
Recycling Data Slack in Out-of-Order Cores

Gokul Subramanian Ravi, Mikko H. Lipasti
ECE Department, University of Wisconsin - Madison

gravi@wisc.edu, mikko@engr.wisc.edu

Abstract—In order to operate reliably and produce expected
outputs, modern processors set timing margins conservatively
at design time to support extreme variations in workload
and environment, imposing a high cost in performance and
energy efficiency. The relentless pressure to improve execution
bandwidth has exacerbated this problem, requiring instructions
with increasingly diverse semantics, leading to datapaths with a
large gap between best-case and worst-case timing. In practice,
data slack, the unutilized portion of the clock period due to
inactive critical paths in a circuit, can often be as high as half
of the clock period.

In this paper we propose ReDSOC, which dynamically
identifies data slack and aggressively recycles it, to improve
performance on Out-Of-Order (OOO) cores. It is implemented
via a transparent-flow based data bypass network between the
execution units of the core. Further, ReDSOC performs slack-
aware OOO instruction scheduling aided by optimizations
to the wakeup and select logic, to support this aggressive
operation execution mechanism. ReDSOC is implemented atop
OOO cores of different sizes and tested on a variety of general
purpose and machine learning applications. The implementa-
tion achieves average speedups in the range of 5% to 25%
across the different cores and application categories. Further,
it is shown to be more efficient at improving performance in
comparison to prior proposals.

Keywords-clock cycle slack; out-of-order; scheduler; trans-
parent dataflow;

I. INTRODUCTION

Modern processing architectures are designed to be reli-
able. They are designed to operate correctly and efficiently
on diverse workloads across varying environmental condi-
tions. To achieve this, the work performed by any execution
unit (EU) or operational stage in a synchronous design,
should be completed within its clock period, every clock
cycle. Thus, conservative timing guard bands are employed
to handle all legitimate workload characteristics that might
activate critical paths in any EU/op-stage and wide envi-
ronmental (PVT: Process Voltage Temperature) variations
that can worsen these paths. Improvements in performance
and/or energy efficiency are thus sacrificed for reliability.

In the common non-critical cases, this creates clock
cycle Slack - the fraction of the clock cycle performing
no useful work. Slack can broadly be thought to have
two components: 1 PVT Slack, caused under non-critical
PVT conditions, and 2 Data Slack, caused due to non-
triggering of the executional critical path. PVT Slack, with
its relatively low temporal and spatial variability, can more
easily be tackled with traditional solutions [1]–[4]. On the

other hand, Data Slack is strongly data dependent and varies
widely and manifests intermittently across different instruc-
tions (opcodes), different inputs (operands) and different
requirements (precision/data-type).

The focus of this work is on Data Slack, and as analysis
in Sec.II shows, its multiple components often cumulatively
produce more than half a cycle’s worth of slack. The
available data slack has been increasing, since instruction
set architects are under pressure to increase execution band-
width per fetched instruction, leading to data paths with
increasingly rich semantics and large variance from best-
case to worst-case logic delay. Furthermore, in spite of rich
ISA semantics, or perhaps because of them, even optimum
compilers are able to use these complex features only some
of the time, but these richer data paths contribute to the
critical timing all the time [5]. This trend is exacerbated by
workload pressures, specifically the emergence of machine
learning kernels that require only limited-precision fixed-
point arithmetic [6].

The end-product of our proposal is to recycle this data
slack, to be utilized across multiple operations, and improve
system performance. There are three domains of prior work
that have explored this goal in different forms, which are
discussed below.

The first is timing speculation (TS). Prior proposals focus
on raising the frequency or decreasing the voltage to reduce
wasted slack, as long as the occurrence of timing violations
can be detected and controlled or avoided. They can function
by tracking the frequency of timing errors occurrences [2]
or by predicting critical instructions [7]. TS solutions suffer
from the fundamental constraints that they are bounded by
the possibility of timing errors from every computation, in
every synchronous EU/op-stage, and on every clock cycle.
Since data slack has wide variations across operations and
since (F,V) operating points can only be altered at reasonably
coarse granularity of time, these proposals are forced to be
configured conservatively. Moreover, the design overheads in
implementing timing error detection and timing overheads
from recovery are significant [8].

The second domain is specialized data-paths. When
specialized data-paths are built to accelerate certain hot
code, specific function elements are combined together in
sequence and the timing for that data-path can be optimized
for the particular chain of operations [9], [10]. But such
data-paths do not provide flexibility for general-purpose



programming and also suffer from low throughput or very
large replication overheads. Thus, they cannot be easily
integrated into standard out-of-order (OOO) cores.

The third domain is static and dynamic forms of Op-
eration Fusion. These proposals involve identification of
sequential operations that can be fit into a single cycle of
execution [11] and further, rearranging instruction flow to
improve the availability of suitable operation sequences to
fuse [12]. Optimizing the instruction flow is a significant de-
sign/programming burden, while unoptimized code provides
only limited opportunity for single-cycle fused execution in
the context of our work.

Our proposal ReDSOC, on the other hand, avoids all of
these issues. ReDSOC aggressively recycles data slack to
the maximum extent possible. It identifies the data slack
for each operation. It then attempts to cut out (or recycle)
the data slack from a producer operation by starting the
execution of dependent consumer operations at the exact
instant of completion of the producer operation. Further,
ReDSOC optimizes the scheduling logic of OOO cores
to support this aggressive operation execution mechanism.
Recycling data slack in this manner over multiple operations
allows acceleration of these data sequences. This results in
application speedup when such sequences lie on the critical
path of execution.

ReDSOC is timing non-speculative, and thus does not
need costly error-detection mechanisms. Moreover, it ac-
celerates data operations without altering frequency/voltage,
making it suitable for fine-grained data slack. It is imple-
mented in general OOO cores, atop the data bypass network
between ALUs via transparent flip-flops (FFs with bypass
paths) and is suitable for all general-purpose execution.
Finally, it cumulatively conserves data slack across any
naive sequence of execution operations and neither requires
adjacent operations to fit into single cycles nor any rear-
rangement of operations.

Key elements of our proposal are summarized here:
• Classification of execution operations into different

slack buckets based on the opcode and input precision
(Sec.II).

• Transparent FFs with slack-aware control between ex-
ecution units, allows slack recycling across multiple
operations (Sec.III).

• Slack-Aware instruction scheduling via Eager Grand-
parent Wakeup and Skewed Selection, which optimizes
OOO cores for efficient slack recycling (Sec.IV).

