
UNDERSTANDING AND MITIGATING THE EFFECTS OF SOFT ERRORS

IN LOGIC

by

Eric L. Hill

A dissertation submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

(Electrical Engineering)

at the

UNIVERSITY OF WISCONSIN-MADISON

2009

UMI Number: 3367507

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy

submitted. Broken or indistinct print, colored or poor quality illustrations

and photographs, print bleed-through, substandard margins, and improper

alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

®

UMI
UMI Microform 3367507

Copyright 2009 by ProQuest LLC
All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

A dissertation entitled

Understanding and Mitigating the Effects of Soft Errors in Logic

submitted to the Graduate School of the
University of Wisconsin-Madison

in partial fulfillment of the requirements for the
degree of Doctor of Philosophy

by

Eric L.Hill

Date of Final Oral Examination:

Month & Year Degree to be awarded: December

December 18th, 2008

May 2 0 0 9 August

*#**#****^*********** ***********************
Approval Signatures of Dissertation Committee

^>~^r-vV
/ / / / tyfl

(^g-.ujxj^.rv!

\

^ S - •J $J*Ker-

</Z&

1

Abstract

This thesis focuses on gaining a deeper understanding of how radiation induced

transient faults, or soft errors, affect the operation of, and more importantly the

high-level design decisions related to logic dominated components of a computer

system. The work completed in this thesis is motivated by several trends. First,

continued technology scaling has caused soft error rates to rise to a level where

reliability is a concern in design spaces outside of the server domain. Second,

the majority of deployed solutions within current chips are intended to protect

storage structures, meaning that a growing fraction of the transistors on die vul­

nerable to faults belong to logic blocks. Third, studies done on an architectural

level utilize performance tools, which are at a level of abstraction where the im­

plementation details of logic blocks is unavailable. These tools generally model

soft errors in both storage and combinational logic elements in the same manner.

The combination of these trends indicate the need for additional investigation

with regards to the effects of soft errors in logic, and more specifically how these

effects impact architectural design decisions.

The work completed in this thesis represents a successful attempt at gaining

ii

a greater understanding of these effects. The experiments conducted uncover

several surprising and counterintuitive insights relating to this subject, including

the appropriate manner in which comparisons relating to reliability should be

made, the level of detail in which faults should be modeled, and the manner

which transient faults manifest themselves. These insights are valuable in that

they serve to refine the intuition of architects with regards to how various design

decisions affect the reliability of logic. These insights also can be used to drive

the assumptions made by tools at higher levels of abstraction when modeling

transient faults. Additionally, this thesis explores how the insights gained can

be leveraged in order to determine the best strategy to protect a particular logic

component.

iii

Acknowledgments

I would first like to thank my parents, Frank and Darlene Hill, for the uncon­

ditional support they provided throughout my life and specifically during the

completion of my PhD. Their constant optimism and encouragement definitely

helped me get through the rough times in my graduate career. I would also like to

thank my brother, Tyrone, for his support during this process. By virtue of being

in graduate school at the same time as me, he was always able to relate to what I

was going through, and really helped me put things in the proper perspective.

The mentoring and support provided by my adviser, Professor Mikko Lipasti,

played an integral role in my personal and professional development during my

time in Madison. His general approach to evaluating and solving problems has

definitely shaped me as an engineer, and his unwavering optimism and encourage­

ment drove me to be persistent and complete my degree. Additionally, I would

like to thank the other members of the PHARM research group for the assistance

they provided in helping me complete this work. I would specifically like to

thank Ilhyun Kim for providing me with his scalar z80 decoder design, which

was used as a starting point for many of the studies performed in this thesis.

IV

I would also like to thank Kelly Burton and Professor Doug Henderson, the

coordinators of the Graduate Engineering Research Scholars (GERS) program

at UW-Madison. They provided constant support for me throughout my time in

Madison, and were always there when I needed guidance or advice.

I would not be anywhere near as prepared for the professional world without

the internship opportunities I was given during my graduate career. I would

like to thank Lisa Wu for the mentoring she provided during my two graduate

internships at Intel. From her I specifically learned the level of dedication and

commitment required to succeed in a professional environment.

I also benefited greatly from the interactions I had with other students and

faculty members during my time at UW. I would like to thank my thesis committee

for the feedback they provided on my research, and specifically Kewal Saluja

for the additional insights he provided when my interests shifted towards fault-

tolerance. The graduate students I interacted with during my time here not only

influenced me from a technical perspective, but also helped me achieve some

degree of work-life balance. During my time in graduate school I was fortunate

enough to make many lasting friendships that I hope will endure even when I

leave Madison.

Table of Contents

Abstract i

Acknowledgments iii

Table of Contents v

List of Tables viii

List of Figures ix

1 Introduction 1

1.1 Thesis Contributions 3

1.2 Thesis Organization 5

2 Background 6

2.1 Introduction 6

2.2 Soft Errors 7

2.3 Soft Errors in Logic 9

2.4 Reliability Metrics 14

vi

2.5 Relationship Between Logic and SRAM Soft Error Rates 15

2.6 Summary 17

3 Methodology 18

3.1 Introduction 18

3.2 Related Work 19

3.3 Circuit-Level Modeling 20

3.4 Gate-Level Modeling 24

3.5 Benchmark Creation 31

3.6 Statistical Significance of Fault Inj ection 31

3.7 Summary 34

4 Impact of Pipeline Depth 35

4.1 Introduction 35

4.2 Conventional Intuition 36

4.3 Challenging the Conventional Intuition 52

4.4 Fair Analysis 60

4.5 Conclusion 67

5 Choosing the Right Strategy for Protection 68

5.1 Introduction 68

5.2 Classification of Protection Techniques 69

5.3 Classification of Logic Blocks 73

5.4 Mapping Protection Techniques to Logic Blocks 89

VII

5.5 Summary 90

6 A Quantitative and Qualitative Approach to Protection and Analysis 92

6.1 Introduction 92

6.2 Choosing an Implementation Level Technique 93

6.3 SET Detection and Correction 94

6.4 Results 108

6.5 Summaryl21

7 Conclusion 122

. 7.1 Future Workl24

Bibliography 127

viii

List of Tables

3.1 Gate Characteristics 26

3.2 Estimation of Required Sample Size 34

4.1 Description of Benchmarks Used for Pipeline Depth Study. 40

4.2 Possible Outcomes for Combinational Logic Transient Fault Injection. 41

4.3 Hypothetical Functional Unit Descriptions. All values shown in terms

of arbitrary units 55

5.1 Possible Outcomes for Combinational Logic Transient Fault Injection. 82

5.2 Description ofz80 Decoder Output Bits 85

ix

List of Figures

2.1 Example of Electrical Masking 10

2.2 Example of Logical Masking. . 12

2.3 Example of Timing Window Masking 13

2.4 Scaling of Qcrit with Process Technology. Adapted from [61]. . . . 16

3.1 Charge Deposition PDF. From [13]. . 21

3.2 NAND Structure Used for SET Waveform Characterization 22

3.3 SET Duration Mapping Function 23

3.4 Example Inverter Layout for Area Estimation 25

3.5 SET Fault Outcome Tree 27

3.6 SEU Fault Outcome Tree 29

4.1 FP Adder Combinational Logic Fault Injection Breakdown 41

4.2 FP Multiplier Combinational Logic Fault Injection Breakdown. . . . 42

4.3 Measured Overall Logic Derating of Floating Point Units 43

4.4 Measured Logical Derating of Floating Point Units 44

4.5 Measured Timing Derating of Floating Point Units 46

X

4.6 FP Adder Latch Fault Injection Breakdown. 47

4.7 FP Multiplier Latch Fault Injection Breakdown. 48

4.8 Measured Normalized Latch Soft Error Rate. 50

4.9 Measured Derating for Latch Strikes. 51

4.10 Combined Soft Error Rate for Floating Point Adder. 52

4.11 Combined Soft Error Rate for Floating Point Multiplier. 53

4.12 Timing Diagram for Instruction Processing. 56

4.13 Plot of Logic Derating Adjusted for Execution Time. 61

4.14 Illustration of SET Fanning out to Multiple Flip-flops. 62

4.15 Experimental Measurement of Effective SETWidth. 63

4.16 Histogram of Number of Bits Flipped by a SET. 65

4.17 Combined SER Adjusted for Execution Time. 66

5.1 z80 Instruction Format. Adapted from [58].". 76

5.2 z80 Decoder Block Diagram. ' . - . . . 78

5.3 RISC Operation Format. 79

5.4 z80 Logic Fault Outcome Breakdown. 81

5.5 z80 Error Origin. 83

5.6 z80 Decoder Output Derating per Bit. 86

5.7 z80 Output Error Characterization. 87

5.8 Characterization of Multi-bit Output Errors for z80 Decoder. 88

6.1 SET Detection via Master Latch Duplication. 95

6.2 Timing Diagram for Time Shifted Clock SET Detection. 96

XI

6.3 Timing Diagram for Time Shifted Data SET Detection 98

6.4 Muller C-element with Keeper Circuit 99

6.5 Error Correcting Flip-flop. 100

6.6 C-element Timing Diagram 101

6.7 Logic Fault Outcome Tree. • • • • 102

6.8 16x16 Multiplier Derating per Bit 103

6.9 Selection Heuristic Pseudo-code 105

6.10 Example of SET in an Intermediate Pipeline Stage 107

6.11 Predicted Error Coverage . 109

6.12 Predicted vs. Real Error Coverage for z80 Decoder. 113

6.13 Predicted vs. Real Error Coverage for the Floating Point Adder. . . 114

6.14 Predicted vs. Real Error Coverage for Integer Multiplier. 115

6.15 Relationship Between Inserted Delay and Probability of Transient De­

tection 118

6.16 Tradeoff Between Area, Delay, and Error Coverage for z80 Decoder. 120

1

Chapter 1

Introduction

As computing systems become increasingly ubiquitous, architects strive to create

robust systems capable of operation in a wide range of environments. In addition

to meeting performance and power requirements, engineers now have to spend a

significant amount of time ensuring their designs also meet reliability goals. The

combination of continued technology scaling and increased on-chip transistor

densities have made vulnerability to radiation-induced transient faults (soft errors)

a significant design concern [35]. Soft errors were initially a problem in high

density memory cells, first being observed in DRAMs and then later on in SRAM-

based caches[83]. This initial discovery led to a significant number of proposed

solutions designed to prevent, detect, and/or correct faults occurring in storage

cells.

One consequence of this pervasive protection of storage structures is that an

increasingly large fraction of the vulnerable transistors on die belong to combina-

v • • • • • • 2

tional logic blocks. In addition to this, failure rates due to transient faults on logic

nodes are predicted to increase by several orders of magnitude due to technology

scaling [61]. For these reasons, engineers will need to devote additional design

effort to protecting logic in order to meet reliability goals in future systems.

Recent research on soft errors has largely been divided into two domains.

In the architecture domain, most proposals either offer some form of global

thread-level redundancy [8][34][66] or monitor storage structures which hold

sensitive micro-architectural state [10][73][35]. In the context of these schemes,

logic dominated units are either not protected or are essentially replicated (either

spatially or temporally) as part of a larger redundancy scheme. The majority of

work in this domain relies on performance simulation tools for evaluation, with

latch-accurate RTL models used in a minority of cases[70]. Modeling the effects

of soft errors at this level is difficult, as structural and timing characteristics of

logic blocks are not available.

In contrast, there exist a significant number of proposals in the implementation

domain with the purpose of mitigating the effects of transient faults in combina­

tional logic. A myriad of techniques [81][14][38][32][13] have been proposed

in this domain. Techniques presented in this context typically use gate and/or

transistor-level models for evaluation, allowing for the effects of circuit structure

and timing constraints to be considered. Unfortunately, modeling industrial sized

circuits at this level of detail is often computationally intractable.

This dissertation has two overarching objectives. The first objective is to

gain a more detailed understanding of transient fault propagation characteristics

3

in combinational logic blocks typically found in high performance microproces­

sors. The primary motivation for this is to allow architects to accurately reason

about the effects of soft errors in logic earlier in the design cycle, essentially bridg­

ing the gap between the two previously described domains of soft error research.

The second objective of this thesis is to leverage the aforementioned fault propa­

gation characteristics in order to explore cost-effective means of protecting logic

blocks from transient faults. These objectives were successfully accomplished

through the completion of several steps. First, simple, intuitive fault models

were developed to facilitate reasoning about how transients propagate. Next, sev­

eral studies were performed to understand how low-level structural and timing

characteristics could potentially affect high level design decisions. Finally, fault

propagation characteristics discovered from the previous steps of this thesis were

used to develop cost effective soft error protection techniques.

1.1 Thesis Contributions

In this dissertation, several contributions are made. With respect to gaining a

deeper understanding of the soft error problem within logic, the work completed

in this thesis provides several new insights related to answering the following

questions:

i • •

• How should architects conceptually think about this problem? The results

presented in this dissertation show that contrary to conventional intuition,

the vulnerability of a given logic block is largely independent of pipeline

4

depth. In addition to this, combinational logic gates within more deeply

pipelined circuits are actually less vulnerable to transient faults.

• What effects are the most important to model? Several existing proposals

on methodologies to model soft errors in logic only focus on modeling the

logical propagation of errors, modeling timing effects analytically. The

results presented in this work show that this simplification can lead to

misleading results with respect to how the impact of transients faults varies

with clock frequency.

• How are the artifacts of transient faults structured? Many reliability studies

performed at the architecture or application level of abstraction model the

final result of a transient fault in logic in the same manner as SRAM, as a

single bit flip. The analysis conducted in this dissertation shows that when

transients faults are studied using a gate-level infrastructure, this single bit

flip assumption is not always valid. Specifically, it is shown that in many

cases a single transient fault can result in multiple state bits being corrupted,

and that state bits are not corrupted with equal probability.

The insights uncovered in this thesis related to these questions contrast with

prevailing intuition and are particularly beneficial to architects and others working

at higher levels of abstraction. Additionally, this thesis explores how the answers

to these questions can be practically applied in terms of protecting individual

logic blocks.

5

1.2 Thesis Organization

The remainder of this thesis is divided into six chapters. Chapters 2 and 3 pro­

vide basic background related to soft errors along with a description of the tools

developed to conduct this study, respectively. Chapter 4 is devoted to exploring

the how scaling clock frequencies and pipeline depths affect the soft error vul­

nerability of a given logic block. Chapter 5 primarily focuses on systematically

outlining which protection schemes are best for a given logic block, and also

presents characterization results for a parallel instruction decoder regarding the

structure of the artifacts produced by transient faults. Chapter 6 presents a novel

framework for transient fault analysis, which uses the fault propagation charac­

teristics of a circuit in order to provide error tolerance in a cost effective manner.

Finally, Chapter 7 outlines the conclusions reached in this thesis and outlines

various avenues of future work.

6

Chapter 2

Background

2.1 Introduction

The purpose of this chapter is to provide additional background related to what

physically occurs when a transient fault is induced, as well as historically how

the soft error problem evolved to be a concern for general purpose architects.

The remainder of this chapter is divided into four sections. The first section

describes the mechanics of how transient faults affect memory cells, in addition

to providing some historical background on the problem. The second section

provides more details on how transient faults manifest themselves in logic. The

final two sections describe metrics used to express soft error rates, and provide

a qualitative argument about why logic soft error rates are expected to rise to a

level equivalent to unprotected SRAM.

" N • ' • ' • ' • •

. ' • I

' ' ' • ' ' • 7

2.2 Soft Errors

Radiation induced transient faults, or soft errors, typically originate from two

sources. Soft errors can be caused by alpha particles present in packaging materi­

als, or by neutron particles from cosmic radiation. While alpha particle induced

errors were previously identified as a serious problem in high density memories,

neutron particles are the primary source of errors in current generation systems

[83][35]. A soft error occurs when a radiation particle strikes the bulk of a tran­

sistor, generating some amount of charge. The exact amount of charge generated

by particle is primarily dependent on its energy. If a sufficient amount of charge

is absorbed by the source and/or drain region of the affected transistor, a single

event effect is induced, meaning that the value stored at that particular circuit

node is flipped. If the affected transistor is part of a memory cell, this corruption

is known as a single event upset (SEU). If the affected transistor is part of a

combinational logic gate, the fault is known as a single event transient (SET) [61].

The minimum amount of generated charge necessary to induce a single event

effect is generally denoted as the critical charge or Qcrit[\5]- This Q^u value is

primarily dependent on the sizing of the transistors within the gate or memory

cell of interest, as this directly affects the capacitance stored at each circuit node.

A lower Qa-a value indicates that a component is less reliable, as it implies that

a larger fraction of striking particles will be able to generate enough charge in

order to induce a single event effect.

While a soft error related failure in current generation process technology is

8

likely to originate from a particle strike either on a logic gate or a memory cell,

historically memories have been significantly more susceptible to faults. Moore's

Law, an empirical observation which describes the rapid increase in transistor

integration density over time[33], has transformed the phenomena of soft errors

from an issue that was originally only of concern in the high availability server

or avionics application spaces [8][75][68] to something that architects of general

purpose systems now worry about.

In previous technology generations, soft error rates were low enough such

that the effects of transient faults were only noticeable in high density memory

components. The early appearance of error correcting codes (ECC) and parity

logic first in DRAMs and later in large SRAM caches is evidence of this initial

concern. The continued shrinking of transistor dimensions, which is generally

viewed as a benefit of Moore's Law, also has the negative effect of reducing the

minimum amount of charge required to induce a single event effect, effectively

increasing the soft error rate with every technology generation.

Eventually soft error rates rose to a level that the effects of transient faults

started to become observable not only in high density memory components, but

also within storage structures commonly found within conventional micropro­

cessor pipelines. At this point, controlling soft error rates became a topic of

increased interest in the architectural research community. This renewed interest

inspired numerous proposals on ways to model and understand the effects of soft

errors at an architectural level [37][70][35]. Because these techniques arose out

of the architecture community, the majority of these proposals model soft errors

9

using binary instrumentation tools, performance simulators, and in some cases

behavioral RTL models.

In parallel with the previously described observation of errors within architec­

tural storage structures, soft error rates due to particle strikes on combinational

logic gates also increased dramatically. In the past naturally occurring masking

phenomena prevented a large fraction of SETs from ever resulting in errors. The

rate at which SETs are masked is decreasing rapidly due to technology scaling.

Essentially, logic soft error rates are not only rising due to lower QcHt due to

shrinking geometries, but also because of diminished rates of masking. The pre­

viously mentioned architectural studies use tools at levels of abstraction such that

an understanding (on an architectural level) of the effects of soft errors in logic

is precluded.

2.3 Soft Errors in Logic

Recall from the previous section that a particle strike affecting a combinational

logic gate manifests itself as a transient pulse at the gate output. In order for an

SET to have the same result as an SEU, which would be to invert the value in

a storage bit, the transient pulse needs to logically propagate through the circuit

and ultimately alter the value captured by a downstream sequential element. In

previous technology generations, logic soft error rates were kept low due to natural

masking phenomena that prevented this described scenario from occurring. Each

of these masking phenomena will now be discussed in detail, along with how

10

Figure 2.1: Example of Electrical Masking.

scaling is affecting its significance.

