

For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number 114257.

The work described herein proposes a different
approach for exploiting value locality. Rather than focusing
on predicting the values that are fetched from memory via
load instructions or that are computed within the processor
with register-to-register ALU instructions, we instead focus
on the values that are generated by all this activity and are
ultimately written back to memory as the results of the
computation. As one might expect, since input memory
operands and intermediate ALU computations are quite
predictable, the output values appear to be as well. Initial
studies indicate that a considerable degree of value locality
exists in this output operand stream and that significant
potential exists for streamlining the handling of write
operations to reduce memory traffic, simplify store-hand-
ling microarchitecture, and gain performance benefit [13],
[17], [18], [19]. This paper classifies store instructions that
exhibit value locality into two main categories: update-silent
stores (or simply silent stores) and stochastically silent stores.
The former—update-silent stores—are store instructions that
truly are silent, that is, they have no effect on the state of the
system since they are writing a value that is identical to the
one that already exists in memory. The latter—stochastically
silent stores—are store instructions that are not update silent
(that is, they write a value that differs from the value that
exists in memory), but we deem them to be interesting since
they store a value that is predictable by some well-known
value prediction scheme.

The purpose of the work presented in this paper is to
examine opportunities for exploiting value locality to
accelerate and streamline the processing of store instruc-
tions. Specifically, we introduce the notion of update silent
stores and examine the value locality of stochastically silent
stores from both memory-centric (data-address-based value
prediction) and producer-centric (store instruction-based
value prediction) viewpoints (Section 2); identify, classify,
and characterize silent stores (Section 3); examine the

0018-9340/01/$10.00 © 2001 IEEE

LEPAK ET AL.: SILENT STORES AND STORE VALUE LOCALITY

1175

TABLE 1
Store Value Locality Measurements for Various Benchmarks

Benchmark | Description Silent Stores PSSVL (PPC) MPSVL (PPC)

(PPC/SS) | (LastVal/Stride) | (LastVal/Stride)
go SPEC95 game 38%/27% 30%/32% 36%/39%
m88ksim SPEC95 simulator 68%/62}, 56%/60% 65%/70%
gece SPEC95 compiler 53%/46% 37h/39% 49%/52%
compress | SPEC95 compression 42Y,/39% 35%,/65% 16%/47%
1i SPEC95 lisp interpreter 347%/20% 32%/39% 347%/43%
ijpeg SPEC95 image compression 43%/33% 52%/61% 46%/50%
perl SPEC95 language interpreter 497,/36% 39%/41Y, 42%,/447,
vortex SPEC95 object database 647/55% T14/72%, 577/58%
tomcatv SPEC95 vectorized mesh generation 47%/33% 40%/50% 45Y%,/55%
swim SPEC95 shallow water equations 34%/26% 20%/23% 19%/21%
mgrid SPEC95 3D potential field 23%/ T 24%/26% 17%/19%
applu SPEC95 partial differential equations 37%/35% 35%/37% 28%/31%
apsi SPEC95 weather prediction 21%/25% 22%/23Y% 20%/22%
fpppp SPEC95 Gaussian quantum chemistry 15%/15% 15%/16% 14%/15%
waveb SPEC95 Maxwell’s equations 25%/22% 30%/32% 20%/24%
oltp 4proc in-memory TPC-B w/RDMBS 56% 52%/56% 45%/51%
tpc-w 4proc TPC-W shopping mix 53% 53%/57% 42%,/46%
specweb 4proc SPECWEB99 467, 39%/41% 38%/41%
specjbb 4proc SPECJPP2000 Java benchmark 37% 49%/51% 31%/33%
barnes 4proc SPLASH-2 N-body simulation 40% 27%/ 27% 38%/43Y
ocean 4proc SPLASH-2 Ocean simulation 41% 41%/43% 36%/39%
raytrace | 4proc raytrace with teapot input set 30% 34%/37% 40%/45%

implications of update silent stores on microarchitectural
techniques for handling store instructions (Section 4);
introduce the notion of critical silent stores (Section 5);
introduce and quantify two new definitions of multi-
processor true sharing [4] based on store value locality
(Section 6); and explore the potential for reducing multi-
processor data and address traffic (Section 7). Our initial
results in all of these areas—many of which were published
earlier [17], [18], [19]—are promising and should encourage
and motivate further study of this topic.

2 THE VALUE LOCALITY OF STORES

In order to better understand the value locality of
stochastically silent store data values, we measured the
store value locality program property from two different
perspectives, which we call program structure store value
locality (PSSVL) and message-passing store wvalue locality
(MPSVL), as introduced in [18]. Program structure store
value locality measures the locality of values written by a
particular static store and is analogous to the value locality
reported for loads and other register-writing instructions in
prior work (e.g., [10]). In contrast, message-passing store
value locality measures the locality of values written to a
particular address in data memory (i.e., messages passed
through memory). Most of the prior work on value locality
has focused on program structure-based prediction since
there is very little to be gained by predicting load values
once their addresses are known (it is usually just as fast and
nonspeculative to access cache memory directly, with the
exception of data items that miss in the cache). Two

counterexamples that study message-passing value locality
are Mendelson and Gabbay’s [12], which studies the value
locality of instructions based on destination register
identifier, and Calder et al.’s [3], which studies load value
predictability based on memory address.

We examined the 15 uniprocessor and seven multi-
processor benchmarks described in Table 1. The uni-
processor silent store statistics were gathered under two
instruction sets (PowerPC and SimpleScalar) using their
respective compilers, runtime environments, and simula-
tors. The store value locality and store silence measure-
ments (columns 3-5) were collected for the PowerPC
instruction set with the SimOS-PPC full system simulator
[9], while the silence statistics for the uniprocessor
benchmarks (column three) were also collected using
Simplescalar [28]. The SPLASH-2 benchmarks [1] are
widely used and understood and are included for con-
tinuity with previous work. The oltp benchmark employs 12
concurrent streams of TPC-B transactions [16] operating on
an in-memory database stored in a commercial relational
database management system (RDBMS), the TPC-W bench-
mark is modeled after an online bookstore; the SPECWEB99
benchmarks models a web server satisfying static and
dynamic http requests [21], and SPECJBB2000 is a new Java
server benchmark [22].

Table 1 reports the program structure store value locality
(PSSVL) and message-passing store value locality (MPSVL)
for each benchmark, as well as the fraction of stores
executed by each program that are silent. A silent store is
defined as one that does not change the system state. In
other words, the value being written by the store matches

1176

go meBksim gec compress I ijpeg perl

Fig. 1. Program structure store value locality. Dynamic store breakdown
is shown for 1K, 2K, 4K, 8K, 16K, 32K, and 64K entry predictor tables for
PowerPC.

the exact value already stored at that memory location. This
program characteristic can be viewed as the upper limit for
message-passing store value locality that relies on a tagged
last value predictor. More complex predictors, such as the
stride predictor we use, are able to exceed this limit.
Because of the existence of these more complex predictors,
and also the many possible methods of describing store
value locality (PSSVL and MPSVL are two examples), we
also define the notion of stochastically silent stores. Stochas-
tically silent stores change the system state in some
predictable manner. The PSSVL and MPSVL results shown
in Table 1 are derived with a large stride predictor table
with 64K direct-mapped entries; results for smaller pre-
dictor tables are shown in Fig. 1 and Fig. 2 and will be
described shortly.

We attribute the differences in store value locality
between The PowerPC and SimpleScalar instruction sets
(shown in Table 1) to variations in program model, runtime
environment, and compilation technology. For example,
efficient register allocation can cause a large difference in
the frequency and character of store instructions. We used
the gcc and g77 compilers for Simplescalar; the PowerPC
benchmarks were compiled with the IBM AIX optimizing C
and Fortran compilers. An additional explanation for the
variations observed is that the PowerPC statistics were
collected from a trace and, hence, include only retired
instructions, while the SimpleScalar statistics include spec-
ulative instructions on wrong branch paths.' However, it is
interesting to note that, with only one exception (apsi), the
percentage of silent stores in the PowerPC environment is
higher than the SimpleScalar environment, leading us to
believe that silent stores cannot simply be ascribed to
inferior compilers, as in the case of Simplescalar. We do not
explore this difference in greater detail in this work.

Fig. 1 shows PSSVL for various predictor table sizes. For
each benchmark, from left to right, the stacked bars account
for store value locality for predictor tables of size 1K, 2K,
4K, 8K, 16K, 32K, and 64K entries. The prediction tables are
indexed and tagged with the store program counter value
and are capable of capturing last value locality as well as
unit stride sequences [8]. Each dynamic store instance is
counted in one of five categories, which correspond to the

1. Of course, the speculative stores are not retired into the memory
system; we only indicate here that our statistic gathering code included
speculative stores, as is possible in an execution driven simulator.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 50, NO. 11,

NOVEMBER 2001

go mBBksim gec compress i ipeg perl vorex OLTP bames ocean
Fig. 2. Message-passing store value locality. Dynamic store breakdown
is shown for 1K, 2K, 4K, 8K, 16K, 32K, and 64K entry predictor tables for

PowerPC.

five elements of the stacked bar: Misses, in which case the
store does not find a matching entry in the table; DiffAddr/
WrongVal, in which case the store is to an address that
differs from the address of the previous instance of that
static store and the value written does not match the table’s
prediction; SameAddr/WrongVal, in which case the store is
to the same address as the previous instance but writes a
value that does not match the prediction; SameAddr/
RightVal, in which case the store is to the same address and
writes the predicted value; and DiffAddr/RightVal, in
which case the store is to a different address but writes the
predicted value. The cumulative predictability of store
values ranges from a low of 27 percent for barnes to a high of
72 percent for vortex. Since there is a significant population
of stores in each category, no clear correlation exists
between address variability and store value variability.

