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RESILIENT HIGH-PERFORMANCE
PROCESSORS WITH SPARE RIBS

..........................................................................................................................................................................................................................

THIS PROCESSOR DESIGN INCORPORATES BIT-SLICED REDUNDANCY ALONG THE DATA

PATH, MAKING IT POSSIBLE TO TOLERATE DEFECTS WITHOUT HURTING PERFORMANCE,

BECAUSE THE SAME BIT OFFSET IS LEFT UNUSED THROUGHOUT THE EXECUTION CORE.

THIS DESIGN ENHANCES PERFORMANCE BY AVOIDING SLOW CRITICAL PATHS CREATED

BY RANDOM DELAY VARIATIONS. ADDING JUST ONE BIT SLICE REDUCES THE DELAY

OVERHEAD OF RANDOM PROCESS VARIATIONS BY 10 PERCENT WHILE PROVIDING

FAULT TOLERANCE FOR 15 PERCENT OF THE EXECUTION CORE.

......Each successive technology gen-
eration brings new reliability challenges to
overcome. These issues are manifested as
hard defects or parametric variations across
a die. Defects or variations impacting only
a portion of the die are of particular con-
cern, because such occurrences can cause
the whole chip to be discarded or clocked
at a lower frequency. Such scenarios in
which a small amount of faulty logic deter-
mines the entire chip’s fate are inherently
inefficient, because the remaining circuitry
might still be good.

Prior work suggests the use of redundant
logic blocks that can be swapped in for a
faulty one. Such redundancy is often rela-
tively coarse grained (for example, a spare
arithmetic unit) and requires multiplexing
logic to select which blocks to use. Our
observation is that these multiplexers can
cause additional delays to critical paths and
hurt performance. In this article, we analyze
a novel fault-tolerant processor design based
on bit-sliced redundancy, as we’ve previously
proposed.1 By creating a wider data path
with extra bit slices, we can leave some

intermediate slices unused. We keep these re-
dundant intermediate bit slices (RIBs) at the
same offset throughout the data path to
avoid multiplexing.

This approach produces a versatile and re-
silient processor core. First, we can exploit
the redundancy in the traditional manner
to tolerate hard defects in the data path.
To do this, we simply decommission the
bit slice that contains the hard fault. Using
redundant bit slices allows tolerance of hard
faults that might not be covered by tradi-
tional redundancy, such as faults in pipeline
latches. Second, because our redundancy
scheme doesn’t degrade performance, we
can aggressively pursue high-frequency oper-
ation and use the redundant slices to counter
extra delays incurred by random process var-
iations. For this approach, we can simply
leave the bit slices with the slowest logic un-
used. We particularly emphasize the delay
increase from random process variations in
this article.

Random process variations are a type of
within-die variation that occurs at fabrication.
This type of variation results from dopant
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fluctuations and can therefore independently
affect each gate’s delay. Thus, this effect can
result in a few slow logic gates that can
limit the whole-unit performance.

In this work, we comprehensively evaluate
a processor designed with Spare RIBs. Specif-
ically, we analyze the hard fault coverage that
this technique provides in the execution core
and discuss performance enhancement in the
presence of random process variation.

Background and motivation
Historically, designers have considered

die-to-die variations more important and
prominent than within-die variations.2 To
regain yield lost due to die-to-die variations,
they often use binning. In this approach,
constraints that affect the entire chip are
relaxed. For instance, operating voltage can
be increased or clock frequency decreased
to compensate for slower logic. Die-to-die
variation no longer remains the sole concern,
however, as subwavelength feature sizes in-
crease the level of within-die variation. Pro-
cess variation can be systematic in that it
impacts a region of the die or it can ran-
domly affect individual devices.

Although frequency binning can be applied
to improve yield when systematic within-
die variation is present, it’s less efficient be-
cause variation is no longer constant across
the chip. Unlike die-to-die variation, within-
die variation decreases the performance of
fabricated chips, because a chip can be
clocked only as fast as its slowest path. For
example, Figure 1 shows the increase in the
average arithmetic logic unit (ALU) delay
with different adder types and degrees of
variability. In this case, random variations
alone have caused the delay overheads,
though we can observe a similar trend with
systematic variations.

