
Revolver: Processor Architecture for Power Efficient Loop Execution

Abstract
With the rise of mobile and cloud-based computing, modern

processor design has become the task of achieving maximum
power efficiency at specific performance targets. This trend,
coupled with dwindling improvements in single-threaded per-
formance, has led architects to predominately focus on en-
ergy efficiency. In this paper we note that for the majority of
benchmarks, a substantial portion of execution time is spent
executing simple loops. Capitalizing on the frequency of loops,
we design an out-of-order processor architecture that achieves
an aggressive level of performance while minimizing the en-
ergy consumed during the execution of loops. The Revolver
architecture achieves energy efficiency during loop execution
by enabling “in-place execution” of loops within the proces-
sor’s out-of-order backend. Essentially, a few static instances
of each loop instruction are dispatched to the out-of-order
execution core by the processor frontend. The static instruc-
tion instances may each be executed multiple times in order to
complete all necessary loop iterations. During loop execution
the processor frontend, including instruction fetch, branch
prediction, decode, allocation, and dispatch logic, can be com-
pletely clock gated. Additionally we propose a mechanism
to pre-execute future loop iteration load instructions, thereby
realizing parallelism beyond the loop iterations currently exe-
cuting within the processor core. Employing Revolver across
three benchmark suites, we eliminate 20, 55, and 84% of
all frontend instruction dispatches. Overall, we find Revolver
maintains performance, while resulting in 5.3%-18.3% energy-
delay benefit over loop buffers or micro-op cache techniques
alone.

1. Introduction and Motivation
Although transistor densities continue to scale, the associated
per-transistor energy benefit normally obtained from succes-
sive process generations is rapidly disappearing. This phenom-
ena, known as the end of Dennard scaling, forces architects to
limit transistor switching by means of structural optimization,
functional specialization, or clock regulation [9, 10]. Further-
more, the need for improved computational efficiency has
been highlighted by increased demand in the power conscious
mobile and server markets.

To cope with these increasing energy constraints, future out-
of-order processors must further streamline common execution
patterns, thereby eliminating unnecessary pipeline activity.
For common applications on modern processors, the energy
required by instruction execution is relatively small. Instead
these applications expend the majority of energy on control
overheads, such as instruction fetch and scheduling [26]. This

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

4 8 16 32 64 128 256 512 1024 2048To
ta

l D
yn

am
ic

 In
st

ru
ct

io
n

s
C

ap
tu

re
d

 (
%

)

Loop Buffer Capacity (instructions)

sd-vbs mibench spec_int spec_fp

Figure 1: Ideal Loop Buffer Performance.

energy distribution is particularly visible in recent mobile
processors, such as ARM’s Cortex-A15, where frontend power
accounts for 25-45% of all core energy [2, 20].

To reduce these frontend energy overheads, architects
have proposed many pipeline-centric instruction caching
mechanisms that capitalize on temporal instruction local-
ity [6, 21, 3, 19, 15]. The majority of these proposals target
capturing loop instructions, in a decoded or encoded form, into
a small buffer for inexpensive retrieval on future iterations.
Figure 1 shows the percentage of instruction accesses that can
be serviced from ideal1 loop buffers of varying sizes across
multiple benchmark suites. As seen, loop buffers can be quite
effective, with a common loop buffer size of 32 instructions
able to capture 24-90% of all instruction accesses.

The observed effectiveness of loop buffers has resulted in
their rapid industrial adoption [11, 20, 25, 1, 18]. Shown in
Figure 2, industry has progressively implemented more deeply
embedded loop buffers in processor pipelines as a means to
reduce frontend activity. Notably, this trend has created the
ability to bypass not only fetch, but decode overheads as well.
Although early designs, like AMD’s 29k, only saved instruc-
tion cache accesses and supported very small loops, more
modern designs from Intel and ARM bypass more pipeline
stages and store significantly larger loops.

However, despite potential energy savings, no commercial
out-of-order processor has attempted to bypass all frontend
pipeline stages, including allocation and dispatch, during loop
execution. This boundary has not been pushed because of
assumed obstacles related to program ordering, operand de-
pendence linking, and resource allocation.

In this paper we propose the Revolver architecture, an ag-
gressive out-of-order processor which obviates the complexi-
ties related to moving loop buffering into the processor back-

1No branch mispredictions or limitations on in-loop control.

Fetch Decode

IF1 IF2 IF3 D1 D2

Issue Retire

RTAR1 AR2 IS RF EX WB

Allocate/Rename

DI

Dispatch Regfile Execute Writeback

I-Cache

BPred

BTB

IL0-Loop

Fetch
Buffer

Decoder

µop Cache

D
ec

od
e

B
uf

fe
r Alloc /

Rename

1

2

3
4

5

1

2

AMD 29k BTB Target Inst Cache

AMD Jaguar L0 Loop I-Cache

3 Intel Core2 Streaming Loop Buffer

4 Intel Sandybridge µop Cache

5 Intel Silvermont / Nehalem
ARM Cortex A9 / A15
Decoded Loop Buffer

6 Revolver Modified
Issue / LSQ

Issue
Queue

LSQ

6

Reg
File

Execution Lanes

Execution Lanes

Execution Lanes

D-CacheAddr Calc

Reorder Buffer (ROB)

Figure 2: Instruction Reuse Caching Methods. Structures modified/added by each method highlighted.

end. During loop execution only a few static instances of each
loop instruction are dispatched to the out-of-order backend. Af-
ter which, each instruction instance may be executed in-place
multiple times in order to complete all necessary loop itera-
tions. During subsequent executions, no additional resources
are allocated and no frontend structures are accessed. Revolver
enables this through a series of insights and straightforward
modifications to a traditional processor pipeline. Additionally
we propose a mechanism which enables the pre-execution of
future loop iteration loads, enabling single-cycle loads in many
instances on future loop iterations.

Revolver’s loop execution is particularly novel due to its:
• Moving operand dependence linking into the out-of-

order backend
• Eliminating the need to re-allocate resources between

instruction re-executions
• Reducing the branch misprediction penalty for variable

iteration loops
• Enabling the pre-execution of future loop iteration loads

2. Overview
The Revolver architecture is an aggressive out-of-order proces-
sor which supports two primary modes of operation: non-loop
and loop. The overall design is similar to a normal out-of-order
processor with few structural differences.

During non-loop execution mode, instructions flow through
the entire processor pipeline as in a conventional out-of-order
core. The key structural difference between Revolver and
a traditional out-of-order core is the lack of a register allo-
cation table (RAT) within the processor frontend. Instead,
dependence linking between instructions is performed in the
processor backend by a simple structure called the Tag Prop-
agation Unit (TPU) that is accessed in parallel with issue
select. Other than this structural modification, which is de-
tailed further in Section 4.2, the Revolver backend operates
like a normal out-of-order processor during non-loop mode.

In loop mode, the Revolver architecture works by detect-
ing and dispatching loop bodies to an out-of-order backend

which is capable of self-iterating, thus eliminating all frontend
activity during loop execution.