Fig. 2 shows the message-passing store value locality for
the same predictor table sizes (1K, 2K, 4K, 8K, 16K, 32K, and
64K entries). In this case, the tables are indexed with the
physical data address being written by the store and each
dynamic store instance is counted in one of five categories:
Miss, as above; DiffPC/WrongVal, in which case a static
store that is not the last one to write to this address (a
different static store) writes a value that does not match the
prediction; SamePC/WrongVal, in which case the same
static store writes a value that does not match the
prediction; SamePC/RightVal, in which case the same static
store writes the predicted value; and DiffPC/RightVal, in
which case a different static store writes the predicted
value. Here, the cumulative predictability ranges from a
low of 39 percent for go to a high of 70 percent for m88ksim.
Again, there is no obvious correlation between the identity
of the writer (static store) and store value variability since
significant populations of stores exist in each category.
Here, the table size is more important for most of the
benchmarks as it must capture the data working set—which
is larger than the instruction working set for most of these
programs—in order to be effective.

From the data presented so far, there is no clear answer
as to whether program-structure or message-passing store
value locality is the better choice; there are situations in
which either will outperform the other. We revisit this
question in Section 7, where we explore the effects of store
value locality on multiprocessor bus traffic.

LEPAK ET AL.: SILENT STORES AND STORE VALUE LOCALITY

for (1=0; i<32; i++){
m88ksim.time_left[i] —= MIN(m88000.time_left[i], time_to_Kill);
1

Fig. 3. m88ksim: Frequently, the store in all 32 loop iterations is silent,
allowing the entire loop to be bypassed.

2.1 Identifying Causes of Silent Stores

In order to develop a better understanding of the causes for
store value locality, we shift our attention to a program
source analysis of update-silent stores. This study was
conducted using a profiling infrastructure based on
Simplescalar [28]. As described earlier, update-silent stores
are stores that write a value to a memory location that
already exists there. Given the frequency of silent stores
shown in Table 1, a primary question might be “Why do
silent stores exist at all?” What causes a compiler or
programmer to insert stores that have no effect on the state
of the processor? One explanation lies in the nature of
program generality. Programs are often designed to operate
on a variety of data input sets and, while stores may update
memory contents when executed with some inputs, they
may not with others [25]. Consider an example from the
m88ksim benchmark (Fig. 3).

This instruction continually decrements an array element
by the minimum of itself and the unsigned value
time_to_kill. Clearly, at some point, the value stored in
memory will converge to zero and every subsequent store
to that location will continue to store zero. In the input data
sets included with SPECINT-95, this convergence occurs
quickly and, in over 95 percent of all executions, this store is
silent. Because this particular piece of code is heavily
executed, this single static store is responsible for over half
of the benchmark’s five million dynamic silent stores.

Furthermore, not only is this store frequently silent, but
27 percent of the time the stores in all of the 32 loop
iterations are silent. Thus, if it is known that every element
in the array is zero, the entire loop can be skipped. This
could be exploited in a technique similar to memoization
[23], [24] or dynamic instruction reuse [25], in which the
values of the array are used to index a table whose outcome
conditionally determines if the loop should be executed.
This leads to a substantial savings as not only would the
silent stores be skipped, but also the call to the MIN
function, the subtraction of time_to_kill from m88000.time_
left[i], the loop induction variable calculations and the
backwards branch to the start of the loop. By just skipping
the loop when all array elements are zero, 9.6 million fewer
instructions need to be executed or about 11 percent of the
total dynamic instruction count.

This example leads to four classifications of dynamic
silent stores based on their previous execution (though
similar to the store value locality classifications presented in
the previous section, these are a subset of the general PSSVL
classification and consider only silent stores):

Same Location, Same Value: A static silent store stores
the same value to the same location as the last time it was
executed. This is the case in the eval function from the per!
benchmark in Fig. 4.

Each iteration through this loop processes an argument
and stores the argument’s flags in the stack-allocated

1177

for (anum=1; anum <= maxarg; anum++){
argflags = arglanum].arg_flags;

Fig. 4. perl: Same Location, Same Value.

temporary argflags. Many arguments have arg_flags equal
to zero, thus the store is silent 71 percent of the time.

Different Location, Same Value: A silent store stores the
same value to a different location as the last time it was
executed. This situation often occurs when an instruction is
storing to an array indexed by a loop induction variable,
such as the m88ksim example just presented and the Fig. 5
example from go. The bottom three stores initialize every
location in the arrays that represent the game board to the
same value (zero or, equivalently, FALSE). However, the
stores’” addresses are derived from the loop index and, thus,
are different in each iteration. Often the values on the board
already contain zero (or FALSE), so these three stores are
silent 86 percent, 43 percent, and 77 percent of the time,
respectively.

Same Location, Different Value: A silent store stores a
different value to the same location as the last time it was
executed. The store to Itrscr in Fig. 5 is of this type. Itrscr is a
global variable (thus its location does not change), but
stores a different element (and, thus, a potentially different
value) of the lfr2 array. If another instruction updates Ifr2
between successive executions of this function, the store has
the potential to be silent in the first loop iteration. Although
this store is silent 86 percent of the time, 98 percent of the
time that it is silent consecutive elements of /tr2 are zero and
the store is usually Same Location, Same Value.

Although silent stores of this category are generally rare,
they usually exist due to one of several circumstances.
Many times the silent value was previously stored to
memory by another instruction, corresponding to message-
passing store value locality (MPSVL). More often, Same
Location, Different Value silent stores are caused by
compiler and architecture conventions that dictate how
stack frames are used. For example, when a function is
invoked in a callee-save register convention, it immediately
saves the contents of a predefined set of registers onto its
stack frame (although it does not necessarily have to if it
will not modify those register contents before returning). If
these register contents do not change between calls from
within the same function, each called function will silently
store them onto the same stack frame. Similarly, a function

for (x=xmin; x<=xmax; ++x)
for (y=ymin; y<=ymax; ++y){
s = y*boardsize+x;

ltrser —=1tr2[s];

1tr2[s] = 0;

Itrl[s] = 0;

Itrgd[s] = FALSE;
1

Fig. 5. go: Different Location, Same Value (last 3); Same Location
Different Value (ltrscr).

1178

NODE #**#*xlsave(NODE **nptr, ...){

for (; nptr '= (NODE **)NULL; nptr = va_arg(pvar, NODE **)){

*——xlIstack = nptr;

Fig. 6. li: Different Location, Different Value.

often stores its caller’s frame pointer and its return address
onto its stack frame. Because these values do not change
between successive function calls from the same caller, they
too are likely to be silent. A final case of silent stores of this
category involve architectures that use the stack to pass
function arguments (either by passing arguments explicitly
on the stack or by saving register contents to memory before
using them to pass arguments). A variety of static compiler
optimizations exist that can remove many such stack stores
[30], some of which may be silent. Further discussion of the
compiler’s role in eliminating silent stores appears in
Section 3.3.

Different Location, Different Value: A silent store
stores a different value to a different location as the last
time it was executed. Examples include nested loops that
store a set of values into an array in the inner loop. The
xlsave procedure that saves a set of nodes onto the stack in
the [i benchmark is one such case (Fig. 6). In the first
execution of x/save, each iteration of the loop sets nptr equal
to the next function argument (different value) and
decrements the store address (different location). However,
if subsequent calls to xlsave store the same set of nodes to
the same starting stack address, each store instruction will
be silent (as it is 48 percent of the time).

A store’s probability of being silent based on these
categories is shown in Fig. 7. In all of the benchmarks,
instructions that consecutively store the same value are
more likely to be silent than if they were storing a different
value. An important corollary to this graph is Fig. 8, which
adds instruction frequency information by showing each
silent store category’s contribution to total silent stores.
Because stores that have a high likelihood of being silent are
also executed frequently (this will be shown in Section 3.2),
they represent a significant portion of all dynamic silent
stores. One could imagine using such categories as an aid to
predict if a store will be silent or not early in the pipeline
(and, thus, if a store verify should be performed). Such a
mechanism is not discussed here and remains an opportu-
nity for future work.

3 SILENT STORE CHARACTERISTICS

Having examined causes for silent stores in source code
with numerous examples, in this section, we take a step
back and examine high level characterizing data for silent
stores in the hope that understanding their characteristics
better will aid in exploiting them architecturally.