II. ANALYZING DATA SLACK

More often than not, a circuit finishes a computation
before the worst-case delay elapses, because the critical
paths of the circuit are inactive. Xin et al. [7] analyze
timing for ALPHA and OpenRISC ALUs, post synthesis
and place-and-route. Their analysis shows that roughly 99%
of timing critical paths are triggered by less than 10% of all

computations. Similarly, Cherupalli et al. [13] perform data
slack analysis for a fully synthesized, placed, and routed
openMSP430 processor and show that more than 75% of
the timing paths have greater than 30% clock cycle slack.

A. Sources of Data Slack

In order to recycle the considerable data slack it is
important to categorize it based on its sources. These
sources/categories are discussed below:
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Figure 1: Computation Time for ALU Operations

Operation Type (Opcode-Slack):
In general purpose processors, it is common to have

functional units that perform multiple operations, with dif-
ferent opcodes. In a conventional timing conservative design,
the functional unit would be timed by the most-critical
computation in order to be free of timing violations. Thus,
many of the executing opcodes/operations do not trigger the
critical path of the functional unit and end up producing data
slack.

Further, the semantic richness of current-day ISAs means
that multiple modes of operations are supported via the
same data paths. For example, the ARM ISA-based designs
support a flexible second operand input to the ALU to per-
form complex operations such as a shift-and-add instruction.
Supporting such complex operations via the enhancements
to the standard datapath further elongates the critical path
of execution. These rich/complex semantics are frequently
unused, resulting in even higher data slack.

Fig.1 shows the critical computation times for different
operations on a single-cycle ARM-style ALU, coded in
RTL and synthesized (2 GHz target) for a TSMC 45nm
standard-cell library using Synopsys Design Compiler. It is
evident that a large number of ALU operations (eg. logical)
have significantly lower computation times than more critical
arithmetic operations. And even these arithmetic operations
produce some data slack in the absence of modifications
to the second operand. It is, therefore, intuitive that ALUs
would produce considerable data slack across common
applications and that this data slack can be intermittently
distributed depending on the application characteristics. This
form of slack is easily identifiable for the operations, simply
by means of the instruction opcode.

Data Width of Operands (Width-Slack):
High-end processor word widths are usually 32-64 bits

while a large fraction of the operations are narrow-width



(large number of leading zeros). The execution of such
operation on a wide(r) compute unit means that there is
low spatial and temporal utilization of the compute unit.
Low spatial utilization refers to the higher-bit wires and
logic-gates which are not performing useful work, while low
temporal utilization refers to data slack from non-triggering
of the entire critical propagation paths.

Computations with a significant number of higher-order
zero bits are especially common in machine learning appli-
cations; many synapses have very small weights, a charac-
teristic exploited in multiple prior works to improve spatial
utilization [14]. Low spatial utilization (resulting in unnec-
essary leakage power) has also been attacked in traditional
architectures by aggressive power gating of functional units
and operand packing [15], among others.

But the problem of low temporal utilization for narrow-
width computations has not been explored. Fig.2 shows the
varying length of the critical path on a 16-bit Kogge Stone
adder for different bit-widths. The colored paths show in-
creasing critical delays/paths for computations of increasing
widths. When only a smaller portion of the total data-width
is in use, the length of the critical carry-bit propagation path
(and thus, the critical delay) reduces, roughly proportional
to log(datawidtheff ). This form of slack can be estimated
via data-width identification. Data-width identification at
the time of execution can be performed via simple logical
operations at the input ports to the functional units [15].
Prediction methods for identification of data-width early in
the execution pipeline, have also been very successful [16],
[17].

Figure 2: Critical paths for KS-Adder

Data Type of Operands (Type-Slack):
Sub-word parallelism, in which multiple 8/16/32/64-

bit operations (i.e. sub-word operations of smaller preci-
sion/data types) are performed in parallel by a 128-bit SIMD
unit, is supported in current processors via instruction set and
organizational extensions (eg. ARM NEON, Intel MMX).
This is yet another form of improving spatial utilization and
another case of opportunity to improve temporal utilization.
The varying compute latency for different data-widths is
similar to Fig.2, but the method of identification is from
the ISA itself, rather than from observing the bits of the
inputs. Low-precision computation has especially gained

popularity in machine learning applications over the past
few years [18], often enabling the use of narrow data types,
specified directly by software.

To summarize, current-day applications often exhibit a
diverse distribution of operations with plentiful data slack.
Analysis of specific slack breakdowns over multiple ap-
plications is discussed in Sec.V. An effective mechanism
to recycle this data slack, in order to speed up sequences
of operations, can therefore have substantial opportunity to
accelerate these applications. Further, conventional epoch-
based voltage and frequency scaling is not effective for
capturing this type of slack, since it isn’t pervasive, but
only manifests intermittently in ALU operations. Hence, we
need a scheme to track slack on an instruction-by-instruction
basis, and a very fine-grained recycling mechanism, to
benefit from it.

Figure 3: 5-bit slack lookup

B. Design for Slack Estimation

Slack Look-Up Table:
Static circuit-level timing analysis at design time can

measure computation times (i.e. Clock Period - Slack ) for
different classes of operations. These values are then stored
in a slack look up table (LUT). We only break down the
computation times into coarse blocks: a) based on opera-
tions being arithmetic vs logic, b) based on having a shift
component and c) based on 4 different data-widths/types.
The 5-bit address to perform a LUT lookup is shown in
Fig.3. The Arith/Logic and Shift bits are don’t cares for
sub-word parallel SIMD instructions. The Width/Type bits
use predicted data-width for normal instructions and data-
type for SIMD. There are a total of 14 possible slack
categories/buckets arising from the above. Operations are
simplified classified into one of the slack buckets. Details
on complexity of above analysis is discussed in Sec.V.

Data-Width Predictor:
Both opcode slack and type slack can be found out as

early as the decode stage in the processor pipeline since
the opcode and data type (for SIMD) are encoded with the
instruction. Width slack (via data-width), on the other hand,
is often not available until the execution stage itself. This
is because register values or data bypass values are often
not available until just prior to execution. For prior work
on partial power gating of functional units or combining
multiple operations into a single execution on the functional
unit, it is sufficient to identify data-width at the time of
execution. But in our work, the data-width/operand-slack
information is required in the scheduling stage (more on
this in Sec.IV-C). We therefore use a data-width predictor



as proposed by Loh [16] and also used by others for
optimizations such as Register packing [17].