To enable loop mode, additional loop detection logic is
placed at decode. Once a loop’s starting address and number
of required resources2 have been calculated, a subsequent de-
coding of the first loop instruction initiates loop mode. During
loop mode, the loop body is unrolled as many times as allowed
by the resources present within the out-of-order backend. Fun-
damental to Revolver’s operation is its ability to eliminate the
need for any additional resource allocation once a loop has
been dispatched. With respect to the frontend, allocation of
most resources proceeds normally. However, as later detailed,
allocation of destination registers requires special handling.
After dispatch, the loop body resides within the issue queue
and will execute multiple times until all loop iterations are
complete.

With respect to Revolver’s backend, the primary innova-
tion is the ability to allow loop instructions to maintain their
provided resources across multiple executions. Instructions
retain issue queue entries after issue select and reuse them
immediately for the next loop iteration upon commit. The
load/store queue is also modified to enable reuse of entries
while properly maintaining program order. Finally, as detailed
in Section 4.4, each result producing loop instruction simply
alternates writing one of two pre-allocated physical registers.
Revolver’s TPU is designed to allow dependent instructions to
properly access source registers even with alternating register
dependencies.

On loop exit, all instructions are removed from the out-of-
order backend and the loop fall through path is immediately
dispatched. Immediate dispatch is possible since, before clock-
gating, the processor frontend redirects to the fall through path
after successful loop dispatch.

The following sections provide a more detailed and clarified
operation of Revolver’s loop execution mode.

2Resources being physical registers as well as issue queue, load queue,
and store queue entries.

2

Idle

TrainDispatch

start backwardsBranch(pc)va
lid

Lo
op

(p
c)

trained || tooLarge

di
sp

at
ch

ed

validLoop(pc)

Figure 3: Loop Detection Finite State Machine.

v start addr fallthrough addr num_insts max_unroll profitability

Figure 4: Loop Address Table (LAT) Structure.

3. Loop Detection and Training
Loop-mode dispatch in Revolver is regulated by two key mech-
anisms: detection logic in the processor frontend and feedback
provided by the processor backend. The processor frontend
is responsible for detecting and guiding loop body dispatch.
The processor backend provides feedback relating to the prof-
itability of loop execution. If a loop is deemed unprofitable,
backend feedback will result in the frontend disabling future
loop-mode dispatches.

3.1. Detection Operation

The loop detection logic in Revolver is similar to that used
in previous loop buffer proposals [21, 16]. Loop detection is
controlled by the simple finite state machine (FSM) shown in
Figure 3. This state machine operates in one of three possible
states: Idle, Train, or Dispatch.

In the Idle state, instructions propagate normally through
decode until the start of a profitable loop is identified or a
taken PC-relative backwards3 branch/jump is encountered.
Profitable loops are identified by consulting a small (4 entry)
structure containing known loops called the Loop Address
Table (LAT). The LAT, detailed in Figure 4, is a small direct-
mapped structure that records information relating to the loops
composition and profitability. In the event a profitable loop
is encountered, the detection FSM transitions to the Dispatch
state and begins loop-mode dispatch. If no profitable loop is
identified and a backwards branch or jump is encountered, the
detection FSM instead transitions to the Train state.

The Train state exists to record a previously unknown loop’s
start address, end address, and allowable unroll factor4 in the
LAT. Once entering the Train state, until the loop ending
branch, resources required by the loop body are recorded. Af-
ter the ending branch is encountered, the loop information is

3Branch target instruction address less than current instruction addresss.
4As constrained by physical resources.

entered into the LAT and the FSM transitions to the Idle state
again. If a loop requires too many resources to be contained by
the backend, the LAT is not updated. The fall through address
for a loop is set to the next sequential memory address. It
should be noted that, if a loop start instruction is encountered
at any time, training will be aborted and the FSM will im-
mediately transition to the Dispatch state. Finally, if another
backwards control instruction is encountered, the resource
usage information is reset and the Train state is re-entered.

In the Dispatch state, the decode logic guides the dispatch
of loop instructions into the out-of-order backend by specially
tagging them as loop instructions. The loop body is unrolled as
many times as possible, subject to available backend resources.
After unrolling all loop instances, the frontend is redirected
to the fall through path. Once the fall through path fills the
frontend, the frontend stalls and clock gates.

3.2. Detection Discussion

In this section we highlight multiple aspects of the previously
described loop detection mechanism.

First, the Revolver architecture allows almost unlimited
control flow, including function calls/returns, within a loop
body. The only limitation is that predicted execution paths
are statically determined at the time of loop dispatch. Thus
loops with unstable control flow make poor candidates for
loop-mode and backend feedback is responsible for eventually
disabling loop-mode dispatch of such loops.

Secondly, loop-mode is disabled for a given loop if it con-
tains serializing instructions. Examples of serializing in-
structions include system calls, memory barriers, and load-
linked/store-conditional pairs.

3.3. Training Feedback

The backend feedback serves one primary purpose: relaying
information about the profitability of a loop body.

Shown in Figure 4, the LAT contains a profitability field
that acts as a 4-bit saturating counter. Upon insertion into the
LAT, loops receive a default profitability of 8. Loop-mode
dispatch is enabled if profitability is greater than or equal to
8. Feedback from the backend adjusts a loops profitability to
impact its likelihood of loop-mode dispatch.

The following factors impact a trained loops profitability. If
the dispatched unrolled loop body iterates more than twice the
profitability is incremented by 2, otherwise it is decremented
by 2. If a branch within the loop body mispredicts to an ad-
dress that other than the fall through, the loops profitability
is set to zero. For disabled loops, the frontend increments
the profitability by 1 for every two sequential successful dis-
patches observed.

Adjusting by these factors ensures that only highly prof-
itable loops are enabled for loop-mode dispatch, thus mitigat-
ing any potential negative performance impact while capturing
the majority of potential benefit.

3

ld r0, [r1, #0]
st r0, [r2, #0]
add r1, r1, #1
add r2, r2, #1
cmp r0, #0
bne str_cpy

str_cpy:while(*dst++ = *src++) { }

ld r0, [r1, #0]

st r0, [r2, #0]

add r1, r1, #1

add r2, r2, #1
cmp r0, #0

bne
ld r0, [r1, #0]

st r0, [r2, #0]

add r1, r1, #1

add r2, r2, #1
cmp r0, #0

bne

Issue Queue

ld r0, [r1, #0]

Load Queue

ld r0, [r1, #0]

st r0, [r2, #0]

Store Queue

st r0, [r2, #0]

Write Buffer

loop_start

loop_end

commit

commit

loop_start

loop_end

commit

loop_start

loop_end

Source Code Assembly

Figure 5: Revolver Out-of-Order Backend Example.

4. Loop Execution

Revolver’s out-of-order backend supports loop-mode execu-
tion through a series of simple modifications to the issue queue,
load/store queue, and commit logic. These modifications allow
loop instructions within the backend to be executed multiple
times in order to complete all necessary loop iterations. Dur-
ing subsequent executions, all instructions retain their initially
allocated resources. In this section we provide an overview of
backend operation as well as the required structural modifica-
tions.

4.1. Overview

To summarize backend functionality, Figure 5 provides an
example of loop-mode execution performing a string copy
operation5. In this example, the six instruction string copy
loop is unrolled twice into the issue queue. The first (green)
loop body performs all odd-numbered iterations while the
second (blue) loop body completes all even-numbered loop
iterations. This partial unrolling allows parallelism across
iterations during loop-mode execution.