3.1 Program Phase Characteristics

In order to examine variation due to program phase, we
measured the time domain frequency of occurrence of silent

Percent of Stores That Are Silent

100

IEEE TRANSACTIONS ON COMPUTERS, VOL. 50, NO. 11,

Likelihood of Being Silent (SPECINT-95)

NOVEMBER 2001

@ Same Location
Same Value

B Same Location
Different Value

O Different Location
Same Value

DDifferent Location
Different Value

Percent of Stores That Are Silent

100
90

Likelihood of Being Silent (SPECFP-95)

80

70
60

50 —

40
30
20
10

0
tomcatv

swim mgid applu apsi foppp wawes

I Same Location
Same Value

W Same Location
Different Value

[Different Location
Same Value

[Different Location
Different Value

Fig. 7. Probability of a store being silent as a function of store category.

stores for the PowerPC architecture. This data is plotted in
Fig. 9. With the exception of oltp, which is a snapshot of
steady-state execution, all the benchmarks have a nearly
identical cumulative fraction of silent stores in the first
several hundred thousand stores. We attribute this to the
program loader (this data was collected with a full-system

Percent of Dynamic Silent Stores

100%

80% —

60%

40% —1

20%

0%

& O & Al
‘?3"? ¢ @“‘F

Silent Store Contributions (SPECINT-95)

& & ¢

[CDifferent Location
Different Value

CDifferent Location
Same Value

HSame Location
Different Value

[8ame Location
Same Value

Percent of Dynamic Silent Stores

100% ~

80% —

60% —|

40% —|

20% —

0%

tomeaty swim

mgrid applu apsi fpppp wawes

I Different Location
Different Value

[Different Location
Same Value

B Same Location
Different Value

[Same Location
Same Value

Fig. 8.

Total silent store contributions as a function of store category.

LEPAK ET AL.: SILENT STORES AND STORE VALUE LOCALITY

080 T

m88ksim
vortex

=
=
=

oftp
gce

o ocean |
ijpeg Per

barnes

gli

Silent Stores
[,
o

=
~
=

000 1 | 1
10° 106 10 10

No. of Stores Executed

Fig. 9. Silent Stores vs. Time. Cumulative fraction of silent stores
throughout program execution. Note that the x-axis is on a log scale.

simulator that includes all portions of program execution,
including program load time). Beyond the initial loader
phase, the benchmarks demonstrate noticeable variation in
their behavior. The near-monotonic decrease in /i indicates
that the actual work Ii is doing beyond the load time has
many fewer silent stores than the program loader does.

3.2 Frequency of Execution Related to SVL

Fig. 10 examines a store’s probability of being silent as a
function of how many times it is dynamically executed
under SimpleScalar. It graphs the contribution of additional
static silent stores (in order of decreasing number of total
dynamic silent stores) toward the total number of dynamic

Silent Store Distribution (SPECINT-95)

—— compress
ma88ksim

ijpeg

% of Dynamic Sllent Stores
Ny

0.01 0.1
% of Static Silent Stores

Silent Store Distribution (SPECFP-95)

100 - ——
o 7
/

@ 80
g . mgrid

70
@ ——applu
5 60 v wave5
‘g 56 swim
E apsi
g oppp
s p tomcatv
®

0.01 0.1 1 10 100
% of Statlc Sllent Stores

Fig. 10. Total silent stores as a percentage of static silent stores (note:
the benchmark order in the legend matches the order when the x-axis is
at 1 percent.

1179

Likelihood of Being Silent by Memory Region (SPECINT-95)

100%

8
§ 80% [heap non-silent
. = CJheap silent
5 60% [stack silent
§~ I stack non-silent
5 40%
€
8 20%
o
a
0% ' '
& o & A D o
Ry & &
5

Likelihood of Being Silent by Memory Region {SPECFP-95)

100%

90% —
g 80% T |Oheap non-silent
f 70% Mheap silent
E 60% i stack silent
£ 50% — | W stack non-silent
§ a0% —
t 30% Il
8 2%
& 10%
0% T T
5 & & » & o
DL & &
¥

Fig. 11. Silent stores categorized by memory region.

silent stores in each benchmark. Note the log scale on both
axes. In all of the integer cases, less than 25 percent of all
static silent stores contribute over 90 percent of the total
silent stores dynamically executed. The floating point
benchmarks exhibit a similar, though not as dramatic,
distribution. In certain benchmarks (such as mgrid and
compress), 1 percent of static silent stores contribute over
70 percent of dynamic silent stores. This uneven distribu-
tion of silent store contribution across a variety of programs
reveals that elimination (or at least modification) of even
only a few static stores can have a significant impact on
silent store reduction. Static techniques for removing these
few, frequently silent stores seem appropriate and we leave
such methods for future work.

3.3 Stack/Heap SVL

Most architectures have a distinct way of dividing memory
areas into a stack and heap region. We examined whether a
store was more likely to be silent depending on which
portion of memory it was to, hoping to gain some insight as
to whether function parameters or some other “local”
variables were more likely to be silent than heap-allocated
data. In SimpleScalar, the stack begins at the largest address
of memory and the heap begins at the smallest. We counted
stack and heap references by choosing an address threshold
(one billion) and counting separate silent store statistics for
instructions that generated effective addresses above and
below this threshold. The results are shown in Fig. 11.

In general, little variance exists between benchmarks in
how likely a store to the stack is of being silent. This
suggests that there are specific attributes of how the stack is
used by architectures and compilers that dictate silent
stores (for example, callee-saving register values, saving
return addresses, and parameter passing between func-
tions). Because the percent of stack stores that are silent is

1180

nontrivial in most of the benchmarks (typically 25-50
percent with the exception of mgrid and strongly correlated
to the overall utilization of the stack in a given benchmark),
it seems likely that modifications in the way that the
compiler manipulates stack frames could eliminate a
substantial number of silent stores. Conversely, the bench-
marks exhibit high variability in the percent of heap stores
that are silent. Sometimes there are far more nonsilent than
silent heap stores, while other times the reverse is true. This
can be explained by the fact that virtually all heap accesses
are programmer directed—the compiler does not transpar-
ently manipulate it as it does to the stack. Thus, the notion
of whether a heap store is silent is largely algorithmic and,
so, varies greatly between programs. We also see from
Fig. 11 that the breakdown of total stack and heap stores
differs across the benchmarks. Control-intensive programs
with many function calls (such as gcc) have many stack
stores due to their large number of stack frame allocations,
while programs that operate on large heap-allocated data
sets (such as compress and many floating-point applications)
do not. Additionally, many data structures can be stack or
heap-allocated and the decision of which differs among
programmers and applications.

4 IMPROVING STORE HANDLING
MICROARCHITECTURE

Now that we have introduced the concept of silent stores
and have examined their occurrence in programs, can we
find a way to exploit them at the microarchitectural level?
In this section, we outline some microarchitectural struc-
tures that may be enhanced by exploiting the fact that many
stores are silent and explore initial experimental results
under SimpleScalar [28]. For the entirety of the micro-
architecture discussion, the term “silent store” refers only to
update-silent stores—those which make no change to the
system state because the value they write already exists at
that memory location. These seem intuitively easiest to
exploit with little microarchitectural complication. We will
explore possible benefits of stochastically silent stores in
Section 7. For the microarchitectural discussion, we con-
sider only a weakly consistent uniprocessor memory model
that enables aggressive removal of silent stores.

4.1 Core Microarchitecture and Memory Hierarchy

Enhancement
In many modern microprocessors, memory performance is
a bottleneck, even with the latency tolerance that out-of-
order processors provide. Hence, improving performance
of the memory access path is the subject of much research.
Enhancements to this path within the processor core itself,
including store to load forwarding, hoisting of loads past
previous stores, nonblocking caches, and deep load/store
buffers have been used to improve system performance
[14]. However, these performance enhancements can lead to
increased cycle time due to the size and versatility of
content addressable memory system required to maintain
program correctness due to address ordering requirements
in the architecture. We assert that silent store squashing
(removing silent stores from program execution) may allow
a designer to obtain greater performance from existing

IEEE TRANSACTIONS ON COMPUTERS, VOL. 50, NO. 11,

NOVEMBER 2001

memory ordering structures or a reduction in size or
complexity of these structures (which we herein refer to as
the load /store queue, or LSQ) because of the relative benefit
of squashing.

Squashing can provide performance benefit because
squashed silent stores can be physically removed early
from the LSQ, effectively making the LSQ larger. This
removal can occur because the stores are not updating the
memory image, therefore, any subsequent loads will obtain
the correct value from a previous store or from the cache,
discounting this silent store.” Early removal of entries from
the LSQ (and, possibly, the instruction control unit) can also
decrease pressure on the commit logic. It also has the
obvious effect of easing store unit and write buffer
(locations used to hold committed but uncompleted stores)
pressure. The mechanism we use to squash silent stores
(covered in detail in Section 4.2) has the added benefit of
prefetching store misses into the L1-D cache before the store
commits, reducing the load-to-use latency for subsequent
reads of the line and also reducing the occupancy in write
buffers, even for nonsilent stores. The fact that many stores
are silent has also been exploited to more aggressively allow
loads to bypass earlier, aliasing, stores without needing to
forward data explicitly from the aliasing store because it is
silent [27].

However, squashing may negatively impact the LSQ due
to the necessity of verifying each store before we can squash
it (the simple mechanism we employ in these experiments is
covered in Section 4.2).

Silent store squashing can also benefit a uniprocessor
system memory hierarchy by reducing the number of dirty
cache lines and, hence, the number of writebacks. The
removal of writebacks can increase system performance and
lower pressure on writeback buffers. Writeback traffic has
been shown to be important in emerging classes of
streaming applications in uniprocessor systems [26].