We utilize a resetting counter based predictor as proposed
by Loh [16]. The predictor is addressed by the instruction PC
and two pieces of information for each instruction - the most
recent data-width of the instruction and a k-bit confidence
counter that indicates how many consecutive times the stored
data-width has been repeated. On a lookup, if the confidence
counter is less than the maximum value of 2k − 1, then the
predictor makes a conservative prediction that the instruction
is of maximum size. Otherwise, the prediction is made
according to the stored value of the most recent data-width.
If there was a data-width misprediction, the data-width field
is updated and the counter is reset to zero. On a match, the
counter is incremented, saturating at the maximum value of
2k−1. We use 4 possible prediction outputs indicating high
to low data-width.

Inaccuracy in prediction is detected at execute stage when
the operands are available for execution by simply checking
the higher order bits. Incorrect predictions are of two kinds -
aggressive and conservative. Conservative incorrect predic-
tions result in lost opportunity to recycle data-width slack
but do not result in functional errors. Aggressive incorrect
predictions would result in correctness violations if allowed
and therefore such instructions need to be conservatively
re-executed. Recovery is performed similar to cache miss
replays via selective reissue of instructions.

Overheads/Accuracy:
Prior analyses [16] have shown that a resetting predictor

allows aggressive errors in the range of only 0.1-0.6%. We
use a 4K-entry prediction table which results in an aggres-
sive misprediction of around 0.3-0.4%. Such a predictor
requires a total state of 1.5KB. In comparison, current day
branch predictors use prediction tables with as much as
64KB of state [19].

Considering the very small sizes of the LUT and predictor
(in comparison to, say, register file and branch predictor)
their overheads in terms of area and access energy are only
0.52% and 0.5% of the OOO core.

III. RECYCLING SLACK VIA TRANSPARENT FLIP-FLOPS

The previous section highlighted the prevalence of con-
siderable data slack in executing operations. In order to
execute consumer operations immediately after the producer
completes (i.e. to recycle this data slack), we make use
of transparent dataflow via intelligent FF control. Note
that we incorporate transparent datatflow only within data
bypass network between execution units. Via this design,
ALU operation sequences can execute ”transparently”. Other
operations such as multi-cycle, FP and memory operations
are still ”true synchronous” operations and do not themselves
benefit from transparent execution.

A transparent mode FF design is a simple implementation
consisting of a standard FF but with a bypass path [20]. A
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Figure 4: Data Slack Recycling

mux at the end of the 2 paths can select the ”opaque” stored
FF value or the bypassed ”transparent” value, based on an
enable input. In our work, transparent mode is enabled in
the bypass path between ALUs whenever data is required
to flow through at non-clock boundaries. This allows varied
delays across operations to be balanced anywhere within the
transparent execution window. Note that such a design can
also be implemented via latches [21], which is prevalent in
Intel designs [22].

We propose a synchronous slack tracking and opportunis-
tic early clocking mechanism implemented atop a transpar-
ent execution pipeline. Our proposed mechanism reduces the
execution latency at the cost of increased EU utilization.
We introduce the concept with a simple discussion on
applying transparent dataflow to a generic pair of execution
units (Ei) as shown in Fig.4.b. We assume that the units
have forwarding paths to each other (shown in figure) and
back to themselves (not shown). Also, forwarding logic is
simplified to only show forwarding to a particular input of
the execution units (i.e. right input of E1 and left of E2) but
actual design would support both inputs of each, and would
extend to more execution units as well. Moreover, we focus
on single-cycle combinational execution. These units could
be thought of as the ALUs in standard OOO processors.

Consider the data flow graph Fig.4.a. It shows a sequence
of 3 dependent operations and need to be executed in
sequence. The functional flow atop a pair of execution units
(EUs) is depicted in Fig.4.b, wherein the stream of inputs xi

are distributed in sequence over the two Ei. In conventional
design, this system is entirely executing at a throughput of
1 operation per cycle i.e. not executing at peak throughput,
and consumes 3 clock cycles to complete. Note that the
operations could have any other distribution across the 2
EUs, but the throughput is always limited to 1 operation per
cycle. In other words, in each cycle one execution unit is
always idle in this system.

Assume the presence of data slack for each f(xi), i.e. for
each operation’s computation on an execution unit. In stan-
dard synchronous design, EUs are lodged between opaque
FFs and inputs and outputs pass through only at clock edges,
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causing this slack to be wasted. This is indicated in the
figure by F1i and F1o bounding E1 and similarly for E2.
Our proposed mechanism cuts out this slack by introducing
”transparent FF” based data bypass between the execution
units. The ability to bypass the data around the output FF
is also shown in Fig.4.b. Mux M12 can enable bypassing of
F1o when forwarding E1’s output to E2. Similar bypassed
dataflow is possible from E2 to E1.

Our proposal performs 3 distinct intelligent tasks (ITs):
• IT1: For a producer operation with slack, a consumer

operation is brought early to an idling EU (if available).
• IT2: The FFs are made transparent (via mux-control) in

the bypass paths between the EUs holding the producer
and consumer operations respectively, for the period of
time that the producer is available at its functional unit.

• IT3: An operation is held to a EU for two cycles or
one cycle depending on whether its execution (via the
above mechanism) might cross a clock boundary or not,
respectively.

Fig.4.c describes this functional flow over the 2 EUs,
in more detail, via an example. Consider that the three
operations (xi) described earlier, can execute on the EUs
with latencies of 0.8ns, 0.6ns, 0.5ns respectively. The red
solid arrow indicates estimated execution time and the
yellow arrows show dependencies.

1 At t=0ns, x1 is brought to the input of E1. This begins
computation and would complete at t=0.8ns. 2 In parallel
with x1, x2 is brought to input of E2 (an IT1). f(x2)
isn’t ready for computation yet, since x1 is yet to complete
on E1 but is brought in early so that f(x1)’s slack can
be completely utilized. 3 Also at t=0ns, the transparent

bypass path from E1 to E2 is selected via mux M12 as
it is estimated that f(x1) completes in this cycle (IT2).
The value passes through and stabilizes to the correct f(x1)
value at t=0.8ns. Further, f(x2) starts correct computation
at t=0.8ns and finishes at t=1.4ns. 4 Note that x1 is held
at E1 for one cycle while x2 is held at E2 for 2 cycles.
This is because computation time estimates indicated that
x1’s execution does not cross a clock boundary while x2’s
does (IT3). 5 At t=1.0ns, x3 is brought early to E1 (IT1)
and bypass path E2 −E1 is made transparent while bypass
path E1 − E2 is made opaque (IT2). Further x3 will hold
the unit only for 1 cycle since it computes correct data from
t=1.4ns to t=1.9ns (IT3). 6 A true-synchronous operation
after x3 (eg. Store instruction) can clock at t=2.0ns. Some
slack is lost but the computation is still 1 cycle faster than
the pure synchronous baseline which took 3 cycles.