For maintenance and ordering, loop start and end pointers
are tracked by each backend queue. The queues also maintain
a commit pointer that identifies their oldest, uncommitted
entry. Shown in Figure 5, the commit pointer walks from the
loop start until the loop end entry. After committing the loop
end instruction, the commit pointer wraps to the loop start to
begin committing the next loop iteration. Upon commit, issue
queue entries are reset and can be immediately reused for the
next loop iteration. Load queue entries are simply invalidated
on commit, while store queue entries drain into a small write
combining buffer. Draining stores into a write buffer allows

5Copy bytes from source array to destination array until encountering null.

Modified
Wakeup
Matrix

Select
Logic

Reqs

Grants

Tag
Propagation

Unit
Grants

Op
Silo

Program
Ordered

Instructions

oppdst psrc0 psrc1

ldst lsrc0 lsrc1 pdst op

Instruction Silo

Figure 6: Revolver Out-of-Order Issue Queue Design.

the store queue entry to be immediately reused in the next loop
iteration. In the rare instance when a store cannot drain into
the write buffer, commit stalls. Finally, loop-mode reuse of
LSQ entries requires no modification to the age-based ordering
logic of the LSQ. LSQ ordering logic must already support
wrap-around based upon the relative position of a commit
pointer in a conventional out-of-order. To demonstrate this,
given the example’s relative position of the commit pointer in
Figure 5, the second (blue) loop body store is properly ordered
as older than the first (green) loop body store.

Loop-mode execution completes when any branch, loop
terminating or otherwise, resolves to the loop’s fall through
path. Allowing any branch which resolves to the fall through
path to terminate loop-mode execution means that loops end
gracefully even on iteration counts that are not evenly divisible
by the unrolling factor. Additionally, this resolution handling
allows break statements within loop bodies to quickly resolve
without being treated as mispredicts. After termination, the
loop’s out-of-order resources may be freed and the fall through
path immediately proceeds through dispatch.

In the remainder of this section we describe the precise
structural modifications necessary to support this operation.

4.2. Scheduler Modifications

Key to supporting loop-mode execution in Revolver is the
structure and operation of the instruction scheduler. The over-
all design of the Revolver’s scheduler, shown in Figure 6, is
similar to the matrix scheduler presented in [24] by Sassone et
al. The main components of this scheduler are a wakeup array
for identifying ready instructions, select logic for arbitration
between ready instructions, and the instruction silo for pro-
ducing the opcode and physical register identifiers of selected
instructions.

Three primary modifications make the Revolver scheduler
distinctive from [24]. First, Revolver’s scheduler is strictly
managed as a queue and maintains program order among en-
tries. Secondly, the wakeup array utilizes logical register iden-
tifiers and position dependence, rather than physical register
identifiers for wakeup. Finally, Revolver uses a Tag Propaga-
tion Unit (TPU) to provide physical register mappings, instead
of a frontend RAT combined with backend tag storage.

With the high level structure of the scheduler defined, the

4

Wakeup
Array

Segment Header

Segment Header

Wakeup
Array

(a) Wakeup Overview

r0ready r1ready r2ready r3ready

granted
request

granted
request

granted
request

granted
request

clk

(b) Wakeup Array

request

clk

read_reg

alloc

dependent?

write_reg

alloc

ready_reg

granted

output?

(c) Wakeup Cell

Figure 7: Revolver Wakeup Logic

following Sections 4.3 and 4.4 explain the function and opera-
tion of the Revolver’s instruction wakeup and Tag Propagation
Unit.

4.3. Wakeup Logic

The purpose of instruction wakeup in an out-of-order proces-
sor is to observe results generated by scheduled instructions in
order to identify new instructions capable of being executed.
To perform this task, Revolver’s instruction wakeup utilizes
program-based ordering of instructions and logical register
identifier broadcasts. This differs from many conventional
schedulers, which use physical register-based broadcasts and
do not require ordering. This primary benefit from this organi-
zation is that Revolver is able to perform instruction wakeup
without requiring frontend renaming.
4.3.1. Wakeup Operation Figure 7 shows the Revolver
wakeup logic at multiple levels of granularity. At the high-
est level, in Figure 7a, instruction wakeup is organized as a
segmented, program-ordered circular queue. The segmented
wakeup arrays within the scheduler are interconnected via a
unidirectional ring that transmits logical register broadcasts.
In our designs, segments are sized equal to the machine’s dis-
patch width and broadcasts along the ring interconnect travel
at the rate of eight instruction entries per cycle. At any given
time, one segment in the machine will be designated the archi-

tected segment, with incoming operands implicitly ready.
Inside the wakeup array, shown in Figure 7b, instructions

are distributed along rows, while columns correspond to logi-
cal registers. Upon allocation into the wakeup array, instruc-
tions mark their respective logical source and destination regis-
ters. Unscheduled instructions within the wakeup array cause
their downstream logical destination register column to be
deasserted. This deassertion prevents younger, downstream
dependent instructions from waking up. Once all necessary
source register broadcasts are received, an instruction requests
scheduling. After being granted by select, the instruction as-
serts its destination register to wakeup younger dependent
instructions.

Close examination of the wakeup array’s logic cell, shown
in Figure 7c, demonstrates how the wakeup operation is pos-
sible. Our modified wakeup cell design draws from earlier
work in [24]. The wakeup cell holds two state bits that desig-
nate the instruction as sourcing or producing a logical register.
The request signal to the select logic is implemented in dy-
namic logic. If an instruction is dependent and the incoming
ready signal is not asserted, the request signal is pulled down.
This pulldown operation works as a logical NOR. If no un-
broadcast dependents remain, the request signal to select will
remain asserted. With respect to outputs, if an instruction
has not been scheduled and produces the logical register, the
outgoing ready signal will be deasserted. The ready signal
and grant signal are implemented with static logic. Once the
result producing instruction is granted, the grant signal will
result in the downstream ready being asserted. For loop-mode
operation, after commit, the grant signal is deasserted and the
cell is free to reevaluate based upon a new incoming ready
signal.
4.3.2. Wakeup Example In this section we work through a
simple example of wakeup logic operation. Figure 8 provides
an example with three instructions. All three instructions must
be serially executed due to dependencies on logical register
r0. The diagram is color coded with ready register columns
colored in blue, active request signals represented in green,
and active grants represented in red.

On cycle 0, the ready signals for logical registers propagate
downwards unless inhibited by an instruction. As Instruction
1 produces register r0, it gates the downstream ready broadcast
until it has been scheduled. This prevents improper wakeup
of Instruction 2 and Instruction 3. Logical registers r1 and
r2 are produced by no instruction, thus their ready broadcasts
are uninhibited and continue propagation. During cycle 0,
Instruction 1 satisfies all dependencies and asserts its request
vector.

In cycle 1, the grant signal for Instruction 1 returns acknowl-
edging issue. Signalling issue, Instruction 1 ceases inhibition
of the downstream r0 ready signal. With r0 now asserted,
Instruction 2 asserts its request vector. As Instruction 2 has
not been granted, it maintains downstream inhibition of r0,
preventing Instruction 3 from waking up.