Techniques that target within-die varia-
tion range from the circuit to architecture
level. In the circuit domain, recent work pro-
poses modifying the body bias to compensate
for varying threshold voltages.3 Although we
can apply this technique to subsections of the
die, it’s best suited to compensate for die-to-
die or systematic within-die variations. Still
other techniques propose clocking a pro-
cessor at its intended frequency and detecting
any errors that might occur. In this case,

the error rate can be decreased by purpose-
ful modification of certain circuit paths’
latency.4

As an alternative to disabling slow units,
most architecture-level techniques compen-
sate for slower stages or units with modified
timing schemes. One possibility is to allow
variable-latency functional units so that
slow units can take additional clock cycles
to complete.5 Another option is to reduce
the processor frequency only when there’s
sufficient instruction-level parallelism to re-
quire both the fast and slower functional
units.6 Yet another alternative is time bor-
rowing, in which specific clock signals can
be skewed to let a slow stage use some of
the time originally allocated to a faster
stage.7

Just as frequency binning might not be
optimal in the case of systematic variations,
we suggest that techniques to address system-
atic within-die variations might not be ideal
for random variations. Many of these tech-
niques are applied uniformly to whole pipe-
line stages, but random variation isn’t
uniform throughout the logic.

Intermediate bit slices
Our proposed design uses a data path that

includes more bit slices than there are data
bits. This design lets us accommodate un-
used slices at purposefully chosen bit offsets.
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Figure 1. Increase in arithmetic logic unit (ALU) delays due to random
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That is, if the original design calls for a
64-bit-wide data path, we could implement
a 65-bit data path, allowing a single bit to
be left unused at the same location in data
registers, latches, wiring, and logic. Keeping
this redundant bit at the same offset
throughout the data path has the benefit
of simplicity and avoids adding multiplexers
to the critical path. For instance, consider a
naive implementation in which we add
RIBs only to particular units. In this case,
only the targeted logic would contain extra
bit slices, and we would require multi-
plexers at the logic input and output to
route around the unused slices. Keeping
the unused slices throughout the data path
eschews the need for such input and output
multiplexers and their potential to counter-
productively increase delays. Additionally,
maintaining redundancy throughout the
data path lets our design tolerate some
hard defects in logic that typically isn’t pro-
tected, such as defects in the bypass network
and pipeline latches.

There are two ways that RIBs can de-
crease the maximum stage delay when delay
variation is present. Most obviously, once
offsets are chosen for the unused slices, the
output of any unit at these bit offsets can
be ignored while correctness is preserved.
Therefore, any critical paths that fan out
only to RIB offsets no longer contribute to
the maximum delay. This behavior is also
what lets us tolerate hard defects. We also
consider that because the input to any unit
can be ignored at these offsets, these input
values can be overridden. Assuming these
inputs are on a critical path that fans out
to one or more valid output bits, a secondary
effect is that these forced inputs could render
some gates static and remove them from the
critical path.

Applying this concept to much of the
data path is relatively straightforward be-
cause many resources are dedicated to sim-
ply moving data around. Likewise, bitwise
operations such as AND and OR require
no special consideration when including
RIBs. We can extend our scheme to the
cache or constrain it to a smaller part of
the processor. Execution logic brings addi-
tional challenges, however, because data is
being manipulated.

Application to prefix adders
The ALU and bypass loop is a critical

path in most processors; because of depen-
dency chains, pipelining it usually isn’t con-
sidered. Because addition requires carry
precomputation or propagation, it is typi-
cally the ALU operation with the highest la-
tency. Of the adders we study, the fastest
(Kogge-Stone) has a delay that is O(log N ),
while a log shifter’s delay is also O(log N ).
In this case, if the shifter is on the critical
path, we could make a microarchitectural
modification to disallow completing wide
shifts in a single cycle in order to reduce
the shift latency. Blocks other than the
ALU, such as issue or floating-point logic,
could also be on the critical path for certain
designs. Unlike the ALU, however, these
structures have more flexibility in that we
can change the instruction window size or
pipeline the floating-point logic differently.
Based on this insight, we perform delay anal-
ysis of the ALU considering only the adder
and bypass network.