Summary: It is important to understand that this mecha-
nism does not require per-operation slack to be so significant
that multiple operations can execute within a single cycle.
It only requires one or more cycles worth of slack to
accumulate over an entire sequence of operations. This
translates to higher performance and better energy efficiency
via those accelerated sequences that lie on the critical path
of program execution.

IV. SLACK-AWARE OOO SCHEDULING

The transparent dataflow of dependent operations between
functional units can be used to recycle data slack IF a
slack aware scheduling mechanism is in place. The scheduler
is responsible for issuing instructions to execution units,
based on some priority scheme, when all required resources
(source operands and execution units) are available. Our
slack-aware optimization focuses on two components of the
scheduler: the wakeup logic and the select logic.

The wakeup logic is responsible for waking up the
instructions that are waiting for their source operands and ex-
ecution resources to become available. This is accomplished
by monitoring each instruction’s parent (producer) instruc-
tions as well as the available resources. The selection logic
chooses instructions for execution from the pool of ready
instructions waiting in its reservation station entries (RSEs).
Priority-based scheduling (e.g. oldest-first) is required when
the number of ready instructions are greater than the number
of available functional units. This happens when tags from
parents of multiple instructions become available; these
instructions are all awakened and send requests to the select
logic.

Note that our slack aware scheduling mechanism is fo-
cused only on single-cycle operations. We do not attempt to
recycle slack in multi-cycle operations, which reduces some
potential overheads which are beyond the scope of this paper.



A. Motivation

Implementing slack-aware scheduling in OOO processors
requires some challenges to be addressed. In state-of-art
deeply pipelined processors, the instruction scheduler is
decoupled from actual execution. Using a fixed latency
assumption for each instruction, appropriate dependents are
scheduled to wake up and pickup their operands off the
bypass at the correct time. Accounting for data slack means
that the scheduling logic has to be made aware of the
potential early completion of operations within their clock
cycle. This requires augmenting the scheduler with data-
slack information. Moreover, when a producer operation is
expected to produce slack, the scheduler needs to schedule
a consumer operation early enough (onto an idle functional
unit), so that the consumer can begin evaluating immediately
after the producer’s completion.

An illustration of how the timing of instruction issue is
integral to recycle slack via transparent dataflow is shown in
Fig.5. The figures show 3 instructions (named GP: grand-
parent, P: parent, C: child) being executed in a processor
pipeline. This simple illustration shows the pipeline issuing
instructions one cycle before they arrive at the functional
unit and become available for compute to begin. (Note that
this is not a design assumption and is only for illustrative
purpose.) In Fig.5.a, GP is issued at the beginning of cycle
1, and becomes available for execution on an FU at the
beginning of cycle 2. Assuming it is made to wait for
some previous producer operation (aka great grandparent)
to complete in cycle 2, (as described earlier), it then begins
evaluating immediately within cycle 2, and completes at
some instant in cycle 3. Even via conventional single-cycle
tag broadcast, GP’s tags can be broadcast in cycle 1 and can
wake up instruction P to issue (if selected) at the beginning
of cycle 2. P then becomes available at the FU at the start of
cycle 3, and begins evaluating after GP is complete and then
evaluates into cycle 4. Similarly, C is woken up and selected
at the beginning of cycle 3 and is prepared for execution. In
this example, operations GP, P and C only need to be issued
on consecutive cycles as enabled by conventional scheduling
logic.

On the other hand, a different scenario is shown in
Fig.5.b. While GP and P are issued as was discussed in
the first scenario, a difference arises here because P finishes
evaluating within cycle 3 (due to high data slack). To recycle
P’s slack, C needs to begin evaluating in cycle 3 as well,
so it needs to arrive at its FU (note: a different FU from
the one P is computing on) at the beginning of cycle 3. To
achieve this it needs to issue at the beginning of cycle 2,
i.e. at the same time as its parent, P. This scenario is not
possible with existing scheduling logic as the scheduling
loop requires one cycle; this motivates our modifications to
the scheduler, which are discussed below.

1) Eager Grandparent Wakeup: speculative wakeup

based on grandparent operations (a modified design
based on [23]) so that child operations can be issued
in parallel with parent operations.

2) Slack Tracking: Calculating and tracking an opera-
tion’s completion time based on execution times and
producers’ completion times.

3) Skewed Selection: Select logic which prioritizes non-
speculative operations over speculative (grandparent-
awoken) operations.

B. Eager Grandparent Wakeup

Grandparent wakeup (GPW) is a speculative wakeup
technique used to wake up a child operation based on the
broadcasted tags of its grandparent operations [23]. In the
original proposal by Stark et al. [23], GPW is used to
prevent pipeline bubbles when the scheduling loop (wakeup-
select-broadcast) is pipelined. The goal behind their work
was that as pipeline stages and clock frequency grow, it
is imperative to break down the timing critical scheduling
loop into multiple stages. Pipelining this scheduling loop
naively would result in inefficiency: not being able to execute
dependent operations in consecutive cycles. But if tags of
the grandparent(s) are used to wake up the child instruction,
this inefficiency can be avoided. The idea was motivated
by the notion that if the grandparents of a child instruction
have been selected for execution, then it is likely that the
parent will be selected in the following cycle (considering
single-cycle operations). The child can then be executed in
the cycle following its parent. More details can be found in
the original proposal.

Clock frequency and pipeline depth have stabilized in the
last decade, so current day schedulers can support single
cycle scheduling without the use of grandparent wakeup. The
conventional pipeline schedule for a 3-operation dependency
graph is shown in Fig.6.a. The single cycle scheduling loop
is performed in cycle one for waking up the XOR operation
based on the OR operation. Similarly, in cycle two, XOR
broadcasts and wakes up the AND.