Electrical Masking

As a transient pulse propagates through a combinational logic chain, some atten­

uation occurs (in terms of the height and width of the waveform) as the transient

passes from the input to the output of each gate. If the height of the pulse is

degraded to the point where the transient does not represent a logically altered

value, or the width is shortened to the point where the transient value does not

persist long enough to meet the setup + hold time required alter the value cap­

tured by a sequential element, the transient is said to be electrically masked[61].

The amount of electrical masking that occurs at each gate is a function of the

propagation delay of that gate as well as the width of the transient pulse[39]. An

example of a transient pulse being attenuated as it propagates through a logic

chain is shown in Figure 2.1. The amplitude and duration of the transient pulse

decreases as it propagates through the successive gates in the logic chain.

The general trend of decreasing clock cycle times reduces the effect of elec-

trical masking because there are fewer levels of logic per pipeline stage, meaning

that a transient pulse propagates through fewer downstream gates before arriv­

ing at a sequential element. In addition to this, decreasing feature sizes across

successive technology generations impact the effect of electrical masking in two

ways. First, decreasing feature sizes imply that transistors will have lower Qcrit

values, meaning that transient waveforms will increase in size (in terms of height

and width). Also, because propagation delays decrease with smaller feature sizes,

the amount of waveform attenuation that occurs at each individual gate will be

diminished.

Logical Masking

When a particle strikes a device in a combinational logic chain, the resulting

transient pulse is only in danger of corrupting a downstream sequential element

if the chain is on a sensitized path. Whether or not a path is sensitized is a function

of the inputs applied to the logic block. Consider the logic shown in Figure 2.2.

The transient present at the output of gate A is eliminated because the controlling

value at the other input of gate B prevents it from propagating any further.

Transient faults blocked in this manner are said to be logically masked [61].

The amount of logical masking that occurs within a logic block is a property of

the function computed and is independent of all technology parameters.

12

. - I — N V
Ga I 1

Gb f~*~* ^

Figure 2.2: Example of Logical Masking.

Timing Window Masking

Even if a radiation particle hits a gate on an appropriately sensitized path, and

generates a transient waveform with sufficient height and width to corrupt the

value captured by a downstream sequential element, the transient must arrive

at the input of the sequential element during the period where the sequential

captures a new value. This period of time is defined by the setup and hold time

of the sequential in question, and is generally referred to as the latching window

[61][76][44]. Pulses that reach the inputs of sequentials outside of this time

period are said to be timing window masked. Figure 2.3 illustrates different

timing window masking scenarios that might occur.

For this figure, it is assumed that the sequential element being corrupted is

a positive-edge triggered flip-flop, meaning that the latching window is centered

around the rising edge of the clock. In Figure 2.3, the waveform at the top of the

illustration represents the clock signal, and the dotted lines represent the latching

window. As shown in this figure, a transient only alters what is captured by a

13

latched

masked

masked

Figure 2.3: Example of Timing Window Masking.

flip-flop when the transient value is present at the data input of the flip-flop during

the latching window. Continued technology scaling will decrease the amount of

timing-window masking occurs. Shrinking Qa-u values mean that propagating

transients will have greater widths, and shrinking gate delays mean that both

clock periods and latching windows will be shorter. The combination of these

two effects increase the probability that a transient arriving at a flip-flop input

will do so during the latching window, meaning that timing-window masking will

occur less often.

14

2.4 Reliability Metrics

Soft error rates are generally expressed using the metric of Failures in Time (FIT),

which is defined as the number of failures per 109 hours [35]. In some situations,

the metric of mean time to failure (MTTF) which is the inverse of FIT, is also

used to express failure rates. In general, the FIT rate can be calculated in the

manner shown in Equation 2.1.

FIT = (RawStrikeRate) * (Derating) (2.1)

The FIT rate of a system is typically calculated by multiplying the Raw Strike

Rate, and a derating factor. Because neutron particles are the dominant source of

soft errors, the Raw Strike Rate can be approximated by the expression shown in

Equation 2.2.

SER(xF*A*exp(-Qcrit/Qs) (2.2)

Equation 2.2 represents the soft error rate as a function of altitude dependent

neutron flux (F), vulnerable drain area (A), and the ratio of (-QcritlQs), where

Qs is the charge collection efficiency, and is property the the transistor affected

by the particle strike [19]. The derating factor is defined as the probability that a

particle strikes manifests itself as an visible output error. What actually factors in

determining the derating factor is largely dependent on the definition of a visible

error. In the context of a logic block, a visible error might be defined as the case

15

where a fault results in incorrect values computed at the outputs of that block.

In this case the derating value would be determined by the degree that electrical,

logical, and timing window masking occur within the block. In the context

of an entire system, a visible error might be defined as the case where a fault

results in a divergence in committed architectural state. In this case, the degree

of architectural masking within a system would also play a role in determining

the derating factor.

2.5 Relationship Between Logic and SRAM Soft

Error Rates

The combination of shrinking feature sizes and diminishing amounts of timing

window and electrical masking occurring imply that logic soft error rates will

increase by several orders of magnitude over the next several technology gen­

erations. Both of these trends have the ultimate effect of reducing the average

Qcrit for a circuit, meaning the radiation particles with less energy will be able

to induce SETs. A relatively recent study on the logic soft error scaling has

predicted that as a consequence of both of the the aforementioned trends, logic

soft error rates will be comparable to unprotected SRAM error rates by the 50nm

technology generational]. A plot of estimated Qcrit values from this study is

plotted in Figure 2.4. In this graph, the estimated Qcrit values for SRAM cells,

combinational logic gates are plotted, along with the charge collection efficiency

Qs. The lines with diamond, square, and triangle markers represent the values

16

£

Q
cr

it

:

350nm 250nm 180nm 130nm lOOnm

Technology Generation

70nm 50nm

-•-Clcritjogic

-»-Qcrit_SRAM

-*-Qs

Figure 2.4: Scaling of Qcrit with Process Technology. Adapted from [61].

of Qcrit for logic, Qcrit for SRAM, and Qs respectively. This plot can be used

to qualitatively explain why technology scaling will cause logic error rates to

significantly increase.

Recall from Equation 2.2 the soft error rates have an exponential relationship

with the ratio (QcritlQs)- In Figure 2.4, the QCTit_SRAM is plotted in the context

of an individual transistor within an SRAM cell, while (3cHt_logic is shown in

the context of a transistor within a logic chain, meaning that the plot of this

quantity also includes the effects of electrical and timing window masking. It is

clear from the plot shown in Figure 2.4 that Qcrit_logic is decreasing significantly

faster than QmtjSRAM across technology generations. The underlying reason

17

behind the trend shown in the plot is that Qc^JSRAM is only decreasing as a

result of diminishing feature size, while Qeritlogic is decreasing because of the

combined effects of smaller features sizes and less timing and electrical masking.

Essentially the quantities of Qcrit_SRAM/Qs and Q&.jt_logic/Qs are converging

to the same value.

2.6 Summary

In this chapter, background information relating to soft errors was provided. In

particular, the historical background regarding the context in which the effects

of transient faults were first observed was described, as well as the underlying

physical processes that occur in order for a particle strike to induce an actual

fault. Finally, this chapter concluded by providing a qualitative rationalization

as to why logic soft error rates are projected to increase faster than SRAM error

rates.

18

Chapter 3

Methodology

3.1 Introduction

In this chapter, the infrastructure developed to evaluate the effects of soft errors

in logic is described. In order to develop this infrastructure, several trade offs had

to be made with respect to the level of detail used to model faults. While a certain

level of detail is required in order to draw useful conclusions from experiments

performed, too much detail makes the study of any logic block large enough to

be of interest computationally intractable. The strategy taken in this dissertation

is to study the effects of soft errors in logic through statistical fault injection. The

actual modeling done is split into two parts, a circuit level modeling component

with the purpose of obtaining realistic characteristics of transient pulses, and logic

level modeling to accurately capture transient propagation characteristics within

a given logic block. The rest of this chapter is divided into four sections. The

19

first section provides an overview of prior proposals for modeling transient faults.

Following this, the next two sections discuss the circuit and logic-level modeling

performed for this work, respectively. Because the tool chain developed for this

study relies on statistical fault injection, the last section of this chapter is devoted

to establishing proper experiment lengths in order to ensure the statistical validity

of later results collected with this framework.

3.2 RelatedWork

While statistical fault injection is intuitively the most straightforward approach

to obtaining reliability estimates, in many cases it can be an extremely time

consuming methodology. Many logic blocks have a large state space of operating

conditions under which faults may naturally occur. In the context of transient

fault modeling, this space at the very least has several dimensions: the range

of all possible inputs, all vulnerable circuit nodes, all points in time during the

clock cycle, and all possible particle energies. For this reason, there have been

numerous proposals aimed at reducing the time required for fault simulation by

removing one or more dimensions of this state space.

In this vein there have been several techniques proposed which reduce the

input dimension through either symbolically modeling circuit nodes and propagat­

ing faults with binary decision diagrams (BDDs)[9][30], or bit-parallel simulation[23].

Parallel simulation has also been applied with respect to the particle-energy di­

mension, with several existing proposals advocating the simultaneous simulation

20

of transients with a range of waveform characteristics[46] [79].

Perhaps the most commonly utilized strategy for reducing the computational

requirements is to eliminate the timing dimension. Proposals using this simpli­

fication typically model the effects of logical masking in detail, while model­

ing timing-window masking and in some cases electrical masking analytically

[76][44][61] [5][23]. One advantage of this particular strategy is that many tools

in the ATPG domain are designed to measure the degree to which the values at

circuit nodes are observable at outputs, and can be trivially extended to model

the effects of logical masking.

For the purposes of this work, the framework constructed does not explicitly

remove any of the previously described state space dimensions. The rationaliza­

tion for this design decision was that not removing any dimensions would yield

the most accurate results, and that the availability of machines for parallel sim­

ulation would allow for experiments to be conducted in a reasonable amount of

time.

3.3 Circuit-Level Modeling

Recalling the background discussion in Chapter 2, particle strikes on combina­

tional logic gates manifest themselves as transient pulses (or glitches) occurring

at the output of the affected gate. The most important characteristics of these

transient waveforms are the amplitude and duration of these pulses, which are

primarily dependent on the size of the affected transistor as well as the energy

21

0.040 -, 1

0.035

0.030 '--V

0.025 \
— \
g 0.020 -V

s \
a 0.015 ^ -

0.010 N .

0.005 - — — -

0.000 -I - i 1 1 1
20 40 60 80 100 120

charge deposited by striking particle (fC)

Figure 3.1: Charge Deposition PDF. From [13].

of the striking particle. The purpose of the circuit-level modeling component of

this study was to establish realistic ranges for these quantities.

Several prior studies on soft errors in logic have simulated particle strikes

by first modeling a combinational CMOS gate at a transistor level, and then

injecting pulses of current, simulating the charge collection process, into drain

nodes within that gate and observing the transient waveforms that occur at the the

gate outputs [13][61]. This methodology was also used for the modeling done in

this dissertation work. These experiments were conducted using HSPICE using

the 65 run predictive technology model [2]. The shape of the injected pulse was

modeled as a time-dependent exponential function, as described by [61]. The

22

(t)
Figure 3.2: NAND Structure Used for SET Waveform Characterization.

function used is shown in Equation 3.1.

I(t) = Q/T * y/t/f * exp(-t/T) (3.1)

This equation describes a time dependent current pulse as a function of the

charge generated by a striking particle (Q), and a technology dependent time

constant for charge collection (T). The time constant used corresponds to the

value given in [61] that most closely corresponds to a 65 nm process. A range of

values for Q was obtained from a previous published probability density function

for charge deposition shown in Figure 3.1. Figure 3.2 illustrates the experimental

setup used for particle strike simulation. This test bench mimics the methodology

used in [13].

In terms of modeling, the most important transient waveform characteristics

that need to be captured are waveform height and duration. Instead of tracking

and storing both of these characteristics, the framework developed for this study

defined and measures SET duration, which is defined as the period of time the

transient wave form is above or below the value of Vdd/2 (a supply voltage of

23

ps
)

c
.2
2 t-
3
•D

1-
UJ
(0

200

180

160

140

120

100

80

60

40

20

0
20 40 60 80 100 120

charge deposited by striking particle (fC)

Figure 3.3: SET Duration Mapping Function.

0.9 V was used), corresponding to a logically different value.

The ultimate goal of the described circuit modeling experiments was to sweep

across the range of possible amounts of charge being generated, and determine

the corresponding SET durations. The results of this exercise are shown in Figure

3.3, with the range of charges used represented on the x-axis, and the correspond­

ing SET durations plotted on the y-axis. These SET duration values were then

mapped to the x-axis of the probability density function shown in Figure 3.1,

creating a new probability density function for SET duration. This newly created

function was then discretized and used as an input to the gate-level fault injection

component of the developed framework.

24

3.4 Gate-Level Modeling

The second component of the framework developed for this study is a gate-level

simulator used for statistical fault injection. This simulator was created by adding

timing support to an existing tool originally intended for automatic test program

generation (ATPG). Additionally, the 5-valued logic alphabet, originally pro­

posed by Roth [55] and typically used for ATPG, was extended to include 7

values in total giving the simulator the additional ability to model faults within

flip-flops.

Each fault inj ected can be represented by a 4-tuple, with members representing

the gate or flip-flop affected, the point in the clock period during which the particle

strike occurs, the input vector applied to the logic block, and the duration of the

generated SET. When faults are injected, the time that the fault occurs as well as

the input vector applied to the logic block are chosen randomly. For the input

vectors, additional functionality is added to the simulator which allows certain

inputs to be fixed to predetermined values. This is especially useful during the

evaluation of logic blocks with control inputs, eliminating input combinations

that would never occur in practice and outside of the intended functionality of

the logic block. SET durations are chosen according to the discrete probability

density function, whose construction was previously described.

Realistically choosing gates and flip-flops to inject faults into presented an ad­

ditional challenge. Because the developed simulation infrastructure was derived

from ATPG tools, the logic blocks evaluated must be represented in the UW net

25

™y//////////A
5A

W ^ I I
t

w, PMOS

w, NMOS

Figure 3.4: Example Inverter Layout for Area Estimation.

list format, which is derived from the more commonly used ISCAS format [17].

This format represents gates as one of several elementary types (NAND, NOR,

XOR, BUF, DFF, etc..) with no notion of area. A first order area model was

developed by creating simple layout level diagram of each gate, and estimating

the vulnerable drain area.

An example stick diagram of a CMOS inverter is shown in Figure 3.4. By

constructing diagrams like this for each gate type, drain area can be easily cal­

culated. In Figure 3.4 both the length and width of the diffusion regions are

specified in terms of a constant A. VLSI design rules are typically specified in

terms of A, which usually represents half of the minimum feature size of a given

process. By specifying rules in terms of this variable, migrating design rules

26

of one process generation to the next is greatly simplified [74]. The length of

the diffusion regions modeled was assumed to be 5A, which was suggested as a

reasonable value by [74].

Gate Type)

NAND
NOR
AND
OR
INV
DFF

Delay (ps)

21
21
39
39
17
n/a

Drain Area (nm2)

84500
105625
147875
169000
63375
126750

Table 3.1: Gate Characteristics.

The delay of each type of gate was calculated through the use of logical effort.

The logical effort of a gate is defined as the ratio of its input capacitance to

the input capacitance of an equivalently sized inverter[67]. This ratio is useful

because it allows the delay of a more complex gate to be easily approximated

from the delay of an inverter. Table 3.1 shows the different types of elementary

gates modeled, along with the assumed propagation delays and vulnerable drain

area.

The diagram in Figure 3.5 shows all of the possible outcomes that can occur

when a particle strike affects a combinational logic gate. Looking at this figure,

there are several different classes of outcomes possible for each fault. Outcomes

A and E represent cases where the transient is logically masked, either before cor­

rupting a flip-flop (A), or after (E). Outcomes B and D represent cases where a

SET reached the input of a flip-flop, but not during the rising clock edge, meaning

27

particle strike

jnasked,
E^ -" F

Figure 3.5: SET Fault Outcome Tree.

the fault was timing window masked. Only outcomes C and F actually represent

cases where an injected fault results in incorrect bits at the primary outputs of a

circuit. From this diagram it should be clear that while the developed framework

does account for logical and timing window masking effects, electrical masking

is not modeled. For this work the choice was made to ignore the effects of elec­

trical masking for two reasons. Because it is well understood that the degree a

combinational gate can attenuate a propagating transient pulse is dependent on

both the delay of the gate as well as the width of the transient [3 9] [61] [79] [44],

28

the amount of observed electrical masking will be essentially constant across all

experiments (since no gate sizing is being performed). Any effects of electri­

cal masking will be canceled out when comparisons are performed. In addition

to this, prior proposals exist which model the effects of electrical masking by

constructing piecewise equations which relate the waveform characteristics of

a transient waveform at the output of the gate to the input waveform as well

as the delay of the gate [39]. Generally, if a transient has a pulse width that

is significantly larger than the delay of the gate it is passing through, the fault

will propagate unattenuated. During the previously described circuit level char­

acterization experiments, the observed transient widths were significantly larger

than the gate delays used. This relationship should hold as process technology

continues tp scale.

In addition to modeling faults due to particle strikes on transistors within

combinational logic gates, the infrastructure developed for this dissertation is

also capable of modeling particle strikes within storage cells within flip-flops.

For this case, it is assumed that a particle strike will only corrupt the SRAM

cell used for storage within either the master or slave latch. It is assumed for

this work that all flip-flops are constructed by placing 2 level sensitive latches

back to back. Furthermore, in the developed gate-level simulator, each flip-flop

is only modeled as a single SRAM cell. This design choice was made because

of a previous observation made by Siefert, which is that an individual latch is

only vulnerable to particle strikes in opaque state [59]. Assuming a single phase

clocking scheme with a 50 % duty cycle, implying that only otte SRAM cell is

29

particle strike on FF

value changed

intermediate FF

Figure 3.6: SEU Fault Outcome Tree.

vulnerable at any given time.

A diagram of the possible outcomes that can occur when a latch is affected

by a particle strike is shown in Figure 3.6. The outcomes shown in this diagram

were conceptually derived by considering the abstraction of a 1 -bit wide arbitrary

datapath, beginning and terminated with single flip-flops, denoted as launching

and receiving, respectively. For each outcome, it is assumed that one latch in the

launching flip-flop is affected by a particle strike. It should be noted that in cases

where latches are affected by particle strikes, the erroneous values that propagate

30

through the rest of the circuit are not transient pulses, but rather permanent values

which will persist until the next clock cycle. Using this single bit datapath abstrac­

tion, outcome A in Figure 3.6 represents the case where the launching flip-flop is

affected by a particle strike, but no erroneous values propagate to the receiving

flip-flop because of logical masking. Outcome B represents the case where the

launching flip-flop is affected by a particle strike that is capable of logically prop­

agating to the receiving flip-flop, but this is prevented from happening, because

the particle strike occurred too late in the clock cycle. This scenario is most likely

to occur on long paths within a circuit and was explicitly characterized in [59],

where each flip-flop in the circuit was assigned a window of vulnerability (WOV),

bounding the portion of a clock cycle where a SEU would have enough time to

propagate to a downstream receiving flip-flop.