Correct addition of two numbers that
contain an unused bit at the same offset is
conceptually simple. The sole requirement
is that the carry signals propagate across the
gap to produce the correct sum; the output
value at the RIB offset doesn’t matter. One
way to enforce carry propagation is to insert
multiplexers between each bit slice. Although
this approach might be effective for simplis-
tic carry-propagation adders, it would be ex-
pensive in terms of area, complexity, and
delay when applied to higher performance
prefix adders that compute carries in parallel.

Assuming we can manipulate the bits in
the operand RIBs, we can make carries prop-
agate by setting 1s in the unused bits of one
operand and 0s in the other, as in Figure 2a.
In a prefix adder, overriding these bits is
equivalent to fixing the carry computation
signals that correspond to the RIB offset.
For carries to traverse the extra bit slice, we
assert the propagate signal while clearing
the generate signal. To avoid adding extra
delay, we propose augmenting the gates
that generate these signals with an extra con-
trol signal. Figure 2b shows the logic used in
the building blocks of parallel prefix adders,
as well as our proposed logic modification.
In this work, we consider the Kogge-Stone,
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Han-Carlson, and Brent-Kung adder archi-
tectures to explore tradeoffs between com-
plexity, delay, and the number of critical
paths.

In the case of a hard defect, appropriately
configuring our redundant bit slices makes it
possible for the processor to tolerate the ma-
jority of hard faults in the adder. Unlike bit-
wise logic, the adder’s carry signals fan out
and make it impossible to correct 100 per-
cent of the possible hard faults in the
adder. Figure 3 shows an example of an
8-bit Han-Carlson adder with two RIBs.
Because bits at the RIB offsets contain no
useful data, any logic that fans out only to
the RIBs does not affect correctness. Thus,
in the case of a hard defect, we can configure
the RIBs such that the fault does not affect
correctness. Also, remember that we are set-
ting some propagate signals to 1 and some
generate signals to 0. Should, for instance,
a propagate signal already be stuck at 1
near the adder input, we can configure the
RIBs such that this value stays at 1.

Similarly, RIBs also makes it possible to
create a processor that can tolerate a subset
of possible delay faults within the adder
and its critical path. Because some propagate
and generate bits that correspond to a RIB
remain fixed, the delay to generate these sig-
nals no longer contributes to the critical path,
as Figure 3 shows. Additionally, if we align a
RIB with an output that is on a critical path,
any logic on the critical path no longer con-
tributes to the maximum delay. Because we
ignore the value at the redundant offset, it
doesn’t matter if this signal switches late.

Execution logic modifications
Shifts, unlike addition or bitwise opera-

tions, introduce additional complications.
Without modification, any RIB in the
shifted result would not be aligned with
RIBs in the rest of the data path. Multiplica-
tion introduces a similar problem, because
the partial products to be added are essen-
tially shifted versions of an operand. To
allow for correct operation, we propose
sandwiching the shifter and multiplier be-
tween two additional logic stages. The first
stage compacts the input operand by remov-
ing all redundant bits. The compressed value
is then shifted (or multiplied) as usual, and

the last stage reintroduces redundancy at
the appropriate offsets.

Like the ALU, the register file is another
unit that can be on a critical path and typi-
cally isn’t pipelined. Application to the reg-
ister file is conceptually simple, because each
bit slice is independent. Unlike logic, static
RAM (SRAM) has many more critical
paths with a relatively low logic depth. As
Liang and Brooks note,5 this makes the reg-
ister file particularly susceptible to random
variations. RIBs in the register file (and
other data path SRAM structures) allow
hard faults or delay variation to be tolerated
in column circuitry such as storage cells, bit-
lines, and sense amplifiers. Notably, cover-
age doesn’t naturally extend to the address
decode logic, because this is shared across
columns. Aside from wider registers, the reg-
ister file requires no special modification to
be compatible with RIBs.