However, the need for eager scheduling to recycle data
slack (as motivated in Fig.5) creates a need for a grandpar-
ent scheduling-like mechanism. We modify GPW to create
Eager GPW (EGPW), to wake up the child operation in the
same cycle as the parent operation. While this is unnecessary
in standard pipelines, it is useful for slack recycling: con-
sumer operations can be sent to idle functional units early
(in the same cycle that the producer operation completes)
so that the slack from the parent operation is recycled. For
the same DDG, assume that the XOR operation has data
slack which can be exploited by the AND if it can start
execution on the same cycle as the XOR. The corresponding
pipeline schedule via EGPW is shown in Fig.6. The OR
instruction wakes up its child (XOR) and its grandchild
(AND) in the same cycle. XOR wakeup is conventional,
while AND wakeup is achieved by the speculative EGPW



Figure 6: Eager Grandparent Wakeup

mechanism. This allows the AND instruction to arrive in
parallel with the XOR at a functional unit and wait for the
XOR output to transparently flow through. It then begins
useful computation in the same cycle and effectively recycles
the XOR operation’s slack. As also seen in figure, if the
AND reads a second operand from the register file, this
also happens early (in parallel with the XOR) based on
conventional RF port availability.

In the original implementation [23], GP-mispeculation
can potentially occur when the grandchild instruction is
woken up with the grandparents tags, but the parent does
not get selected. This is verified by checking for the eventual
broadcast of parent tags. They show that these mispeculation
rates are very low when sufficient functional units are
available. Our skewed selection mechanism deprioritizes
GP-wakeups and can largely (or even completely) eliminate
GP-mispeculation. This is discussed further in Sec.IV-D.

Note that EGPW only wakes up the grandchild instruc-
tion. The conditions for this grandchild to be selected for
issue are explained in the following two sections on Slack
Tracking and Skewed Selection.

C. Slack Tracking

We assume a reservation station based model for schedul-
ing, as described below. After instructions are renamed, they
wait in reservation stations for their sources to become ready.
In a conventional design, each reservation station entry
(RSE) has 2 parent (or source) tags which are identifiers
for the source operands. Once the tag matches occur, the
instruction is woken up. A request is placed to the Select
logic and if selected, it receives a grant. If selected, its
destination tag is then broadcast on the tag bus. A more
detailed description can be found in prior works [23]. Our
goal is to augment this baseline design with slack-awareness.

The following discussion will put forth two designs for
slack-aware scheduling. The first is Illustrative: its dis-
cussion aids in explaining our technique in a step-by-step
manner. The second is Operational: it is the actual design
we employ, suitable for practical implementation.

Illustrative Design for Slack-Aware Scheduling:
Our proposed augmented RSE entry is shown in Fig.7. In

the RSE, slack is tracked with a 3-bit fractional representa-
tion i.e. slack precision of 1/8th of the clock period (details
in Sec.V). The timestamp within a clock cycle at which an
instruction completes is its 3-bit Completion Instant (CI).
The CI is calculated for a given instruction based on its

parent/grand-parent CIs and slack information, and is written
into the COMP-INST field of the RSE. This is explained as
part of the mechanism below.

1 Conventional parent tags (P1, P2) which are identifiers
for source operands, are shown. If both tags comparisons hit
(i.e. a match with tags broadcast on the destination bus), the
instruction is awoken and a request is sent to the select logic
for selection. 2 Similar to the grandparent scheduler design
by Stark et al. [23], we add grandparent tags (GP1 - GP4) to
enable grandparent based instruction wakeup. If all tags hit, a
speculative request is sent to the select logic. Differentiating
between a normal select and a speculative select by the
skewed select logic will be explained in Sec.IV-D. 3 In case
of a parent based wakeup, the estimated CI of the parents
are used to determine the starting instant of the child (or
current) instruction. PiC.I. are the CIs, which are broadcast
along with the tags (obtained from the CI bus). 4 Similarly,
in case of a grandparent based wakeup, estimated CI of the
grandparents are obtained off the CI bus. The Max logic
estimates the later CI (i.e. last completing) from each set
of grandparents. 5 The 3 EX-TIME fields in RSE indicate
the estimated execution time for this particular instruction
and its parents respectively, each of which is a 3-bit value.
These values are calculated at decode (read out of the slack
LUT: described in Sec.II-B) and are written into the RSE
and the Register Alias Table (RAT). The child instruction
obtains the EX-TIMEs for the parents from the RAT during
register renaming. 6 In case of Parent-based wakeup, the
current instruction can start executing immediately after
the last completing parent. In case of GP-based wakeup,
the execution time of the Parent instructions should be
accounted for. For GP-based wakeup, each parent’s EX-Time
is added to the latest CI of the corresponding grandparent
set, thus producing the parent CI. 7 Based on the instruction
wakeup being parent-based or GP-based, the appropriate CI
is selected (via a mux) for the two source operands to the
current instruction. 8 Among the 2 parent CIs, the later
one is selected via the MAX operation (as the child would
start executing after this). 9 The completion instant of the
child is then calculated by adding its EX-TIME to the last
completing parent’s CI. 10 A child operation would issue
in the current cycle only if a) slack recycling is enabled, b)
the completion instant of the last parent is expected within
the current cycle (like operation P in Fig.5.b) and further, is
within some slack threshold (discussed later) and c) a grant
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Figure 7: Illustrative design for Slack aware RSE (Note: steps 3-10 occur in parallel with selection)

is obtained from the select logic. 11 The appropriate CI
is written into the current instruction’s CI field, and then
broadcast along with the tag. This could either be the CI,
as calculated in (9), or, in a scenario where slack recycling
does not happen and the current instruction is executed from
a clock cycle boundary (of a later cycle), the value written
in would be the operation’s EX-TIME itself. 12 Further, if
the execution of the operation is expected to cross a clock
boundary (such as GP and C, but not P, in Fig.5.b), the
execution unit is allocated for an extra cycle (i.e. 2 cycles
for traditional single cycle operations).

The slack threshold discussed in (10) is used to achieve
a balance between potential benefit from slack recycling vs.
potentially excessive FU utilization caused by the 2-cycle
allocation requirement. A higher threshold would recycle
slack more aggressively, starting consumer operations in the
producer’s completion cycle even when if there is very low
slack in that cycle. The potential benefit then depends on
enough small slack increments accumulate to cross a clock
cycle boundary, reducing exposed latency in the dataflow
graph. The potential detriment is that the FU underutilization
caused by 2-cycle allocation might cause slowdowns under
high FU demand. Ideally, a simple but intelligent dynamic
mechanism can be used to increase or decrease this threshold
based on overall observed benefits. In this initial work,
we tuned this value via a design sweep for each set of
applications (refer Sec.VI-C).

