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Abstract
Tag Tables enable storage of tags for very large set-

associative caches - such as those afforded by 3D DRAM
integration - with fine-grained block sizes (e.g. 64B) with low
enough overhead to be feasibly implemented on the processor
die in SRAM. This approach differs from previous proposals
utilizing small block sizes which have assumed that on-chip
tag arrays for DRAM caches are too expensive and have con-
sequently stored them with the data in the DRAM itself. Tag
Tables are able to avoid the costly overhead of traditional tag
arrays by exploiting the natural spatial locality of applica-
tions to track the location of data in the cache via a compact

“base-plus-offset” encoding. Further, Tag Tables leverage the
on-demand nature of a forward page table structure to only
allocate storage for those entries that correspond to data
currently present in the cache, as opposed to the static cost
imposed by a traditional tag array. Through high associativ-
ity, we show that Tag Tables provide an average performance
improvement of more than 10% over the prior state-of-the-art
- Alloy Cache - 44% more than the Loh-Hill Cache due to
fast on-chip lookups, and 58% over a no-L4 system through a
range of multithreaded and multiprogrammed workloads with
high L3 miss rates.

1. Introduction
Recent technological advances incorporating dense DRAM
“close to” the processing cores of a computing system - namely
embedded DRAM (eDRAM) and stacked DRAM - provide un-
precedented low-latency, high-bandwidth data storage. While
the capacities are large given their proximity to the core, they
are unlikely to provide sufficient storage to replace main mem-
ory for all but certain embedded applications [5]. As such,
recent products [2, 8, 12] and research proposals [9, 10, 14]
have advocated their use as additional levels of cache. Unfortu-
nately, traditional tag tracking mechanisms are not well-suited
to these large capacities for most applications.

First of all, the small-allocation-unit cache represents the
mechanism of choice for most of the history of hardware
caches. While very efficient at utilizing cache capacity by
storing relatively small blocks of data, it is prohibitively ex-
pensive to store the necessary number of unique tags for these
high-capacity caches which are expected to reach between
hundreds of megabytes to tens of gigabytes in the near future.
For example, considering a 1GB cache with 64B blocks and
6B of tag per block, these traditional tag arrays require 96MB
of storage - infeasible on the SRAM-based logic die. As such,

recent small-block-based approaches have proposed storing
the tags in the DRAM array themselves [10, 14], necessitat-
ing novel techniques for addressing the fundamental issue of
high-latency DRAM accesses for tag checks. Two prior tags-
in-DRAM approaches for these large caches, the Loh-Hill
Cache [10] and the Alloy Cache [14] both attempt to mitigate
this issue by completely avoiding DRAM cache accesses on
misses, either by an additional tracking structure on the logic
die as in the Loh-Hill Cache’s MissMap or through prediction
as in the Alloy Cache. The Alloy Cache further addresses
DRAM access latency by also optimizing hit latency. While
the Loh-Hill Cache preserves a high level of associativity for
its stacked DRAM cache, requiring the acquisition of multi-
ple DRAM blocks for all the tags in a set, the Alloy Cache
advocates a direct-mapped approach, requiring the acquisition
of only an additional burst of data across the bus to acquire
the co-located tag information for a data block. Therefore,
these two competing proposals take different stances on the
importance of hit rate and hit latency, the importance of which
is largely a function of application characteristics.

On the other end of the tag tracking spectrum, one that
optimizes for tag storage and can thus avoid the fundamental
issue of accessing DRAM for tags, is the large-allocation-
unit cache. Whether simply a tag array with large blocks or
a sectored approach allowing small block fetch within the
large allocation units (the sector), these mechanisms achieve
much lower tag storage overhead by reducing the number of
tags, potentially allowing them to exist in fast SRAM on the
logic die. The drawback for these approaches however, stems
from much higher miss rates from false conflicts created by
these large allocations. While simply increasing the block size
is generally regarded as a poor design point due to the high
bandwidth demand (a whole large block must be fetched on
every miss), sectored cache approaches have recently been
advocated as a viable solution to tag tracking for large DRAM-
based caches. The recent Footprint Cache proposal utilizes a
sectored tag array augmented with a footprint predictor that
predicts the subset of sectors that are likely to be accessed,
and populates the sectored cache entry by prefetching only
the predicted sub-blocks [9]. This approach still suffers from
conflict misses due to the large block size, but has relatively
low overhead for tag storage (< 2MB for a 256MB cache, but
growing to 8MB for a 1GB DRAM cache) and, subject to an
accurate footprint predictor, is able to mitigate the increase
in conflict misses with useful prefetches. Our evaluation in
Section 8.6 shows that footprint-based prefetching can be



easily adapted to our proposal for tag tables, and has the
potential to provide significant performance gains.

As a mechanism to provide many of the key features of the
prior techniques, this paper presents Tag Tables. Tag Tables
provide low latency tag check facilities on-par with the Alloy
Cache while maintaining the associativity - and thus hit rate
- of the Loh-Hill cache. Further, Tag Tables provide a small
storage overhead for tags in line with previously proposed
sectored-like approaches such as the Footprint Cache, allowing
the tags to be stored on the fast SRAM-based logic die while
maintaining traditional small block sizes (64B as evaluated).
Tag Tables achieve these seemingly contradictory goals by
leveraging the naturally-present spatial locality of application
working sets that is enhanced by the longer residency times of
data in these high-capacity DRAM caches by utilizing a base-
plus-offset encoding of “chunks” of contiguous data in the
cache. Further, Tag Tables are implemented as a forward page
table stored in the existing L3 cache resources of the chip,
allowing tag storage overhead to be dynamically balanced
with on-chip caching resources. The remainder of the paper
will elaborate on the specific mechanisms that achieve these
features.

2. Motivation
As a means to place these competing ideologies into perspec-
tive, Figure 1 presents the ”Bandwidth-Delay product” (BDP)
achieved versus the tag storage overhead of a broad range
of DRAM cache tag storage configurations. The compound
BDP metric attempts to quantify the major benefits sought
with caching: reduced off-chip bandwidth and improved ap-
plication performance through high speed data access, where
a lower value is better. The shaded area at the bottom left of
the figure captures designs that have lower BDP than a base-
line system without a DRAM cache, and have a reasonable
(defined here as 6MB) SRAM cost for tags.