4.2 Silent Store Removal Mechanisms

We implement two store squashing mechanisms to evaluate
a realistic implementation and also a theoretical limit for
our machine. We refer to these as realistic and perfect.
Realistic Method: Each store is converted into a store
verify, which is effectively three operations—a load, a
comparison, and the subsequent store (if the store is
nonsilent). The store verify is initiated after the effective
address has been computed in the execution engine and all
previous store addresses are known so that possible store
address unknown dependencies need not be considered
[14]. When the data returns from the memory subsystem, it
is compared to the new value to be written. If the data
values are equal, the store is update-silent and it is removed
from the LSQ and the store entry in the RUU is flagged to
indicate the store is silent. When the store reaches commit,
if it is not flagged as silent, a store port and write buffer are
obtained and the write occurs to the memory system as it
would normally. If the store is silent, the store retires with

2. We assume a weakly consistent system. This statement may need to be
qualified in less relaxed consistency models to maintain valid memory
ordering. This qualification is beyond the scope of this work.

LEPAK ET AL.: SILENT STORES AND STORE VALUE LOCALITY

1181

TABLE 2
Update-Silent Store Squashing Effect on L1 Wrtiebacks

Number of writebacks (), reduced relative to baseline case)

Benchmark || Baseline | Realistic/L1 | Realistic/L1+L2 |Realistic/L1+L2+M| Perfect
go 34175 | 33656 (1.5%) | 30611 (10.47%) | 29308 (14.2%) | 29354 (14.1%)
m88ksim 23877 | 23863 (0.0%) | 23768 (0.4%) | 10134 (67.6%) | 10133 (57.6%)
gee 68833 | 61240 (11.0%) | 56934 (17.3%) | 53693 (21.6%) | 53628 (22.1%)
compress 370569 | 353172 (4.7%) | 1562953 (58.7%) | 147557 (60.2%) | 147582 (60.2%)
1i 1896 | 1953 (-3.0%) | 1913 (-0.9%) | 1830 (3.5%) | 1852 (2.3%)
ijpeg 51853 | 51848 (0.0%) | 49702 (4.1%) | 44548 (14.1%) | 44337 (14.5%)
perl 8723 | 8517 (2.47%) | 8374 (4.0%) | 7990 (8.4%) | 7949 (8.9%)
vortex 377852 | 375470 (0.6%) | 312052 (17.4%) | 71742 (81.0%) | 71712 (81.0%)

The ‘“realistic” columns show results of squashing store hits to different levels of memory (“L1” indicates we verify only L1 store hits, “L1+L2”

indicates we verify L1 and L2 store hits, eftc.).

no memory access and no side effects, except that it
consumes a commit slot.

Perfect Method: Store squashing occurs in the same
manner as above, except it is known by some mechanism
that the store is silent and, hence, the verification is
performed only for the known silent stores. Nonsilent
stores execute as normal with no store verify. This
method is meant to illustrate the performance obtained
with a perfect prediction mechanism for update-silent
stores. The store verify is still carried out for the
predicted silent stores because, in reality, no confidence
mechanism can ever be perfect—hence validation of the
prediction must still be done.

4.3 Machine Model

To determine the performance effect, if any, of an initial
implementation of squashing, we used an execution driven
simulator of the SimpleScalar architecture [28]. In order to
model the increasing demands on a memory subsystem, we
used a very aggressive out of order design. The configura-
tion of the execution engine is eight issue; 64 entry RUU;
GShare branch predictor with 64K entries, 16 bit global
history; six integer ALUs; two integer multipliers. The cache
configurations are 64KB each split I/D L1 and 512KB
unified L2 with pipelined access and latencies of 2, 8, and 50
clocks for the L1, L2, and main memory, respectively. The
I-cache is 2-way associative with a line size of 64 bytes; the
D-caches are 4-way associative with line sizes of 32 and
64 bytes, respectively. When store to load forwarding is
enabled, it has a latency of two clocks to match the L1 cache
latency. There are four write buffers (which hold committed
but uncompleted stores) and four writeback buffers. A fully
pipelined, scheduled, 16 byte wide interface between the L1
and L2 caches is modeled, including an extra cycle for bus
turnaround.

The core has three general purpose load/store ports with
no address restrictions on parallel loads/stores. All stores
start their associated store verify (described in Section 4.2)
at issue, but, if the store reaches commit before it can be
verified, it is assumed to be nonsilent and either enters a
write buffer (if one is available) or commit is stalled. Not
waiting for store verifies foregoes some opportunities for
writeback reduction (explained in Section 4.4.1), but can
help overall instruction throughput because the store is

allowed to leave the instruction window immediately and it
need not wait until the store verify completes. This was
determined to be the best policy experimentally for the
benchmarks presented here. It is possible to do this
squashing at some other level in the memory hierarchy
(or have special hardware outside of the instruction
window to do the verifies), but this was not implemented
in our simulator. Therefore, the IPC results when verifying
cache missing stores are slightly pessimistic and do not
reflect the best possible performance.

4.4 Results

4.4.1 Writeback Reduction

In Table 2, we show the writeback reduction obtained by
squashing and allowing store verifies to complete to
different levels of memory hierarchy for both realistic and
perfect squashing. Note that, in contrast to the machine
model presented in Section 4.3, in order to show maximal
writeback reduction in these results, we allow all store
verifies to complete regardless of their location in the
memory hierarchy. All other machine parameters are
unchanged.

We see from Table 2 that squashing can yield a
significant reduction in writebacks, depending on the
benchmark and the memory hierarchy level to which we
allow verifies. We see a range in reduction from 81 percent
(in vortex) to 0 percent (or small negative values in /i, which
we attribute to second-order LRU policy effects). The
average for all benchmarks is a 33 percent reduction.

We also see that squashing in the L1 cache only doesn’t
significantly reduce the number of writebacks (the max-
imum reduction is 11 percent in gcc, all others are less than
5 percent). This indicates that lines in the L1 cache are
sufficiently active such that they are stored to at least once
nonsilently, necessitating a writeback anyway.

However, there is a substantial reduction in writebacks
when squashing to other levels in the memory hierarchy—
all reductions are greater than 14 percent when verifying
into memory (with the exception of li and perl, which have
very few writebacks to start with). This can be partially
explained by the observation that the probability of a store
miss creating a dirty line in the L1 cache if we don’t verify it

1182

3. LsQ=32

ﬁ mLSQ=16
25 mLSQ=8

gz
°
215
3
”5, 1
0.5
0
% % 9%, %, & % s, 4, K
"%@ %, B oy, %

Fig. 12. SPECINT Performance with Store Squashing. For each
benchmark, the left three bars show performance without store
forwarding, while the right three bars show performance with store
forwarding. The three bars in each group show baseline IPC, IPC with
realistic store squashing, and IPC with perfect store squashing.

is 100 percent, but, if we verify the miss, the probability is
less than 100 percent.

Finally, it is worthwhile to note that the realistic results
with L1, L2, and memory squashing are essentially the
same as the perfect results, with the minor differences
attributable to second order LRU policy effects, agreeing
with the intuition that performing the store verify for
nonsilent stores (which is done in the realistic case)
should not affect the number of writebacks. Some similar
results for writeback reduction were presented in a study
by Molina et al. [13].

4.4.2 |Instruction Throughput

We now turn our attention to the effect of squashing on
instruction throughput and compare it to store to load
forwarding as a performance enhancing mechanism.

In Fig. 12, the three lefthand bars in each group represent
performance with no store forwarding (SF) and the right-
hand group represents performance with store forwarding.
Within each group, the bars represent (from left to right)
baseline performance, realistic squashing performance, and
perfect squashing performance. The subdivisions within
bars indicate different LSQ sizes. We can see in Fig. 12 that
in only one case does realistic silent store squashing
decrease performance in our processor model (li with SF,
LSQ = 32), even with the added store verify operations. We
attribute this slight performance degradation in /i to added
contention for memory ports caused by store verify
operations with relatively little benefit due to the low
percentage of silent stores in this benchmark, 20 percent.

More interestingly, we see in m88ksim, compress, ijpeg,
and vortex better performance for an LSQ size of 16 and
realistic squashing vs. LSQ size of 32 and no squashing;
better performance for half the LSQ size. In vortex, the gains
are 16 percent and 13 percent for no SF and SF, respectively.
In the other benchmarks, the effect of squashing is less
dramatic, but realistic squashing generally performs better
than SF for equivalent LSQ sizes (except for go, where the
IPC is fairly constant and not memory limited, perl, which
obtains 12 percent speedup from SF alone with an LSQ size
of 32, and i, as explained previously).

Comparing realistic squashing with perfect squashing,
we see an interesting occurrence in compress, namely,

IEEE TRANSACTIONS ON COMPUTERS, VOL. 50, NO. 11,

NOVEMBER 2001

realistic squashing outperforms perfect squashing by nearly
1 percent (SF, LSQ = 32). While this difference is small in
absolute terms, it shows that squashing silent stores can
have other second-order benefits besides affecting only
structures meant for handling stores. We attribute this
difference in compress to the prefetching effect realistic
squashing has for nonsilent stores. However, there is one
case where perfect squashing performs measurably better
than realistic squashing: In i the difference is approxi-
mately 3 percent (no SF, LSQ = 32) due to reduced port
contention in perfect squashing.