Outcomes C, D, and E represent the cases where the launching flip-flop is

affected by a particle strike within its designated WOV, and the erroneous values

ended up propagating to at least one receiving flip-flop downstream. Outcome C

represents the case where the receiving flip-flop is also a primary output, meaning

that an error has occurred. Outcome C also includes a special subset of cases

where a primary output flip-flop is directly affected by a particle strike. Outcomes

D and E represent cases where the receiving flip-flop is not a primary output, and

erroneous values are either logically masked later (D) or eventually affect primary

outputs (E).

3.5 Benchmark Creation

31

In order to he evaluated using the tool chain developed for this work, Verilog

modules were synthesized to LSI 10k standard library cells using Synopsys De­

sign Compiler Version Y-2006.06-SP1. These synthesized modules were then

translated to the required UW net list format via perl scripts. ,

3.6 Statistical Significance of Fault Injection

Because the tool chain developed for this dissertation work relies on statistical

fault injection for data collection, a lower bound on the number of faults to

inject in order to generate results with some degree of statistical validity needs

to be established. This lower bound of injected faults is established through

the construction of confidence intervals. Ultimately the result produced by the

tools whose development is described in this chapter is a derating value, which

is the number of errors observed, where an error is defined as a case where

an injected faults results in incorrect values at circuit outputs, divided by the

total number injected. The true derating value of a circuit can only be obtained

with absolute certainty if faults were injected under all input, location, timing,

and particle energy conditions, a task which is computationally intractable. The

statistical fault injection tools developed for this work inject faults only under a

subset of all possible conditions, essentially producing a sample measurement

which is an approximation of the true quantity/Confidence intervals provide a

measurement of the representativeness of these measurements by establishing an

32

interval centered around the sample value as well a probability that the true value

lies within that interval.

Confidence intervals are typically defined in terms of the size of the interval

(usually expressed as the percent difference between the ends of the interval and

the sample value), and a confidence level (denoted as. a),'where the probability

that the true value lies within the defined interval is (1 - a) [20].

For the purposes of our study, the bounds of our interval are defined by the

expression shown in Equation 3.2.

x±tQ / 2(n-l)*(sVn)(3.2)

This equation shows the construction of an interval dependent on the mean of

the sample measurement (x), the measured standard deviation (s), a distribution

and confidence level dependent constant (ta/2(n -1)), and the number of samples

taken (n). The statistical methodology used for this study were based primarily

on the discussion of confidence intervals in [20]. The most important decision

made was the use of the t-distribution rather than the normal distribution, which

was made due to the small number of samples used, as well as the lack of prior

knowledge regarding the distribution of the values being estimated.

For the purposes of this study, the most important variable in Equation 3.2 is

n, which directly represents the number of faults that need to be injected in order

to achieve a desired confidence interval. Rearranging the terms for the upper

bounds of the confidence interval (as shown in Figure 3.2), an expression for n

33

can be obtained. This expression is shown in Equation 3.3.

upper bound-x

Determining a Minimal Sample Size

In order to determine the minimal sample size required to have statistically valid

results, several characterization experiments were performed. For this study,

the OpenSPARC floating point multiplier was used as a benchmark [29]. This

circuit was chosen because it is the largest circuit studied in this dissertation

work, containing over 35,000 gates and 2,000 flip-flops when synthesized to

LSI 10k library cells. For the first part of this experiment, 10 separate fault

injection experiments were performed, with 10,000 faults injected in each case

with a different random seed. For each simulation the measured derating was

recorded. From these initial simulations the values of the sample mean and

standard deviation (denoted by x and s, respectively) as well as the upper bound

of the desired confidence interval can be calculated. With all of these values

determined, the number of samples required can be obtained by applying the

formula shown in Equation 3.3.

The results of this experiment are summarized in Table 3.2. The rows in this

table represent the size of the interval in terms of the percent deviation from the

sample mean (10% means that the lower and upper bounds would be 0.95 *x and

1.05*x, respectively), while the columns represent the (1 - a), or the probability

that the true derating value falls within the defined interval. ,

34

10%
5%
1%

90%

0.24
0.95

23.78

95%

0.36
1.45

36.21

99%

0.75
2.99
74.75

Table 3.2: Estimation of Required Sample Size.

The summarized results of this experiment indicate that using a sample size

of 10 (corresponding to 100,000 total faults injected) is sufficiently large enough

to have a 5% confidence interval with a confidence level of 99%. This essentially

means that there is a 99% probability that the true derating value is within plus or

minus 5% of the mean sample derating value measured using the developed tool

chain. The results of this study justify the experiment lengths used for evaluation

in the rest of this dissertation, where at least 30,000 faults are injected in all cases.

3.7 Summary

In this chapter, the tools and methodology used to conduct the experiments de­

scribed later on in this dissertation are described. The developed tool chain

combines gate-level statistical fault injection with low level circuit simulation

with the goal of enabling the effects of transient faults to be modeled in a great

level of detail, while allowing simulations to complete in a reasonable amount of

time.

35

Chapter 4

Impact of Pipeline Depth

4.1 Introduction

In this chapter, the relationship between clock frequency and reliability is ex­

plored. Increasing clock frequencies are commonly cited as one of the reasons

that soft errors in logic are becoming an important design concern [61] [5 6]. The

relationship between the frequency a circuit is clocked at and its soft error rate is

intuitive, as shortening the clock cycle time of a circuit decreases the probability

that a SET is timing window masked. The experiments conducted in this chapter

show that this intuition is in fact flawed, and that the vulnerability of a logic

block to soft errors is largely independent of the degree to which it is pipelined.

These experiments also show that combinational gates within more aggressively

pipelined circuits are more resilient to the effects of transient faults.

This study also uncovers two key observations which not only explain these

36

surprising results, but also serve to refine conventional intuition regarding the

proper manner in which to make fair comparisons of reliability, and the appropri­

ate level of modeling detail required to obtain realistic results. The first key result

produced by this study is that the direct comparison of soft error rates is not al­

ways the appropriate manner in which to evaluate the reliability of different logic

blocks. In this chapter, the scenarios where direct rate comparisons are inappro­

priate are outlined. In addition to this, the results presented in this chapter also

underscore the importance of modeling the effects of timing window masking

explicitly. The use of analytical models for timing window masking [61] [9] [30],

obscure second order effects which can significantly impact the error rates of

combinational logic.

The remainder of this chapter is divided into four sections. In the first section,

the conventional intuition regarding how logic soft error rates scale with clock

frequency is defined formally and validated experimentally. The next two sec­

tions identify the flaws in this intuition, and propose methodological refinements

in order to address these flaws, respectively. The final section of this chapter

discusses the implications of these presented results.

4.2 Conventional Intuition

Combinational Logic Soft Error Rates

As was discussed in Chapter 2, a bit flip only occurs as a result of a particle strike

on a combinational logic gate when the generated SET logically propagates to

37

the input of a flip-flop and changes the value captured. In order for this to happen

the SET has to arrive at the flip-flop data input during the rising edge of the clock.

In the cases where a SET arrives at the input of a flip-flop, but not when the rising

edge occurs, the SET is said to be timing-window masked. The expression shown

in Equation 4.1 was proposed by [61] to analytically determine the probability

that the arrival of a SET at the input of a flip-flop would coincide with the rising'

edge of the clock.

^derating = T^ V*-*)

Equation 4.1 expresses this probability as the function of 3 quantities: the

SET duration d, which in this work is the amount of time the amplitude of the

pulse is above or below Vdd/2, the latching window w, which is the sum of the

setup and hold times for the flip-flop, and the clock period C. From this equation

it is simple to infer the first-order effect of increasing the pipeline depth of a unit

on the combinational logic soft error rate. At deeper pipeline depths, C decreases,

implying an increase in Tderatjn3. Simply put, the value of Iterating (and thus the

overall error rate) should be inversely proportional to the clock period.

Latch Soft Error Rates

In addition to being vulnerable to particle strikes on combinational logic gates,

errors in computation can also occur when bits are flipped as a result of direct

strikes on storage cells within flip-flops. It is assumed in this work that all flip-

38

flops considered are constructed of back to back level sensitive latches. Seifert et

al. characterized the vulnerability of latches to particle strikes, finding that latches

are only vulnerable to bit flips in opaque mode [59]. A latch in transparent mode

is not vulnerable because it is being driven by fan-in logic. If it is assumed that the

waveform used to clock the circuits has a 50% duty cycle, this implies that each

latch is only vulnerable to a particle strike 50% of the time. When the pipeline

depth of a functional unit is doubled, the first order intuition is that the latch count

(and thus the latch area) should also double, implying a proportional increase in

the latch soft error rate.

First Order Analysis

Following from the intuition established in the previous section, both latch and

logic soft error rates should increase with pipeline depth. Several experiments

were conducted with the purpose of validating the above stated intuition.

Experimental Setup

For this particular study, floating point addition and multiplication units based on

the designs from the UltraSPARC Tl were chosen as benchmarks [29]. These

units were chosen because nearly every general purpose microprocessor has float­

ing point hardware. In addition to this, the decision of whether or not to fully

pipeline a unit (which affects the frequency at which the unit is clocked), often

comes up in the design of floating point hardware. Generating several compari­

son points for evaluation required the creation of multiple versions of each unit,

39

pipelined to varying degrees. In order to create these benchmarks, all flip-flops

within the behavioral Verilog representation of these units were removed, creating

purely combinational versions of each logic block. These combinational logic

blocks were then synthesized to LSI 10k standard cells using Synopsys Design

Compiler, and re-timed using the automatic pipelining functionality within the

synthesis tool chain. This process yielded 2 stage, 4 stage, and 8 stage pipelined

versions of each original circuit. The attributes of each benchmark circuit are

shown in Table 4.1. The clock periods shown in this table were obtained by

taking the measured critical path delay for each 8 stage design, and doubling that

value successively as the number of pipeline stages is halved. While it is unlikely

that the actual critical path delay would double when the number of stages is

halved, the premise of this study was to consider a system where in the nominal

case a functional unit is fully pipelined (into 8 stages in this case) and to explore

how making the unit not fully pipelined affected reliability. The last column of

Table 4.1 reports the area percentage in the context of drain regions vulnerable

to particles strikes. Using the evaluation framework and methodology described

in Chapter 3, statistical fault injection was performed on each benchmark, with

100,000 particle strikes being simulated in each case.

In order to properly compare the effects of pipeline depth on soft error rates,

the error rates of combinational logic and latches are evaluated separately. The

reason this is done is because the soft error rates are dependent on both area

and derating factor. For the combinational logic case, it is sufficient to only

look at derating as the overall area of gates stays roughly the same across all

40

Benchmark

fpadd_comb
fpadd_2stg
fpadd_4stg
fpadd_8stg

fpmulcomb
fpmul_2stg
fpmul_4stg
fpmul_8stg

Clock Period

3040
1520
760
380

3120
1560
780
390

flip-flops

104
419
1123
2463

83
389

2269
3598

% FF area

1.1%
4.0%
9.9%
18.5%
0.3%
1.5%
8.1%
12.1%

Table 4.1: Description of Benchmarks Used for Pipeline Depth Study.

pipeline configurations. In the latch case, both the area and derating factors

change significantly with pipeline depth, meaning both must be considered to

compare error rates.

Combinational Logic Soft Error Rates

The results of statistical fault injection into the floating point adder and multiplier

circuits are shown in Figures 4.1 and 4.2, respectively. In each figure, the x-axis

represents the different pipeline configurations studied for each circuit, while the

stacked bars on the y-axis represent the fraction of injected faults that resulted in

a particular fault outcome. A description of each fault outcome is shown in Table

4.2. From both figures, it is clear that a significant amount of injected faults never

manifest themselves as errors due to either logical or timing window masking.

For the adder and multiplier, 64 and 53 percent of injected faults fall into

the LM outcome in the combinational case, respectively, which is the scenario

where the SET is logically masked before reaching a flip-flop input. As expected,

41

Outcome

LSERR
LSTWM
ISLER
ISLLM
ISTWM

LM

Description

SET corrupts primary output flip-flop
SET reaches primary output flip-flop, but is logically masked

SET corrupts intermediate flip-flop, error propagates to primary output
SET corrupts intermediate flip-flop, but error is logically masked
SET reaches intermediate flip-flop, but is timing window masked

SET is logically masked before reaching flip-flop

Table 4.2: Possible Outcomes for Combinational Logic Transient Fault Injection.

100% -

90% -

fl 80%

je
c

, E

J 70% -
"6
§
S
£ 60%

•;n% -

40% -

• i • • I I I I I I I I I HI B B HH • •
1 • • B I B
^^H ^^H ^^H • • • H • H w r f
comb 2stg 4stg

pipeline configuration

1 • I
1
| • 1

8stg

LSERR

K LSTWM

• ISLER

• ISLLM

— • ISTWM

• LM

Figure 4.1: FP Adder Combinational Logic Fault Injection Breakdown.

the number of faults resulting in the LM outcome decreases as both circuits are

pipelined into a larger number of stages. This decrease can be attributed to the fact

that as pipeline depth increases a SET needs to propagate through fewer levels

of logic before reaching a flip-flop, meaning that it is less likely to be logically

42

80% -

1
J 70% -

•c* 60% -

of

e
| 50%
IS

40% -

30%

. i

i j '" r L

^^^^B ^^^^1 1^^^^

^^^^H ^^^^H
^^^^^^H ^^^^^^H H H H H • • •• H H I

^^1 ^^H ^^1 H H H H • H H H H • • • • • • I
comb 2stg 4stg

pipeline configuration

•
^ H LSERR
^ H JLSTWM

^ | UISLER

^ H • ISLLM

^ | • ISTWM

^ H BLM •~~ •_ •^ •_
8stg

Figure 4.2: FP Multiplier Combinational Logic Fault Injection Breakdown.

masked before this happens. Correspondingly, there is an increase in ISLLM and

ISLER cases, where a SET ends up corrupting at least one intermediate flip-flop,

across the pipelined configurations.

The logic derating, defined as probability a particle strike on a combinational

logic gate will cause the unit to compute erroneous results, is plotted in Figure

4.3. This quantity is calculated by dividing the number of faults falling into the

ISLER and LSERR cases by the subset of faults injected into combinational logic

gates. The derating factors presented in these plots represent the effects of both

logical and timing-window masking.

As was stated previously, logical masking is an effect that should be solely

43

0.09 -

0.08 -

bQ 0.06 -

f
» 0.05 -

M 0.04

0.03 -

/ / • - • . • • ' •

~s^ Y -*-fpadd

_ _ — - - ~ " — • ~ ~ ~ ~ m ' • ^ S * •

"""""" ^^"^

-WI |) IHU I

' • * " " ~ ~ ~ .

1 2 4

pipeline configuration

8

Figure 4.3: Measured Overall Logic Derating of Floating Point Units.

dependent on the function computed by a particular circuit, and therefore invariant

across all pipelined configurations. The logical derating, defined for our study as

the probability that an injected fault will not be logically masked, can be measured

experimentally as shown in Equation 4.2.

LSTWM + LSERR + ISLER + ISTWM * fgT pi^g, T A/f
logical derating = — — — , , . . ISLER + ISLLM

faults injected

(4.2)

In addition to accounting for cases where SETs logically propagate to a pri­

mary output (ISLER, LSERR, LSTWM), this equation also accounts for cases

44

0.50

0.45

0.40

0.35

g1 0.30

•3 0.25

J 0.20

0.15

0.10

0.05

0.00

-+-fpadd

-a-fpmul

2 4

pipeline configuration

Figure 4.4: Measured Logical Derating of Floating Point Units.

where faults would have logically propagated to outputs but end up being timing

window masked. The measured logical derating for both floating point circuits

are shown in Figure 4.4.

Looking across the different pipeline depths, the measured logical derating is

relatively stable, remaining at roughly 30 and 40% for the adder and multiplier,

respectively.

timing derating
LSERR + ISLLM + ISLER

LSTWM + LSERR + ISTWM + ISLLM + ISLER
(4.3)

45

A significant amount of timing window masking is also occurring in both

circuits. The timing derating, defined here as the probability that a SET eventually

results in a bit flip, can be measured experimentally as shown in Equation 4.3. The

equation shown is simply the ratio of bit flips that occur to the number of outcomes

where a SET propagates to the input of a flip-flop. To separate timing window

masking from logical masking, cases where a bit flip occurs and is later logically

masked (ISLLM) are included in this calculation. The measured timing derating

is plotted for both functional units in Figure 4.5. As expected, the probability

of at least one bit flip occurring as the results of a SET increases with pipeline

depth. It should also be noted that the increase in timing derating observed in

Figure 4.5 is not varying linearly with clock period, as predicted by the analytical

expression shown in Equation 4.1. The second order effect responsible for this

nonlinear variation will be discussed in Section 4.4.

Collectively, the plots shown in Figures 4.3, 4.4, and 4.5, confirm the previ­

ously developed intuition regarding how the combinational logic soft error rate

should vary with pipeline depth. Figure 4.3 shows that the error rate does indeed

increase, while the combination of Figures 4.4 and 4.5 show that the increase in

error rate is due to a decrease in the amount of timing window masking going on

in the more aggressively pipelined versions of each circuit.

Latch Soft Error Rates

In addition to looking at the effects of particle strikes in combinational logic,

another experiment was performed to understand how latch soft error rates scaled

46

0.18 -

0.16 -

0.14 -

g
1 0.10
u •o

tim
i 0

0.06

0.00 -

/ i .

-»-fpadd

-«-fpmul

1 2 4

pipeline configuration

'
8

Figure 4.5: Measured Timing Derating of Floating Point Units.

with pipeline depth. In this experiment, 100,000 faults were again injected in each

case, but every fault was injected into latch storage. Because the area vulnerable

to particle strikes increases with the number of pipeline stages, this analysis

considers the product of area and derating in order to accurately compare error

rates. This is in contrast to the previous analysis shown for combinational logic,

which only considered derating.

Figures 4.6 and 4.7 show the outcome breakdown of fault injection on the

adder and multiplier, respectively. The x-axis in each figure represents the differ­

ent pipeline configurations studied, while the stacked bars on the y-axis represent

the fraction of injected faults resulting in a particular outcome; The FFPO and

47

90% -

-o 70% -

jk 60%

£
j j 50% -

"5
g 40% -
re

20% -

0% -

• M •
1

•

^ ^ M I H i i FFERH • 1 1
• 1 1

• H-K)
• FFUM

• FFTWM

^^H ^^H ^^H • • •
comb 2stg 4stg 8stg

pipeline configuration

Figure 4.6: FP Adder Latch Fault Injection Breakdown.