Along with the Loh-Hill Cache ( ), the Alloy Cache
( ), and Tag Table ( ) configurations, a family of curves is
presented in the figure for a large-allocation-unit mechanism
that attempts to reduce tag overhead by increasing block size.
The graph clearly shows that the large allocation approach
- which evaluates block sizes from 64B to 512B - fails to
achieve good performance, either consuming too much off-
chip bandwidth to fetch its large blocks and/or incurring too
many misses due to false conflicts. In contrast, the Loh-Hill
Cache, the Alloy Cache, and Tag Tables all reside within the
desirable portion of the graph with the Tag Table configuration
providing the best BDP (Section 8.4 will discuss the main
features that distinguish Tag Tables from both the Alloy Cache
and Loh-Hill Cache).

Further, while the Tag Table configuration exists to the right
of the Alloy Cache, indicating increased SRAM storage re-
quirement, this is the complete tag storage overhead (i.e., no
tag information needs to consume DRAM cache capacity). In
addition, the Tag Table achieves its performance without any
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Figure 1: Performance of various cache configurations for a 256 MB L4
cache. Shaded area indicates desirable region of improved
bandwidth-delay with practical SRAM cost. Results shown for the
PARSEC canneal benchmark normalized to a baseline with no L4.

prediction or SRAM-based hit/miss determination structures
as the other three state-of-the-art techniques rely on. In fact
prediction is an orthogonal technique that is equally applica-
ble to Tag Tables thus they can be extended by any one of a
number of prediction schemes to achieve even better perfor-
mance (Section 8.6 will investigate the opportunity footprint
prediction might have for Tag Tables).

2.1. Additional Related Work

The structure of Tag Tables are partly inspired by prior work in
memory protection and address translation. Mondrian Mem-
ory Protection (MMP) argues for fine-grained protection do-
mains and proposes a practical implementation scheme that
exploits spatial locality similar to that exhibited by application
cache accesses and exploited by our Tag Table. MMP exploits
these observations through both a forward page table structure
and base-plus-offset encoding of entries [19]. In a similar vein,
Coalesced Large-Reach TLBs (CoLT) uses a base-plus-offset
encoding to track many contiguous virtual-to-physical page
mappings [13].

3. Page Walk
This section presents the fundamental data structure of Tag
Tables, which is based on the tree structure used to implement
a forward page table.

3.1. Page Tables

Motivated by Figure 1, we begin to develop a more compact
storage mechanism for large cache tags by arguing that any
extension of a traditional tag array will be unable to exploit
runtime features of the system to achieve storage savings be-
cause they impose a static storage requirement. Regardless of
the state of the cache, the one-to-one mapping of cache blocks
to tags in a traditional tag array means that it must provision
storage equal to the product of the number of blocks in the
cache and the storage required per tag. This feature is analo-
gous to another mechanism for tracking memory metadata -
the inverted page table (IPT). Similar to the tag array, the IPT
has a one-to-one mapping of physical pages to entries and im-
poses a static storage requirement proportional to the number
of physical pages. Unlike a traditional tag array however, a
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Figure 2: High level operation of a forward-page-table-based implementa-
tion of cache tags.

page table has an alternate implementation to the IPT - the
forward page table (FPT) - that only requires storage relative
to the number of mapped pages. In other words, no storage
overhead is incurred for a memory page that is unmapped in
an FPT. Therefore, as a starting point for developing a more
robust solution to tag storage for large caches, we investigate
opportunities for adapting the FPT mechanism which provides
us with the flexibility to adapt to application behavior and
frees us from an inflexible requirement that cannot be adapted
on-demand to system needs.

At a high level, the replacement of a traditional tag array
by a page table implementation is straightforward and follows
the operation outlined by Figure 2. Upon access, a tag check
occurs as a virtual address translation does in a forward page
table through indexing the various levels of the table with ap-
propriate bits of the access’s address. The “walk” terminates
when either all bits are exhausted and a leaf entry is found -
storing the way associated with the tag, if the cache is associa-
tive - or the branch terminates prematurely indicating a miss.
In the end, all bits of the address above the block offset have
been used to arrive to a unique location in the table for the
address. This operation is analogous to the page table where
all of the bits of the address above the page offset are used to
traverse to a unique leaf. A miss would then trigger insertion
of the data in the cache and tracking of the tag in the table
by extending the branch to a leaf and storing the appropriate
way in the leaf as identified by an eviction mechanism which
is unchanged from a traditional cache (e.g., selection of the
least recently used member of the set). In and of itself, the
choice of this data structure in Tag Tables is not a fundamental
improvement as the combination of multiple levels and way
storage in the leaf is not inherently less expensive or faster
than a traditional tag structure. It does however, provide a
starting point that frees Tag Tables from inflexible storage
requirements and represents a structure that is able to adapt to
system operating characteristics.

3.2. Locating Metadata

As with any tag tracking structure - especially one for high-
capacity caches - the storage location of the metadata is a
primary concern. By metadata, we are referring to the data
that is required in order to logically create the Tag Table:
the leaf entries storing way information and the pointers to
subsequent levels. In a traditional tag array, this metadata is the
tags themselves. While the Loh-Hill Cache and Alloy Cache
choose to store their metadata (cache tags) in the stacked
DRAM array itself, Tag Tables adopt the page table approach
and store its metadata in memory, specifically the L3 cache.
While it would be possible to dedicate a structure by “carving”
out a portion of the L3 cache as is proposed for the “MissMap”
access predictor in the Loh-Hill cache [10], locating Tag Table
metadata dynamically in the L3 allows a system with Tag
Tables to quickly perform table walks and balance metadata
with application data through the existing cache replacement
policy.

This competition of metadata with application data is al-
lowed without restriction up to a “high watermark.” This high
watermark is enforced on a per-set basis and is necessary to
limit the number of ways in the set that can be occupied at any
given time with metadata. This restriction is placed to prevent
excessive pollution by metadata that could otherwise severely
harm application performance. This is particularly a concern
in the situation where the L3 cache is capable of storing the
major portions - if not all - of the application’s working set (a
situation not that uncommon for typical L3 cache sizes and
many applications). Since metadata effectively reduces the
capacity of the L3 for application data, such pollution could
result in the working set no longer fitting, severely impacting
performance. Section 8 will evaluate the effect of different
high watermark settings on Tag Table performance.

4. Reducing Levels Traversed

Although a traditional page walk can work correctly to perform
a tag check as described, this section describes two opportu-
nities afforded Tag Tables to accelerate these walks. These
opportunities arise from the different needs of a tag check
relative to an address translation.