Over the range of benchmarks for LSQ size of 32, we see
speedups of 6.5 percent for realistic and perfect squashing
with SF over the baseline with SF (7.0 percent and
7.4 percent, respectively, for each without SF over the
baseline without SF.) In vortex, we see a speedup of
41 percent—due mostly to a 60 percent reduction in the
number of cycles the LSQ was full and a 65 percent
reduction in the number of cycles commit was stalled due to
full write buffers. Of course, as evidenced in Fig. 12, SF
always provides some additional benefit along with
squashing because not all stores are silent. In general, the
performance difference between realistic and perfect
squashing is small (less than 0.5 percent), as discussed
previously, leading us to believe that this machine model
would not benefit much from a good silence prediction
mechanism.

As a separate issue, it is also interesting to note how little
effect SF has in our processor model. Over the range of
benchmarks, the speedup gained using SF is only 4.5 percent
(contrasted with the 6.5 percent of both realistic and perfect
squashing with SF, shown earlier). This result supports our
assertion that store squashing supplies more performance
than store forwarding and is not unexpected in light of the
results of Moshovos [14], which explore the temporal
locality of memory operations in the context of store to
load forwarding. In light of these results, on load-store RISC
architectures with sufficient general registers (32 in our
machine) and pipeline configurations similar to the one
modeled by SimpleScalar, given equal hardware costs,
silent store squashing provides greater benefit than store
forwarding.

5 CRITICAL SILENT STORES IN UNIPROCESSORS

Although a silent store does not update the contents of
stored data, it does set a line’s dirty bit in a write back cache
configuration. If the dirty bit would not have been set
otherwise, this writeback could be avoided by squashing
the silent store.

Definition. A critical silent store is a specific dynamic silent
store that, if not squashed, will cause a cache line to be marked
as dirty and, hence, require a writeback.

This definition applies for each lifetime of the given
cache line in the cache (the time between each allocation
and replacement). Each cache line lifetime may have zero to
n critical silent stores. Trivially, if there are no stores to the
line, there are no critical silent stores either. Similarly, if
there is even one nonsilent store, there are no critical silent

LEPAK ET AL.: SILENT STORES AND STORE VALUE LOCALITY

1183

TABLE 3
Writeback Reduction Due to Critical Silent Stores in Various Cache Configurations
32KB/32B SKB/32B SKB/3B
SPTCC95 Baseline | % WB reduced | % of silent Baseline | % WB reduced | % of silent Baseline | % WB reduced | % of silent
Benchmark || WB/inst by squashing | stores that || WB/inst by squashing | stores that || WB/inst by squashing | stores that
(x1073) are critical (x10~3) are critical (x1073) are critical
g0 1.04 9.2% 4.5% 5.57 6.4% 6.6% 6.51 14.0% 10.3%
m88ksim 0.30 56.0% 14.0% 0.36 59.0% 15.0% 1.05 61.2% 15.4%
gee 1.14 18.8% 13.9% 2.67 23.3% 8.9% 5.58 30.1% 17.6%
compress 11.5 58.7% 71.0% 12.8 58.4% 71.4% 33.8 75.9% 81.9%
li 1.64 0.7% 1.1% 4.13 1.3% 2.83% 13.0 1.4% 6.6%
ijpeg 1.35 19.7% 16.5% 2.99 14.5% 23.4% 9.75 20.4% 31.9%
perl 0.30 9.0% 0.3% 4.95 16.6% 8.9% 9.90 25.7% 17.6%
vortex 6.17 78.7% 38.7% 7.93 70.6% 47.1% 26.3 82.4% 49.1%
tomcatv 1.62 3.4% 0.6% 2.20 4.6% 1.5% 3.83 6.1% 2.7%
swim 6.35 10.6% 24.4% 21.0 21.8% 16.1% 22.0 20.2% 51.9%
mgrid 3.96 6.6% 77.5% 4.11 6.6% 78.9% 14.0 7.7% 89.6%
applu 4.93 6.3% 71% 4.99 6.6% 7.4% 19.5 30.6% 52.4%
apsi 4.50 20.9% 19.7% 5.28 23.8% 24.9% 12.5 20.6% 32.8%
waveb 13.6 14.1% 55.0% 21.7 16.9% 63.4% 48.2 16.6% 68.9%

stores. However, if there are one or more silent stores to the
line and no nonsilent stores, the former set of silent stores is
defined as critical since failing to squash any of them will
result in a writeback. Put more simply, it is sufficient to only
squash the critical silent stores to obtain maximal writeback
reduction. Squashing noncritical silent stores has no benefit
(in terms of writeback reduction) because the line will be
written back when it leaves the cache anyway because a
nonsilent store wrote the line during its lifetime. Further-
more, squashing noncritical silent store misses can actually
degrade performance because we incur the load and
compare overhead of a store verify without any compensat-
ing reduction in writebacks. This problem is worse in
multiprocessors. A noncritical silent store is replaced with a
store verify (read), but a subsequent nonsilent store to that
cache line will require that the line be upgraded from a
shared to modified state (requiring an upgrade/invalidate
bus transaction). We can be sure this upgrade will in fact
take place because of the definition of a critical silent store.
If the noncritical silent store suffered a cache miss and was
not squashed, the line would have been brought into the
cache with a read-with-intent-to-modify transaction (hence
obtaining the line directly in modified state) and the
upgrade message would not be required. Thus, squashing
a noncritical silent store miss leads to an additional address
bus transaction—namely the line upgrade when a nonsilent
store to the line occurs.

We determine the critical silent stores in our SimpleSca-
lar simulator in the following way: When a line enters the
cache, we allocate a list (called the candidate list) to hold all
stores to that line during its lifetime. When a store accesses
the line, we add it to the candidate list for that line. When
the line leaves the cache, we check if the line is dirty. If it is
dirty, we know all stores to the line are noncritical (because
a writeback of the line occurs anyway). If it is not dirty, if
any stores exist in the candidate list, we know that all of
these stores must have been silent and also, since a
writeback is not occurring, they are all critical (by
definition). We then account for the stores properly in the
global critical silent store tracking structures as the current
lifetime for the line has ended. Finally, we clear the
candidate list.

Table 3 presents the number of writebacks in each SPEC
benchmark without silent store squashing (baseline case),
the percent of those writebacks that are eliminated when
silent stores in all levels of the memory hierarchy are
squashed and the percentage of silent stores that are critical
for three different cache configurations (32KB cache with
32B lines, 8KB cache with 32B lines, 8KB cache with
8B lines). We see that, in some cases, selectively squashing
only a fraction of all silent stores can dramatically reduce
the total number of writebacks incurred by a program (for
example, in vortex, 79 percent of the total writebacks can be
eliminated by squashing only 39 percent of all silent stores).
We also see that decreasing the cache size increases the
number of silent stores that are critical because lines spend
less time in the cache before being replaced. This highlights
the fact that our definition of critical stores depends on
cache line lifetime and can be influenced by such factors as
cache size, associativity, and replacement policy. Since lines
are replaced more frequently, there is not as much
opportunity for nonsilent stores to write to them and the
lines have a better chance of leaving the cache unmodified.
Decreasing the line size also increases the number of critical
silent stores for the same reason that decreasing line size
helps to eliminate false sharing. If there are few words per
cache line, there is less chance that one of them will be
written to by a noncritical silent store. However, it is
important to remember that, even though decreasing line
size and total cache size may yield a greater percentage of
writebacks that can be eliminated by squashing, the total
number of writebacks increases as well.

Because no nonsilent stores can occur to a line if it is to
avoid being written back, the greatest potential for write-
back reduction exists when multiple silent stores occur to
the same cache line. In other words, if a segment of code
silently stores data that consumes an entire line, there is no
room in that line for other data that, when stored
nonsilently, can cause a writeback. Such a case is most
prevalent inside a loop body when a store continually
increments its address by a fixed offset (different location
and different/same value). When the cache line is written
back, every block has been silently stored to and the
writeback can be avoided. A similar example of this occurs

1184

do {
*(htab_p-16) = -1;
*(htab_p-15) = -1;
*(htab_p-14) = -1;
#*(htab_p-13) = -1;
#*(htab_p-12) = -1;
*(htab_p-11) = -1;
*(htab_p-10) = -1;

*(htab_p-9) =-1;
#*(htab_p-8) =-1;
#*(htab_p-7) =-1;
*(htab_p-6) =-1;
*(htab_p-5) =-1;
*(htab_p-4) =-1;
*(htab_p-3) =-1;
#*(htab_p-2) =-1;
#*(htab_p-1) =-1;
*htab_p =-1;

} while ((i —= 16) >=0):

Fig. 13. compress: Because these silent stores span across multiple
cache lines, they are often critical.

in compress (Fig. 13) when the cI_hash function clears every
entry in a large hash table resident in contiguous memory.
Because many of the hash entries remain unused (and
already contain the initialization value -1), most of the
stores are silent. Each time this occurs for every entry in a
line, a writeback can be removed, leading to over 76,000
removable writebacks from squashing only these silent
stores (a 19 percent reduction in total writebacks for this
benchmark).