FFERR outcomes represent errors, or cases where an injected fault ultimately

results in the wrong value computed at the primary output of the circuit. For

the combinational cases 100% of the faults injected result in the FFPO outcome,

as the only flip-flops present in these circuits are at the primary outputs. One

distinct difference between the breakdowns presented in Figures 4.6 and 4.7 and

the charts previously shown for combinational logic fault injection is that there

is significantly less timing window masking occurring. Recalling the discussion

from the fault model presented in Chapter 3, the FFTWM outcome only occurs

when a fault is injected to a flip-flop sufficiently late in the clock cycle such that

the erroneous value does not reach a downstream flip-flop by the end of the clock

48

90% -

80% -

•o 70% -

; | 60% -

i | 50% -

"6
g 40%
1
a
* 30% -

20% -

%̂ ^*
• - t ,

, , ^
. ,. -

*

'

•

" * \

* i» ^ J i i

J * ' ^ «•

^ ^ 4 •

1 ' • j

1

d J
i

I \

i

' , * j t

^ ^ ^ ^ u

1 — —

1 1 H H

,

jjy
B H Q FFERR
^^^H
^ H JhKMO
^ B • FFLLM

^ H • FFTWM

^ B • FFLM

| -• • • •
comb 2stg 4stg

pipeline configuration

8stg

Figure 4.7: FP Multiplier Latch Fault Injection Breakdown.

cycle. In contrast to a SET, a fault injected directly into a flip-flop can be con­

ceptually thought of as a stable value. Because of this, it significantly less likely

that the erroneous value that propagates as a result of a direct strike on a flip-flop

will be timing window masked.

In Figure 4.8, the overall latch error rates are plotted for both floating point

units across all considered pipeline configurations. This error rate was measured

experimentally by using the formula shown in Equation 4.4. For this calculation,

all area values used are normalized to the combinational case (where the only

49

latches present in the circuit are for the primary outputs).

FFPO + FFERR
latch error rate = (normalized area) * ' , . . • • • • • • • (44)

faults injected

Looking at this plot, it is clear that the soft error rates (specifically for the

multiplier unit) more than double when the pipeline depth is increased by a factor

of 2. The adder circuit has results similar to what was predicted by the previously

developed intuition, having a roughly 2X increase going from combinational to

two, two to four, and four to eight pipeline stages. In contrast, there is a 4X

increase observed in the measure latch soft error rate going from the two stage

to four stage cases. This unexpected growth in the observed soft error rate can

mainly be attributed to a larger than expected growth in latch count, as can be

observed in Table 4.1.

The latch derating, shown as the rightmost part of Equation 4.4, is plotted

in Figure 4.9. Both derating factors are 1 in the combinational case because all

flip-flops belong to primary outputs, meaning that no masking can occur. The

derating values plotted in this figure again depend on logical and timing window

masking, but in contrast to the combinational logic experiment, logical masking

is the dominant phenomena. The dominance of logical masking is evident in

Figure 4.9 by the approximate equivalence of the measured derating values for

the 2,4, and 8 stage pipeline cases.

50

ra
te

o

«

so
ft

•s

la
t

iz
ed

n U
JJ

o e

20

18

16

14

17

10

8

6

4

2

0

1 2 4 8

pipeline configuration

Figure 4.8: Measured Normalized Latch Soft Error Rate.

Relative Contribution of Latch and Logic Strikes

Combined SER = (logic area * logic derating) + (latch area * latch derating)

(4-5>

Because the floating point units evaluated in this study are vulnerable to

particle strikes in latch storage as well as combinational logic gates, it is also

interesting to look at the relative contribution of each type of fault to the overall

failure rate. The expression displayed in Equation 4.5 was used to calculate the

overall error rate.

The area values used for this calculation are all normalized to the combined

51

1.2. -i — :

0.8 ^ -

I 0.6 -!!^s-

I ^ ^ - - - _ - _ _
0.4 ^ ^ V ^ *

0.2 :

0 -I , , 1

1 2 4 8

pipeline configuration

Figure 4.9: Measured Derating for Latch Strikes.

area of the baseline (combinational case). The combined error rate (with stacked

bars representing the contribution of latch and logic error rates) is shown for the

floating point adder in Figure 4.10 and for the multiplier in Figure 4.11. From

these figures it is clear that particle strikes in combinational logic gates as well as

flip-flops contribute significantly to the overall number of failures observed, and

that both sources need to be dealt with in order to reduce the overall error rate.

This is particularly true for the deeper pipeline depths, where flip-flops make up

a larger part of the vulnerable area. In particular, the contribution of the latch soft

error rate to the overall error rate rises significantly faster for the floating point

adder. The reason for this dramatic increase can be explained by the rightmost

-•-fpadd

-•-fpmul

52

8.00

7.00

6.00

I
S 5.00

| 4.00

1 3.00

2.00

1.00

0.00
comb 2stg 4stg

pipeline configuration

• latch SER

O logic SER

Figure 4.10: Combined Soft Error Rate for Floating Point Adder.

column of Table 4.1. There are less gates overall in the floating point adder, so

flip-flops take up significantly more area.

4.3 Challenging the Conventional Intuition

While the results presented in the previous section do validate the previously

developed intuition, the experiments conducted do not represent a fair comparison

between the different pipeline configurations for each circuit. The reason that

these experiments are not valid is they only represent of comparison of error

rates. As was discussed in Chapter 2, system reliability is commonly quantified

53

4.50

4.00

3.50

f 3.00

| 2.50

"g 2.00

fc 1.50

1.00

0.50

0.00

•d • latch SER

a logic SER

comb 2stg 4stg

pipeline configuration

8stg

Figure 4.11: Combined Soft Error Rate for Floating Point Multiplier.

in terms of a error rate A (and its reciprocal MTTF). Directly comparing error

rates of two systems is only valid when both systems take the same amount of time

to complete a task. Ultimately, the impact of errors on a system is represented

by the product of the failure rate and the time time system is running, as shown

by equation 4.6.

errors observed = A * time (4.6)

Despite the fact that MTTF is generally accepted as a standard reliability

metric, it is not adequate for comparisons when two systems have different failure

54

rates and running times.

A Hypothetical Example

To illustrate how comparing error rates directly does not always result in a fair

comparison, consider the two functional units shown in Table 4.3. This table

shows two logic blocks which are identical in functionality. Additionally, Unit A

is purely combinational, while Unit B is pipelined into 2 stages. The clock periods

for Unit A and Unit B are set to 1 and 0.5 time units, respectively. Additionally,

both units have the same amount of area devoted to logic, while Unit B has

the twice the latch area. Because the two units are functionally the same, it is

valid to make the assumption that approximately the same fraction of faults are

logically masked by each circuit. Given this, the analytical expression for timing

derating, shown in Equation 4.1 can be leveraged, allowing the combinational

logic soft error rate to be approximated in this example as being proportional to

the reciprocal of the clock period. In a similar manner, the latch error rate should

be proportional to the latch area.

Scenarios Where Rate Comparison is not Appropriate

In the context of combinational logic SER, these assumptions imply that the

error rate should be dependent only on the timing component of the derating

factor. From this, it follows that the error rate of Unit B should be twice that

of Unit A, due to its shorter clock period. If error rates are used as a direct

55

Pipestages
Clock Period
Logic Area
Latch Area

Logic Error Rate
Latch Error Rate

Unit A Unit B

2
0.5
1
2
2
2

Table 4.3: Hypothetical Functional Unit Descriptions. All values shown in terms
of arbitrary units.

comparison here, the conclusion would be that Unit A is more reliable, since its

longer clock period allows more particle strikes to be timing-window masked.

Consider the scenarios shown in Figure 4.12. This figure is designed to illustrate

the ways that each unit described in Table 4.3 could complete four arbitrary units

of work over time. The top portion of this diagram depicts how these four units

of work would be completed over time by Unit A. The lower portions of this

figure depict two different ways Unit B could complete the same amount of work.

These two cases represent scenarios where Unit B is not and is the execution

bottleneck, respectively. In all cases, the x-axis represents time (in arbitrary time

units), while the y-axis (for each of the three scenarios) represents the status of a

particular pipe-stage. Colored and blank regions represent periods of time where

a particular pipe-stage is computing or idle, respectively.

In the case where Unit A is processing this work, all four time units are

needed, so the 1 pipe-stage in that particular circuit is always busy. In this case

the expression 1*4T (it takes four time units for unit A to complete the work

shown in Figure 4.12, at an error rate of 1) represents the total number of errors

56

T 2T 3T 4T

Unit A i

i
Unit B_nb

2

UnitB_b I 1
2

Figure 4.12: Timing Diagram for Instruction Processing.

that would be observed for Unit A. In contrast to this, consider the scenario

shown in middle of Figure 4.12. In the case where Unit B is not the performance

bottleneck units of work will arrive for processing at the same rate as the scenario

shown for Unit A. In this case, despite the fact that it takes the same amount

of time to complete the task on both units, Unit B will be idle half of the time.

This is illustrated in Figure 4.12 by the unshaded regions in the timing diagram.

Because particle strikes are uniformly distributed across time, only half of the

strikes on Unit B will hit pipe-stages computing valid results. A similar situation

occurs in the third scenario depicted, where Unit B is the system bottleneck, and

units of work arrive and are processed as fast as possible. In both of these cases,

the expression 2*2T represents the number of errors that would be observed (it

takes two time units to complete the work, at an error rate of 2). To summarize,

57

when only rates are compared, Unit A will be chosen as the more reliable design,

as it has an error rate of 1, while Unit B has an error rate of 2. In contrast, when

the amount of errors observed is used as a comparison metric, 4T errors will be

observed in both cases implying that Unit A and Unit B are equivalent in terms of

reliability. A similar situation arises in the context of latch SER. The increase in

error rate due to the area increase should also be offset by the shortened amount

of time it takes to complete the assigned work.

Using the Right Metric

As was stated previously, MTTF is a widely used metric for reliability. It is

typically calculated as the ratio

»,r™^ total time
MTTF = - (4.7)

number of errors encountered

which simplifies to

^rrm^ total time 1
MTTF = — — — = - (4.8)

A* total time A

Comparisons using this metric have the implicit assumption that the total time

required to perform computation in each system is identical. This is not the case

for our functional unit comparison, meaning that MTTF is not the correct metric

to use.

Weaver et. al more recently proposed an alternative reliability metric;, mean

58

instructions to failure (MITF) [73]. MITF is calculated as the ratio

MITF = i n s t r u c t i o n s committed
number of errors encountered

which simplifies to

AyTT-rc UWPC * total time * frequency UWPC * frequency
MITF = r— ;—; = : (4.10)

A* total time A v '

The original work proposing MITF expressed the metric in terms of instruc­

tions per cycle (IPC), as the work was proposed in the context of considering the

effects of soft errors in microprocessor. In the context of this discussion MITF

is expressed in terms of units of work per cycle (UWPC), where a unit of work

is described as the amount of work done in a single pipe-stage of Unit A or B.

The implicit assumption made by this metric is that the default unit of work (an

"instruction" in [73]) is consistent across all systems being compared. In our

comparison, the unit of work is not consistent. One unit of work for Unit A is

equivalent to two units of work for Unit B.

In order to accurately compare system with inconsistent units of work, Reis et.

al proposed a more generalized metric, mean work to failure (MWTF) [53]. This

metric was originally proposed to provide fair comparisons of reliability across

dissimilar architectures, which might have inconsistently defined units of work.

59

MWTF is defined as the ratio

MWTF = a m o u n t o f w o r k c o m P l e t e d
 {4U)

number of errors encountered

which simplifies to

MWTF = a m o u n t of work completed
A * execution time

This metric takes a more abstract definition of what constitutes a unit of work.

It also factors in the difference in execution time for different systems. For this

metric, typically something larger (like a transaction or an entire benchmark) is

used as the basis for a unit of work. This broader definition allows for consistency

across systems that may be very different. For the purposes of our comparison,

it is best to define a unit of work, as one item processed by Unit A. This means

that (looking at the diagrams in 4.12 and 4.12) that both Unit A and Unit B are

doing 4 units of work (even though Unit B completes the work in 8 clock cycles

rather than 4). Applying this metric, the MWTF for Unit A would be

1 (4.13)
A*4T T

and MWTF for Unit B would be

1 (4-14)
2 * A * 2T T

Which is the result we expected from the discussion in Section 4.3

60

Revised Intuition

The application of the appropriate metric, MWTF, to evaluate the effects of

pipelining a functional unit make it clear that to a first order an increase in pipeline

depth should have no effect on the SER. Several experiments were conducted to

validate this revised intuition.

4.4 Fair Analysis

Combinational Logic SER

In order to further explore the revised intuition developed in the previous section,

the results from the experiments described in Section 4.2 were adjusted to account

for the execution time differences that would exist between pipeline configura­

tions. The adjusted results are shown in Figure 4.13. From this figure it is clear

that the results of this experiment do not match our revised intuition. Instead

of staying constant, the measured derating actually decreases across pipelining

configurations, when adjusted for execution time. The propagation of SETs to

multiple flip-flops along unbalanced paths is responsible for this counterintuitive

result, and is only observable when the effects of timing window masking are

modeled explicitly.

61

0.040

0.035

0.030

1
o-

«*•

1 • * Ml
.2.
•o
n

!
h .
41

•o

0.025

0.020

0.015

0.010

0.005

0.000

-•-fpadd

-•-fpmul

2 4

pipeline configuration

Figure 4.13: Plot of Logic Derating Adjusted for Execution Time.

SET Fanout Effects

A diagram describing the second order effect responsible for the counterintuitive

results in Figure 4.13 is shown in Figure 4.14. In the scenario depicted in Fig­

ure 4.14, transient pulses fan out from a single combinational logic gate to two

downstream flip-flops. In this case, the path length and delay from the gate to

each flip-flop is different. In this situation, the absolute window of time where

at least one flip-flop could be corrupted is lengthened. This new window of time

was defined as the effective SET width. This quantity is illustrated in Figure 4.14

as the superposition of the SETs arriving at each flip-flop. The equation shown in

62

effective SET width

Figure 4.14: Illustration of SET Fanning out to Multiple Flip-flops.

Equation 4.1 to characterize timing derating can be written as shown in Equation

4.15 to account for the impact of this second order effect.

T _ effective SET width - W/yi i <r\
1 derating ~~ : n *-1J)

The average effective SET width observed during several fault injection exper­

iments was measured and plotted for different pipeline configurations in Figure

4.15. As was discussed in Chapter 3, the average transient width of an injected

SET is 100 ps. From this figure it is clear that at the shallower pipeline depths,

the SET fanout effect is significantly more pronounced. The effect is more pro­

nounced in these pipeline configurations because there is the same amount of

63

300

250

3 200

Si
150

100

50

-•-fpadd

-•-fpmul

2 4

pipeline configuration

Figure 4.15: Experimental Measurement of Effective SET Width.

combinational logic, but fewer flip-flops, implying that a transient will have to

propagate through more levels of logic (and thus fanout further) before reaching

a flip-flop.

If the SET fanout phenomena mentioned previously is more pronounced at

shallower pipeline depths, one would also expect that instances of multiple bit

flips (cases where the injection of a SET results in multiple flip-flops capturing

wrong values) would also be increased. In Figure 4.16, histograms displaying

the number of bit flips caused by a single SET are shown for both the floating

point multiplier and adder. These histograms show that the number of multiple

bit flips does indeed rise proportionally with the effective SET width. The bar

64

corresponding to the 2 stage floating point multiplier represents an interesting

case in Figure 4.16. Intuitively, this circuit would be expected to have fewer

multiple bit flips than the combinational case, as SETs only need to propagate

through half the levels of logic to reach a flip-flop (and thus have less opportunity

to fanout). Surprisingly, the histogram in Figure 4.16 actually shows an increase

in the amount of multiple bit flips for the 2 stage case. This unexpected behavior is

an artifact of how the circuit was automatically pipelined by the Synopsys Design

Compiler tool chain. While the combinational multiplier has 83 flip-flops at the

outputs of the circuit, the 2 stage pipeline version has 306 additional flip-flops

separating the two pipelined stages. This means that in the combinational case,

many SETs are fanning out in the middle of the circuit and then fanning back

in as they propagate to the outputs, while in the in two stage version only the

fanning out is occurring.

It should also be noted that the SET fanout phenomena discussed in this work

was also discovered concurrently by [24]'. Their work was performed in the

context of selecting gates for hardening. In this study each gate was assigned a

window determined through static timing analysis, which represented the period

during the clock cycle where a particle strike could occur and arrive at the input of

a downstream flip-flop during the latching window. In this work the observation

was made that some gates had significantly larger windows than others because

of unbalanced fanout to flip-flops along multiple paths.

Despite the fact that this study was conducted entirely in the context of the
1 The results in this chapter were first collected in 2007.

65

Figure 4.16: Histogram of Number of Bits Flipped by a SET.

65nm technology generation, which is what the circuit level modeling was based

on, the SET phenomena uncovered in this study should persist even with tech­

nology scaling. The effective SET width term in Equation 4.15 will continue to

dominate the timing derating with scaling, because SET width will continue to

increase as feature sizes continue to shrink.

Combined SER

The combined SER adjusted for execution time (essentially the quantity expressed

by Equation 4.6) is plotted in Figure 4.17. The execution times are normalized to

1.20

r
I

.00

!

1.80

0.60

0.40

0.20

0.00

66

-•-fpadd

-•-fjpmul

2 4

pipeline depth

Figure 4.17: Combined SER Adjusted for Execution Time.

the combinational case. Because the majority of vulnerable area in all comparison

points shown can be attributed to combinational logic gates, the effects described

in the previous section have a profound effect on the scaling of the soft error

rate. This is especially true for the shallower pipeline depths, where not only a

larger fraction of area can be attributed to logic, but also SET fanout affects are

reducing the amount of timing window masking. For the deeper pipeline depths,

increasing latch area means the latch soft error rate has a larger influence on the

overall error rate observed.

4.5 Conclusion

67

In this chapter, the effect of pipelining logic, commonly cited as a reason the

logic soft error problem is being exacerbated, was explored. In this exploration,

the fallacy in this line of thinking (the use of MTTF as a comparison metric)

was uncovered, and the correct metric to use, MWTF, was identified. The newer

MWTF metric was used to refine the previously cited conventional intuition to

having the soft error vulnerability of a circuit be independent of pipeline depth,

rather than directly proportional to it. In validating this revised intuition, a second

order effect causing adjusted failure rates to decrease at deeper pipeline depths

was uncovered. The use of the correct comparison metric (MWTF), along with

this second order effect, SET fanout, mean that deeper pipelines are in many

cases more resilient that their shallower counterparts, reversing the previously

held intuition.

68

Chapter 5

Choosing the Right Strategy for

Protection

5.1 Introduction

Up until this point, this dissertation has focused on refining both the intuition

and the methodology used to study transient faults in logic. This chapter goes

in a more practical direction, identifying appropriate mitigation techniques for a

given logic block. In this study, taxonomies are developed to classify techniques

according to the level and means by which faults are handled, and to classify

logic blocks according to functionality and gate level structure. Related to this

logic block classification, a case study is performed, in which the soft error

vulnerability of a z80 parallel decoder is characterized in detail. This case study

serves the purpose of illustrating the structure of the resulting artifacts produced by

69

transient faults at the output of a logic block. The experimental results presented

in this study show that these artifacts cannot always be modeled as SEUs, which

is an assumption commonly made by studies on reliability performed at higher

levels of abstraction [43][12][49]. Finally, this chapter concludes by qualitatively

determining which class of mitigation technique is most appropriate for each

different type of logic block.