4.1. Walk Bit Selection

First of all, unlike a traditional page table, Tag Tables can
reverse the order of the bits used to index various levels in
order to utilize the high entropy bits to index the upper level
entries. This is useful since Tag Tables, like traditional tag
arrays, would like to use these high entropy, low-order bits to
define the set associated with the data to more evenly utilize
cache capacity (as labeled in Figure 3 as “Row Selection Bits”).
While utilizing high order bits for upper levels of a page table
is advantageous for translating virtual to physical addresses
by allowing page size to be implied by a translation’s location
in the table, Tag Tables do not benefit from such support and
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Figure 3: Modified high level operation, specific to a 1GB DRAM cache with
4KB rows and 64B blocks, accessed by 48-bit addresses.

indeed, can gain significant advantage by reversing the order of
the bits selected. As shown in Figure 3, this reversed selection
indexes the root level with the bits of the address just above
the page offset (Section 5 will discuss how the page offset bits
are used in the tag check).

One important implication of this reverse walk is the ability
to infer data location based on the path traversed through the
tree. As Figure 3 shows, by evenly dividing the number of bits
required to uniquely identify a row - log2(Number of Rows)
- across some number of upper levels of the table, we can
completely isolate all of the entries associated with a given
row of the cache to a specific subtree of the Tag Table. We
call the roots of these subtrees “page roots,” corresponding to
the pointers in the first level of the table (Lvl 1) in Figure 3,
and are uniquely identified through the two sections of the
address highlighted as the “Row Selection Bits” in the figure.
Given that all the blocks within a main memory row map to
the same row in the DRAM cache as discussed above, these
bits are analogous to the set selection bits of a traditional tag
array where each DRAM cache row is equivalent to a set. As
we will discuss in the next section, this analogy extends to
placement in the DRAM cache in that Tag Tables allow blocks
to be placed flexibly anywhere within their appropriate DRAM
cache row.

4.2. Upper Level Entries

The second mechanism Tag Tables employs to to reduce the
average number of levels traversed is the allowance of flexible
placement of leaf entries. Instead of requiring a tag check
to traverse all levels of the tree, if there is no ambiguity, leaf
entries can be placed in any other intermediate node on the
correct path. Such an ambiguity guarantee is encountered
whenever a traversal terminates on an incomplete path prior
to reaching a leaf node. In such a situation, it is guaranteed
that no other data exists in the cache that takes the same path
through the tree, so there is no need to extend the current
branch to a leaf, instead it is acceptable to create a leaf entry,
encoding the way at the current level for the new data and

maintaining a tag in the entry to disambiguate any subsequent
accesses.

As an example, consider the first accesses to a cache upon
initialization. Since no entries currently exist in the table, the
first access will miss in the root. Therefore, upon insertion
there is no need to fully traverse to a leaf, instead the leaf can
be created at the associated root index. This in turn, neces-
sitates the tracking of tag data to allow subsequent accesses
that index the same entry to disambiguate themselves with the
existing entry. This means that bits of the address that must be
maintained as a tag correspond to those portions of the address
that have not yet been used to traverse the table. In the case
of a collision at the root, this corresponds to the three fields
of the address associated with the L1, L2, and L3 indices as
shown in Figure 3.

5. Compressed Entries

5.1. Sectored Caches

While a page table structure is useful for allowing Tag Tables
to dynamically adapt to system operating characteristics, the
structure does not inherently reduce the tag storage required.
Therefore, as a first step toward realizing compressed tag
storage and making storage of metadata in the L3 feasible, this
section investigates sectored caches, a tag tracking mechanism
for some of the earliest cache implementations. Sectored
caches are a simple mechanism that rely on spatial locality of
data in the cache to effectively reduce the overhead of storing
tags for large contiguous regions of data by storing only one
full tag for a region - a sector - of the cache along with a
bitvector indicating which of the blocks represented by the tag
are actually present [1].

As mentioned previously, such an approach is particularly
beneficial for applications that exhibit a very high degree of
spatial locality or “page access density” [9]. As long as a very
high proportion of the blocks covered by a tag are actually
present, the cache achieves most of the performance available
with more fine-grained tags with much less overhead. The
problem arises when there is not enough locality to densely
populate the region covered by a tag, leading to a much higher
rate of evictions when blocks from conflicting tags are ref-
erenced. Indeed, most cache designs in the decades since
sectored caches were first introduced have eschewed their use
because many applications do not exhibit the density necessary
to realize their benefit.

In order to investigate the feasibility of sectored cache de-
signs for large DRAM caches for systems running modern
applications, we measure the number of unique tags in a given
DRAM cache row as a proxy for the locality available for
a sectored cache’s large tags. We determine the number of
unique tags through simulation of multi-threaded PARSEC
and multi-programmed SPEC workloads on a direct-mapped
Alloy Cache [14], capturing a snapshot of the unique tags
present in a row at the end of simulation (details of the simula-
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Figure 4: Cumulative proportion of DRAM cache rows with less than or
equal to a given number of unique tags.

tion parameters are given in Section 8). Presented in Figure 4,
this evaluation indicates that modern applications exhibit a
wide range of locality characteristics. The figure relates the
cumulative proportion of the cache’s rows that exhibit a given
x-value’s number of unique tags. For instance, mcf has nearly
40% of its cache’s rows with more than 8 unique tags (60% of
the rows have less than or equal to 8 tags). The page size inves-
tigated is 4 KB and it can be seen that for many applications,
most rows in the cache have very few unique tags as evidenced
by the sharp slope in the graph for low values of unique tags,
identifying them as potentially good candidates for a sectored
cache. A significant number of other applications however,
such as mcf and omnetpp, unfortunately exhibit few rows
with high locality as evidenced by their graph’s relatively flat
growth at low unique tag counts. Finally, despite indications
that perhaps many applications may benefit from a sectored
tag approach, i.e. those with steep slopes to the left end of
the graph, it should be noted that for a 256MB cache, 64B
blocks and 256B per sector (i.e., 4 blocks per sector) the stor-
age overhead of the tag array is still 5MB. This penalty grows
near-linearly with cache size (neglecting the minor change
in tag size per sector due to larger caches) resulting in much
higher cost as cache size increases. Together, this data jus-
tifies the absence of sectored cache designs in current cache
implementations due to its severe penalty of several important
application types and motivates us to identify a more robust
mechanism for reducing the storage requirement of cache tags.