Another situation in which writebacks can be removed
occurs when multiple fields of a structure are silently stored
to at nearly the same time. Because structure fields exhibit a
great degree of spatial locality, it is likely that the silent
stores occur within the same cache line and, thus, the
writeback can be eliminated. The makesim function found in
m88ksim illustrates this (Fig. 14). In many cases, the address
pointed to by opcode and the results of the table lookup
(tblptr) are identical to earlier invocations of makesim and the
stores to opcode’s fields are silent. Additionally, because the
size of the IR_FIELDS struct is the same as the simulated
line size (32B), these stores are likely to fall within the same
line, leading to over 1,000 removable writebacks if
squashed.

To summarize, the issue of whether or not a silent store is
critical depends on several factors, including the temporal
locality of the address, spatial and temporal locality within
a cacheline, cache size and configuration, and general
program behavior.

6 NEw DEFINITIONS OF FALSE SHARING

We shift our focus to multiprocessor applications of store
value locality by introducing new definitions of false
sharing. Prior work in defining false sharing focuses on
the address of potentially shared data. All of the previous
definitions rely on tracking invalidates to specific addresses
or words in the same block. However, no attempt is made to
determine when the invalidation of a block is unnecessary
because the value stored in the line does not change. The fact

IEEE TRANSACTIONS ON COMPUTERS, VOL. 50, NO. 11,

NOVEMBER 2001

void makesim(unsigned int instr, struct IR_FIELDS *opode){
register INSTAB *tblptr;
if(!(tblptr=lookupdisasm(instr & classify(instr))))
tblptr = &simdata;
opcode—>op = thlptr—>flags.op;
opcode—>dest=uext(instr,tblptr—>op1.offset,tblptr->op1.width);
opcode—>srcl=uext(instr,tblptr—>op2.offset,tblptr—>op2.width);
opcode—>p = tblptr;

Fig. 14. m88ksim: Critical silent stores often occur when stores of
multiple structure fields are silent.

that many stores are silent and even more are stochastically
silent requires new definitions of true and false sharing.

6.1 Address-Based Definitions of Sharing
In order to describe how our definitions differ from the
previous, a review of the prior work is necessary.
Throughout the discussion, we imagine sharing as defined
in a multiprocessor system with an invalidate based
protocol and, for ease of discussion, a sequentially
consistent machine with infinite sized caches is implied
(so that capacity and conflict misses can be ignored). All of
the definitions are similar in their recognition of “cold”
misses (CM), true sharing misses (TSM), and false sharing
misses (FSM). We focus our discussion on the definition of
Dubois et al. [4] as it provides the most accurate definition
of address-based sharing. For a review of other definitions
developed prior to Dubois et al. refer to [15] and [6].
Dubois’ Definition.
Cold Miss: The first miss to a given block by a processor.
Essential Miss: A cold miss is an essential miss. Also, if,
during the lifetime of a block, the processor accesses (load or
store) a value defined by another processor since the last
essential miss to that block, it is an essential miss.
Pure True Sharing Miss (PTS): An essential miss that is
not cold.
Pure False Sharing Miss (PFS): A nonessential miss.

Essential misses constitute all misses which bring in a
truly shared word either directly or as a side effect (for
example, when a truly shared value is brought in as the
noncritical word in a cache refill). Note that the use of the
word “value” in the above definition means value in the
invalidation sense only, i.e., a store instruction has occurred
to that address. It is not implying anything about the data
value at that address.

In general, Dubois contributed the insight that merely
tracking the address that invalidates a cache block or only
comparing the address that causes a miss to the immedi-
ately previous invalidating addresses of that block is not
sufficient. To be more precise, we must examine all
previous invalidations of a block and the side-effects of
loading a cache line to be sure that PTS and PFS misses are
not incorrectly counted.

6.2 Update-Based False Sharing (UFS)

In our definition of update-based false sharing (UFS), we
will keep the same definitions as Dubois with extensions
covering the value locality of stores. Intuitively, we extend
the definition of Essential Miss to exclude those stores

LEPAK ET AL.: SILENT STORES AND STORE VALUE LOCALITY

which are silent, i.e., those that do not change the machine
state because they are attempting to store the value that was
previously available at that location in the system memory
hierarchy. Rigorously, we propose the following, modified,
definition of an essential miss (our changes are in roman):

Essential Miss. A cold miss is an essential miss. Also, if during
the lifetime of a block, the processor accesses (load or store) an
address which has had a different data value defined by
another processor since the last essential miss to that block, it is
an essential miss.

While the wording of this definition is almost the same
as the one proposed by Dubois, we have made a slight
change to make clear that we are interested in the data
value at a memory location. The other definitions remain
accurate with no modification.

6.3 Stochastic False Sharing (SFS)

In light of the work of Lipasti et al. [10], [11] and others, we
have seen that many data values are trivially predictable.
We would also like to extend our definition of false sharing
to cover data values that are trivially predictable with any
well-known method. It seems intuitive that if we can define
false sharing to compensate for the effect of silent stores that
we could also define it in the presence of stochastically
silent stores (values that are trivially predictable via some
mechanism, the details of which are beyond the scope of
this work). Of course, with value prediction we need a
mechanism for verifying the prediction. Efficient mechan-
isms of communicating/verifying the prediction with the
actual owner of the updated value are necessary. This will
be the subject of future work and will not be covered here.

In value prediction, a distinction must also be made in
how we're predicting a memory value. We can predict the
data value based on effective address of the operation (as in
the MPSVL case in Section 2) or on the PC of memory
operation (as in the PSSVL case in Section 2), which can
potentially have a different effective address. To completely
enumerate these conditions, we define the following types
of SFS:

Message-passing Stochastic False Sharing (MSFS) is
SES based on the predicted data value located at the
effective address generated by any instruction (multiple
PCs could generate this EA). This terminology is used
because data at the same EA can generally be thought of as
being used for interprocess communication.

Program structure Stochastic False Sharing (PSFS) is
SFS based on the predicted data value of an instruction
located at a specific PC (multiple data addresses could be
targets of this prediction). This terminology is used because
the value generated/consumed at a specific program
location can generally be thought of as being a characteristic
of the program structure.

Note that the definitions of MSFS and PSFS are not
mutually exclusive. Formally, we extend the definition of an
essential miss again to create the basic definition of
stochastic false sharing (SFS) with the distinction pointed
out above being implicit. We must also modify the
definition of cold misses in the Dubois approach due to
the possibility of statically predicting a value with no

1185

history (this modification is unnecessary for Update-based
False Sharing).

Essential Miss. A stochastic cold miss is an essential miss. Also,
if, during the lifetime of a block, the processor accesses (load or
store) an address which has had a new data value which
is not trivially predictable, defined by another processor
since the last essential miss to that block, it is an essential miss.

Stochastic Cold Miss (SCM). A cold miss on a store which has
a data value which is not trivially predictable.

An example that illustrates our new definitions is
provided in [21].

6.4 UFS and SFS Results

In order to characterize the degree to which these new
definitions of false sharing affect true and false sharing in
multiprocessor systems, we implement the measurement
algorithm of Dubois et al. [4] and exercise it with our
multiprocessor benchmarks for PowerPC under six differ-
ent scenarios:

e The baseline scenario corresponds to the Dubois
definition of false sharing and treats stores just as
Dubois et al.’s mechanism [4], measuring the relative
number of cold misses, false sharing misses, and true
sharing misses during each benchmark’s execution.

e The second scenario corresponds to our definition of
update-based false sharing (UFS). It implements
store squashing, which effectively converts silent
stores into loads. A realistic implementation of store
squashing is described in greater detail in Section 4;
suffice it to say that, from a multiprocessor cache
perspective, a squashed silent store requires neither
exclusive ownership of the cache line (as in an
invalidation-based cache protocol) nor remote pro-
pagation of the updated store value (as in an update-
based coherence protocol) since the value being
stored has not in fact changed. In this scenario, only
cache hits are squashed because of the potential
effect squashing misses has on coherence transac-
tions (outlined under UFS-P).

e The third scenario (UFS-P) measures the potential of
UFS with perfect knowledge of store silence by
squashing all stores that are silent, whether or not
they hit in the data cache. This allows us to avoid
sending a read (for the store verify) followed by an
upgrade (S — M) for nonsilent stores, and sending
instead a read-with-intent-to-modify.

e The fourth scenario corresponds to our definition of
message-passing stochastic false sharing (MSFS) in
which stores that write values that are correctly
predicted by an MPSVL-based predictor are elimi-
nated from the cache hierarchy. We use a 4K entry
stride predictor identical to that modeled for Fig. 2.

e The fifth scenario corresponds to our definition of
program structure stochastic false sharing (PSFS) in
which stores that write values that are correctly
predicted by a PSSVL-based predictor are eliminated
from the cache hierarchy (i.e., they are observed as

1186

neither store nor load references). Here, we also use
a 4K entry stride predictor.

e The final scenario (M/PSFS) is an optimistic combi-
nation of MSFS and PSFS in which stores that write
values that are correctly predicted by either the
MPSVL predictor of scenario three or the PSSVL
predictor of scenario four are eliminated from the
cache hierarchy. We assume an ideal mechanism for
selecting the correct predictor in the case where only
one produces the right prediction.