.5.2 Classification of Protection Techniques

Macro-Level Replication Techniques

Mitigation techniques in this category generally involve replicating some signif­

icantly large portion of hardware (or in some cases software) either spatially or

temporally, and comparing the results of computation in order to detect the pres­

ence of faults. In some cases, this replication can be global, at the system level

[8], processor level [62][6][7], or at the thread level [34]. In other cases, replica­

tion can occur only on a functional unit level[48], or even in software[52]. While

techniques in this category typically exhibit a significant amount of error toler­

ance due to the large amount of hardware (or software) replicated, the overhead

incurred in terms of power, area, and performance are often large. These high

costs (specifically for the global subset of this category) have inspired many other

research proposals with the expressed goal of achieving some form of replication,

while reducing the overheads incurred [63] [66] [16] [7]. The ideas proposed in

this thesis are primarily intended for commodity computer systems, where the

70

costs of techniques in this category would be prohibitive.

Property Based Checking Techniques

In contrast to techniques which provide error tolerance through macro-level repli­

cation, property checking approaches detect and/or correct errors by verifying a

chosen property of either the result computed (in the case of a logic block) or a

value held in storage (in the case of a memory cell). In some cases whether or

not the property is verified allows an absolute conclusion to be drawn on whether

or not an error occurred. Information redundancy techniques used for storage

fall into this category, as well as code-based checking approaches used for logic

blocks [3][72]. Additionally, techniques which check correctness [51][50][60]

also fall into this category. In other cases, a property check failing only indicates

a guess that an error occurred, meaning that there is a potential for performance-

degrading false positives. Symptom-based approaches [71][43] fall into this

category.

Implementation-Level Techniques

Mitigation techniques in this category generally involve manipulating individual

gates and/or transistors in order to improve soft error tolerance. As a consequence

of this, these techniques often are not integrated into a design until late in the

development process. A positive aspect of this situation is that in many ways

less design effort may be required, because a reliability solutions in this category

71

typically do not impact the functional verification of a design (as is commonly

the case with techniques in the first two categories). Because techniques in this

category generally manipulate low level components, some effort is needed to

only modify a subset of components in order to ensure that other design goals

are not sacrificed for the sake of reliability. For this reason, techniques in this

category are often coupled with heuristics in order to make these decisions.

Techniques in this category can provide reliability by manipulating compo­

nents in several ways. Many of the early implementation-level techniques pro­

vided reliability by resizing individual transistors within a circuit, increasing

the drain capacitance (and thus minimum amount of charge (Qa-u) needed to be

generated by a striking particle in order to induce a fault)[81]. This subset of tech­

niques can be applied to transistors inside of combinational logic gates as well as

in storage cells. Another subset of techniques also exists in which the presence

of transient activity is detected at the input of sequential elements [14][38][31].

Many of these techniques were originally proposed to enable varying degrees of

timing speculation, where logic circuits are clocked at a frequency higher than

what their critical paths would safely allow. These techniques are useful for SET

detection because timing violations manifest themselves in the same manner as

SETs arriving at flip-flop inputs.

In a correctly designed synchronous logic block, the data input lines of the

flip-flops at the output of the circuit should have stable values at the end of a

clock cycle (when the rising edge occurs). In the case of a timing violation, when

the rising clock edge occurs, a data input line still might not have settled to its

72

final value and may continue to change after the rising edge. Given this, the most

straightforward way to detect a timing violation is to check the value of a data

input line during the period of time after the rising edge of the clock, but before

the work from the previous pipe stage can propagate through the circuit. If there

is no change in the value of the data input line during this period, then the value

was stable and no timing violation occurred. However, if there was a detected

change, then there is a timing violation.

SETs manifest themselves in a similar manner. Recall from the discussion

in Chapter 2 that a SET flips the value stored by a downstream flip-flop when an

erroneous value is present at the data input line of the flip-flop during the latching

window, or the period around the rising edge of the clock. By monitoring the data

input to a flip-flop during and after the latching window, the presence of SETs

can also be detected.

Techniques in each category (or combinations of categories) can be used to

represent the entire possible solution space of a fault tolerant computer system. At

one extreme end, a macro-level approach similar to the NonStop system provides

fault tolerance by replicating every component [8]. At the other end, property-

based and implementation level techniques can be combined in order to create a

microprocessor that is fault tolerant with a minimum amount of replication.

73

5.3 Classification of Logic Blocks

Besides classifying mitigation techniques, it is also useful to categorize logic-

dominated structures within a system according to structure and functionality.

With respect to these attributes, logic blocks are categorized as either datapath

blocks, hybrid blocks, or control blocks. Each category has distinct defining

characteristics with regard to how transient faults propagate. These characteristics

will be considered in Section 5.4 when different strategies for protection are

discussed.

Datapath Blocks

The Datapath category is primarily intended to include logic blocks with min­

imal control logic and simple functionality. In the context of a conventional

microprocessor the most prominent location of datapath logic would be in the

execute stage of the processor pipeline, where ALUs perform simple arithmetic

and logical operations on instruction source operands. In addition to the execute

stage, similar logic structures typically are spread throughout a system. In many

cases these logic blocks are trivial (a single level of gates can be used to perform

a logic operation), and regular in structure. This implies that logic blocks of

this type would not be very amenable to logical masking of transient faults. In

general, datapath blocks blocks are important to protect, as these logic blocks

are responsible for generating values used to drive control and memory data flow,

either directly or indirectly via register file communication.

74

Hybrid Blocks

This category is meant to include logic blocks which contain significant amounts

of both datapath and control logic. Floating point units typically have a large

amount of datapath logic to calculate the fractional portion of a floating point

result. Also a floating point unit is generally capable of performing the required

computation for multiple instructions, usually in both single and double precision

modes. As an example, the floating point adder studied in,Chapter 4 can perform

single and double precision addition, subtraction, and comparison, as well as

conversions to and from integers [29]. A unit like the one just described needs a

significant amount of control logic in order to choose the appropriate functionality

to utilize in order to execute an instruction. For blocks in this category, transient

faults in datapath components can propagate in a manner similar to the scenarios

described for the previous category, while strikes in control logic can result in

more serious errors, as the wrong function can be computed entirely. Fortunately,

control logic tends to be less regular in structure than datapath logic, implying

that transient faults in this case are more likely to be logically masked.

Control Blocks

This final category includes logic blocks containing only control logic. This

category is meant for units that compute state that is only used to control other

units, and not for the direct computation of values stored in the register file

or memory. The most prominent examples of blocks falling into this category

75

would be instruction decoders, finite state machine logic, and on-chip structures

for environment monitoring (such as a power management unit). Units in this

category will typically logically mask a significant amount of transient faults, but

the cases where faults are not logically masked can potentially have catastrophic

effects on the rest of the system. For example, a hypothetical scenario could

occur where a transient fault during instruction decode could invert the condition

used to determine whether a branch instruction is to be taken (a branch if equal

could be decoded as a branch if not equal). In this scenario, control flow would

be forced down the wrong path. In some cases the end effect of this situation

could be severe (a silent data corruption event), moderate (a crash), or benign (no

visible difference in execution, as studied by [69]).

Case Study: z80 Instruction Decoder

In order to better understand how faults propagate through control blocks, a paral­

lel instruction decoder was designed and then characterized in terms of soft error

vulnerability. Decoder logic was chosen as a particular Case to study because

instruction decoders are primarily composed of combinational logic and highly

utilized. Also, recent work aimed at either modeling or mitigating faults within

decoders has not considered their gate level structure [12][49][28]. Architectures

featuring instructions with variable lengths are of particular interest, mainly be­

cause of the difficulties associated with decoding multiple instructions in parallel,

as noted by [40].

The decoder implemented for this work decodes z80 instructions. The z80

76

[prefix byte], opcode, [displacement], [immediate data]
-OR-

two prefix bytes, displacement, opcode

Figure 5.1: z80 Instruction Format. Adapted from [58].

architecture is commonly used for embedded micro-controllers, and is thus sub­

stantially simpler (in terms of ISA complexity) than architectures prevalent in the

high performance general purpose microprocessor design space. While z80 is

substantially simpler than x86, several commonalities do exist between the two

IS As. First, both x86 and z80 have variable length instructions [40] [57]. Second,

z80 was originally designed to be binary compatible with the 8080 ISA, an pre­

decessor to x86 [57]. In addition to this, this decoder implementation is inspired

by industry published descriptions of parallel decoder designs[41], mapping a

single z80 instruction to potentially many RISC operations. For these reasons, I

am confident that the decoder implemented for this study has a similar functional

structure (and thus similar transient fault propagation characteristics) to a parallel

x86 instruction decoder within a high performance microprocessor.

Instructions in the z80 instruction set can be between one and four bytes in

length, and and are formatted in one of the two forms shown in Figure 5.1. In the

case of the first form shown, the prefix byte, displacement byte, and immediate

data field are optional depending on the instruction being represented.

• • • 7 T

Decoder Design

A block diagram of the parallel z80 decoder is shown in Figure 5.2. The decoder

is capable of decoding up to three z80 instructions per cycle^ and each instruction

can be translated into up to 12 RISC operations. The decoder is pipelined into

3 stages: speculative length decode, opcode identification, and translation. The

boundaries between each of the stages are denoted by the dotted lines in Figure

5.2. Decoding multiple instructions in parallel can be difficult for ISAs featuring

variable instruction lengths. The most difficult aspect of parallel decode in these

cases is identifying the start of each new instruction following the first instruction,

because the starting point of each instruction is dependent on the length of its

predecessors. For example, the decoder implemented in this study takes four bytes

of input, and is capable of decoding up to 3 instructions in parallel. While the first

instruction can only start at the beginning of the first byte, the second instruction

can start at the second byte, the third byte, or the fourth byte, depending on the

whether the first instruction is one, two, or three bytes in length, respectively.

The third instruction can either start at the beginning of the third byte (in the

case where both preceding instructions are of length one), or at the beginning

of the fourth byte (when one preceding instruction is one byte, and the other is

two bytes in length), This means that for three possible instruction slots, there

are six possible starting points (one for the first instruction, three for the second

instruction, and two for the third instruction). Enumerating all possible starting

points for this simple design should make it clear that realizing wide parallel

decoders can be extremely difficult, especially for more complex ISAs Such as

78

z80
instruction

byte
shift

byte
shift

byte
shift

length
decode

length
decode

length
decode

length
decode

lengthl

lengthl + Iength2

opcode
id

opcode
id

opcode
id

xlate
full

xlate
single

xlate
single

Figure 5.2: z80 Decoder Block Diagram.

x86, where instructions can have a larger range of possible lengths.

A naive approach for decoding variable length instructions in parallel would

be to speculatively perform all decoding tasks from all possible starting positions

for each instruction slot, and then select the correct decoded instructions to used

based on the results of the first instruction (for the second slot), and the first

and second instruction (for the third slot). While this would be a valid solution

to the problem, it would require a significant amount of wasted computation,

as six candidate instructions would be speculative decoded for just three slots

in the best case. To circumvent this overhead, conventional parallel decoders

adopt a strategy where the starting point of each instruction slot is determined

79

[38:27]

_ J L _

Control

[26:21] [20:16] [15:11] [10:6]

JL JL_ JL.
Opcode

JL
DReg SIReg S2Reg n/a RRR

Control Opcode DReg SIReg n/a

[7:0]

imm RRI

[15.0]
JL

Control Opcode DReg SIReg

!——'
imm Rl

Figure 5.3: RISC Operation Format.

first (a process denoted as length decoding), allowing the other decoding tasks

to be performed in a non-speculative manner. Dividing decode up in the manner

described is advantageous in that the only speculative logic needed is in the

length decode stage. It should be noted that while there are six starting points for

z80 instructions as discussed previously, in Figure 5.2 there are only four length

decoders present in the first stage of logic. The reason for this is that the results

of speculative length decode starting from the third and fourth bytes can be used

for instructions potentially in the second and third slots. The hardware for length

decoding is relatively simple (as there are only four possible instruction lengths)

and is thus an attractive candidate for speculation.

In the final two stages of decode, opcodes are first identified and then translated

80

into RISC operations. In the design implemented for this study, a RISC operation

can have one of three forms depending on the nature of its source operands. The

bit level format of each RISC operation form is shown in Figure 5.3. Each

operation is 39 bits in length, and classified as either RRR (both source operands

come from registers), RRI (one register source operand, one immediate source

operand), or RI (a single immediate source operand). Inspired by the decoder

implementation described in [41], the translation logic for the first instruction

slot (labeled as xlate full in Figure 5.2) can translate any instruction, while the

translate logic for the other two slots (denoted as xlate single) can only handle

z80 instructions which are translated into a single RISC operation. This means

that the decoder can produce up to 14 RISC operations per cycle. The decoder

also includes three valid bits for reach instruction slot, as well as 14 valid bits for

each possible RISC operation produced.

Soft Error Characterization

In order to understand how transients propagate through the decoder, characteri­

zation experiments were performed using the fault injection framework described

in Chapter 3. In the first experiment, 30,000 faults were injected into combina­

tional logic gates exclusively. The results of this experiment are shown in Figure

5.4.

Each slice of the pie chart shown in this figure represents the fraction of in­

jected faults which result in a particular outcome. All of the possible outcomes

that can occur when a fault is injected into combinational logic are shown in

81

HLM -

OlSTWM

HISTWM

• ISLLM

• ISLER

BiLSERR

Figure 5.4: z80 Logic Fault Outcome Breakdown.

Table 5.1. Of all the faults injected into combinational logic gates, only 7.1 %

(representing the combination of the ISLER and LSERR slices) result in errors.

Probably the most interesting attribute of this particular circuit is its logical mask­

ing behavior. Looking at Figure 5.4, 45.4 % of the injected faults result in the

LM outcome. This result is particularly interesting when it is contrasted with

the small fraction of faults resulting in the ISLLM outcome. This outcome only

occurs 0.12 % of the time overall, or 18 % of the time when a SET flips at least

one bit (either the ISLER or ISLLM outcome).

The cause of this distinctly different observed logical masking behavior stems

ISLLM
0.12%

ISLER
1.56%

IM
lb 1h u ,

82

Outcome

LSERR
LSTWM
ISLER
ISLLM
ISTWM

LM

Description

SET corrupts primary output flip-flop
SET reaches primary output flip-flop, but is logically masked

SET corrupts intermediate flip-flop, error propagates to primary output
SET corrupts intermediate flip-flop, but error is logically masked
SET reaches intermediate flip-flop, but is timing window masked

SET is logically masked before reaching flip-flop

Table 5.1: Possible Outcomes for Combinational Logic Transient Fault Injection.

from the functional structure of the decoder. As stated previously, the decoder

logic is partitioned into length decode, opcode identification, and translate stages.

In this design, many outputs of each internal stage directly influence the function­

ality of the succeeding stage. For example, opcode identification is performed in

the second pipeline stage by looking at the opcode byte (whose position is deter­

mined by length decoding) as well as the instruction length (not necessary, but

used to narrow the space of candidate opcodes). Because of this implementation,

bit flips resulting from particle strikes in the length decode stage will likely result

in incorrect opcodes being identified, and thus incorrect RISC operations being

generated at the output of the decoder. A similar situationoccurs in the transla­

tion stage. Any corruption in the opcode identifiers generated at the output of the

second stage is likely to cause an error in translation. If the decoder was pipelined

into a larger number of stages, the fraction of faults resulting in ISLLM outcomes

(where the fault is masked after flipping a state bit) observed should intuitively

increase. This is not the case in our design, because the ranks of flip-flops were

placed at coarse logical boundaries. The observed logical derating is 54%.

83

; i ^ -

xlate
X 80%

-̂ .

length
tM

"737 '•
mRS JP3?'>>-

\

^

• length

Q opcodejd

B xlate

Figure 5.5: z80 Error Origin.

In Figure 5.5, the errors observed during fault injection are broken down ac­

cording to the pipeline stage the fault originated in. The pie chart shown in this

figure has 3 slices: length (representing the length decode stage), opcode_id (rep­

resenting the opcode identification stage), and xlate (representing the translation

stage). From this chart, it is clear that the majority of errors observed originate

in the translation stage of the decoder. This is the largest stage of the pipeline in

terms of area, so statistically a larger fraction of faults are injected into its gates.

Another interesting phenomenon explored in this case study was the sensitiv­

ity of decoder output bits to particle strikes in combinational logic. One of the

original stated motivations for this chapter was to explore the choice made by

i

84

many studies at higher abstraction levels to always model the artifacts of particle

strikes as SEUs. This choice has two implicit assumptions: first, all output bits

are equally likely to be corrupted, and second, that only a single bit is corrupted

at a time. -J

In order to examine the validity of the first assumption the derating per output

bit, calculated by dividing the number of times each output bit was corrupted

by the total number of faults injected, was measured and displayed in the scatter

plot shown in Figure 5.6. Each point in this plot represents the probability that a

particular output bit's value will be incorrect due to a transient fault. The y-axis in

figure represents the derating per bit of each output while the x-axis is the number

assigned to that particular node. The netlist format used for the developed tool

chain assigns each input, gate, flip-flop, and output within a circuit a unique

number. The range of output bits corresponding to each RISC operation slot is

shown in Table 5.2. Looking at this plot, it is clear that some output bits are

significantly more likely to be corrupted than others. ,

As was stated previously, the implemented decoder design is capable of trans­

lating the instruction in the first slot into up to 12 RISC operations, and the instruc­

tions in the second and third slots into a single RISC operation. The majority of

the instructions in the trace used as input stimulus during in this experiment had

short translations, which why the bits on the left hand side of the graph (which

correspond to the translation RISC operations for the first instruction slot) and

the bits on the extreme right hand side of the graph (which correspond to RISC

operations for the second and third instruction slot) have higher derating values.

85

Bit Number

454-441
493-455
532-494
,571 - 533
610 - 572
649-611
688 - 650
727-689
766-728
805-767
844-768
883-845
922-846
961 - 923
1000 - 962
1003 - 1001

Description

RISC operation valid bits
RISC operation 1
RISC operation 2
RISC operation 3
RISC operation 4
RISC operation 5
RISC operation 6
RISC operation 7
RISC operation 8
RISC operation 9

RISC operation 10
RISC operation 11
RISC operation 12
RISC operation 13
RISC operation 14

z80 instruction valid bits

Table 5.2: Description of z80 Decoder Output Bits.

In addition to looking at which output bits were most likely to be corrupted, the

number of output bits corrupted simultaneously by a single injected fault was also

studied. The pie chart shown in Figure 5.7 shows a breakdown of the observed

errors in the decoder classified by fault origin (xlate, opcode_id, length) and how

many bits were simultaneously corrupted (s - single, m - multiple). Looking

at Figure 5.7, nearly 60% of the injected faults result in a single output being

incorrect, with a vast majority of those cases originating in the translate stage.