Motivated by the results of Figure 4 which indicate a range
of spatial locality within a cache both over rows within the
cache and from application to application, we seek to create
a space-efficient entry type that can robustly adapt to these
different scenarios. While the figure shows that the rigidly
imposed spatial locality required by a sectored cache does not
map well to many applications, it also indicates that there is
significant opportunity if a sectored-tag-like approach were
available for some applications and regions of the cache. In
order to realize such a robust tracking mechanism, we propose
the use of a “base-plus-offset” encoding for tracking regions
of memory in the cache. Rather than imposing static region

(a)

Offset Length

Chunk 2

Offset Length

Chunk 3

Offset Length

Chunk 4

Tag Offset Length

Chunk 1

(b)

Figure 5: Basic & Expanded Entry Formats.

sizes and boundaries and tracking the blocks within through
the sectored approach’s bitvector, we propose instead storing
the tag associated with the bottom block of a “chunk” of data
and indicating the number of contiguous blocks from that base
block with a count value1. Such an encoding can be seen
in Figure 5a, showing a field for a simple tag followed by a
field that indicates the number of contiguous blocks existing
beyond that base.

Unlike a bitvector which requires a bit for every block,
this length indication only requires log2(Max. no. blocks) bits.
The tradeoff of course, is that this encoding cannot track a
range with “holes” (i.e., non-present blocks within the chunk)
in it. To address this issue, we propose a hybrid approach
by introducing some number of chunk representations greater
than one as shown in Figure 5b, allowing us to represent holes
implicitly in the gaps between chunks. In this format, in
addition to the tag and length previously discussed, we also
must utilize an “offset” specification that relates the first block
of the chunk to the tag of the entry. For example, an “offset”
of ’4’ indicates that the first block of the chunk exists four
blocks beyond the base block identified by the tag.

When combined with the forward page table structure pro-
posed in Section 3.1, by replacing the simple way-identifying
entries proposed at the leaf of the page table with these com-
pressed entries, we free ourselves from a one-to-one mapping
of blocks present in the cache to leaf entries in the page table
structure. This allows us to amortize our inherently larger en-
tries over a greater range of blocks. Section 8 will quantify this
amortization by showing that the average number of blocks
tracked per entry is actually quite high for those applications
in our benchmark set.

6. Operation

This section provides discussion of the operation of Tag Tables,
utilizing all of the components so far described. The basic Tag
Table structure tracks tags in a large cache and operates - at a
high level - as a forward page table with tag checks implicit
with a walk of the table. The exact location of data is stored in
compressed form at leaf entries with base-plus-offset encoding
and misses are either implied by failure to find a complete path
to a leaf or by a block not residing in any of the leaf entry’s
chunks.

1Specifically, for the remainder of the paper, when we refer to a “chunk,”
we mean a set of blocks present in the cache that are contiguous with one
another in main memory.
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6.1. Insertion

As with any cache, insertion of data is a fundamental op-
erational issue for Tag Tables. Due to the structure of the
compressed entries, Tag Table efficiency is significantly im-
pacted by the location of data. If placed intelligently, large
contiguous chunks can be created, amortizing the cost of an
entry as additional blocks can be tracked by merely increment-
ing the “length.” If placed poorly, this opportunity is missed
and the inherently larger entries relative to a traditional tag can
result in a structure that is much larger than even a traditional
tag array.

Procedurally, insertion involves first building a bitvector
representing all of the blocks present in the current block’s
DRAM cache row. Thanks to the page roots discussed in
Section 4.1, building this bitvector is isolated to the leaves
associated with the current block’s page root where traversal
to each leaf and setting of all bits in the vector associated
with the blocks tracked in the leaf’s chunks is sufficient to
populate the bitvector. While this may seem like a costly
event, the optimization presented in Section 4.2 that allows
leaf entries to exist in intermediate levels can reduce this cost
when it is known that there is only one entry associated with
the DRAM cache row. In such a case, building the bitvector
only requires inspecting the chunks of this single entry as
opposed to potentially multiple traversals. Indeed, as will
be shown in Section 8, relatively few entries are frequently
necessary per DRAM cache row, limiting the traversals needed
to create the bitvector.

Following population of the bitvector, the Tag Table at-
tempts to find a location for insertion by emphasizing exten-
sion of existing chunks if such a chunk exists (i.e., either
the base or top of the chunk is contiguous with the inserted
block) and the bitvector indicates the appropriate position is
free in the row. If an existing chunk cannot be identified to
extend, the Tag Table falls back to either randomly choosing
an existing empty location if one exists, or randomly selecting
a victim from the existing blocks. While there are poten-
tially many improvements that can be made to this mechanism
(more sophisticated replacement algorithms, etc.), simulation
has shown this simple approach works reasonably well, thus
we leave investigation into more sophisticated approaches for
future work.

Further, while insertion can be a high latency event, particu-
larly in the situation where a page root has many leaf entries,
it occurs off of the critical path (i.e., data from the request is
passed on the L3 in parallel with the DRAM cache insertion)
and follows the already high latency miss event that triggered
the fill, thus its impact on performance is negligible. In addi-
tion, while not evaluated for this proposal, it can be envisioned
- for increased storage cost - that each page root entry can
maintain its own persistent bitvector, simply updating it on
insertions and evictions, removing the need to dynamically
re-build it from scratch on each insertion.

6.2. Associativity

Prior work on DRAM cache tags have taken varying ap-
proaches on the topic of associativity. Loh and Hill for one,
choose to allow associativity up to the number of blocks in
a DRAM cache row, less those blocks required to store tag
information (three blocks as presented) [10]. This is a key
design point for their proposal as they rely on the guaranteed
page-open state the tag check provides them to limit hit la-
tency. Since the row is already open, there is no advantage
in their design to limit the associativity, and indeed there is
benefit to maintaining associativity, even in such large caches,
as Figure 1 highlights. The Alloy Cache on the other hand, ex-
plicitly eliminates associativity to optimize hit latency. Since
the relative cost of accessing the tags necessary for supporting
associativity is so high in the Loh-Hill cache, the Alloy cache
argues there is substantial benefit to be realized by limiting
the number of tag checks. Given our Tag Table’s location
on-chip in SRAM however, it suffers from a tag access penalty
much more in-line with other on-chip caches which have deter-
mined that the cost of associativity is justified (an observation
substantiated by Figure 1).

Therefore, for the insertion of data in a Tag-Table-
administered cache, associativity similar to the Loh-Hill cache
is maintained in that placement of data is valid anywhere
within a DRAM cache row. While there is no benefit of a
guaranteed open row access, there is essentially no advantage,
latency-wise, by restricting data to any particular location
within the row. Instead, high associativity is particularly im-
portant in an inclusive cache system beyond the inherent hit
rate benefits of associativity which will be discussed in more
detail in Section 8.4.