The final three scenarios correspond to our earlier
definitions of stochastic false sharing and are included to
demonstrate the potential of store value locality for
reducing multiprocessor bus traffic, as well as to provide
some guidance for future research in this area. We do not
describe an exact hardware mechanism for exploiting this
type of locality in a multiprocessor system. The exact design
of such a mechanism is beyond the scope of this initial
paper and is left instead to future work.

We measure true and false sharing for each of these six
scenarios for various line sizes; our results for line sizes of
16B, 32B, 64B, 128B, aand 512B are plotted in Fig. 15. For the
commercial workloads on the left side, we observe
measurable but not dramatic reductions in true and false
sharing for UFS. For UFS-P and the stochastic sharing cases,
the reductions (including some reduction in cold misses)
are more dramatic. For barnes and ocean, the trends are the
same, although more pronounced, since even simple UFS
provides considerable reductions in overall miss rate due to
a combination of reduced false sharing and reduced true
sharing. For oltp and tpc-w, squashing silent stores that miss
the cache (UFS-P) is very important for reducing the miss
rate. This indicates that most of the shared data is written
before it is read. This is less true for barnes and ocean,
indicating that update-silent shared data (or at least
spatially local data in the same line) are read by a processor
before they are written, resulting in a silent store hit that can
be squashed.

7 REDUCING MULTIPROCESSOR DATA AND
ADDRESS TRAFFIC

In order to evaluate potential reduction in multiprocessor
data and address traffic achievable through exploiting store
value locality, we model a multiprocessor cache that
implements the standard MESI (Modified, Exclusive,
Shared, Invalid) coherence protocol [14]. Briefly, this
protocol requires a processor to acquire exclusive owner-
ship (M or E state) of a cache line before writing to it.
Exclusive ownership is acquired through an invalidate
mechanism that removes the line from other caches in the
system. This protocol is widely used in modern shared-
memory multiprocessors.

We exercise our cache model with the six scenarios
described in Section 6.4: baseline, UFS store squashing,
UFS-P, MSFS, PSES, and M/PSFS. We present data for a
1MB 4-way set associative data cache with 16B, 32B, 64B,
128B, and 512B lines. We also collected data for smaller and
larger caches, but restrict our presentation to the 1IMB case,
which reflects the general trends seen for other sizes as well.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 50, NO. 11,

NOVEMBER 2001

Fig. 16 plots the miss rates for these cache configurations for
each of our benchmarks. Misses are classified as cold, true
sharing, false sharing, and capacity/conflict according to
the method described in Section 6.4.

Once again, we find measurable reductions in miss rates
even with the simple UFS scenario, particularly for smaller
lines. However, an interesting phenomenon occurs for oltp:
As the sharing misses decrease due to UFS store squashing,
conflict misses increase, holding the overall miss rate nearly
steady. This is due to the increased working set brought
about by fewer invalidates. Without the available invali-
dated lines to fill, the LRU replacement policy makes less
than optimal replacement decisions. This suggests a need
for a better replacement policy or perhaps greater associa-
tivity or simply a larger cache. Dramatic miss rate
reductions do not occur until program structure-based
store elimination is applied. PSFS has a clear miss rate
reduction advantage over MPFES, even though the two have
comparable prediction accuracy (see Section 2). Intuitively,
this agrees with the results presented by Kaxiras and
Goodman [29], which argue for program structure-based
predictors for identifying multiprocessor data sharing
patterns.

The total data bus traffic is reduced by more than the
ratios indicated by the miss rates plotted in Fig. 16 since the
frequency of writebacks of dirty lines is also reduced. With
UFS-P store squashing, we observed 5-82 percent reduc-
tions (depending on line size) in the writeback rates for oltp,
16-17 percent reductions for ocean, and 5-16 percent for
barnes. For the most aggressive SFS case (scenario 5), we
observed writeback rate reductions of 8-85 percent,
25-26 percent, and 16-29 percent for oltp, ocean, and barnes
respectively.

For UFS-P store squashing, the total data bus traffic
reductions observed were (depending on line size)
3-23 percent for oltp, 8-12 percent for specweb, 4-6 percent
for specjbb, 6-30 percent for tpc-w, 10-11 percent for ocean,
10-12 percent for raytrace, and 13-19 percent for barnes. For
the most aggressive SFS case (scenario 5), we observed
much higher data bus traffic reductions (e.g., 15-48 percent
for oltp, 24-55 percent for ocean, and 45-63 percent for
barnes). A detailed analysis of the variations in writeback
reduction and data bus traffic is left to future work.

We also collected data on the address transactions
needed to support coherence in the MESI protocol. Fig. 17
shows the incoming invalidate rate (both hit and miss) for
the six sharing scenarios and five line sizes. The stacked bar
charts show the rate at which invalidates (including
invalidates triggered by both store clean hits and store
misses) hit in a remote cache, miss in a remote cache, and
miss in a remote cache if E state is not implemented (recall
that E state identifies a line as being exclusive in the local
cache, hence, a store clean hit only requires a silent E — M
upgrade and not a broadcast invalidate, resulting in fewer
total invalidates). For all three benchmarks, we record
measurable reductions in address traffic, even with just the
simple UFS store squashing. Furthermore, there is a marked
decrease in incoming invalidates that miss the local cache,
indicating that the UFS and SFS approaches are most
effective at eliminating useless invalidates (i.e., invalidates

LEPAK ET AL.: SILENT STORES AND STORE VALUE LOCALITY

1187

1.0 OLTP 02 RAYTRACE
08|l i
@ in 9.1
D4 - :
= ---_ _
02 im e T _
N T
T 168 328 648 128B 5128 16B 328 64B 1288 512B
TPC-W BARNES
12
1.0
.2
08 — =l
éﬁ g -qw TIHT 1
@D (]
T .10 M
04 Fm T--
il Il
16B 328 648 1288 512B 16B 38 648 128B 5128
SPECWEB%Y 40 OCEAN
. 35|
R nall ol T
08[| [25 ul
06 20 M
04 - =5 H.q'.. 'I“
l [—— 10 i
0.2 H -I'I 05
00 A8 o
' 16B 328 64B 128B 519B 16B 32B 64B 128B 5128
SPECWEBYY
0.8 mr
06 False Sharing
—— True Sharing
R4 . Cold Misses
0.2 Illll 1
0.0
16B 398 64B 1288 5128

Fig. 15. Multiprocessor sharing. Left to right, the stacked bars show cold, true sharing, and false sharing misses of the baseline, UFS, UFS-P, MSFS,

PSFS, and MSFS+PSFS scenarios.

that consume address bus bandwidth but do not commu-
nicate any useful information). Since address bus band-
width is a precious commodity in large-scale snoop-based
shared-memory multiprocessors, this is a very useful and
desirable property.

We also observe that, for this benchmark set, the
address bus traffic reduction obtained by simple UFS
store squashing is higher than the reduction obtained
with the addition of E state, which is an optimization that
is commonly implemented in real systems. In fact, we

observe that UFS combined with an MSI coherence
protocol that omits the extra complexity of the E state
always generates less address bus traffic than an MESI
protocol without UFS store squashing. Of course, combin-
ing both E state and UFS store squashing provides the
lowest address bus traffic of all.

In summary, our data clearly show that measurable,
even significant, reductions in address and data bus traffic
in shared-memory multiprocessors can be achieved with
simple UFS store squashing and dramatic reductions can be

1188

IEEE TRANSACTIONS ON COMPUTERS, VOL. 50, NO. 11,

NOVEMBER 2001

12 OLTP

iM|ss§§ (%%?)
-
— -
]
T

02 L

0:0 Wm it

02 mll RAYTRACE

I III!

Misseg{%/ref)

III!il bl

168 32B 648 1288 512B

00 I mim|
16B 328 64B 128B 5128

TPC-W

ﬂ"w !I.ﬂ

168 32B 648 128B 512B

16B 328 64B 128B 512B

20 SPECWEBY

18
16

T4
2

9.0
éf).s

0.6
04
02
0.0

i
"

OCEAN

'“qll l'l[

16
1.4

168 328 648 128B 5128
2

(o)

290

' SPECIBB2000
&8
[

168 2B 648 1268 5128

Capacity/Conflict
False Sharing
True Sharing
Cold Misses

il |1 Il
04
0.2
0.0

168 32B 64B 1288 512B

Fig. 16. Multiprocessor miss rates for 1MB 4-way set-associative data cache. Left to right, the stacked bars show cold, true sharing, false sharing,
and capacity/conflict misses for the baseline, UFS, UFS-P, MSFS, PSFS, and M/PSFS scenarios.

achieved with the program structure-based approach to
stochastic false sharing reduction. Of course, some of these
gains will be countered by the traffic generated by the
hypothetical mechanism used to enable SFS. As previously
mentioned, the details of that design are left to future work.