5

1) add r0, r1, #1

2) sub r0, r2, r0

3) cmp r0, #0

req

r0ready

src

dst
1

src
1

dst
1

src
1

dst

r1ready

src
1

dst

src

dst

src

dst

r2ready

src

dst

src
1

dst

src

dst

req

req

gnt

gnt

gnt

(a) Cycle 0 - Inst1 ready.

1) add r0, r1, #1

2) sub r0, r2, r0

3) cmp r0, #0

req

r0ready

src

dst
1

src
1

dst
1

src
1

dst

r1ready

src
1

dst

src

dst

src

dst

r2ready

src

dst

src
1

dst

src

dst

req

req

gnt

gnt

gnt

(b) Cycle 1 - Grant Inst1. Inst2 ready.

1) add r0, r1, #1

2) sub r0, r2, r0

3) cmp r0, #0

req

r0ready

src

dst
1

src
1

dst
1

src
1

dst

r1ready

src
1

dst

src

dst

src

dst

r2ready

src

dst

src
1

dst

src

dst

req

req

gnt

gnt

gnt

(c) Cycle 2 - Grant Inst2. Inst3 ready.

Figure 8: Revolver Wakeup Example

Finally on cycle 3, the grant for Instruction 2 returns and
r0 is uninhibited. With r0 now asserted, the final instruction
wakes up and assets its request vector.

This example demonstrates how the use of program-based
ordering enables Revolver to perform instruction wakeup on
logical register identifiers, in contrast to conventional out-of-
orders which require frontend renaming and physical register-
based wakeup.

4.4. Tag Propagation Unit

Without frontend renaming, Revolver needs a mechanism to
properly map logical registers to physical register identifiers.
In this section we discuss the reasoning behind the use of the
TPU in Revolver and its operation.
4.4.1. Enabler of loop-mode execution The reason Revolver
requires a TPU is to enable reuse of physical registers during
loop-mode execution. As noted earlier, Revolver does not
require any additional resource allocations between loop itera-
tions. The largest obstacle to avoiding allocation is physical
register management. This is so because, after committing, a
loop instruction should be free to begin speculative execution
of the next loop iteration. This is impossible, however, if an
instruction only has access to a single physical destination
register. After commit, the contents of the physical register
may be required by dependent instructions and are part of the
architected state. Thus, to begin speculative execution of the
next loop iteration, access to an alternative physical register
identifier is required.

Revolver solves this issue by providing each result pro-
ducing loop-mode instruction with two physical destination
registers. As loop instructions iterate, they simply alternate
writing between their two destination registers. This alterna-
tion of writes, known in other literature as double buffering,
ensures the previous state is maintained while speculative com-
putation is being performed. To clarify, after iteration N +1
commits, an instruction may reuse the destination register
from iteration N on iteration N +2. This is safe because, upon
commit, the N +1 destination register holds the architectural

Tag Propagation

Tag Propagation

port0_src0

port0_src1

port0_dst

Tag Propagation

Tag Propagation

Figure 9: Tag Propagation Unit.

state and no more instructions are dependent on the iteration N
destination register. Any instructions dependent on the N +1
value continue to source it from the alternative register.

This double buffering technique enables instructions to spec-
ulatively write output registers. However, by dynamically
changing output registers, additional functionality must be
added to properly maintain dependencies between instructions.
The TPU’s function is to perform this dynamic linkage be-
tween dependent instructions and source registers.
4.4.2. Structure and Operation Figure 9 shows the high
level structure of the TPU. Revolver’s TPU is structured sim-
ilarly to the wakeup logic discussed in Section 4.3. Like the
wakeup logic, the TPU is composed of partitions intercon-
nected along a unidirectional ring interconnect. The ring is
composed of multiple channels, where each channel corre-
sponds to a logical register and carries the current physical
register mapping. Thus to obtain source register identifiers, all
an instruction must do is source the appropriate logical regis-
ter channel. Instructions present in the scheduler change the
logical register mapping of their output register by simply over-
writing the appropriate output column. Since instructions are
stored in program order, this operation guarantees downstream
instructions will obtain proper source register mappings. At

6

r0tag r1tag r2tag r3tag

src0

src1

dst

dst0 dst1

loop_itr

Figure 10: Tag Propagation Unit Cell Design.

all times, one segment is deemed architected and retains the
architected register mapping in latches. This architected latch
rotates throughout the TPU as segments commit.

Figure 10 shows the propagation logic cell used in the con-
struction of the TPU. As seen there are multiple logical register
columns that carry physical register identifiers. Instructions
source their operand tags from corresponding columns and
drive their destination onto the appropriate output column.
Also within the figure, we show how loop-mode instructions
alternate between writing two physical destination registers.
Essentially a single bit of state records if the instruction has
executed an odd or even number of times, this bit controls a
mux that drives the appropriate destination register identifier
onto the output.
4.4.3. Checkpoints and Register Reclamation In addition
to dynamic dependence linking, Revolver’s TPU provides
benefits relating to checkpointing and branch misprediction re-
covery. Every instruction within the TPU has access to a valid
physical register mapping for every architectural register. Thus
Revolver effectively provides per-instruction renaming check-
points. If any instruction mispredicts, downstream instructions
are simply flushed and the mappings from the branch instruc-
tion propagate to all newly scheduled instructions. In compar-
ison, RAT-based renaming encounters significant additional
complexity in order to support checkpoints [22]. This check-
point support is largely a byproduct of Revolver’s progam
ordering within the issue queue.

In non-loop mode, overwritten registers are reclaimed on
commit, as in conventional processors. On branch mispredic-
tions or loop-mode exits, the TPU is walked forward from the
terminating branch to reclaim physical registers.

4.5. Load and Store Support

The overall structure of Revolver’s LSQ is shown in Figure 11.
Other than the additional tracking of loop start and end point-
ers, few differences exist between Revolver’s LSQ and that
of a conventional out-of-order. Loads and stores receive their
respective LSQ entries prior to dispatch and retain them until
the instruction exits the out-of-order backend. As noted in
Section 4.1, loop-mode load and store instructions are free to
reuse their allocated LSQ entries to execute multiple loop iter-
ations. This due to two factors: 1) The immediate “freeing” of
an LSQ entry upon commit and 2) The use of position-based

V Addr
Load Queue

Alloc

Commit

Retire

Loop End

Loop Start

V Addr Data
Write Buffer

V Addr Data
Store Queue

Alloc

Commit

Retire

Loop End

Loop Start

Data Cache Unit

V Addr Data
Pre-Ex Load Buffer

InstQ

Figure 11: LSQ and Cache Interface.

age logic in modern processor’s LSQs.
LSQ entries are immediately freed upon commit by two

means depending on whether the committing instruction is
a load or store. In the event of a load, the load queue entry
is simply reset to allow future load execution. Stores how-
ever must be written back to memory. To enable immediate
freeing of store queue entries, stores are drained into a write-
combining buffer that sits between the store queue and the L1
cache interface. If a store cannot drain into the write buffer,
commit stalls. This is however a rare occurrence as due to
the impact of write-combining and the fact we target an ISA
with a relaxed consistency model that places very few ordering
restrictions on write-combining.