In order to support this associativity, Tag Table compressed
entries are provisioned to be able to fully track the blocks in a
DRAM cache row. This means, that for 4KB pages and 64B
blocks, that each offset and length field must be 6 bits wide.
This leads to the updated entry format presented in Figure 6
whose new fields will be described fully in the summary of
this section (Section 6.3), but notably convey the 6-bit offset
and length fields and introduce the “Row Offset” field which
relates the page offset of the base of the chunk to the actual
location in the DRAM cache row for that block. For example,
consider the situation where a block at page offset of 0x4
(relative to the base tag of the entry) is placed at location
0x8 in the actual DRAM row (i.e., 8 blocks from the base
of the cache row). In this case, the chunk associated with
the page offset will have the value ’0x4’ in the “Page Offset”
field (assuming it is the base of the chunk) and the value
’0x8’ in the “Row Offset” field. This way, when a subsequent
walk traverses to this entry with a page offset of 0x4, it will
know that its data is physically located at block 0x8 of the
appropriate DRAM cache row. Note, that if the page offset
was 0x5 for an access, assuming it was present in the cache
(implying a “length” of the chunk >1), the row offset returned
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Figure 6: Detailed diagram of a compressed entry capable of tracking 4 contiguous chunks of data associated with a tag. Bits correspond to 1GB cache with
4KB rows and 64B blocks associated with a 4-level Tag Table that utilizes 9 bits to index each level.

from the query would be 0x9.

6.3. Summary and Example of Operation

In common operation, the Tag Table as proposed is referenced
upon every cache access as is done with a traditional tag array.
Similar to traditional tag arrays, this reference can be done
serially or in parallel with data access. Upon access, the Tag
Table is traversed as a forward page table with pre-defined
portions of the address used to index the various levels of
the table as shown in Figure 3. If the traversal encounters an
invalid entry at any point, the access is a miss. A miss can also
be indicated if the traversal does not hit at the valid entry that
matches the access’s tag.

Functionally, hit determination operates first through the
use of a 6-bit adder which computes the upper value of a
chunk. Next, two comparators check if the access’s block
is greater than the base of the chunk and less than the upper
block. Finally, the output of the comparators are fed to a 2-
input AND gate that indicates a hit on the chunk when both
comparator’s operations are true. Similar to tag checks in
traditional arrays, multiple chunks can be checked in parallel
by trading off area and power.

Upon a hit, the Tag Table returns the row offset associated
with the access by subtracting the access’s page offset from the
page offset field of the chunk and adding it to the row offset
field. This row offset is analogous to the way specification in
the simplified operation presented in Section 3.1 and identifies
the specific location of the data in the row. Finally, by con-
catenating this row offset with the access’s “Row Selection
Bits,” the exact location of the data in the DRAM cache is
determined and associativity to the degree of the number of
blocks in a cache row (e.g., 64-way associativity for a cache
with 4KB rows and 64B blocks) is realized. Given the many
tens to hundreds of core cycles already expended on the given
access, the few additional cycles for these adder and compara-
tor operations do not contribute significantly to performance
as shown in Section 8 that takes these into account. This direct
data access is in contrast to tags-in-DRAM approaches that
require the DRAM itself to be accessed before being able to
know unambiguously whether and/or where the data is in the
cache, providing our Tag Table with significant power and
performance advantages.

Finally, the dirty bit of the compressed entries is unchanged
from the dirty bits in other implementations and serves to
identify which chunks contain data that is modified from main
memory and need to be written back on eviction.

7. Optimizations

7.1. Prefetching

The first optimization involves a prefetching mechanism that
can be used to accommodate the limited chunk specification
imposed by the compressed entries. As a baseline, Tag Tables
utilize a mechanism that evicts the shortest chunk to make
room for a new chunk specification. Leveraging a unique
property of Tag Table’s compressed entries that allows them
to consume less storage space by tracking more data however,
Tag Tables can instead utilize a reactive prefetching mecha-
nism to maintain no greater than four chunks per entry. In
situations where insertion of data would otherwise create a
fifth distinct chunk in the associated compressed entry, this
mechanism can prefetch data to combine existing chunks in
order to free a chunk for the new data.

By way of example, consider the DRAM row presented
in Figure 7 when the cache attempts to insert the “New
Block” which maps to Entry 1 (the entry corresponding to
the green/light blocks). Since Entry 1 is already tracking four
chunks, there is no room to add the new block. The prefetch
mechanism addresses this problem by identifying the least
gap between Entry 1’s segments and prefetches data to fill
it. In this example, that gap exists between Chunks 3 and 4.
Therefore, the blocks with offsets 0x2E and 0x2F associated
with the entry are fetched from main memory and inserted
to allow Chunk 4 to merge with Chunk 3. The end result is
an increment of Chunk 3’s ’length’ field by 0xA (to 0x12) to
accommodate the two prefetched blocks and the eight blocks
previously tracked by Chunk 4, leaving Chunk 4 free to track
the newly inserted data.

The procedure to determine this least gap occurs following
the bitvector population and victim determination of insertion
as described in Section 6.1 and consists of a number of 6-bit
adders, one for each chunk, to determine the upper value of
each chunk. Following this, the output of the adders (the top
block of each chunk) is subtracted, again using 6-bit subtrac-
tors, from the base of the next chunk and fed into a 3-input
comparator which chooses the smallest input (from the three
chunk gaps). From this identification of the least gap, the
actual blocks to prefetch can be easily determined by fetching
a number of blocks beyond the top of the lower chunk equal
to the value of the least gap.

As with insertion, although this operation consumes addi-
tional cycles it occurs off the critical path, following an already
long latency miss to acquire the fill data, and only involves
serializing two addition operations and a 6-bit comparison and
thus has negligible effect on performance. An alternate method
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Figure 7: Example compressed entries associated with a DRAM cache row.

to maintain correctness however, which we will evaluate in
Section 8.5, is to evict the shortest chunk instead.