Defect tolerance analysis
Using Spare RIBs enables the tolerance

of hard faults in data path pipeline latches,
execution units, and SRAM structures.
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To evaluate hard fault coverage, we look
specifically at the integer adder. As a start-
ing point, we use netlists for 64-bit Kogge-
Stone, Han-Carlson, and Brent-Kung add-
ers. Next, we widen each of these circuits
depending on the desired number of
RIBs. Assuming a single stuck-at fault
model, we then iterate through all nodes
in the netlist and consider the scenario in
which each is stuck at 0 or 1.

In each case, we determine if there is a
RIB configuration that would make the
adder usable. Most of the time when we
can repair the adder, we don’t use the faulty
node’s value in the computation. We place
these scenarios in the conservative-repair cat-
egory. As previously mentioned, we can oc-
casionally exploit the fact that a propagate
node is stuck at 1 or a generate node is
stuck at 0. We classify these cases as aggres-
sive repairs.

Figure 4 shows the fraction of repairable
faults for each adder type with different re-
dundancy levels. Our single-fault model
wouldn’t benefit from arbitrary RIB place-
ment, so we always place RIBs at adjacent
bit positions. Adding redundancy also
increases the total number of possible faults.
As shown, including more redundancy pro-
duces a net increase in fault coverage because
more nodes that fan out to multiple outputs
can be covered. In the aggressive case, more
redundancy lets us tolerate faults that are
deeper in the adder.

We also estimated overall fault coverage
for a sample processor. We based this exper-
iment on the Alpha 21264 design and con-
fined the RIBs to the integer data path,
excluding caches. To determine the area of
the repairable logic, we used the area break-
down in Shivakumar et al.,8 in addition to
the Alpha 21264 floorplan. Repairable data
path units include the register file, integer
ALUs, load and store queues, and the trans-
lation look-aside buffer. We modeled the
SRAM structures using a modified version
of HP Cacti to estimate the area of unrepair-
able decoder logic present in each structure.
We also accounted for metadata bits
such as flags and considered these to be
unrepairable.

The 21264 also has several integer execu-
tion units, including four integer ALUs, two
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of which have shifting functionality, and a
pipelined integer multiplier. We synthesized
these execution logic blocks to estimate the
percentage of repairable versus unrepairable
ALU area, because RIBs can’t repair the
shifters or the multiplier.

Table 1 shows the area and fault coverage
for the different structures. By multiplying
each structure’s area with its fault coverage,
we obtained the fault coverage relative to
the execution core (excluding caches). We
then summed the fault coverage contribution
from each structure, giving us an estimate of
about 15 percent fault coverage from using
Spare RIBs. This is just under half of the
integer execution logic, which comprises
34.2 percent of the execution core.

Delay variation analysis
For our random-variation analysis, we

used HSpice to generate a probability distri-
bution for each gate type’s delay. We then
synthesized a logic netlist for the desired
adder and bypass network width.

To generate a circuit with randomized
delays, we used the previously obtained
delay probability distributions for each gate
in the circuit. Because the ALU is relatively
small and likely to be uniformly affected by
die-to-die and systematic within-die varia-
tions, we simulated only random variations.
After all gate delays were generated, we calcu-
lated the circuit’s maximum delay. If RIBs
were present, we found the offsets that
would minimize the circuit’s worst-case
delay.

Figure 5 shows the delay distributions
when 1,000 ALU critical-path circuits are
generated for each configuration. The baseline
cases use a 64-bit-wide data path. As the fig-
ure shows, the Kogge-Stone adder is inher-
ently the fastest, whereas the Brent-Kung

adder has the highest delay. In each case,
the addition of a single redundant bit slice
at the optimal offset shifts the delay distribu-
tion and improves performance.

When analyzing circuits with RIBs, we
were unconcerned with the overall reduction
in delay. Instead, we focused on countering
the delay overheads introduced by random
variations. These ‘‘delay penalties’’ are
shown in Figure 1 and correspond to the
mean delays of the baseline distributions in
Figure 5. Using circuit delays in the absence
of variation for reference, we reduced the
delay overhead of random variation by
about 10 percent by adding one RIB.