Existing age-based ordering techniques work in Revolver as
they are based upon the relative position of a commit pointer.
The only difference during loop-mode operation is that Re-
volver’s commit pointer wraps from loop end to loop start.
Whereas a normal LSQ only wraps the commit pointer based
upon the physical end and start of the queue.

The final portion of Revolver’s LSQ, the pre-executed load
buffer, is an enhancement enabled by loop mode execution
and will be discussed in the following section.

5. Load Pre-Execution

In this section we detail an extension to loop-mode that enables
the pre-execution of future loop iteration loads. Pre-executing
future loads realizes parallelism beyond the processor’s in-
struction window and can be used to enable zero-latency loads.
The remainder of this section covers the insight behind load
pre-execution, the conditions where load pre-execution is pos-
sible, and why load pre-execution would be untenable in a
conventional out-of-order.

5.1. Optimization Insight

During loop execution in an out-of-order processor, loads
from within the loop body are repeatedly executed until all
necessary iterations complete. Due to the recurrent nature

7

of loops, these loads often have highly predictable address
patterns. Our load pre-execution mechanism aims to exploit
these predictable loads.

Revisiting the example from Figure 5, the string copy loop
simply strides through memory copying bytes from a source
array into a destination array. Thus, the load addresses in con-
secutive iterations are perfectly predictable. In a conventional
processor, the dynamic instances of each load receive unique
issue queue and load queue entries. In Revolver however, a
load dispatched by the frontend is statically bound to fixed
entries for all loop iterations. This static binding makes it easy
to observe when an entry is performing loads that follow a
simple pattern. In Figure 5, since the string copy loop was
unrolled by a factor of two, the first load queue entry will
be observed striding through memory, reading consecutive
even-addressed bytes from memory.

The insight behind load pre-execution is that, when these
patterns are recognized, it is possible to speculatively initiate
future iteration loads. On the next iteration, if a load was
pre-executed, it will not pay the L1 cache access latency and
will complete after verifying the pre-executed load address.
This technique yields a performance benefit when the out-of-
order execution window is insufficient to hide a load’s latency.
The next subsections detail the supported access patterns and
hardware implementation.

5.2. Supported Address Patterns

In Revolver we support three primary access patterns for load
pre-execution: stride, constant, and pointer-based addressing.
For each of these access patterns we place simple pattern
identification hardware alongside the pre-executed load buffer.

Striding memory accesses are the most common addressing
pattern, as many loops iterate over arrays of data. To identify
stride-based addressing we simply compute the address delta
between two consecutive loads. If a third load from the same
load queue entry matches the predicted stride, the stride is
verified and the next load will be pre-executed. Constant
loads, the second most common pattern, occur when loads
continuously read from the same address. Constant loads exist
primarily due to stack-allocated variables and pointer aliasing.
The stride-based prediction hardware also handles constant
loads, as they are a special case of a zero-sized stride. Finally
we support pointer-based addressing, where the value returned
by the current load is used as the next address. This captures
many simple linked list traversals.

Once a pattern is recognized, the pre-executed load buffer
speculatively initiates the next iteration memory access. This
buffer, shown in Figure 11, sits between the load queue and the
L1 cache interface. Once the next iteration load executes, the
value is claimed and the buffer may initiate the next iteration
load. If any store aliases with the pre-executed load, the entry
is invalidated to maintain coherency.

5.3. Scheduler Modification

With the pre-execution buffer and supported access patterns
defined, we now detail how Revolver’s out-of-order scheduler
can take advantage of pre-execution.

In many out-of-order designs, operations dependent on
loads are speculatively scheduled assuming an L1 cache hit
latency. When a pre-executed load returns from memory, the
corresponding issue queue entry is notified that the load has
been pre-executed. Once scheduled, this load will specula-
tively wake dependent operations on the next cycle instead
of waiting for the L1 cache access latency. If the predicted
address is incorrect, the scheduler must perform a cancel and
re-issue operation. The design could be more aggressive than
as described here and wake dependent operations before the
load is capable of being scheduled, however our evaluated
implementation does not support this.

Finally, it should be noted that performing this scheduler
optimization in a conventional out-of-order is untenable, as
there is no relation between static load instructions and issue
queue entries.

6. Evaluation Methodology

To evaluate Revolver, we use a combination of cycle accurate
simulation and power modeling. For performance simula-
tion, a custom, cycle-accurate out-of-order core model was
implemented within the gem5 simulator infrastructure [7].

Two baseline out-of-order configurations, shown in Table 1,
were used in our evaluation. The OO2 configuration is a
small 2-wide out-of-order processor configured similarly to
the recently announced Intel Silvermont architecture [18]. The
OO4 design represents a more aggressive 4-wide architecture
with the window size and execution resources scaled up from
the OO2 configuration. Two Revolver designs are compared
against these baselines, a 2-wide (Rev2) and 4-wide (Rev4)
configuration. All designs utilize aggressive memory systems
with prefetchers at every cache level.

For competitive baselines, each configuration can optionally
use a 32-µop loop buffer (LB) or a 1.5K µop cache (µC),
similar to recent Intel and ARM designs [18, 25, 17, 20].

Power modeling was performed through a correlated and
extended version of McPAT [22]. Models for loop buffers
and µop caches were added for proper energy accounting.
All energy numbers represent core energy, including the L1
caches.

We simulated a wide variety of applications from the San
Diego Vision Benchmark Suite (SD-VBS), MiBench, and
SPEC2006 [27, 12, 14]. All applications were compiled for
the ARMv7 ISA on gcc 4.7.2 with full optimizations (-O3),
vectorization, and link-time optimization(-flto) enabled. On
SD-VBS, simulation was limited to the instrumented regions
of interest. For MiBench, entire applications were simulated.
Finally for SPEC2006, a SimPoint simulation methodology
was employed, resulting in the suite being represented by 177

8

OO2, Small Out-of-Order OO4, Large Out-of-Order
Branch Predictor Combined bimodal (16k entry) / gshare (16k entry), selector (16k entry), 32 entry RAS, 2k BTB
Out-of-Order 2GHz, 2-wide fetch/commit, 6-wide issue, 2GHz, 4-wide fetch/commit, 8-wide issue,
Core 32 ROB/IQ, 12 LQ, 8 SQ, 8 WB, 48 Int PRF, 64 ROB/IQ, 24 LQ, 16 SQ, 8 WB, 80 Int PRF

64 FP PRF, aggressive memory speculation, 96 FP PRF, aggressive memory speculation,
speculative scheduling, 13-stage pipeline speculative scheduling, 13-stage pipeline

Functional 2 Int ALU (1-cycle), 1 Int Mult/Div (3-
cycle/20-cycle), 1 LD (1-cycle AGU), 1 ST (1-
cycle), 2 SIMD units (1-cycle), 2 FP Add/Mult
(5-cycle), 1 FP Div/Sqrt (10-cycle)

3 Int ALU (1-cycle), 1 Int Mult/Div (3-
cycle/20-cycle), 2 LD (1-cycle AGU), 1 ST (1-
cycle), 2 SIMD units (1-cycle), 2 FP Add/Mult
(5-cycle), 1 FP Div/Sqrt (10-cycle)

Units

Memory L1 ICache 32KB, 2-way, 64B line size (2-cycle), 2-ahead sequential prefetcher
System L1 DCache 32KB, 4-way, 64B line size (3-cycle), 2-ahead stride prefetcher

L2 Unified 256KB, 8-way, 64B line size (12-cycle), 2-ahead combined stride/sequential prefetcher
L3 Unified 4MB, 16-way, 64B line size (24-cycle), 4-ahead combined stride/sequential prefetcher
Off-Chip Memory: 2GB DDR3-1600

Table 1: Common Processor Configurations.