7.2. Colocating Metadata

In addition to reducing the average number of L3 accesses for
metadata by allowing compressed entries to exist in interme-
diate levels as discussed in Section 4.2, Tag Table’s structure
provides an additional means for optimizing metadata retrieval.
Assuming a system with a shared L3 that is physically com-
posed of multiple, distributed slices, it is possible with our
Tag Table’s tree structure to partition it in such a way that the
metadata associated with a partition of the table be co-located
with the L3 slice that would trigger its access. If the bit in-
terleavings associated with each slice of the L3 is static and
known at initialization, it is a simple matter to maintain those
portions of the Tag Table on the paths associated with a given
slice at the L3 slice itself. This opportunity frees our Tag Table
structure from the long latency accesses previously assumed
for DRAM cache metadata, specifically the 24 cycles assumed
for the MissMap [10]. Instead, considering a ring-based, 8-
core CMP system, with one L3 slice per core, L3 accesses
consist of 1) communicating a request to and returning data
from the proper slice, 2) accessing the tag information in that
slice, and 3) accessing the associated data (on a hit). Therefore,
utilizing a uni-directional ring for inter-core communication,
the communication portion of the latency comes to 16 core
cycles round-trip on average assuming the network operates at
core frequency and only requires two cycles per hop (1 cycle
for switch traversal and 1 for link traversal). Following com-
munication, accessing tags for a 1 MB bank of SRAM takes
2 core clock cycles, while data access requires 6 core cycles
as determined by CACTI [18] for a 32 nm SRAM process,
rounded up to the nearest whole cycle. In total, these latencies
lead us to the 24 cycles assumed in prior proposals. However,
each access of the Tag Table for metadata takes only the 8
cycle serial tag and data access time.

7.3. Protecting Metadata

The final optimization involves protection of Tag Table meta-
data. After initial evaluations, along with usefulness of protect-
ing application data from metadata, it was determined that the

metadata can benefit from protection as well (i.e., preventing
application data from causing excessive metadata evictions).
This is a situation commonly encountered with “streaming”
applications (i.e., those with little data re-use after cache in-
sertion). Therefore, along with enforcing a “high watermark”
setting, Tag Tables also selectively enforce a “low watermark”
as well. Utilizing a “set dueling” mechanism to determine
when to enforce this setting [15] the amount of metadata that
can be evicted by application data can be limited. Evaluation
of the effect of this dueling is presented in Section 8.5.

8. Evaluation

We evaluate the performance of our Tag Table structure by
comparing it against a baseline configuration of a recent server
chip (Intel Gainestown based on the Nehalem architecture)
with configuration details provided in Table 1. We further eval-
uate the performance of two prior state-of-the-art tags-in-dram
approaches - the Alloy Cache and the Loh-Hill Cache - to place
Tag Tables in perspective. From these analyses, we are able to
illustrate the main contributors to Tag Table’s improved per-
formance over the prior proposals. Finally, we perform initial
exploration into the opportunities available to Tag Tables when
incorporating a prediction mechanism to proactively prefetch
blocks (in contrast to the reactive prefetching presented in
Section 7.1).

8.1. Simulation Infrastructure

In order to simulate sufficiently large regions of applications
to exercise such large DRAM caches, we utilize a trace-based
simulator that implements an abstract core model along with
detailed models of the memory hierarchy above the L3 cache
(i.e., the L3 cache, the L4 DRAM cache, and main memory).
We generate our traces using the Pin-based Sniper simula-
tor [6] utilizing a Gainestown configuration with private L1
and L2 caches and a shared L3 that interfaces with main mem-
ory. Traces consist of those accesses seen by the L3 cache,
grouped into epochs for coarse-grain dependency tracking as
described by Chou, et. al. [7]. These traces are then con-
sumed in a second phase by a simulator that incorporates the
abstract core model utilizing the trace’s epoch notations for
proper issue cadence, issuing requests directly to a detailed L3
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Processors & SRAM Caches
Number of Cores 8
Frequency 3.2 GHz
Width 4
L1 Icache (Private) 32 KB, 4-way, 4 cycles
L1 Dcache (Private) 32 KB, 8-way, 4 cycles
L2 (Private) 256 KB, 8-way, 11 cycles
L3 (shared) 8 MB, 16-way, 24 cycles

Stacked DRAM
Size 64MB, 256MB, 1GB
Block Size 64 B
Page Size 4 KB
Tag Table Associativity 64-way

(4KB pages / 64 B blocks)
Bus frequency 1.6GHz (DDR 3.2 GHz)
Channels 4
Banks 16 per Rank
Bus width 128 bits per Channel
Page Policy Close Page
Metadata Access Lat. 8 cycles
PRE/ACT Latency 36 cycles (18 ACT + 18 CAS)
Data Transfer 4 cycles

Off-chip DRAM
Bus frequency 800 MHz (DDR 1.6 GHz)
Channels 2
Ranks 1 per Channel
Banks 8 per Rank
Row buffer size 4 KB
Bus width 64 bits per Channel
tCAS-tRCD-tRP-tRAS 9-9-9-36

Table 1: System Configuration.

cache. Misses and dirty writebacks from the L3 are then fed
to either a DRAMSim2 [16] interface that performs detailed
main memory modeling - when simulating the baseline, no L4,
system - or to a detailed L4 DRAM cache for DRAM cache
configurations. When implementing an Alloy Cache, a perfect
0-cycle memory access predictor is assumed, allowing DRAM
cache misses to be issued to main memory in parallel with
the DRAM cache tag access. Further, we do not penalize the
Alloy Cache for its additional burst of traffic for tag data over
the DRAM cache data bus.

8.2. Workloads and Methodology

We evaluate our cache configurations on the applications of
both the PARSEC benchmark suite utilizing the native input
sets [4] and the SPEC 2006 suite utilizing the reference input
set executing in rate mode that exhibit better than 2x perfor-
mance improvement with a perfect L3 cache. While we do
not present results for those applications that have less than 2x
improvement with a perfect L3 due to space constraints, our
evaluations of the whole PARSEC benchmark suite (except
facesim which encountered trace generation difficulties) found
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Figure 8: Results for 256MB DRAM Cache.

that they all achieve modest performance improvement with
both the Alloy Cache and Tag Table implementations.

We simulate the first 10 million L3 accesses in the regions
of interest (ROI) for all benchmarks. For SPEC, the ROI is the
primary 1 billion instruction simpoint [17] (i.e., the 1 billion
instruction slice that contributes the most to overall execution),
while PARSEC utilizes the hooks in the integrated benchmarks
of Sniper to identify the beginning of the parallel region of
execution as the ROI.

Virtual to physical address mapping for the workloads is
accomplished through a random, first-touch translation mech-
anism to simulate long-running system characteristics. We
ensure warm cache state for our evaluations by restoring L3
and DRAM cache state through a memory timestamp record
mechanism [3]. For PARSEC this structure is created during
trace generation and dumped immediately prior to entering
the ROI. For SPEC this structure is created by simulating the 1
billion instruction simpoint immediately prior to the evaluated
simpoint.