This case is denoted by the slice labeled xlates in the pie chart. Apart from

this, multi-bit errors comprise 40% of the overall errors observed, including the

majority of cases originating from the length decode and opcode identification

86

0.0040

0.0035

0.0030

0.0025

% 0.0020

0.0015

0.0010

0.0005

0.0000

•
•

•I •
f •

• •
• •

• • • _ • !

• - A • • • • C T •
• • * 1 *

':'..: .'flyjta&fl——

•

* -
• •

-4 I-
• • • " * .

| . -
• • • •
• • * • •
• • •

441 541 641 741 841

output bit number

941

Figure 5.6: z80 Decoder Output Derating per Bit.

stages.

The histogram shown in Figure 5.8 represents a breakdown of how many

output bits are incorrect in each multi-bit error case. The individual cases where

different numbers of bits flip are represented on the x-axis, while the stacked bars

indicate the fraction of total multi-bit output errors in that case originating from

a particular pipeline stage. From this histogram it is clear that the cases where

a higher number of bits are corrupted are more likely to originate from particle

strikes in the length decode and opcode identification stages.

Finally, the design of the decoder itself has significant implications with re­

spect to how detectable errors are at program outputs. The majority of conven-

87

• length_s

• length_m

• opcode s

• opcode_m

• xlates

• xlate m

Figure 5.7: z80 Output Error Characterization.

tional CISC architectures translate instructions into RISC primitives in order to

simplify the design of the execution hardware. One general attribute of RISC

ISAs is their regularity, specifically in terms of which combinations of opcodes,

source registers, and destination register can be combined to form valid instruc­

tions. From an error detection standpoint, an irregular ISA could be attractive

because if many invalid opcode-register combinations exist, it is likely that a tran­

sient fault in the decoder logic could generate a translation of RISC instructions

in an invalid format. Unfortunately, the underlying RISC ISA for the decoder

implemented for this study is regular, precluding such a scheme from being ef­

fective.

88

0.50

0.45

0.40

£ 0.35

•- 0.30

I
? 0.25

"I °'20

| 0.15

0.10

0.05

0.00

• length

• opcode

• xlate

3 4

number of output bits flipped

5+

Figure 5.8: Characterization of Multi-bit Output Errors for z80 Decoder.

In summary, the results of the transient fault characterization performed on the

z80 instruction decoder has shown that the assumptions made by many higher

level reliability studies with respect to transient fault artifacts are not always

valid. In particular, it has been shown that not only are output bits not corrupted

with equal probability, but also that in many cases, multiple output bits can be

corrupted simultaneously.

89

5.4 Mapping Protection Techniques to Logic Blocks

Finding the most appropriate technique (or class of techniques) to use to protect

a particular unit is greatly dependent on the functionality and gate level struc­

ture of the particular logic block in question. In the context of logic, macro-level

techniques generally provide protection implicitly, as any logic block within a mi­

croprocessor are often protected via spatial or temporal redundancy. While these

techniques can generally be applied to all types of logic blocks, their associated

overheads preclude their further evaluation in this dissertation work.

Property-based checking techniques are a natural fit for logic blocks in the

datapath category, due to their narrow functionality and regular gate-level struc­

ture. Arithmetic circuits generally have regular structures, and compute simple

operations whose correctness can easily be checked offline by verifying math­

ematical properties. Prior works by [72][28], where the correctness of integer

arithmetic computation are checked through the use of residue codes are exam­

ples of property checking techniques being a good match with datapath logic

blocks.

In contrast to property-based checking techniques, implementation level tech­

niques are naturally suited to be applied to hybrid and control logic blocks. Logic

blocks in this in these categories typically have more complex input to output map­

pings, whose correctness can not be as easily verified as datapath blocks. As an

example, consider an integer multiplier (a datapath block) and the z§0 decoder

studied in this chapter (a control block). For the multiplier case, results can be

90

checked by performing modulo arithmetic on the multiplicands (essentially per­

forming a much smaller multiplication operation), as discussed in.[28]. For the

z80 decoder case, it is significantly harder to determine if a sequence of RISC

operations produced at the output of the logic block matches the z80 instruction

provided at the input. In addition to this, control logic is likely to be significantly

more random in structure than datapath logic, implying that some gates within

such a logic block are more likely to logically mask faults. This is an attractive at­

tribute because it implies that an implementation level technique can be effective

while only manipulating a small subset of components. Considering the decoder

again, there exists logic within that circuit which provides translations for instruc­

tions that rarely occur, which means transient faults originating at those nodes are

likely to be masked. In contrast, a multiplier circuit, specifically one which sums

partial products to produce a final result, should have very little logical masking

occurring, as a transient fault affecting any partial result has a high probability

of propagating.

5.5 Summary

In summary, this chapter has examined the task of identifying appropriate protec­

tion strategies for different types of logic blocks. Taxonomies for both classes of

soft error tolerance solutions and different types of logic blocks were developed,

allowing this task to be approached in a systematic manner. In addition to clas­

sifying logic blocks, the soft error vulnerability of a parallel instruction decoder

91

was characterized in detail. This characterization serves not only to justify the

conclusion that implementation-level techniques are the a good fit for protecting

control blocks, but also to illustrate that many assumptions made by prior works

regarding the artifacts produced by transient faults are not valid in all cases.

.i-

92

Chapter 6

A Quantitative and Qualitative

Approach to Protection and Analysis

6.1 Introduction

With the ultimate goal in mind of developing more effective ways to protect hy­

brid and control logic blocks, the final part of this study presents a new framework

for transient characterization and analysis. This framework is proposed and eval­

uated in the context of the implementation-level class of mitigation techniques.

Given the fact that implementation-level techniques achieve higher reliability

by manipulating components on the gate or transistor level, there are typically

numerous choices regarding which components should be protected first. In or­

der to handle this, mitigation techniques in this category are typically coupled

with heuristics whose purpose is to make qualitative decisions regarding which

93

elements should be protected first. The goal of such a heuristic is generally to

provide some amount of benefit (higher reliability in this case), while minimizing

some other important metric (area, cost, power, etc.) . Typically, when qualita­

tive methodologies like the one just described are employed, initial analysis is

done to first select the components to be protected (in some ranked order), then

additional analysis is performed to obtain a "cost-benefit" curve, indicating how

much benefit could be had for a particular costfl 1][79].

The work proposed in this section of the study expands the space of imple­

mentation level techniques by presenting a methodology that is both qualitative

as well as quantitative. In addition to making qualitative decisions about which

elements should be protected, our heuristic allows for immediate quantitative de­

cisions to also be made regarding how much benefit could be had by protecting a

particular element. The benefit of such a methodology is that it allows for compo­

nent selection and a "cost-benefit" curve to be obtained in a single simulation pass,

reducing the amount of effort required for analysis. Additionally, this technique

is ideally suited for identifying particularly sensitive components within hybrid

and control logic blocks, which can have complex fault propagation behavior.

6.2 Choosing an Implementation Level Technique

As was stated previously, implementation level techniques manipulate either indi­

vidual transistors, combinational logic gates, or flip-flops to improve the reliability

of logic blocks. In this work, our framework is proposed and evaluated in the con-

94

text of manipulating flip-flops. Flip-flops were chosen as the point of protection

for two reasons. First, in most logic blocks, flip-flops are significantly smaller in

number as well as total area consumed when compared to combinational logic

gates. Also, detecting SETs at flip-flop inputs is attractive, as they are driven by

a fan-in cone of combinational logic gates, meaning that the addition of detection

logic at a single flip-flop can detect transients originating from many possible

gates.

6.3 SET Detection and Correction

This section provides an overview of the SET detection techniques that could be

selectively based on the results of the presented heuristic. Solutions are primarily

considered which detect the presence of transients at flip-flop inputs by creating

a duplicate copy of the master latch and comparing the values captured by both

copies. Transients are actually detected by forcing the duplicate latch to capture

its value at a slightly different time than the original. This strategy works because

SETs manifest themselves in a manner similar to timing violations. The capture

time of the duplicated master latch can be modified by either adding some ad­

ditional delay on the data input path, or by using an altered clock waveform to

control the latch. Examples of modified flip-flops using both strategies are shown

in Figure 6.1. In each case, only the master latch in each flip-flop is duplicated,

and the slave latch (not shown in either picture) does not need to be modified.

Both solutions are conceptually similar, but each has unique advantages and dis-

95

Master
Latch

DATA

CLK

DATA

CLK

g k

< i—m-

-

*

m
LU

/*
\,

-c

f
K.

f
V.

D
Q

CLK

D
Q

CLK

Duplicate
Latch

D
Q

CLK

D
Q

CLK

XOR

XOR

error (a)

error (b)

Figure 6.1: SET Detection via Master Latch Duplication.

advantages; these will be discussed in detail.

Time Shifted Clock Inputs

This method of SET detection was inspired by the Razor flip-flop proposed by

Ernst et al. [14]. It should be noted that the original purpose of this flip-flop to

allow for aggressive dynamic voltage scaling by detecting when timing violations

occur. A timing diagram of how this technique detects the presence of errors is

shown in Figure 6.2. The waveforms labeled CI and C2 represent the clock

inputs for the normal and redundant latches, respectively. Both latches take their

data samples during the intervals specified by the vertical dotted lines (this work

96

Data

C1

C2

Figure 6.2: Timing Diagram for Time Shifted Clock SET Detection.

assumes positive edge triggered flip-flops). If there is a mismatch between the

two data samples, the presence of an SET is detected and appropriate action can

be taken. The main trade-off that must be considered when using a technique

like this is related to how much delay is placed between the main and duplicate

clock signals. A large amount of skew between the main and shadow clocks

detects a greater fraction of propagating SETs, but can potentially create short/

path issues. If the skew between clocks is longer than the shortest path in the

circuit, the data sample taken by the shadow flip-flop could be next unit of data

propagating through the pipeline, potentially resulting in performance degrading

false positives. The original Razor work dealt with this problem by manually

padding short paths [14].

97

Time Shifted Data Inputs

Another equivalent method of SET detection is to time shift the data rather than

the clock inputs to each latch. This method was inspired by the BISER work by

Mitra et. al. [31]. In this case, each (the original and redundant latch) data input

is being driven by the exact same fan-in cone of logic, except for an additional

amount of delay placed on the input path of the redundant data input. This

additional inserted delay results in each latch seeing shifted values during the

rising edge of the clock (which is how SETs are detected). The timing diagram

shown in Figure 6.3 illustrates how this technique can be used to detect errors.

Like the previously presented solution, there also exists a trade-off concerning

how much additional delay should be inserted between the original and redundant

flip-flop. A large amount of delay can detect a greater fraction of SETs, but if

the augmented flip-flop is on a critical path, the clock period must be increased.

It should be noted that while the work proposed in this chapter selectively aug­

ments flip-flops with BISER detectors, the original proposal intended to realize

detectors through the modification of already present scan hardware [31]. De­

spite this original intention, the work presented in this chapter is useful because

all microprocessors are not full scan, meaning that many sequential elements do

not have corresponding scan elements. This is especially true for pipelined logic

units, where scan hardware is unnecessary for internal ranks of flip-flops.

The best technique for a particular logic unit can vary depending oh the char­

acteristics of its timing paths. Time shifting the clock inputs is not an optimal

solution for a circuit with a large number of short or zero delay paths as a sig-

98

D1

D2

Clock

Figure 6,3: Timing Diagram for Time Shifted Data SET Detection.

nificant amount of delay padding would be required. In contrast, a circuit with

balanced paths could potentially suffer a great deal of delay overhead (in terms of

the minimum clock period achievable) if the data inputs were time shifted. For

the purposes of this work, all detectors applied used time shifted data inputs, but

we believe our results would be applicable for either approach.

Recovery

Another important issue that comes up during the design of a mitigation scheme is

the action that should be taken after an error is detected. In general, a system can

employ either backward or forward recovery upon detection of an error. When

backward recovery is used, all computation occurring after the point where the

error was detected is thrown away and redone. This typically requires some

amount of check pointing and is best suited for macro-level mitigation techniques,

99

Figure 6.4: Muller C-element with Keeper Circuit.

where errors originating from a variety of sources can be detected and recovered

from in a uniform fashion. Because implementation level techniques are targeted

toward protecting only a small subset of a system from faults, forward error

recovery, where errors are corrected in place is an attractive option. In this

work, both backward error recovery (where errors only need to be detected), and

forward error recovery (where errors are detected and corrected) will both be

explored. The detectors shown in 6.1 are sufficient for detection only and need to

be modified in order to correct errors. The rest of this section will discuss these

necessary modifications.

The BISER detectors, proposed by Mitra et. al. [31], correct errors in-place

through the use of Muller C-elements. A C-element is a logic gate typically used

within asynchronous circuits for synchronization [36]. A transistor level diagram

of this logic gate (along with a keeper circuit) is shown in Figure 6.4.

C-elements act as inverters (buffers when the keeper circuit is considered)

100

DATA ~i

CLK

h
t

V
*

- J
i

i
P

JTI
~LLn

-c

— f
~\,

Master
Latch

D
Q

CLK

D
Q

CLK

C

Slave
Latch

D
Q

CLK

Duplicate
Latch

Figure 6.5: Error Correcting Flip-flop.

only when both inputs are identical. When the inputs are different values, the

output of a C-element retains the output value determined by its previous input.

Such a gate can be used to correct SETs arriving at flip-flop inputs in the following

manner: Each data input (the original line going to the flip-flop, along with the

delayed input going to the redundant copy for the flip-flop) is connected to the

inputs of the C-element. Assuming that there is enough delay between the flip-

flop inputs such that both inputs never glitch simultaneously, the output at the

keeper will always be correct.

An error correcting flip-flop design is shown in Figure 6.5. In this design, the

output of the original and duplicated master latches are fed into the C-element.

The output of the C-element is then used to drive the slave latch.

The plot shown in Figure 6.6 illustrates how this correction can occur. In the

figure three waveforms are shown. The top two wave forms represent the inputs to

the C-element (which are also inputs to a normal and redundant flip-flop), while

101

Dl

D2

ELEMENT
OUTPUT

Figure 6.6: C-element Timing Diagram.

the bottom wave form shows the output of the keeper. In the scenario shown,

the correct value is 0, and a striking particle as forced a 0-1-0 SET to propagate

through the circuit. Because there is sufficient skew between the inputs, neither

input to the C-element glitches at the same time, meaning that the output of the

keeper (the bottom waveform) never changes. There is also some probability that

the transient is long enough such that both C-element inputs glitch at the same

time. In this case, both flip-flops will sample the wrong value, and the output of

the keeper will also be wrong. When this happens, the corrupted state will end

up propagating through the rest of the circuit.

102

particle strike

logically
jnaskect

E^ -" F

Figure 6.7: Logic Fault Outcome Tree.

Heuristic Motivation

As discussed previously, SETs only cause bit flips when they propagate from

a combinational logic gate to an output and alter the value that is captured by

a downstream flip-flop. As particle strikes occur with equal probability at any

given point in time, individual output bits (flip-flops) in a circuit timing window

mask SETs uniformly. In contrast, individual output bits can have differing

fan-in cones, meaning that SETs can potentially propagate to individual output

bits at varying rates. This essentially means that in contrast to timing window

103

0.016 "I ; : 1

0.014 = -

0.012 j Nu

2 0.010 V - -W-

ra 0.008 -?*• X _ ^

§ 0.006 T+^ \ l \
•a I \f "

0.004 +

0.002 ^r

0.000 ¥—— 1 1 1 1 1 1—

1 6 11 16 21 26 31

output bit position

Figure 6.8: 16x16 Multiplier Derating per Bit.

masking, logical masking is not necessarily uniform across output bits. A prior

study on estimating SER reports that in multipliers the center bits tend to have

an error rate that is orders of magnitude larger than those of the bits closer to

the most and least significant positions [76]. The authors of this work refer to

this phenomenon as SER peaking [76]. We have also observed this phenomenon

by modeling a combinational 16x16 integer multiplier and performing statistical

fault injection. Figure 6.8 shows the amount of errors that occur on each output

bit of the multiplier. We believe that this SER peaking phenomena presents an

opportunity for low cost soft error protection. Ideally, a combinational multiplier

with this behavior could cost-effectively be hardened from logic soft errors by

simply protecting the subset of output flip-flops where SER peaking occurs.

104

For combinational circuits, the subset of output flip-flops that need to be

protected can be identified by performing statistical fault injection and observing

the number of times each output bit is corrupted. Identifying a similar subset

of flip-flops in a pipelined circuit is a significantly harder problem. Figure 6.7

shows our assumed fault model for a SET occurring in a pipelined circuit. This is

significantly more complex than the model for a SET in a combinational circuit,

which would only consist of outcomes A, B, and C. From this model, it is clear

that even if a SET propagates to and is captured by a flip-flop, that error could

still potentially be logically masked as it propagates through the ensuing pipeline

stages, never manifesting itself at a circuit output. In addition to this, it is also

possible for an SET to corrupt multiple intermediate flip-flops in a circuit, and

have only a subset of the corrupted elements be responsible for propagating that

error to the outputs. Examples of such scenarios will be provided during the

presentation of the proposed heuristic. The methodology presented in this work

accurately identifies the flip-flops, in intermediate ranks as well as outputs, which

most significantly impact the failure rate (and thus are the best location to place

SET detectors) in the context of this more complex fault model.

Flip-Flop Selection

In this section, the heuristic for selecting flip-flops is presented. Prior to statistical

fault injection, each flip-flop in the circuit is allocated a counter. This counter

represents the overall contribution (of the corresponding flip-flop) to the circuit

failure rate. The pseudo-code for our proposed selection heuristic is shown in

105

1 for (each fault injected)

, 2 if (error)

3 if (case C) /* strike in last stage of logic 7

4 compute set P I" set of all outputs flipped 7

5 scorejnc = 1 / cardinality(P)

6 increment counter for each member of P by score j nc

7 else if (case F)f* strike in an intermediate stage 7

8 compute set S f* set of flipflops which propagated error 7

9 Scorejnc = 1 / cardinality(S)

10 increment counter for each member of S by scorejnc

' .11.

12 sort counters in descending order

Figure 6.9: Selection Heuristic Pseudo-code.

Figure 6.9. Referencing the fault model shown in Figure 6.7, an error is defined

as a particle strike which results in either outcome C (a SET occurring in the

last stage of logic and subsequently altering the value of captured by an output

flip-flop) or outcome F (a SET occurring in an intermediate stage and propagating

to an output flip-flop).

An example of outcome F (represented by lines 7-10 in Figure 6.9) is shown

in Figure 6.10. In this example, a SET occurring in the first pipeline state ends

up propagating and corrupting the values captured by flip-flops 1, 2, and 3. In

the next clock cycle, the erroneous values launched from flip-flops 1 and 2 end

up propagating and corrupting output bits 4 and 6. The value launched from

flip-flop 5, on the other hand, is logically masked. In this case, the set P (defined

as all flip-flops that stored incorrect values), contains flip-flops 1, 2, 3,4, and 6.

Set S (referenced in line 8 in Figure 6.9) represents flip-flops that in addition to

capturing a transient value, are responsible for propagating incorrect values to

106

circuit outputs. For this injected fault, only flip-flops 1 and 2 belong to set S, and

protecting both guarantees that this fault will not propagate. Set S is computed by

back propagating along the the D-frontier (definition and ref) from all corrupted

outputs. The counter for each flip-flop belonging to set S is then incremented

appropriately.