8 CONCLUSION

In this work, we explore various aspects of the value
locality of store instructions. In doing so, we make six

main contributions. The first of these is an overall
characterization of store value locality from memory-
centric (message-passing) and producer-centric (program
structure) points of view; we find, not surprisingly, that
significant value locality exists in both dimensions.
Second, we introduce the notion of silent stores and
quantify their frequency for many real programs. Silent
stores are stores that do not affect the state of the
machine they are executed on. Third, we identify and
characterize source-level causes of silent stores. Fourth,

LEPAK ET AL.: SILENT STORES AND STORE VALUE LOCALITY

1189

OLTP

25 =

2.0 =

Invalidates (%/ref)

JHHM T e

512B

128B

Invalidates (%/ref)

16B 32B 64B 128B 512B
SPECWEBY)
R 3
8 3
©]
g]
E 1.0 HH _E
0.5 3
L H Hﬂﬂ UUHHHH innseeE
' 16B 64B 1288 512B
SPECIBB2000

| I R T I |

Invalidates (%/ref)

ﬂﬂﬂﬂm e i

1288 512B

16B

32B

RAYTRACE
0.3

i

o
[N}
|

©
=

Invalidates (%/ref)

m T e ...

32B 64B 128B 512B

0.0

16B

BARNES

0.4 -

Invalidates (%/ref)

0.2

0.0

Invalidates (%/ref)

M e

64B 128B 512B

16B 32B

B MissNoE
Miss
Hit

Fig. 17. Multiprocessor invalidates for 1MB 4-way set-associative data cache. Left to right, the stacked bars and data points show invalidate traffic for

the baseline, UFS, UFS-P, MSFS, PSFS, and M/PSFS scenarios.

we describe how to enhance the performance of uni-
processor programs by squashing silent stores. Fifth, we
define and quantify the concepts of update-based false
sharing (UFS) and stochastic false sharing (SFS) in multi-
processor systems. Finally, we show how to exploit UFS to
reduce address and data bus traffic on shared memory
multiprocessors and also examine the significant potential
of hypothetical SFS-based mechanisms for reducing bus

traffic. Our initial results in all of these areas are quite
promising and serve to motivate future work.

ACKNOWLEDGMENTS

This work was supported in part by an IBM University
Partnership Award and US National Science Foundation
Grants CCR-0073440 and CCR-0083126 and equipment and
financial donations from IBM and Intel.

1190

IEEE TRANSACTIONS ON COMPUTERS, VOL. 50, NO. 11, NOVEMBER 2001

REFERENCES

(1]

(2]

B3]

(4

(5]

o]
(7]

(8]
]

(10]

[11]

[12]

(13]

(14]

(15]

[16]
(17

(18]

(19]

[20]

(21]
(22]

(23]

[24]
(25]

[26]

[27]

S. Woo, M. Ohara, E. Torrie, J.P. Singh, and A. Gupta, “The
SPLASH-2 Programs: Characterization and Methodological Con-
siderations,” Proc. 22nd Int’l Symp. Computer Architecture, June
1995.

B. Calder, G. Reinman, and D. Tullsen, “Selective Value
Prediction,” Proc. 26th Int’l Symp. Computer Architecture, Computer
Architecture News, vol. 27, no. 2, pp. 64-75, May 1999.

B. Calder, P. Feller, and A. Eustace, “Value Profiling,” Proc. 30th
ACMY/IEEE Int’l Symp. Microarchitecture, Dec. 1997.

M. Dubois,]J. Skeppstedt, L. Ricciulli, K. Ramamurthy, and P.
Stenstrom, “The Detection and Elimination of Useless Misses in
Multiprocessors,” Proc. 20th Int’l Symp. Computer Architecture, May
1993.

J.H. Edmondson et al., “Internal Organization of the Alpha 21164,
a 300-MHz 64-Bit Quad-Issue CMOS RISC Microprocessor,”
Digital Technical ., vol. 7, no. 1, 1995.

S.J. Eggers and T.E. Jeremiassen, “Eliminating False Sharing,”
Proc. 20th Int’l Conf. Parallel Processing, Aug. 1991

J. Gonzalez and A. Gonzalez, “Control-Flow Speculation through
Value Prediction for Superscalar Processors,” Proc. Parallel
Architectures and Compilation Techniques, Oct. 1999.

J.L Hennessy and D.A. Patterson, Computer Architecture: A
Quantitative Approach. San Mateo, Calif.: Morgan Kaufmann, 1990.
T. Keller, A M. Maynard, R. Simpson, and P. Bohrer, “Simos-ppc
Full System Simulator,” http://www.cs.utexas.edu/users/cart/
simQOS, 2001.

M.H. Lipasti, C. Wilkerson, and J.P. Shen, “Value Locality and
Load Value Prediction,” Proc. Int’l Conf. Architectural Support for
Programming Languages and Operating Systems VII, Oct. 1996.
M.H. Lipasti and J.P. Shen, “Exceeding the Dataflow Limit via
Value Prediction,” Proc. 29th ACM/IEEE Int’l Symp. Microarchi-
tecture, Dec. 1996.

A. Mendelson and F. Gabbay, “Speculative Execution Based on
Value Prediction,” technical report, Technion, 1997, http://
www-ee.technion.ac.il.

C. Molina, A. Gonzalez, and J. Tubella, “Reducing Memory Traffic
via Redundant Store Instructions,” Proc. Int'l Conf. High Perfer-
mance Computing and Networking, pp. 1246-1249, Apr. 1999.

A. Moshovos, “Memory Dependence Prediction,” PhD thesis,
Univ. of Wisconsin, Dec. 1998.

J. Torrellas, M.S. Lam, and J.L. Hennessy, “Shared Data Placement
Optimizations to Reduce Multiprocessor Cache Misses,” Proc. Int’l
Conf. Parallel Processing, Aug. 1990.

Transaction Processing Performance Council, TPC benchmarks,
http:/ /www.tpc.org, 2001.

K. Lepak and M.H. Lipasti, “Silent Stores for Free,” Proc. 33rd Int’l
Symp. Microarchitecture, Dec. 2000.

K. Lepak and M.H. Lipasti, “On the Value Locality of Store
Instructions,” Proc. 27th Int’l Symp. Computer Architecture, June
2000.

G. Bell, K. Lepak, and M.H. Lipasti, “A Characterization of Silent
Stores,” Proc. Parallel Architectures and Compilation Technique, Oct.
2000.

H. Cain, M. Marden, R. Rajwar, and M.H. Lipasti, “A Character-
ization of Java TPC-W,” Proc. Int'l Symp. High Performance
Computer Architecture, Jan. 2001.

SPECWEB99 Benchmark Specification, available from http://
www.specbench.org, 2001.

SPECJBB2000 Benchmark Specification, available from http://
www.specbench.org, 2001.

S.P. Harbison, “An Architectural Alternative to Optimizing
Compilers,” Proc. Int’l Conf. Architectural Support for Programming
Languages and Operating Systems, pp. 57-65, Mar. 1982.

S.E. Richardson, “Exploiting Trivial and Redundant Computa-
tion,” Proc. 11th Symp. Computer Arithmetic, pp. 220-227, July 1993.
A. Sodani and G. Sohi, “Dynamic Instruction Reuse,” Proc. Int’l
Symp. Computer Architecture, June 1997.

H.-H.S. Lee, G.S. Tyson, and M.K. Farrens, “Eager Writeback—A
Technique for Improving Bandwidth Utilization,” Proc. Int'l Symp.
Microarchitecture, Dec. 2000.

A. Yoaz, R. Ronen, R.S. Chappell, and Y. Almog, “Silence Is
Golden,” Proc. Work-in-Progress Workshop in conjunction with
Seventh Int’l Symp. High Performance Architecture (HPCA-7), Jan.
2001.

[28] D.C. Burger and T.M. Austin, “The Simplescalar Tool Set, Version
2.0,” Technical Report CS-TR-97-1342, Univ. of Wisconsin,
Madison, June 1997.

[29] S. Kaxiras and J.R. Goodman, “Improving CC-NUMA Perfor-
mance Using Instruction-Based Prediction,” Proc. Int’l Symp. High
Performance Computer Architecture, Jan. 1999.

[30] A. Appel and M. Ginsburg, Modern Compiler Implementation in C.
Cambridge, UK., New York: Cambridge Univ. Press, 1998.

Kevin Lepak is a graduate student in the
Department of Electrical and Computer Engi-
neering at the University of Wisconsin-Madison.
He received the BS (1999) and MS (2000)
degrees in electrical engineering from the same
university. His research interests include many
aspects of high performance computer architec-
ture and performance modeling, with particular
focus on improving memory system perfor-
mance. He is also interested in VLSI design
and EDA. He is a student member of the IEEE.

Gordon Bell is a graduate student in the
Department of Electrical and Computer En-
gineering at the University of Wisconsin-
Madison. He received the MS degree from
UW-Madison in 2001 and the BS degree in
computer science and engineering from the
University of Notre Dame in 1999. His
research interests include several areas of
computer architecture and 1/O performance.
He is a student member of the IEEE.

Mikko Lipasti received the MS and PhD
degrees from Carnegie Mellon University and
the BS degree from Valparaiso University. He is
an assistant professor in the Department of
Electrical and Computer Engineering at the
University of Wisconsin-Madison. His research
interests span multiple aspects of high-perfor-
mance computer architecture. He is a member
of the IEEE and the IEEE Computer Society.

> For more information on this or any computing topic, please visit
our Digital Library at http://computer.org/publications/dlib.