0%

 2%

 4%

 6%

 8%

 10%

 12%

co
ns

.ti
ff

2b
w si
ft

di
sp

ar
ity

st
itc

h

43
7.

le
sl

ie
3d

co
ns

.d
jp

eg

co
ns

.ti
ff

m
ed

ia
n

tr
ac

ki
ng

ne
t.d

ijk
st

ra

41
0.

bw
av

es

sv
m

se
c.

sh
a

m
ul

ti_
nc

ut

te
le

.c
rc

co
ns

.ti
ff

di
th

er

au
to

.b
itc

nt

te
le

.ff
t

au
to

.s
us

an
.s

m
oo

th
in

g

46
2.

lib
qu

an
tu

m

O
ve

ra
ll

A
ve

ra
ge

L
oa

d
Pr

e−
E

xe
cu

tio
n

Sp
ee

du
p

(%
) Rev2

Rev4

L
oo

p
In

te
ns

iv
e

A
ve

ra
ge

Figure 12: Loop Intensive Load Pre-Execution Speedup.

100M instruction simulation points [13].

7. Experimental Results

Our evaluation is divided into three subsections. In subsec-
tion 7.1, we detail the performance benefit obtained from
pre-execution of loads during loop execution. Subsection 7.2
provides detailed per-benchmark analysis of Revolvers impact
on the total number of frontend instruction dispatches. Finally,
subsection 7.3 evaluates the overall energy-delay impact of
Revolver.

7.1. Load Pre-Execution

Although Revolver is targeted primarily towards energy con-
servation, load pre-execution enables Revolver to extract mem-
ory level parallelism beyond the currently active instruction
window. In Figure 12, we show the performance benefit from
load pre-execution obtained by the Rev2 and Rev4 configu-
rations on loop intensive benchmarks 6. On loop intensive

6Defined as executing more than 50% of all instructions in loop-mode.

code, load pre-execution benefits Rev2 and Rev4 by 2.1% and
1.4% respectively. Across all benchmarks, including non-loop
intensive codes, the overall benefit is 0.8% and 0.6% for Rev2
and Rev4.

In general, Rev2 sees more benefit from load pre-execution
than Rev4. This occurs because the larger out-of-order win-
dow of Rev4 often hides the latencies of loads captured by
pre-execution on Rev2. Rev4 obtains more benfit on select
benchmarks, such as 410.bwaves, because its larger instruc-
tion window is capable of capturing certain loops that Rev2
cannot. Finally, the reduced benefit observed on non-loop
intensive code, relative to loop-intensive code, is expected as
load pre-execution is only triggered during loop-mode.

It should be noted that many design parameters can impact
the benefit obtained from load pre-execution. In particular,
our moderate L1 cache latency and aggressive L1 prefetching
reduce the observed benefit from load pre-execution.

7.2. Frontend Dispatch Impact

Through loop execution mode, Revolver is capable of eliminat-
ing many frontend instruction dispatches. Removing frontend
dispatches allows Revolver to save energy, even beyond loop
buffers and µop caches, as multiple pipeline stages between
decode and execute are elided.

To demonstrate this benefit, Figure 13 details the fraction
of instructions dispatched by Revolver, in comparison to a
traditional out-of-order core, across all three benchmark suites.
Each configuration is normalized against the equivalent width
out-of-order baseline. In general we observe Revolver is capa-
ble of eliminating 84%, 55%, and 20% of all instruction dis-
patches across the SD-VBS, MiBench, and SPEC2006 bench-
mark suites respectively.

For SD-VBS, shown in Figure 13a, Revolver performs ex-
ceptionally well. This benchmark suite contains many data in-
tensive processing loops that, even with vectorization enabled,
iterate numerous times. Image segmentation (multi_ncut) re-

9

0

 0.2

 0.4

 0.6

 0.8

 1

di
sp

ar
ity

lo
ca

liz
at

io
n

m
se

r

m
ul

ti_
nc

ut si
ft

st
itc

h

sv
m

te
xt

_s
yn

th

tr
ac

ki
ng

ge
om

ea
n

N
or

m
al

iz
ed

 D
is

pa
tc

he
d

In
st

ru
ct

io
ns

Rev2
Rev4

(a) SD-VBS

0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

au
to

.b
itc

nt
au

to
.q

so
rt

au
to

.s
us

an
.c

or
ne

rs
au

to
.s

us
an

.e
dg

es
au

to
.s

us
an

.s
m

oo
th

in
g

co
ns

.c
jp

eg
co

ns
.d

jp
eg

co
ns

.la
m

e
co

ns
.m

ad
co

ns
.ti

ff
2b

w
co

ns
.ti

ff
2r

gb
a

co
ns

.ti
ff

di
th

er
co

ns
.ti

ff
m

ed
ia

n
ne

t.d
ijk

st
ra

ne
t.p

at
ri

ci
a

of
f.r

sy
nt

h
of

f.s
tr

in
gs

ea
rc

h
se

c.
bl

ow
fi

sh
se

c.
pg

p
se

c.
ri

jn
da

el
se

c.
sh

a
te

le
.a

dp
cm

.c
om

pr
es

s
te

le
.a

dp
cm

.d
ec

om
pr

es
s

te
le

.c
rc

te
le

.ff
t

te
le

.g
sm

ge
om

ea
n

N
or

m
al

iz
ed

D
is

pa
tc

he
d

In
st

ru
ct

io
ns Rev2

Rev4

(b) MiBench

0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

40
0.

pe
rl

be
nc

h
40

1.
bz

ip
2

40
3.

gc
c

41
0.

bw
av

es
41

6.
ga

m
es

s
42

9.
m

cf
43

3.
m

ilc
43

4.
ze

us
m

p
43

5.
gr

om
ac

s
43

6.
ca

ct
us

A
D

M
43

7.
le

sl
ie

3d
44

4.
na

m
d

44
5.

go
bm

k
45

0.
so

pl
ex

45
3.

po
vr

ay
45

4.
ca

lc
ul

ix
45

6.
hm

m
er

45
8.

sj
en

g
45

9.
G

em
sF

D
T

D
46

2.
lib

qu
an

tu
m

46
4.

h2
64

re
f

46
5.

to
nt

o
47

0.
lb

m
47

1.
om

ne
tp

p
47

3.
as

ta
r

48
1.

w
rf

48
3.

xa
la

nc
bm

k

SP
E

C
IN

T
SP

E
C

FP

N
or

m
al

iz
ed

 D
is

pa
tc

he
d

In
st

ru
ct

io
ns

Rev2
Rev4

(c) SPEC CPU2006

Figure 13: Normalized Number of Dispatched Instructions.
Designs normalized against equivalent baseline.

ceives the most benefit from Revolver, successfully eliminat-
ing 99.6% of all frontend instruction dispatches. The only
benchmark that receives no benefit from Revolver is texture
synthesis (text_synth). The lack of benefit is due to unstable,
nested control flow within inner-most loops that lead to loop-
mode being disabled. Overall, Rev2 and Rev4 configurations
reduce instruction dispatches by 84% and 79% against their
respective baselines.