Operational Design Slack-Aware Scheduling:
From the physical design perspective, increasing the num-

ber of tags in the RSE is quite expensive because all wakeup
buses should be connected to all source tag comparators in
all entries. This can significantly increase the load capaci-
tance on the bus and the wakeup logic drivers [24].

In order to reduce potentially detrimental energy/area
overheads from the Illustrative design and for the im-
plementation to be practical, we propose an Operational
design which closely matches (within 1%) the former’s
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Figure 8: Operational design for Slack Aware RSE

performance. It is based on two key observations: 1) a
significant fraction of arithmetic computations have only a
single source operand [24], and 2) even within the fraction
of operations with multiple source operands, the last arriving
source operand (tag) is predictable with high accuracy [25].

Based on the above observations, we predict the last
arriving parent for each single-cycle arithmetic operation.
Further, this information is passed from a parent to its child
operation during rename (via the RAT), meaning that a child
operation uses a prediction for both its last arriving parent
and its last arriving grandparent.

This last-arrival prediction mechanism tremendously re-
duces design complexity and is shown in Fig.8. Only 2 tags
are now required in each RSE, one each for the last arriving
parent and grandparent respectively. The RSE will require
only 2 EX-TIME fields one being its own execution time,
and the other being that of the last arriving parent. Their
usage was described in the earlier Illustrative design. More-
over, the slack calculation logic gets significantly simplified,
as there is no requirement to compare and estimate the last
arriving source operands.

The prediction of the last-arriving tags must be validated
to ensure that the instruction did not execute before all of
its operands are available. The prediction is correct if the
operand predicted to be not arriving last is already available
when the instruction enters the register read stage of the
pipeline. We utilize a small register scoreboard mechanism
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Figure 9: Skewed Select Logic (Note: gate-level design is illustrative)

from prior work [25] to achieve the same. If the prediction
is incorrect, error recovery is required, in a fashion identical
to latency mispredictions (but with lower penalty). Consid-
ering the almost perfect prediction accuracy (Sec.VI-B), the
performance impact is nearly zero.

D. Skewing the Select Arbiter

We skew the selection logic to prioritize conventional
requests over speculative GP-requests. Only if there are
remaining FUs after allotment to conventional requests will
they be allotted to GP-requests. Thus, no conventional re-
quest suffers from not being serviced due to other selections.
The mechanism to skew the selection logic is shown in Fig.9.

Conventional Selection:
Fig.9.a shows conventional N:1 selection logic (repre-

sentative of standard processors) implementing an oldest
first priority mechanism. Valid entries are filled up into
the selection table in parallel with the reservation station.
For an N-entry table, an N-bit mask is used to indicate
the priority order. In any entry’s mask, a 1 at the ith bit
from the left indicates that the ith entry is older (i.e. has
higher priority). For example, the 0th entry has highest
priority (mask is all 0s) while 1st entry has a lower priority
than entries 0 and 3. Ready instructions send requests to
the select arbiter - indicated via the wake-up array. Here,
instructions corresponding to entries 1, 2 and 3 have woken
up and are requesting grants. The circuit shown adjacent
to the table, decides which entry gets the grant, i.e. which
among the woken up entries has the highest priority. The 3rd
(producing a 0 through the circuit) is found to be the highest
priority awake entry and is given the grant. In the figure, the
grant array represents the output from the selection logic
indicating which instruction gets the grant.

Skewed Selection:
Fig.9.b shows our proposed skewed selection logic.

Skewed selection prioritizes non-speculative requests (from
parent based wake-ups) over speculative requests (from
GP based wake-ups) while respecting the original priority
scheme among each group of requests. The P/GP array is
an additional input to the selection logic, which indicates
which requests are speculative (GP) and which are non-
speculative (P). P requests are shown as a 1 and GP requests
show up as a 0 in our design. Again considering the same
example, entries 1-3 are woken up. Further, the example

assumes entry 2 wakes up non-speculatively while entries 1,
3 wake up speculatively. Since entry 2 is the non-speculative
request, it has priority over the other 2 speculative requests.
This is implemented by calculating the ”effective mask”.
The circuit implementation is shown adjacent to the table.
In the example, entry 1 has its mask altered from 1001
to 1011, since the 3rd entry is a non-speculative wakeup.
Similar alteration occurs for entry 4. Conversely, entry 2 has
its mask altered from 1101 to x000 i.e. bits corresponding to
speculative entries are made 0. The ’x’ indicates a don’t care
since entry 0 is not woken up. After this, the selection circuit
from earlier calculates the appropriate entry for selection,
which is the 2nd entry in this scenario. It should be noted
that the skewed logic is laid out as a simple (but inefficient)
sequence of gates, simply for illustrative purposes. The
actual (negligible) increase in delay is discussed in Sec.IV-E.

Discussion:
There are two key reasons to skew the selection policy of

the select arbiter. They are motivated below.
The first motivation is to improve FU utilization. Pre-

viously, we had discussed how speculative GP-wakeups
and non-speculative conventional parent-based wakeups both
send requests to select logic to obtain grants. We also
discussed that the grandparent based early wakeup is useful
only when the child instruction needs to be issued in the
same cycle as the parent (i.e. when there is slack beyond
the completion instant of the parent, refer Sec.IV-A). This
means that any grants provided to the grandparent-based
wakeup are unutilized if there is no slack to recycle in that
particular cycle. This is indicated by ANDing the select grant
with the recycling decision in figure 7 and 8. In such a
scenario, execution units go under-utilized in those cycles
when the select logic selects a GP-wakeup request instead
of a conventional parent-wakeup and there is no slack to
recycle.

The second motivation is to prevent (or reduce) mis-
peculation from grandparent scheduling. GP-mispeculation
occurs when a child operation woken up by a grandparent
is selected for issue without the parent also being se-
lected (Sec.IV-B). Skewed selection prioritizes conventional
(parent-wakeup based) requests over speculative GP-wakeup
based requests. This means that within an arbitration win-
dow, a GP-wakeup can never race ahead of a conventional
wakeup. Therefore, a child would never be selected for



execution ahead of its parent as long as they are a part of
the same select arbitration window.

The arbitration window depends on the design of the
select logic. Assume that the processor selects M instructions
for execution (on M units) from N requests. This can be im-
plemented as a) a global arbitration window performing N:M
selection [26] or b) M/K local arbitration windows, each
performing N:K selection. In the first scenario, there would
be no GP-mispeculation thanks to the skewed selection logic.
In the second scenario there would be no GP-mispeculation
within each window but there could be GP-mispeculation
across windows. In this work we assume global arbitration.