8.3. Overall Results

Figure 8 presents the speedups achieved by system configu-
rations with either the Tag Table, Alloy Cache, or Loh-Hill
Cache managing a 256MB L4 DRAM cache relative to a base-
line system that interfaces the 8MB L3 directly with main
memory (i.e., no DRAM cache). Overall, this graph shows an
average speedup of 56% for Tag Tables relative to the 41.5%
achieved by the Alloy Cache and 10.6% for the Loh-Hill
Cache. Further, it shows the L3 miss rates on the secondary
y-axis that both a baseline system achieves with full access
to the L3 and a Tag Table system achieves with metadata
pollution in the L3, showing that the impact is not so great.
Notably though, the miss rate increases can be seen to fre-
quently track the workloads where Tag Tables achieve lesser
speedup relative to the Alloy Cahe, leading to the conclusion
that metadata pollution can be a non-trivial factor for some
workloads, causing them to access the DRAM cache more
than they otherwise would. As we will show later in Figure 10
with the DRAM cache miss rates however, these L3 miss rates
are compensated for by substantially improved DRAM cache
miss rates.

In addition to providing the average depth of the tree as
mentioned previously, Table 2 provides further high-level de-
tails, summarizing many key metrics for evaluating Tag Tables.
From left to right, these metrics are the average number of
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Bench-
mark

Blocks
/Entry

L3 Occu-
pancy

Tree
Depth

Lvls
Acc’d

bwaves 47.6 16.6% 2.01 1.13
gcc 43.8 16.7% 2.03 1.71
gems 33.9 22.7% 2.09 1.85
lbm 56.7 13.4% 2.01 1.57
libqntm 28.0 24.9% 2.03 1.35
mcf 30.6 24.9% 2.02 1.65
milc 45.7 16.7% 2.19 1.45
omnet 25.0 24.4% 2.04 1.96
soplex 44.2 17.6% 2.05 1.7
sphinx 46.5 16.5% 2.02 1.76
canneal 38.7 20.4% 2.16 1.99
strmclstr 28.6 23.7% 2.03 1.53

Table 2: Impact of Design Decisions on a 256 MB DRAM Cache.
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Figure 9: Illustrative breakdown of key characteristics resulting in Tag Ta-
ble performance relative to Alloy and Loh-Hill caches.

blocks tracked per entry, the percentage of the L3 occupied by
Tag Table metadata, the average depth of the Tag Table tree,
the average number of L3 accesses for metadata required by
each DRAM cache access (i.e., number of levels traversed per
access), and the increase in L3 misses per 1,000 instructions
due to metadata pollution. Together these statistics show that
applications exhibit a range of behaviors that a Tag Table is
able to dynamically adapt to without consuming an excessive
amount of L3 capacity (less than 25% in all cases).

8.4. Distinguishing Tag Table Features

In order to understand the key characteristics driving the im-
proved performance of Tag Tables relative to the Alloy and
Loh-Hill Caches, Figure 9 presents a rough breakdown of sig-
nificant effects leading to the improvement in the mcf bench-
mark2. While mcf is chosen as the illustrative example, other
benchmarks are significantly similar in terms of relative im-
portance of the various factors.

As the figure shows, the primary differentiator between Tag
Tables and the Alloy Cache is the reduced DRAM Cache miss
rate which improves from a harmonic mean of 27 MPKI for
the Alloy Cache down to just 17 MPKI for Tag Tables over
the evaluated workloads, accounting for about three-quarters

2The mcf benchmark is chosen simply due to the fact that it shows rela-
tively large improvements from Loh-Hill to Alloy to Tag Tables, providing
more graphical room to present the changes

of the final speedup improvement. This result is particularly
important given the fact that the Alloy Cache actually has
improved hit and miss latencies compared to Tag Tables. The
hit latency of the Alloy Cache is 43 cycles compared to Tag
Table’s 50 cycles, while the 0-cycle misses afforded the Alloy
Cache with its modeled perfect predictor compares to about
14 cycles for Tag Tables. Thanks to this much lower miss rate
however, Tag Tables are able to service L3 misses much faster
on average since many fewer must access off-chip DRAM.
In fact, this reduction in off-chip DRAM accesses provides
a final, non-trivial additional factor with improved off-chip
DRAM service time. Finally, the figure also takes into account
the small effect of reduced L3 capacity of a Tag-Table-based
system relative to Alloy due to metadata pollution. The low
value of this negative contribution highlights the robustness of
using the L3 replacement mechanism and set dueling to store
Tag Table metadata as opposed to a dedicated structure.

For the Loh-Hill Cache, the primary differentiator is easily
the difference in tag check latency created by the need to
access additional blocks of tag data in order to determine
location, accounting for about nine-tenths of the difference.
Compared to the average 107-cycle hit latency of the Loh-Hill
Cache, Tag Tables are substantially lower at 50 cycles. Miss
latencies are similarly improved from a 24-cycle MissMap
access in the Loh-Hill Cache to the 14-cycle lookup of Tag
Tables. The additional tag blocks are also responsible for the
remaining effect, the somewhat decreased hit rate due to lower
associativity available by occupying a number of ways with
tag information.

To quantify the hit rate component, which is a major fac-
tor for both Alloy Cache and Loh-Hill Cache comparisons,
Figure 10 shows the miss rates observed in terms of misses
per 1,000 instructions (MPKI) in the DRAM cache for the
three configurations. As the figure shows, the associativity
maintained by both the Loh-Hill Cache and Tag Tables results
in very similar miss rates that are effective at avoiding a sig-
nificant number of cache misses relative to the direct-mapped
Alloy Cache.

Finally, Table 3 provides data related to average memory
access times (AMAT) of the various cache configurations over
the benchmark set. As shown, while Tag Tables exhibit a
higher hit latency relative to the Alloy Cache, the improved
hit rate results in improved AMAT. Further, the second or-
der effect of improved off-chip access time provided by the
reduced off-chip traffic of the associative caches is reflected
in the average miss latencies of Tag Tables and the Loh-Hill
Cache. While this effect is not large enough to overcome the
significant hit latency increases of the Loh-Hill Cache relative
to the Alloy Cache, it serves as an important additional benefit
of Tag Tables.