From the statement shown in line 9 of Figure 6.9 it is clear that amount a

flip-flops counter get incremented for propagating an error is directly dependent

on the size of set S. In cases where a smaller number of flip-flops are responsible

for propagating a fault, the members of S will be incremented by a larger value.

The reason for this is because a primary goal of this methodology was to try and

minimize area, and preventing faults which are propagated by a single (or small

number) of bits flips is the most cost effective approach in this regard.

At the end of the characterization run each counter contains (for its corre­

sponding flip-flop) the overall contribution in terms of the total number of errors

observed during fault injection. The value stored by each counter represents an

approximation of the number of times a flip-flop is responsible for either directly

causing an error by capturing a transient value (output flip-flops in the last stage)

or indirectly causing an error by capturing a transient value and logically propa­

gating that value to a circuit output (flip-flops in intermediate stages). A counter

with a high value implies that the associated flip-flop is more likely to capture

and/or logically propagate a transient value, and thus would be an ideal candidate

for protection. Sorting these counters (performed on line 12 of Figure 6.9) cre­

ates a list of flip-flops ranked according how much of an overall benefit could be

107

Figure 6.10: Example of SET in an Intermediate Pipeline Stage.

obtained by augmenting a particular sequential element with a soft error detec­

tor. This obtained ranking allows for quantitative decisions to be made regarding

which flip-flops should be protected first.

The ranking technique presented in this work is unique in that in addition to

identifying which flip-flops are the most likely to capture and propagate transient

values, this technique also gives a quantitatively accurate estimate of how much

protecting each flip-flop impacts the overall error rate. Quantitative accuracy is

achieved through the counting policy employed by the presented heuristic. As

108

stated previously, the value held by each counter represents the total number of

errors observed that were caused either directly or indirectly by the corresponding

flip-flop. The sum of all of the counters represents the total number of errors that

were observed during the fault injection. Dividing the counter value of a flip-

flop (or the sum of values of a group of flip-flops) by the total number of errors

observed yields a percentage which represents a prediction of error coverage, or

what fraction of observed errors could be eliminated if the flip-flop (or group of

flip-flops) was augmented with SET detection and correction logic.

6 A Results

In this section the proposed quantitative and qualitative methodology is evalu­

ated. Three benchmarks, the parallel z80 decoder, a double precision floating

point adder, and a pipelined integer multiplier were chosen for evaluation. These

benchmarks were chosen because together they represent all classes of the pre­

viously defined logic block taxonomy. The decoder, adder, and multiplier each

represent the control, hybrid, and datapath logic block classes, respectively.

Predicted Error Coverage

Predicted error coverage estimates yielded by the presented heuristic are shown

in Figure 6.11. The x-axis represents for each circuit the fraction of flip-flops

augmented with detection logic, and the y-axis represents the predicted amount

of error coverage that can be gained by protecting that fraction of flip-flops. Each

109

.. ' ! , 2 0 - r — — ' • :—: • • — — —

1.00 - J - '•• ^* • — = = ^ — : ' '

» 0 . 8 0

i
W

fc o.60
•I

• o

I
£ 0.40
Q.

0.20

0.00

0.00 0.20 0.40 0.60 0.80 1.00

fraction of flip-flops protected

Figure 6.11: Predicted Error Coverage.

individual point in the curves shown is obtained by first taking the summation

of counter values corresponding to the fraction of flip-flops being protected, and

then dividing the by the total number of errors observed during fault injection for

that benchmark. The fraction of sequential elements being protected corresponds

to the x-coordinate of each point, while the previously defined ration represents

the y-coordinate.

Looking at all of the curves shown in Figure 6.11, it is clear that all flip-flops

in each circuit are not equal in terms of the amount of error coverage that can

potentially be obtained through the placement of an SET detector. If all flip-flops

within each circuit were indeed equivalent in this regard, each of the three curves

—-rpaaa

—z80

—intmul

110

shown in Figure 6.11 would be straight lines. The integer multiplier, represented

by the dotted green line in the figure, is flatter than the other curves. The reason

for this can be attributed to the highly regular structure of this particular circuit.

This implementation is fairly straightforward, with partial products first being

generated and then added together to obtain the final product, meaning SETs can

propagate to many flip-flops in this circuit with a high probability.

For the z80 decoder, the most vulnerable state bits are primarily the output

flip-flops in the last stage of the pipeline. While the z80 decoder implemented

for this study is divided into length decode, opcode identification, and translation

stages, the translation stage is the largest in terms of area. Additionally, the

flip-flops storing decoded Opcodes following the second pipeline stage are also

responsible for propagating a significant number of transient faults.

In the floating point adder flip-flops present in the intermediate stages of the

the adder, responsible for holding the aligned fractions, at the end of stage 2,

and the sum of the added fractions (following stage 3) have the most potential

benefit in terms of the overall number of errors observed if augmented with SET

detectors. Despite the fact that the logic block taxonomy proposed for this study

defined the floating point adder as a hybrid block, the datapath for this circuit is

significantly wider than the control path, meaning that SETs are more likely to

propagate to datapath flip-flops.

I l l

Verification

In addition to presenting results on predicted error Coverage yielded by the pro­

posed heuristic, a second set of experiments was performed in order to verify

the accuracy of this coverage estimate. The purpose of these experiments was to

essentially validate the initial claim that the heuristic presented is quantitatively

accurate. It is important to note that this verification step is not required for the

proposed heuristic to be used, but a step like this would be required to obtain

a "cost-benefit" curve if any previously proposed qualitative methodology was

employed. In order to perform this verification step, the quantitative information

given by our heuristic, the rankings of flip-flops in order of the most important

to protect, is taken and divided up into subsets: a baseline set (containing no

flip-flops), the top 5%, 10%, 25%, 50%, and 100% of flip-flops. Another set

of fault injections is performed (using a different random seed from the initial

characterization experiment), augmenting each flip-flop in the previously defined

subsets with a SET detector. For these experiments, real error coverage is plotted,

which is defined as the fraction of errors that occur in the baseline set case (where

nothing is protected), that would have been protected by the SET detectors in

one of the other subset cases. Also the detectors assumed for this verification are

ideal, meaning that a sufficient amount of delay is placed between the data inputs

of the normal and redundant flip-flops used in order to make sure that all arriving

transients can be detected and corrected. Adding this additional delay, means

that in some cases the clock period for the unit being protected may have to be

increased. The trade-off between clock cycle time, and the amount of protection

112

that can be obtained is further explored later in a separate section. Both for­

ward and backward error recovery are considered in the verification experiments

conducted in this section.

Figures 6.12, 6.13, and 6.14 plot real vs predicted error coverage for the

z80 decoder, floating point adder, and integer multiplier, respectively. In each

figure, 3 curves are plotted representing the predicted error coverage (shown

previously in Figure 6.11), the measured real coverage assuming backward error

recovery, and the measured real coverage assuming forward error recovery. For

the experiments assuming backward error recovery, as long as at least one flip-flop

capturing an incorrect value during the injection of a transient fault is protected,

the error (assuming the transient end up propagating to a primary output) is

counted as prevented. In the forward error recovery case, an error is not counted

as prevented unless all flip-flops in the critical set responsible for propagating the

error are protected.

The results of this verification experiment on the z80 decoder are shown in

Figure 6.12. In this figure the dotted line represents the predicted error cover­

age (previously plotted in Figure 6.1.1), while the two solid lines represent the

results of the validations experiments. For this particular benchmark circuit, the

predicted error coverage very closely track the measured real coverage.

For the floating point adder, both predicted and real error coverage are plotted

together in Figure 6.13. For this benchmark, the predicted and and real error

coverage are relatively closely correlated, but not as closely as what was observed

for the decoder circuit.

113

1.20

1.00

0.00 0.20 0.40 0.60 0.80

fraction of flip-flops protected

-^zSOjpred

-*-z80_det

-»-z80 corr

1.00

Figure 6.12: Predicted vs. Real Error Coverage for z80 Decoder.

Figure 6.14 shows the results of the verification experiments conducted on

the integer multiplier. For this circuit, it is clear that the real coverage plotted

does not correlate as closely to the predicted error coverage as observed for the

decoder and floating point adder, particular for the correction case. For this case,

the correction curve is actually slightly convex in the middle of the plot, implying

that in this range our heuristic is making the wrong decisions about which flip-

flops to protect. This can be attributed to the structural regularity of the integer

multiplier, meaning that many of the flip-flops in this circuit have similar counter

values.

For both the hybrid and control logic blocks used in the evaluation of the

1.20

1.00

0.00 0.20 0.40 0.60 0.80

fraction of flip-flops protected

114

-*-fpadd_det

-B-fpadd_corr

—fpadd_pred

1.00

Figure 6.13: Predicted vs. Real Error Coverage for the Floating Point Adder.

presented methodology, the real coverage measurements obtained from the ver­

ification experiments correlate closely to the predicted error coverage obtained

from the selection heuristic. This means that a designer using this methodology

to analyze (and ultimately protect) a logic block can rely exclusively on the pre­

dicted error coverage given by the presented methodology (which only requires

one experiment), rather than also having to perform this additional verification

step (which requires several more experiments).

115

Of

8?
| 0.60 -

er
ro

i

0.20 -

, " • ' i

X -

-*-intmul__det
-«-intmul_corr

—intmul_pred

0.00 0.20 0.40 0.60

fraction of flip-flops protected

0.80 1.00

Figure 6.14: Predicted vs. Real Error Coverage for Integer Multiplier.

Approximation Bias

While the measured real coverage does correlate closely with the predicted error

coverage, some approximation bias does exist. Looking at the graphs in the

previous section, the predicted error coverage always overestimates the measured

real error coverage for the correction case. In addition to this, the measured real

error coverage for the detection case is usually larger than the coverage measured

when forward error recovery is assumed.

This bias can be attributed to a small subset of cases similar to the situation

shown in Figure 6.10. Recall that this figure depicts a transient fault occurring in

116

an intermediate pipeline stage, with multiple flip-flops following that intermediate

stage being responsible for propagating erroneous values through the rest of the

circuit. If only a subset of those previously mentioned flip-flops responsible for

propagating the error are protected, a discrepancy in the calculated error coverage

between the heuristic and validation experiment will occur. For the purposes of

this discussion, assume that only candidate flip-flop 1 is protected.

The heuristic presented in this work treats each flip-flop in a circuit as an indi­

vidual entity. When the predicted error coverage is calculated (corresponding to

having a subset of flip-flops protected), the sum of all the counters corresponding

to flip-flops in the subset is divided by the total number of errors observed. In

this particular case, the predicted error coverage would be (172), as the counter

for flip-flop 1 has a value of (1/2), and 1 total error was observed. Assuming only

error detection (backwards error recovery), if an identical fault (on the same gate

with the same input stimulus) occurred during the verification run; the measured

real coverage would be 1, because a transient fault was detected at the input of at

least of on the flip-flops in the circuit (in this case flip-flop 1). In contrast, for the

correction case, the measured real coverage would be 0, because flip-flop 2 was

unprotected, allowing erroneous values to still propagate to primary outputs.

Overhead

As was stated previously, the fraction of transients that can be detected with

detectors like the one shown in Figure 6.1 depends primarily on the amount of

additional delay inserted between the master and redundant latch. The drawing

117

in Figure 6.15 illustrates the relationship between transient width (denoted as

duration in this diagram), and the inserted delay between detectors (denoted as

delay). In this diagram, two waveforms are shown, representing the inputs to the

master and redundant latch in the proposed SET detector, respectively. In both

waveforms a 0-1-0 transient is present, with the transient being skewed by delay

time units for the input to the redundant latch. The timing diagram shown is also

divided in into three regions based on what would happen if the rising edge of

the clock occurred during that particular period of time. Region I represents the

situation where both inputs were correct initially, and then only the input to the

master latch glitched due to the presence of a SET. In this case, the transient can

not only be detected, but can also be corrected, because the C-element (if we

are assuming correction) would not have changed it value when the master input

glitched. In Region II, both the master and redundant latch inputs have glitched to

the wrong value. In this situation, a transient will never be detected because both

the master and redundant latch inputs agree, meaning the output of the XOR gate

in Figure 6.1 will stay at zero. Region III represents the case were both inputs

have glitched, but the input to the master latch has returned back to the correct

value. In this case, it is possible to detect an error (since both inputs do not match),

but impossible to correct an error (because the value stored by the C-element will

be wrong). If detection alone is assumed (implying backward error recovery), the

rising clock edge occurring in Region III represents a false positive, because in

the unprotected case, the transient fault would have been timing window masked.

If forward error recovery is assumed, this same situation could be problematic,

118

duration
< >

Master
Latch
Input

Redundant
Latch
Input

Figure 6.15: Relationship Between Inserted Delay and Probability of Transient
Detection. ,

as a protected flip-flop would "correct" the output bit to the wrong value.

Assuming that transients arrive at flip-flop inputs at any given time with equal

likelihood, the probability that a transient is detected or corrected is d^a°ti<m- For

the detection case, transients falling in Region III can be ignored, because these

are false positives which only affect performance. For the correction case, the

fraction of Region III transients that don't result in errors can be expressed by

multiplying dura^lMay ^ t h e probability of logical masking.

The previously described relationships between inserted delay and transient

width can be used to approximate the effects of having detectors with less than

ideal delay (meaning that some fraction of transients are not detected). The dis-

119

crete probability function used for injected transient width (described in Chapter

3) can be scaled in order to calculate the fraction of transients that that would

be detected assuming a given amount of inserted delay. This fraction can be

calculated using the expression given in Equation 6.1.

n

scaled_coverage =] T w* * m i n f ^ , 1)(6.1)
i=0

The predicted error coverage measurements presented earlier in this chapter

represent the error coverage attainable if there was enough inserted delay to detect

all arriving transients. The scaledcoverage value yielded by the expression

shown in Equation 6.1 represents what fraction of that attainable coverage can

be had by having a SET detector with a smaller amount of inserted delay.

Combining the outlined strategy for scaling error coverage with area estimates

obtained through synthesis allows the simultaneous comparison of error coverage,

delay, and area overhead. As was discussed in Chapter 3, all benchmarks circuits

studied in this thesis were synthesized into LSI 10k standard cell library gates.

The reported area from this synthesis was used as the baseline area, and the cost

of each detector was defined to be the area of a latch (representing the duplicated

master latch in Figure 6.1) plus four inverters (representing the C-element and

keeper logic). For the delay inserted between latches within a detector, the amount

of delay is increased in increments of 20 picoseconds.

The three-dimensional plot shown in Figure 6.16 illustrates the trade-offs

between error coverage, delay, and area overhead. The z-axis in this figure rep-

120

Figure 6.16: Tradeoff Between Area, Delay, and Error Coverage for z80 Decoder.

resents error coverage, while the x and y-axes represent delay and area overhead

respectively. In addition to this, the data label displayed at the end of each curve

represent the amount of error coverage achievable using the maximum delay

penalty. The labeled set of points in this figure correspond to the reported pre­

dicted error coverage for the z80 decoder (shown in Figure 6.11). From this

plot it is clear that a desired level of error coverage can be achieved via multiple

combinations of area and delay overhead.

121

6.5 Summary

In this chapter, a framework for combinational logic soft error analysis was pre­

sented. This framework is unique in that it is quantitative as well as qualitative,

allowing rapid "cost-benefit" trade-offs relating to reliability to be made. The

framework is specifically targeted towards protecting hybrid and control logic

blocks in a cost-effective manner, and achieving this goal through the modifica­

tion of sequential elements. The results presented in this chapter illustrate the

vast space of design possibilities in terms of delay, area, and reliability.

122

Chapter 7

Conclusion

The work completed in this dissertation is motivated by several factors. One of the

major reasons soft errors in logic are becoming a more significant design concern

is because of technology scaling. While critical charge values for transistors

within both SRAM cells and logic gates are shrinking because of smaller feature

sizes, Qa-it values for combinational logic gates are shrinking at a faster rate

because of the additional effects of diminished electrical and timing window

masking. Independent of technology trends, the issue of soft errors in logic is

also garnering an increased amount of attention because protection techniques for

storage are already used extensively in current generation chips. This pervasive

use of storage protection means that an increasing fraction of the on-chip die

area vulnerable to particle strikes belongs to transistors within logic blocks. In

addition to this, macro-level redundancy schemes often have performance, power,

area, and verification overheads that make their use prohibitive in many design

123

spaces.

These motivating factors inspired the work presented in this dissertation,

which represents a successful attempt at truly understanding the effects of soft

errors in logic, and what those effects imply on an architectural level. In the

process of completing this study, several important insights related to logic SER

were uncovered:

• Contrary to conventional intuition, the overall impact of transient faults on

logic (combinational logic gates and sequential elements) is largely inde­

pendent of pipeline depth. In addition to this, transient faults actually have

a smaller impact on combinational logic within deeper pipelines. As the

analysis in Chapter 4 shows, this flawed intuition stems from two sources:

the use of rates as direct comparison point (which is not appropriate in this

situation) and a second order effect relating to how SETs fan-out along

multiple combinational paths. This second order effect has a significant

effect on the rate in which logic blocks timing window mask faults, and is

obscured unless timing window masking is modeled in detail.

• Several commonly held assumptions about the manner in which transient

faults manifest themselves have been shown to not be valid in all cases.

The results presented in chapters 4 and 5 show than particle strikes on com­

binational logic gates often do not result in a single state element (whether

internally or at a primary output) being flipped. Additionally, the study

done in chapter 5 shows that within a pipelined unit, not all state elements

124

are corrupted with the same probability, and those which are corrupted are

logically masked at varying rates.

These insights help answer questions related to how to think about this prob­

lem, which effects are most important to model, and what the structure is of

the artifacts left behind by these faults. In addition to these conceptual insights,

an analysis framework was presented in Chapter 6 that is both quantitative and

qualitative. This methodology is valuable in that it facilitates rapid "cost-benefit"

analysis to be performed, and accounts for the complex manner in which many

faults propagate.

The combination of the insights and other contributions made by this thesis

should ultimately provide for architects (and other engineers working at layers of

abstraction above the gate level) a groundwork for understanding the appropriate

manner in which logic soft errors should be attacked.

7.1 Future Work

The work done in this dissertation can be expanded in several directions. While

the results presented in this thesis have exclusively focused on the problem of soft

errors, the tools developed can be extended to study other modes of failure. Prob­

lems such as wear-out, environmental and process variations, and manufacturing-

related defects are also significant design concerns and warrant additional study.

In terms of developing new techniques for transient error tolerance, the pre­

sented work can be extended in a few directions. The analysis in Chapter 5

125

can be leveraged at a design level in order to decide how a logic block can be

redesigned at a high level in order to provide error tolerance. The z80 decoder

studied in Chapter 5 provides an example of this opportunity. One of the major

conclusions of the characterization of that particular logic block was that because

of the regularity of the underlying RISC ISA that instructions were translated

to, error detection would be difficult. One possible improvement that could be

made would be to intentionally design some irregularity into this ISA in order to

allow for simpler detection. This irregularity could come in the form of a larger

space of invalid op-code register combinations, specific bit encoding patterns for

opcode and register identifiers, or a number of other options.