E. Summary of Overheads

It is key to note that the entire slack aware mechanism
described above happens in parallel with select logic. Select
requests are issued at wakeup oblivious to slack, and select
grants are returned at the end of the cycle. The instruction’s
execution is then finally determined by the grant as well
as the slack/CI calculation described above. Moreover, the
slack-aware computations are only 3 bits wide, resulting
in the critical path of slack-computation being significantly
shorter than select logic arbitration. Thus this primary design
component of slack based scheduling does not increase the
critical paths in scheduling logic.

Area/power overhead of the proposed Operational design
is negligible, the main additions only being 10 extra bits
per RSE, two 3-bit adders (with overflow) and muxes, and
a comparator, contributing to an area overhead of 0.3%
and an energy overhead of 0.8%. Note: the adder overflow
determines if the computation’s execution crosses a clock
boundary, the use of which was explained in Sec.IV-C.

Synthesis of the skewed selection logic shows that the
additional delay in select logic amounts to only 3 ps addi-
tional delay over the baseline 100 ps select logic. Further,
considering the significant wire delay that exists in the select
arbitration tree [26], this increase in delay would be reflected
negligibly in real design.

The marginal increase in critical path delay via skewed
selection and the absence of any additional critical timing
component in the slack tracking mechanism described earlier
means that there is hardly any change to the timing of the
scheduling loop (which can be a near timing critical, some-
times dominated by load-store unit and the fetch loop [3]).

V. METHODOLOGY

Simulation: We extended the Gem5 [27] simulator to
support Slack Recycling atop standard out-of-order cores.
We model 3 cores labeled Big, Medium and Small. The
description of the cores can be found in Table.I.

Benchmarks: The benchmarks for analyzing results are
2-fold. The first set encompass relatively compute inten-
sive applications from the SPEC CPU 2006 [28] and the
MiBench benchmark [29] suites. They are run via multiple

Table I: Processor Baselines

Parameter Small Medium Big
Frequency 2 GHz

Front-End Width 3 4 8

ROB/LSQ/RSE 40/16/32 80/32/64 160/64/128

ALU/SIMD/FP 3/2/2 4/3/3 6/4/4

L1/L2 Cache 64kB/2MB w/ prefetch

Table II: Kernels for Machine Learning

Kernel Description
CONV Convolution: Gaussian 3x3

ACT Activation: ReLU

POOL 0/1 Pooling: 2x2 Max/Average

SOFTMAX Softmax function

Simpoints [30], each of length 100 million instructions.
The second set consists of kernels from ARM Compute
Library [31] for computer vision and machine learning with
support for ARM NEON SIMD (brief details in Table.II).
Benchmarks are all compiled for the ARM ISA; NEON
vectorization flags are turned on for the ML kernels.

The benchmarks and their operation characteristics are
shown in Fig.10. The characteristics shown are: memory
operations with high/low latency (MEM-HL/MEM-LL; HL
refers to L1 cache misses), NEON SIMD operations, other
multi-cycle operations (eg. fp) and high/low slack single-
cycle ALU operations (ALU-HS/ALU-LS, HS refers to data
slack greater than 20% of the clock cycle). While many
SIMD operations are pipelined and multi-cycle, accumulate,
multiply-accumulate etc. support late-forwarding of accumu-
late operands from similar ops, allowing sequential single-
cycle execution [32].

Influence of PVT variation: Pure data slack estimates
correspond to worst-case design corner to isolate it from
PVT (process, voltage, temperature) variations. Thus, the
data slack estimates expect to stand true across all PVT
conditions. Executing under nominal PVT conditions pro-
vides some exploitable guard band [1], [8] and adds a small
additional component to the total slack.

In real design, guard band variations from PVT can be
measured with Critical Path Monitors (CPMs) [8]. To exploit
PVT guard band, our design only requires localized CPMs in
the proximity of the ALUs and bypass network. Conventional
CPM based guard band estimates (eg. Power7 [8]) are more
conservative since they are located in the most timing/power
critical regions of the entire chip.

To account for PVT variation, slack LUTs are re-
calibrated on-the-fly, thus supporting changes to voltage,
temperature, aging etc. We adhere to a tuning granularity
of 10,000 cycles as is prescribed in Tribeca [1]. There
are no design-time/testing overheads for PVT based slack
calibration, which is simply tracked dynamically with CPMs.
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Figure 10: Benchmark Operation Characteristics

Data slack measurements: In this work, we only target
single cycle data slack for the integer ALU as well as in
specific integer SIMD operations. We do not target data
slack from other multi-cycle operations such as FP ops.
Slack is modeled via RTL design in Verilog and synthesis
using the Synopsys Design compiler. We synthesize the
execution pipeline stage with a 0.5 ns cycle time (i.e. 2 GHz)
constraint. As explained in Sec.II-B, ReDSOC only requires
to categorize operations into 14 different slack buckets - we
do not need accurate slack estimations of each operation.
This completely simplifies CAD timing analysis.

Our slack analysis agrees with estimations from prior
work [33] as well characterization via gate-level C-models.
Considering the low effort, we expect state-of-the-art CAD
tools to be capable of (or extendable to) such analysis.
During processor execution, appropriate slack bucket is
selected simply based on opcodes and operands: no dynamic
timing analysis is involved.

Timing Closure: The introduction of transparent FFs (i.e.
selective FF bypassing) adds some complexity to timing
analysis/closure of the execution unit and data bypass net-
work. For the simplified 2-EU system shown in Fig.4, tradi-
tional timing paths (in a standard FF design) to analyze for
timing closure would be (F1i−F1o), (F2i−F2o), (F1o−F2o)
and (F2o − F1o). These would require to be single cycle
timing paths. The introduction of FF bypassing introduces
2-cycle timing paths which also need to be verified. In the
same example, these would be (F1i −F2o) and (F2o −F2o)
when M12 is enabled for transparent dataflow. Similarly,
there would be (F2i − F1o) and (F1o − F1o) when M21 is
enabled for transparent dataflow. These paths are marked as
2-cycle paths during timing analysis, the rest of the design’s
timing remains traditional. Note, M12 and M21 are never
transparent at the same time - this precludes combinational
loops.