In Figure 13b the instruction dispatch results for MiBench
are presented. Revolver successfully eliminates 47% and 55%
of all dispatches on Rev2 and Rev4 respectively. Rev4 elim-
inates more dispatches than Rev2 because it captures more
loops with its larger available instruction window. In general
Revolver eliminates many instruction dispatches on MiBench,
though its ability to eliminate dispatches is hindered on some
benchmarks by the presence of serializing instructions within
inner-most loops.

Finally, Figure 13c shows the normalized instruction dis-
patches for the SPEC2006 benchmark suite. Breakdowns
for the SPECFP and SPECINT subsets are also shown, with
Revolver eliminating approximately 20% (geomean) of all
dispatches on each. Amongst our benchmark suites, the
SPEC2006 suite receives the least benefit from Revolver. This
is expected since, as shown in Figure 1, SPEC2006 has the
fewest capturable loops. From SPECINT, 462.libquantum
receives the most benefit from Revolover, eliminating 66% of
all instruction dispatches. SPECFP, as shown in Figure 1, is
dominated by the execution of very large loops. Regardless,
Revolver is able to eliminate 20% of instruction dispatches,
with the larger instruction window of Rev4 capturing more
loops than that of Rev2.

Overall, we find Revolver to be quite successful on elimi-
nating many frontend dispatches across the three benchmark
suites.

7.3. Overall Energy and Performance

To evaluate Revolver in terms of energy and performance, we
compare our two Revolver (Rev2/Rev4) configurations against
out-of-order baselines (OO2/OO4) with 32-µop loop buffers
(LB) and 1.5K µop caches (µC). Additionally, we evaluate
the energy-delay of Revolver when equipped with a 1.5K µop
cache.

Figure 14 presents the energy-delay product for each config-
uration normalized against a conventional out-of-order without
loop buffers or µop caches. Figure 14a presents results for the
smaller out-of-order configurations, while Figure 14b presents
results for the large out-of-order designs. Energy numbers
represent core and L1 cache energy inclusive. We have omit-
ted presenting delay numbers separately as the difference was
negligible between Revolver and the traditional out-of-order
designs (<1% geomean).

For the small out-of-order designs shown in Figure 14a,
we note multiple trends. First, the benchmark suites perform
as expected with Revolver extracting the most energy benefit

10

0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

SD−VBS MiBench SPECINT SPECFP

N
or

m
al

iz
ed

 E
ne

rg
y−

D
el

ay

OO2 + LB OO2 + µC Rev2 Rev2 + µC

(a) 2-Wide Energy-Delay

0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

SD−VBS MiBench SPECINT SPECFP

N
or

m
al

iz
ed

 E
ne

rg
y−

D
el

ay

OO4 + LB OO4 + µC Rev4 Rev4 + µC

(b) 4-Wide Energy-Delay

Figure 14: Overall Energy-Delay Comparison.
Normalized against OO2 and OO4 baselines.

from SD-VBS, followed by MiBench and SPEC. Secondly,
Revolver always outperforms the loop buffer equipped out-of-
order, due to reduced energy costs while capturing similarly
sized loops. Third, the µop cache always outperforms the loop
buffer with respect to entire benchmark suites. However, for
some specific benchmarks7 that spend the majority of time
in simple loops, energy-delay performance is superior for
the loop buffer due to its reduced access energy. Fourth, for
benchmark suites with fewer capturable loops (MiBench and
SPEC), the µop cache outperforms the Rev2 configuration.
Lastly, Rev2 with a µop cache exhibits the best energy-delay
performance across all benchmarks.

On the large out-of-order designs in Figure 14b, Revolver
demonstrates even greater energy-delay benefit due to its abil-
ity to capture larger loops. Across the benchmark suites, Rev4
outperforms traditional out-of-orders with loop buffers or µop
caches on all benchmark suites except SPECFP. Again, this is
expected due to the numerous large loops that cannot be cap-
tured by Revolver in SPECFP. However, when combined with
a µop cache, Revolver outperforms all other configurations.

Results from Figure 14 are summarized in Table 2 to show
exact differences between the alternative configurations. Over-
all, Revolver can result in up to 18.3% energy-delay improve-
ment over comparable baselines.

8. Related Work
In addition to the industrial works presented earlier, multiple
academic works have investigated methods to improve loop
execution performance or energy efficiency.

The most related works to our own are [16] by Hu et al.
and [23] by Pratas et. al. These works also attempt to buffer
loops within the out-of-order backend, thus eliminating in-
struction dispatch overheads. However, both works require
backend communication with the frontend in order to obtain
new renaming information, destination registers, and LSQ

7disparity, multi_ncut, tracking, etc.

allocations during loop execution. This communication is
performed serially on in-order instruction issue [16] or loop
commit [23]. As designed, these works primarily save energy
related to opcode movement into the out-of-order backend.
Thus, Revolver’s primary benefit over these designs is the
complete removal of additional allocations during loop exe-
cution and any potential overhead from serialized frontend
communication.

To further performance and energy efficiency on loop exe-
cution, Clark et al. [8] propose VEAL, a custom accelerator
targeted towards offloading loop execution. As with all ac-
celerators, the subset of kernels acceptable for execution on
VEAL is determined by the overheads of offloading, algorithm
suitability, and quantity of work available. Thus the subsets of
loops preferable for execution on VEAL and Revolver differ.

Finally, in terms of loop buffers and tightly integrated
caches for energy reduction, many academic works ex-
ist [19, 6, 21, 15, 5, 4]. Of the loop buffer works, each use an
algorithm similar to Revolver in order to detect and initiate
loop dispatch.

9. Conclusion

In this paper we have presented the Revolver architecture,
an aggressive out-of-order design targeted towards mini-
mizing energy during the execution of loops. Revolver
achieves energy-efficiency during loop execution by enabling
in-place execution within the processor’s out-of-order back-
end. Through in-place loop execution, Revolver eliminates
frontend energy overheads originating from pipeline activity
and resource allocation. These energy benefits exceed those
traditionally achieved through loop buffers or µop caches. Ad-
ditionally, we propose load pre-execution, a novel mechanism
to increase performance during loop execution by hiding L1
cache access latencies. Overall, we observe a 5.3%-18.3%
energy-delay benefit beyond a traditional out-of-order with
loop buffers or µop caches.

11

SD-VBS MiBench SPECINT SPECFP
Rev2 vs. OO2+LB 8.7% 3.5% 3.4% 0.7%
Rev2+µC vs. OO2+µC 15.3% 4.0% 3.9% 1.3%
Rev4 vs. OO4+LB 17.6% 12.8% 6.9% 5.1%
Rev4+µC vs. OO4+µC 18.3% 12.4% 7.8% 5.3%

Table 2: Revolver Energy-Delay Improvement.