We also considered our technique’s scal-
ability by examining the benefits of introduc-
ing multiple spare RIBs. Using multiple
spare RIBs can be useful if there are multiple
slow paths in the same unit or spread across
units. When slow paths exist in two different
units, for instance, having multiple RIBs lets
us target both units, because each RIB’s bit
offset is fixed throughout the data path,
and it is unlikely that multiple slow slices
would exist at the same bit offset. To sim-
plify this analysis, we employed a greedy heu-
ristic to determine the best configuration.
Figure 6a shows the results of including mul-
tiple RIBs in the ALU. As expected, we
didn’t observe significant benefits from
adding RIBs beyond the point where each
(full-width) adder delay increased due to
widening it. For a detailed discussion of
this behavior, see our previous work.1

In the register file, we modeled the effect
of random variation using a modified version
of HP Cacti.9 The Cacti tool can model the
area, access time, and power consumption of
DRAM and SRAM structures, including
caches and register files. As with the ALU,
we used Monte Carlo simulations for our
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Table 1. Fault coverage for execution logic.

Structure

Core

area (%)

Unit fault

coverage (%)

Core fault

coverage (%)

Integer execution units 19.2 22.5 4.3

Register file 3.4 79.7 2.7

Load-store queue 4.1 60.0 2.5

Translation look-aside buffer 7.5 71.3 5.3

Total 34.2 N/A 14.8
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analysis of random variation in the register
file. For each register file simulated, we
chose a random delay for each gate on the
basis of the threshold voltage variability.
Our modified version of Cacti tracks the cu-
mulative worst-case delay of all gates. In this
work, we modeled a register file with six read
ports, three write ports, and 128 64-bit phys-
ical registers as a baseline.

When we introduced random variations
in our Monte Carlo simulation, we observed
an increase in the mean delay of up to 17 per-
cent for 40 percent VTH variability. To
counter this increase, we experimented with
different numbers of RIBs in the register
file. Choosing the optimal RIB offsets in

the register file is straightforward: we simply
choose the outputs with the largest maxi-
mum delay. As Figure 6b shows, RIBs have
a greater benefit in the register file when
more variation is present. As the register
size continues to increase as more redundant
bits are added, there’s a point where the im-
provement from adding spare slices can’t
counter the extra delay from enlarging the
structure.

Overhead
To facilitate RIB configuration for hard

faults, we relied on functional-testing mech-
anisms already employed after fabrication.
To configure RIBs for optimal performance
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in the case of delay variations, we must intro-
duce some additional circuitry to detect
critical-path delays. We used negative-skewed
shadow latches, which can be used at speed
to detect path delays.1

In our previous work, we estimated the
area overhead of adding Spare RIBs and
the required testing logic on a per-unit
basis.1 We computed per-unit area overhead
to be in the range of 10 to 20 percent due to
the required testing and control logic. The
extra testing logic is needed only for the
critical-path logic, however, whereas the ma-
jority of the data path logic can simply be
widened and doesn’t require special logic.
This puts the overall data path overhead at
around 1/64, or 1.6 percent for one RIB in
a 64-bit processor. Considering the Alpha
21264 example used in our hard-defect anal-
ysis, the overhead is significantly less, because
the integer execution logic comprises roughly
one-third of the core.

RIB configuration information can be
stored in on-chip fuses that are scanned
into latches when the chip is powered on.
For a 64-bit processor, we required 7 bits
of configuration data per RIB to indicate
which bit slice to decommission.

T echnology scaling and the ensuing
reliability challenges will continue to

drive designers to create increasingly resi-
lient processors that can tolerate process
variations and defects. To this end, it will
likely be necessary to combine a number of
robust design techniques. Spare RIBs is
orthogonal to many techniques that aim
to counter the performance implications of
process variation. Our fine-grained redun-
dancy can also be integrated with a more
coarse-grained approach. Determining the
ideal combination and integrating fine-
grained redundancy into additional logic is
left to future work. MICR O
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