Slack Tracking Precision in the RSE: We quantized
slack / timing corresponding to different precisions (up to 8-
bits) in our architecture simulator and analyzed performance.
Performance saturated at 3-bits (or 1/8th of a clock cycle).
Hence, 3-bit values are sufficient for slack reycling.
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Figure 12: Tag Prediction
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Figure 13: Speedup for different cores

VI. RESULTS

A. Potential for Sequence Acceleration

As discussed in Sec.III, slack accumulates over a sequence
of operations which can be executed in a transparent manner.
Fig.11 shows the expected value (i.e. weighted mean) of the
length of all such sequences. The values shown are averaged
across each benchmark class and evaluated for each core
type. It can be seen that the observed average length of
these transparent sequences is between 4-6 operations. Slack
per operation can usually vary between 10%-60% to of the
clock-cycle. Thus, the average length of these transparent
sequences is sufficient to accumulate one or more cycles of
slack, resulting in early clocking of sequence-ending ”true
synchronous” operations, providing speedup.

B. Last parent / grand parent prediction

Fig.12 analyzes accuracy of tag prediction in the Opera-
tional design, using a prediction table with 1K entries. The
table is addressed by PC-bits and uses 1 bit for prediction
per entry to indicate if the particular operand is last to arrive.
High accuracy keeps mispredictions to around 1%. Accuracy
is lower for larger cores due to higher scheduling traffic.

C. Performance Speedup

Fig.13 shows the speedup obtained over a standard base-
line without slack conservation for different core sizes.

The first observation is that speedups are lower for SPEC
benchmarks compared to MiBench. This is partially due to
SPEC having a significant percentage of high dependence
memory operations. Moreover, the average percentage of
high slack ALU operations in SPEC is only around 30%
while it is close to 60% in MiBench. MiBench applications,
on the other hand, show significant speedups (23% average



on the BIG cores). The bitcount application sees over 40%
speedup over the baseline. This is not surprising, considering
that benchmark characterization (Fig.10) shows that this
application has less than 5% of memory operations and close
to 60% of high slack single-cycle ALU operations.

Second, note that benefits generally increase with size of
the core. A larger core provides more idle functional units
for data to transparently flow into, which is a requirement
for slack recycling. Further, the larger number of reserva-
tion stations in the big cores allow for more dependent
waiting operations in the RS to be scheduled aggressively,
allowing multiple dependency chains within the application
to perform slack conservation. Fig.14 illustrates how the
pipeline stalls from busy FUs increases from the baseline to
REDSOC. For smaller cores, this has some limiting effect
on the maximum speedup from slack recycling.

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

BIG:	SPEC-
MEAN	

BIG:	MiB-
MEAN	

BIG:	ML-
MEAN	

MED:	SPEC-
MEAN	

MED:	MiB-
MEAN	

MED:	ML-
MEAN	

SM:	SPEC-
MEAN	

SM:	MiB-
MEAN	

SM:	ML-
MEAN	

FU
	S
ta
lli
ng
	R
at
e	
(%

)	

Baseline	 REDSOC	

Figure 14: Pipeline stall rates from busy FUs

Finally, speedup on the ML kernels is from both low-
precision NEON SIMD operations and reasonable fractions
of high slack single-cycle operations. Due to their working
sets, some of these kernels (e.g. ACT) spend a significant
portion of time waiting for long-latency memory operations
to complete, and this cuts down gains to some extent.
Efficient prefetcher tuning and blocking the matrices could
increase slack opportunities, so these results might be pes-
simistic.

To estimate power efficiency at baseline performance, we
convert speedup into power savings via application-level V/F
scaling. Scaling is modeled on ARM A57 [34]. Mean power
savings on chosen SPEC, MiBench and ML benchmarks
range from 8-15%, 12-36% and 8-18% respectively.

D. Comparison with other proposals

We quantitatively compare ReDSOC against our own
implementations of timing speculation and operation fusion.
TS is our timing speculation mechanism (similar to Razor)
wherein frequency is controlled depending on the error
rate in the application. Frequency is statically fixed so as
to maintain an error rate between 1% and 0.01% across
application execution. Note, we do not model recovery
for timing errors; thus, the performance numbers shown
for TS can be considered as optimistic. MOS is Multiple
Operations in Single-cycle - i.e. the implemented operation
fusion mechanism. The mechanism dynamically combines
multiple operations within a single cycle, if they are capable

of fitting within a single cycle. For example, 2 consecutive
logical operations (roughly 50-55% data slack) can executed
in a single cycle.
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Figure 15: Comparison with other proposals

Comparison of these two mechanisms against ReDSOC
atop the three different core types are shown in Fig.15.
It is clear that ReDSOC significantly outperforms both
mechanisms by 2x or more. MOS opportunity is limited in
most applications, due to an inability to find many sequen-
tial operations to combine into a single cycle. It achieves
reasonable speedup in MiBench due to higher data slack
averages. TS is limited by the fact that frequency control
can happen only at a coarse temporal granularity, while data-
dependent slack varies from operation to operation. Hence,
the TS setting has to be set rather conservatively to maintain
low error rates.

VII. RELATED WORK

Multiple ”Better than worst case” approaches have been
proposed in prior work [2], [35]–[37], especially targeting
PVT variation [1], [3], [8]. Fast ALU computations are
implemented in some Intel processors [38].

Prior works optimize narrow data-width based execution
to improve EU utilization [15], effective register capac-
ity [17], issue width [16] and energy reduction in multiple
parts of the core [39].

Finally, multiple works optimize scheduling and break-
down its critical loop [23], [26], [40]–[42].

VIII. CONCLUSION

This paper showed that data slack can often be a signif-
icant portion of the clock period, and cutting out this slack
provides tremendous opportunity to improve performance.
With the increasing popularity of applications that utilize
low-precision arithmetic, data slack is becoming even more
prevalent.

ReDSOC recycles the data slack from a producer op-
eration by starting the execution of dependent consumer
operations at the exact instant of the producer’s completion.
Recycling over multiple operations executing on ALUs,
allows acceleration of these data sequences and improves
performance.

ReDSOC is particularly beneficial for compute-intensive
benchmarks with long data-dependency chains. In the ab-
sence of very high ILP due to strict data-dependency, but at



the same time when memory is not a bottleneck, ReDSOC
provides an ideal mechanism to improve performance in an
energy-efficient manner, without having to increase proces-
sor voltage/frequency. Moreover, its suitability to general
purpose processors and its non-speculative nature for circuit
timing makes it a reasonable solution for better clock-period
utilization in standard OOO cores.
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