Perhaps the most significant extension of this work is how the presented

insights could be used to improve higher level studies on fault tolerance. All

of the insights regarding the effects of soft errors in logic came about because

the problem was studied at the gate and circuit levels of abstraction. Despite

this, there are still some situations (especially early in the design cycle or during

software development), where higher level models (behavioral RTL, performance

simulators, or even binary instrumentation tools) may need to be used to study

the effects of faults. The lessons learned during the course of this dissertation

can serve to improve the effectiveness of these tools by guiding the assumptions

made with respect to modeling faults.

For example, in the context of application fault injection studies the effect of

a soft error is commonly modeled as a single bit corrupted in the computed result

(if a functional unit is affected), or a single bit corruption in one of the instruction

126

specifying fields (if the fault in in either storage element or the decoder). Instead

of an SEU-based model, based on the work presented in this dissertation, the

functional unit fault case could be modeled by identifying clusters of output

bits which are likely to flip together, while decoder faults could be modeled as

a transformation from the correct stream of micro-operations to a alternative

incorrect stream.

127

Bibliography

[1] Design Panel for SELSE Workshop 2006.

[2] HSPICE PTM - http://www.eas.asu.edu/ ptm.

[3] D. A. Anderson and G. Metze. Design of Totally Self-Checking Check Cir­
cuits for m-Out-of-n Codes. IEEE Transactions on Computers, 22(3):263-
269, 1973.

[4] Hisashige Ando, Yuuji Yoshida, Aiichiro Inoue, Itsumi Sugiyama, Takeo
Asakawa, Kuniki Morita, Toshiyuki Muta, Tsuyoshi Motokurumada, Seishi
Okada, Hideo Yamashita, Yoshihiko Satsukawa, Akihiko Konmoto, Ry-
ouichi Yamashita, and Hiroyuki Sugiyama. A 1.3GHz .Fifth Generation
SPARC64 Microprocessor. In DAC '03: Proceedings of the 40th Confer­
ence on Design Automation, 2003.

[5] Ghazanfar Asadi and Mehdi B. Tahoori. An Accurate SER Estimation
Method Based on Propagation Probability. In DATE '05: Proceedings of
the conference on Design, Automation and Test in Europe, 2005.

[6] Todd M. Austin. DIVA: a Reliable Substrate for Deep Submicron Mi­
croarchitecture Design. In MICRO 32: Proceedings of the 32nd annual
ACM/IEEE international symposium on Microarchitecture, 1999.

[7] Gordon B. Bell and Mikko H. Lipasti. Skewed Redundancy. In PACT '08:
Proceedings of the 17th International Conference on Parallel Architecture
and Compilation Techniques, October 2008.

http://www.eas.asu.edu/

128

[8] David Bernick, Bill Bruckert, Paul Del Vigna, David Garcia, Robert Jar-
dine, Jim Klecka, and Jim Smullen. NonStop Advanced Architecture. In
DSN' 05: Proceedings of the 2005 International Conference on Dependable
Systems and Networks, 2005.

[9] Michael Orshansky Bin Zhang, Wei-Shen Wang. FASER: Fast Analysis of
Soft Error Susceptibility for Cell-Based Designs. In Proceedings of ISQED
2006, April 2006.

[10] Arijit Biswas, Paul Racunas, Razvan Cheveresan, Joel S. Emer, Shub-
hendu S. Mukherjee, and Ram Rangan. Computing Architectural Vulner­
ability Factors for Address-Based Structures. In Proceedings of ISCA-32,
2005.

[11] Jason Blome, Shantanu Gupta, Shuguang Feng, Scott Mahlke, and Daryl
Bradley. Cost-Efficient Soft Error Protection for Embedded Microproces­
sors. In Proceedings of International Conference on Compilers Architec­
ture Synthesis for Embedded Systems, October 2006.

[12] J.J. CookandC. Zilles. A characterization of instruction-level error derating
and its implications for error detection. In Proceedings of DSN 2008, June
2008.

[13] H. Deogun, D. Sylvester, and D. Blaauw. Gate-level Mitigation Techniques
for Neutron-induced Soft Error Rate. In Proceedings of ISQED, March
2005.

[14] Daniel Ernst, Nam Sung Kim, Shidhartha Das, Sanjay Pant, Toan Pham,
RajeevRao, Conrad Ziesler, DavidBlaauw, Todd Austin, and Trevor Mudge.
Razor: A Low-Power Pipeline Based on Circuit-Level Timing Speculation.
In Proceedings of MICRO-36, November 2003.

[15] L. B. Freeman. Critical Charge Calculations for a Bipolar SRAM Array.
IBM J. Res. Dev., 40(1):119-129, 1996.

[16] B. Greskamp and J. Torrellas. Paceline: Improving Single-Thread Perfor­
mance in Nanoscale CMPs through Core Overclocking. In PACT '07: 16th
International Conference on Parallel Architecture and Compilation Tech­
niques, September 2007.

129

[17] M.C. Hansen, H. Yalcin, and J.P. Hayes. Unveiling the ISCAS-85 Bench­
marks, a Case Study in Reverse Engineering. IEEE Design and Test,
16(3):72-80,1999.

[18] John P. Hayes, Ilia Polian, and Bernd Becker. An Analysis Framework for
Transient-Error Tolerance. In VTS' 07: Proceedings of the 25th IEEE VLSI
Test Symmposium, 2007.

[19] P. Hazucha and C. Svensson. Impact of CMOS Technology Scaling on
the Atmospheric Neutron Soft Error Rate. IEEE Transactions on Nuclear
Science, 47(6):2586-2594, December 2000.

[20] Robert Hogg and Elliot Tanis. Probability and Statistical Inference: Fifth
Edition. Prentice Hall Inc., Upper Saddle River, NJ, USA, 1997.

[21] Vivek Joshi, Rajeev Rao, Dennis Sylvester, and David Blaauw. Logic
SER Reduction through Flipflop Redesign. In Proceedings of ISQED 2006,
March 2006.

[22] Srivathsan Krishnamohan and Nihar R. Mahapatra. A Highly-Efficient
Technique for Reducing Soft Errors in Static CMOS Circuits. In Proceed­
ings of ICCD, 2004.

[23] S. Krishnaswamy, S.M. Plaza, I.L. Markov, and J.P. Hayes. Enhancing De­
sign Robustness with Reliability-aware Resynthesis and Logic Simulation.
In Proceedings of ICCAD 2007, November 2007.

• . . c .

[24] Smita Krishnaswamy, Igor L. Markov, and John P. Hayes. On the Role of
Timing Masking in Reliable Logic Circuit Design. InDAC'08: Proceedings
of the 45th Annual Conference on Design Automation, 2008.

[25] H. Q. Le, W. J. Starke, J. S. Fields, F. P. O'Connell, D. Q. Nguyen, B. J.
Ronchetti, W. M. Sauer, E. M. Schwarz, and M. T. Vaden. IBM POWER6
Microarchitecture. IBM J. Res. Dev., 51(6):639-662, 2007.

[26] M. J. Mack, W. M. Sauer, S. B. Swaney, and B. G. Mealey. IBM POWER6
Reliability. IBM J. Res. Dev., 51 (6):763-774, 2007.

[27] D.G. Mavis and P.H. Eaton. Soft error rate mitigation techniques for modern
microcircuits. In Proceedings of Reliability Physics Symposium, 2002.

130

[28] Albert Meixner, Michael E. Bauer, and Daniel J. Sorin. Argus: Low-
Cost, Comprehensive Error Detection in Simple Cores. In Proceedings
of MICRO-40, December 2007.

[29] Sun Microsystems. OpenSPARC Tl Microarchitecture Specification, Au­
gust 2006.

[30] Natasa Miskov-Zivanov and Diana Marculescu. MARS-C: Modeling and
Reduction of Soft Errors in Combinational Circuits. In DAC '06: Proceed­
ings of the 43rd annual conference on Design automation, 2006.

[31] S. Mitra, M. Zhang, N. Seifert, B. Gill, S. Waqas, and K. S. Kim. Combi­
national Logic Soft Error Correction. In Proceedings of International Test
Conference, November 2006.

[32] Subhasish Mitra, Norbert Seifert, Ming Zhang, Quan Shi, and Kee Sup Kim.
Robust System Design with Built-in Soft-Error Resilience. IEEE Computer,
38(2):43-52, 2005.

[33] G.E. Moore. Cramming More Components Onto Integrated Circuits. Pro­
ceedings of the IEEE, 86(l):82-85, January 1998.

[34] Shubhendu S. Mukherjee, Michael Kontz, and Steven K. Reinhardt. De­
tailed Design and Evaluation of Redundant Multithreading Alternatives. In
Proceedings ofISCA-29, May 2002. v

[35] Shubu Mukherjee, Joel Emer, and Steven Reinhardt. The Soft Error Prob­
lem: ah Architectural Perspective. In Proceedings of HPCA-11, February
2005.

[36] Chris Myers. Asynchronous Circuit Design. Wiley-Interscience, New York,
NY, USA, 2001.

[37] H.T. Nguyen and Y Yagil. A Systematic Approach to SER Estimation and
Solutions. In Proceedings of Reliability Physics Symposium, 2003.

[38] Michael Nicolaidis. Time Redundancy Based Soft-Error Tolerance to Res­
cue Nanometer Technologies. In VTS '99: Proceedings of the 1999 17TH
IEEE VLSI Test Symposium, 1999.

131

[39] M. Omana, G. Papasso, D. Rossi, and C. Metra. A Model for Transient
Fault Propagation in Combinational Logic. In Proceedings of IOLTS, July
2003.

[40] Heidi Pan and Krste Asanovic. Heads and Tails: A Variable-length Instruc­
tion Format Supporting Parallel Fetch and Decode. In CASES'01: Pro­
ceedings of the 2001 International Conference on Compilers, Architecture,
and Synthesis for Embedded Systems, 2001.

[41] D.B. Papworth. Tuning the Pentium Pro Microarchitecture. IEEE Micro,
16(2):8-15, Apr 1996.

[42] I. Pollan, S.M. Reddy, and B. Becker. Scalable Calculation of Logical Mask­
ing Effects for Selective Hardening Against Soft Errors. In Proceedings of
SELSE, April 2008.

[43] P. Racunas, K. Constantinides, S. Manne, and S.S. Mukherjee. Perturbation-
based Fault Screening. In Proceedings of HPCA-13, February 2007.

[44] R. Rajaraman, J. S. Kim, V. Narayanan, Y. Xie, and M. J. Irwin. SEAT-LA:
A Soft Error Analysis Tool for Combinational Logic. In Proceedings of the
International Conference on VLSI Design, January 2006.

[45] Rajeev Rao, David Blaauw, and Dennis Sylvester. Soft Error Reduction
in Combinational Logic Using Gate Resizing and Flip-flop Selection. In
Proceedings of the ICC AD, November 2006.

[46] Rajeev Rao, Kaviraj Chopra, David Blaauw, and Dennis Sylvester. Com­
puting the Soft Error Rate of a Combinational Logic Circuit Using Param­
eterized Descriptors. IEEE Transactions on Very Large Scale Integration
Systems (T-VLSI), 26(3):468-479, March 2007.

[47] R.R. Rao, K. Chopra, D, Blaauw, and D. Sylvester. An Efficient Static
Algorithm for Computing the Soft Error Rates of Combinational Circuits.
In Proceedings of DATE, March 2006.

[48] J. Ray, J.C. Hoe, and B. Falsafi. Dual Use of Superscalar Datapath for
Transient-fault Detection and Recovery. In Proceedings of MICRO-34, De­
cember 2001.

132

[49] V. Reddy and E. Rotenberg. Inherent Time Redundancy (ITR): Using Pro­
gram Repetition for Low-Overhead Fault Tolerance. In Proceedings of DSN,
June 2007.

[50] V. Reddy and E. Rotenberg. Coverage of a Microarchitecture-Level Fault
Check Regimen in a Superscalar Processor. In Proceedings of DSN, June
2008.

[51] V.K. Reddy, A.S. Al-Zawawi, and E. Rotenberg. Assertion-Based Microar­
chitecture Design for Improved Fault Tolerance. October 2006.

[52] G.A. Reis, J. Chang, N. Vachharajani, R. Rangan, and D.I. August. SWIFT:
Software Implemented Fault Tolerance. In Proceedings of CGO, March
2005.

[53] George A. Reis, Jonathan Chang, Neil Vachharajani, Ram Rangan, David I.
August, and Shubhendu S. Mukherjee. Design and Evaluation of Hybrid
Fault-Detection Systems. In Proceedings of ISCA-32, 2005.

[54] Eric Rotenberg. AR-SMT: A microarchitectural approach to fault tolerance
in microprocessors. In Proceedings of FTCS, 1999.

[55] J.P. Roth. Diagnosis of Automata Failures: A Calculus and A Method. IBM
J. Res. Dev., 10:278-291, 1966.

[56] G.P. Saggese, A. Vetteth, Z. Kalbarczyk, and Ravishankar Iyer. Micropro­
cessor Sensitivity to Failures: Control vs. Execution and Combinational vs.
Sequential Logic. In Proceedings of DSN, 2005.

[57] Thomas Scherrer. Z80 Family CPU User Manual.
http://www.zilog.com/docs/z80/um0080.pdf.

[58] Thomas Scherrer. Z80-Family Official Support Page, http://www.z80.info/.

[59] Norbert Seifert and Nelson Tarn. Timing vulnerability factors of sequentials.
In IEEE Transactions on Device and Materials Reliability, volume 4, pages
516-522. IEEE Computer Society, 2004.

[60] Sanjit A. Seshia, Wenchao Li, and Subhasish Mitra. Verification-Guided
Soft Error Resilience. In Proceedings of Design Automation and Test in
Europe (DATE), April 2007.

http://www.zilog.com/docs/z80/um0080.pdf
http://www.z80.info/

133

[61] Premkishore Shivakumar, Michael Kistler, Stephen W. Keckler, Doug
Burger, and Lorenzo Alvisi. Modeling the Effect of Technology Trends
on the Soft Error Rate of Combinational Logic. In DSN '02: Proceedings
of the 2002 International Conference on Dependable Systems and Networks,
2002.

[62] T. J. Siegel, E. Pfeffer, and J. A. Magee. The IBM eServer z990 Micropro­
cessor. IBM J. Res. Dev., 48(3-4):295-309, 2004.

[63] Jared C. Smolens, Brian T. Gold, Babak Falsafi, and James C. Hoe. Reunion:
Complexity-Effective Multicore Redundancy. In Proceedings of MICRO-
39,2006.

[64] D. Sorin, M. Martin, M. Hill, and D. Wood. Safetynet: Improving the Avail­
ability of Shared Memory Multiprocessors with Global Checkpoint/Recov­
ery. In Proceedings of ISCA-29, 2002.

[65] V. Srinivasan, A.L. Sternberg, A.R. Duncan, WH. Robinson, B.L. Bhuva,
and L.W. Massengill. Single-event Mitigation in Combinational Logic us­
ing Targeted Data Path Hardening. IEEE Transactions on Nuclear Science,
52(6):2516-2523, December 2005.

[66] Karthik Sundaramoorthy, Zach Purser, and Eric Rotenberg. Slipstream Pro­
cessors: Improving both Performance and Fault Tolerance. SIGARCH
Computer Architecture News, 28(5):257-268, 2000.

[67] Ivan Sutherland, Bob Sproull, and David Harris. Logical Effort: Designing
Fast CMOS Circuits. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 1999.

[68] A. Taber and E. Normand. Single Event Upset in Avionics. IEEE Transac­
tions on Nuclear Science, 40(2): 120-126, April 1993.

[69] Nicholas Wang, Michael Fertig, and Sanjay Patel. Y-branches: When You
Come to a Fork in the Road, Take it. In PACT 2003: Proceedings of the
1.2th International Conference on Parallel Architectures and Compilation
Techniques, 2003.

[70] Nicholas J. Wang, Justin Quek, Todd M. Rafacz, and Sanjay J. patel. Char­
acterizing the Effects of Transient Faults on a High-Performance Processor
Pipeline. In DSN '04: Proceedings of the 2004 International Conference
on Dependable Systems and Networks, 2004.

134

[71] N.J. Wang and S.J. Patel. Restore: Symptom-Based Soft Error Detection in
Microprocessors. IEEE Transactions on Dependable and Secure Comput­
ing, 3(3): 188-201, July-Sept. 2006.

[72] James W. Watterson and Jill J. Hallenbeck. Modulo 3 Residue Checker:
New Results on Performance and Cost. IEEE Transactions on Computers,
37(5):608-612, 1988.

[73] Christopher Weaver, Joel Emer, Shubhendu S. Mukherjee, and Steven K.
Reinhardt. Techniques to Reduce the Soft Error Rate of a High-Performance
Microprocessor. SIGARCH Computer Architecture News, 32(2):264,
2004.

[74] Neil Weste and David Harris. CMOS VLSI Design: A Circuits and Systems
Perspective. Addison-Wesley, Boston, MA, USA, 2005.

[75] Y.C. Yeh. Triple-triple Redundant 777 Primary Flight Computer. In Pro­
ceedings of Aerospace Applications Conference, February 1996.

[76] Ming Zhang and Naresh Shanbhag. A Soft Error Rate Analysis (SERA)
Methodology. In International Conference on Computer Aided Design,
November 2004.

[77] Ming Zhang and Naresh Shanbhag. A CMOS Design Style for Logic Cir­
cuit Hardening. In Proceedings of IEEE International Reliability Physics
Symposium, pages 223-229, April 2005.

[78] Ming Zhang and Naresh Shanbhag. An Energy-efficient Circuit Technique
for Single Event Transient Noise-tolerance. In IEEE International Sympo­
sium on Circuits and Systems, May 2005.

[79] Chong Zhao, Yi Zhao, and Sujit Dey. Constraint-aware Robustness Inser­
tion for Optimal Noise-tolerance Enhancement in VLSI Circuits. In DAC
'05: Proceedings of the 42nd Annual Conference on Design Automation,
2005.

[80] Quming Zhou and K. Mohanram. Cost-effective Radiation Hardening Tech­
nique for Combinational Logic. In ICCAD '04: Proceedings of the 2004
IEEE/ACM International conference on Computer-aided design, 2004.

[81] Quming Zhou and K. Mohanram. Transistor Sizing for Radiation Harden­
ing. In Proceedings of Reliability Physics Symposium, April 2004.

135

[82] Quming Zhou and K. Mohanram. Gate Sizing to Radiation Harden Combi­
national Logic. Computer-Aided Design of Integrated Circuits and Systems,
IEEE Transactions on, 25(1): 155-166, January 2006.

[83] J...R Ziegler, H. W. Curtis, H. P. Muhlfeld, C. J. Montrose, and B. Chin.
IBM Experiments in Soft Fails in Computer Electronics (1978-1994). IBM
J. Res. Dev, 40(1):3-18, 1996.