References
[1] AMD Jaguar Software Optimization Guide. [Online]. Avail-

able: http://support.amd.com/us/Processor_TechDocs/52128_16h_
Software_Opt_Guide.zip

[2] “NVIDIA Tegra 4 Family CPU Architecture,” NVIDIA, Tech. Rep.,
2013. [Online]. Available: http://www.nvidia.com/docs/IO/116757/
NVIDIA_Quad_a15_whitepaper_FINALv2.pdf

[3] M. Alidina, G. Burns, C. Holmqvist, E. Morgan, D. Rhodes, S. Simana-
palli, and M. Thierbach, “DSP16000: A High Performance, Low-
Power Dual-MAC DSP Core for Communications Applications,” in
CICC’98, 1998, pp. 119–122.

[4] T. Anderson and S. Agarwala, “Effective Hardware-Based Two-Way
Loop Cache for High Performance Low Power Processors,” in ICCD-
18, 2000, pp. 403–407.

[5] R. Bajwa, M. Hiraki, H. Kojima, D. Gorny, K. Nitta, A. Shridhar,
K. Seki, and K. Sasaki, “Instruction Buffering to Reduce Power in
Processors for Signal Processing,” VLSI Systems, IEEE Transactions
on, vol. 5, no. 4, pp. 417–424, 1997.

[6] N. Bellas, I. Hajj, C. Polychronopoulos, and G. Stamoulis, “Energy
and Performance Improvements in Microprocessor Design Using a
Loop Cache,” in ICCD-17, 1999, pp. 378–383.

[7] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The gem5 Simu-
lator,” SIGARCH Comput. Archit. News, vol. 39, no. 2, pp. 1–7, Aug.
2011.

[8] N. Clark, A. Hormati, and S. Mahlke, “VEAL: Virtualized Execution
Accelerator for Loops,” in ISCA-35, 2008, pp. 389–400.

[9] R. Dennard, F. Gaensslen, V. Rideout, E. Bassous, and A. LeBlanc,
“Design of ion-implanted MOSFET’s with very small physical dimen-
sions,” Solid-State Circuits, IEEE Journal of, vol. 9, no. 5, pp. 256–268,
1974.

[10] H. Esmaeilzadeh, E. Blem, R. St.Amant, K. Sankaralingam, and
D. Burger, “Dark Silicon and the End of Multicore Scaling,” in ISCA-
38, 2011, pp. 365–376.

[11] D. J. Everitt, “Inexpensive Performance Using the Am29000,” Micro-
processors and Microsystems, vol. 14, no. 6, pp. 397 – 406, 1990.

[12] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge,
and R. B. Brown, “MiBench: A free, commercially representative
embedded benchmark suite,” in Workload Characterization, 2001.
WWC-4. 2001 IEEE International Workshop on. IEEE, 2001, pp.
3–14.

[13] G. Hamerly, E. Perelman, J. Lau, and B. Calder, “Simpoint 3.0: Faster
and More Flexible Program Phase Analysis,” in Journal of Instruction
Level Parallelism, 2005.

[14] J. L. Henning, “SPEC CPU2006 Benchmark Descriptions,” ACM
SIGARCH Computer Architecture News, vol. 34, no. 4, pp. 1–17, 2006.

[15] M. Hiraki, R. Bajwa, H. Kojima, D. Gorny, K. Nitta, and A. Shri,
“Stage-Skip Pipeline: A Low Power Processor Architecture Using a
Decoded Instruction Buffer,” in ISLPED’96, 1996, pp. 353–358.

[16] J. Hu, N. Vijaykrishnan, S. Kim, M. Kandemir, and M. Irwin, “Schedul-
ing Reusable Instructions for Power Reduction,” in Design, Automation
and Test in Europe Conference and Exhibition, 2004. Proceedings,
vol. 1, 2004, pp. 148–153 Vol.1.

[17] D. Kanter. (2010, September) Intel’s Sandy Bridge Microarchitecture.
Available: http://www.realworldtech.com/sandy-bridge

[18] D. Kanter. (2013, May) Silvermont, Intel’s Low Power Architecture.
Available: http://www.realworldtech.com/silvermont

[19] J. Kin, M. Gupta, and W. H. Mangione-Smith, “The Filter Cache: An
Energy Efficient Memory Structure,” in MICRO-30, 1997, pp. 184–
193.

[20] T. Lanier, “Exploring the Design of the Cortex-A15 Processor,” ARM,
Tech. Rep., 2011.

[21] L. H. Lee, B. Moyer, and J. Arends, “Instruction Fetch Energy Reduc-
tion Using Loop Caches for Embedded Applications with Small Tight
Loops,” in ISLPED’99, 1999, pp. 267–269.

[22] S. Li, J.-H. Ahn, R. Strong, J. Brockman, D. Tullsen, and N. Jouppi,
“McPAT: An Integrated Power, Area, and Timing Modeling Framework
for Multicore and Manycore Architectures,” in MICRO-42, 2009, pp.
469–480.

[23] F. Pratas, G. Gaydadjiev, M. Berekovic, L. Sousa, and S. Kaxiras, “Low
Power Microarchitecture with Instruction Reuse,” in CF-5. New York,
NY, USA: ACM, 2008, pp. 149–158.

[24] P. G. Sassone, J. Rupley, II, E. Brekelbaum, G. H. Loh, and B. Black,
“Matrix Scheduler Reloaded,” in ISCA-34, ser. ISCA ’07. New York,
NY, USA: ACM, 2007, pp. 335–346.

[25] R. Singhal, “Inside Intel Next Generation Nehalem Microarchitecture,”
in Hot Chips, vol. 20, 2008.

[26] A. Sodani, “Race to Exascale: Challenges and Opportunities.” Pre-
sented at the 44th International Symposium on Microarchitecture, Porto
Alegre, Brazil, 2011.

[27] S. K. Venkata, I. Ahn, D. Jeon, A. Gupta, C. Louie, S. Garcia, S. Be-
longie, and M. B. Taylor, “SD-VBS: The San Diego Vision Benchmark
Suite,” in IISWC’09. Washington, DC, USA: IEEE Computer Society,
2009, pp. 55–64.

12

http://support.amd.com/us/Processor_TechDocs/52128_16h_Software_Opt_Guide.zip
http://support.amd.com/us/Processor_TechDocs/52128_16h_Software_Opt_Guide.zip
http://www.nvidia.com/docs/IO/116757/NVIDIA_Quad_a15_whitepaper_FINALv2.pdf
http://www.nvidia.com/docs/IO/116757/NVIDIA_Quad_a15_whitepaper_FINALv2.pdf
http://www.realworldtech.com/sandy-bridge
http://www.realworldtech.com/silvermont

	Introduction and Motivation
	Overview
	Loop Detection and Training
	Detection Operation
	Detection Discussion
	Training Feedback

	Loop Execution
	Overview
	Scheduler Modifications
	Wakeup Logic
	Wakeup Operation
	Wakeup Example

	Tag Propagation Unit
	Enabler of loop-mode execution
	Structure and Operation
	Checkpoints and Register Reclamation

	Load and Store Support

	Load Pre-Execution
	Optimization Insight
	Supported Address Patterns
	Scheduler Modification

	Evaluation Methodology
	Experimental Results
	Load Pre-Execution
	Frontend Dispatch Impact
	Overall Energy and Performance

	Related Work
	Conclusion