8.5. Sensitivity Analysis

Figure 11 presents the performance achieved by Tag Tables
with and without optimizations presented previously. Specif-
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Bench-
mark

Loh-Hill Alloy Tag Tables
Hit Rate Miss Lat AMAT Hit Rate Miss Lat AMAT Hit Rate Miss Lat AMAT

canneal 58.1% 161.2 129.7 47.0% 185.9 118.2 65.0% 168.8 94.8
strmclstr 36.6% 155.9 138.1 33.5% 176.5 131.5 39.4% 160.2 117.5
bwaves 41.6% 139.6 126.1 35.5% 158.6 117.2 42.3% 122.7 91.8
gcc 74.9% 186.9 127.1 60.7% 225.4 114.1 80.7% 237.3 88.3
gems 46.1% 310.2 216.6 40.1% 322.9 210.2 54.4% 310.8 170.8
lbm 58.1% 307.8 191.2 49.5% 338.8 191.9 68.7% 225.9 106.3
libqntm 23.4% 176.6 160.3 20.0% 199.9 168.3 26.9% 184.0 148.1
mcf 52.5% 171.3 137.5 52.8% 196.4 114.9 62.9% 174.6 97.6
milc 20.9% 211.7 189.8 21.5% 232.7 191.6 24.2% 208.6 170.5
omnet 98.4% 149.4 107.7 75.8% 168.1 72.5 98.8% 151.9 55.0
soplex 59.9% 205.8 146.6 54.6% 251.6 137.1 61.2% 214.7 115.5
sphinx 53.3% 169.8 136.3 57.0% 206.1 112.6 59.7% 178.9 103.6
Average 52.0% 195.5 150.6 45.7% 221.9 140.0 56.4% 197.3 114.1

Table 3: Average Memory Access Times (AMAT). Hit Latencies: Loh-Hill 107 cycles, Alloy 42 cycles, Tag Tables between 49 and 54 cycles (dependent on number
of L3 lookups required for metadata - “Lvls Acc’d” in Table 2)
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Figure 10: Miss Rates of Various Tag Tracking Mechanisms.

ically, these optimizations are 1.) the use of prefetching to
maintain no more than the maximum number of supported
chunks (Section 7.1) and 2.) the use of set dueling to se-
lectively protect Tag Table metadata from being evicted by
application data (Section 3.2). As the figure shows, the ma-
jority of the benefit of Tag Tables is achieved with a simple
system where the appropriate number of chunks (less than
four for our evaluation) is maintained by evicting the shortest
existing chunk and where metadata is evicted without restraint
by application data in the L3 cache. When selectively enabling
the optimizations however, it can be seen that certain appli-
cations can be significantly affected. Specifically, omnetpp
exhibits a significant performance improvement when set duel-
ing is enabled. As was the motivation for including metadata
protection, omnetpp exhibits excessive DRAM cache evictions
due to L3 metadata evictions when not protected. By enabling
set dueling, once it is observed that hit rates have degraded
sufficiently in the non-protected sets versus the protected sets
(by the Tag Table frequently missing on metadata accesses), a
“low watermark” setting is enforced globally that prevents ap-
plication data from evicting metadata below a certain threshold
(four ways in our evaluation).

8.6. Prediction Opportunities

As alluded to previously, Tag Tables may benefit from previ-
ously proposed prediction techniques, including the Fooprint
Cache proposal (FPC), which maintains an associative table
of recently evicted sectors that records the subblocks that were
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Figure 11: Sensitivity Analysis of Tag Table Optimizations.

demanded during its last residence in the cache [9]. This table
is accessed on a miss using the PC and sector offset and is
used to determine the set of blocks that are fetched into the
sector. Figure 12 shows the potential benefit of prediction with
a Footprint-Cache-like mechanism on our evaluated workloads
by mimicking a perfect prediction mechanism where all refer-
enced blocks are fetched, as observed from a prior execution
trace. The figure presents the same prediction mechanism
applied to Tag Tables, using chunks as the sector analogy. In
other words, when a miss is encountered in the Tag Table, a
number of contiguous blocks are fetched that will be accessed
prior to the eviction of the chunk. With a few exceptions, Tag
Tables without a predictor outperforms the Footprint Cache de-
sign, since it avoids the conflict misses caused by the sectored
organization of the Footprint Cache tag array. FPC predic-
tion shows great potential in many cases, though our results -
which are based on workloads consistent with those evaluated
with the Alloy Cache [14] - do not directly correlate with the
workloads used in the prior work on FPC [9]. Combining
FPC prediction with Tag Tables provides additional gains, and
integrates easily with the Tag Table organization; we leave
exploration of a detailed prediction scheme to future work.

9. Related Work
In addition to the Alloy Cache, Loh-Hill Cache, and Footprint
Cache; TIMBER is another proposal - while presented as a
DRAM cache inserted between the logic die and phase-change
main memory - that could similarly be adapted to tracking
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Figure 12: Opportunity of Prediction on Footprint Cache and Tag Tables.
Tag Tables without footprint fetch (TT null) and ideal footprint
prefetch (TT ideal), and Footprint Cache without prefetch (FP
null) and with ideal prefetch (FP ideal).

tags for die-stacked DRAM or eDRAM caches [11]. TIMBER
augments tags-in-DRAM with an SRAM cache of recently-
accessed DRAM cache blocks. On a hit to this small cache,
the exact location of data is provided, as with Tag Tables. On
a TIMBER cache miss however, the DRAM cache must be
accessed to determine definitively whether or not the block
is present. In this way, it can outperform the MissMap for
blocks with temporal locality at the expense of increasing
miss latency. Hit latency to blocks that miss the SRAM cache
is unaffected. Unlike Tag Tables, TIMBER’s cache does not
provide the full tag information in SRAM - limiting knowledge
to recently-accessed blocks - however it could potentially be
adapted to avoid Tag Table walks by querying it first on an
access, possibly improving the performance of applications
that exhibit temporal locality at the DRAM cache.

10. Conclusion

This paper proposes Tag Tables, a robust and dynamically
adaptable solution to the tag tracking problem for large capac-
ity caches with traditional block sizes that allows a system to
utilize a large capacity DRAM cache to achieve an average
speedup of greater than 58% for a range of multithreaded and
multiprogrammed workloads. Unlike previous proposals for
small-block DRAM caches, Tag Tables are realizable with a
storage requirement suitable for implementation on the speed-
optimized SRAM logic die. This small storage footprint is
accomplished through the combination of the on-demand na-
ture of a forward page table and compressed base-plus-offset
entry encoding. Relative to prior state-of-the-art approaches,
Tag Tables outperform the Alloy Cache by 10% and the Loh-
Hill Cache by 44%. In addition, we have presented initial
investigation into the feasibility of incorporating the orthogo-
nal footprint prediction method utilized to great effect in the
Footprint Cache.
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