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AbstraCt

This thesis focuses on gaining a deeper understanding of how radiation induced
transient faults, or soft errors, affect the operation of, and more importantly the
high-level design decisions related to logic dominated components of a computer
system. The work completed in this thesis is motivated by several trends. First,
continued technology scaling has caused soft error rates to rise to a level where
reliability is a concern in design spaces outside of the server domain. Second,
the majority of deployed solutions within current chips are intended to protect
storage structures, meaning that a growing fraction of the transistors on die vul-
nerable to faults belong to logic blocks. Third, studies done on an architectural
level utilize performance tools, which are at a level of abstraction where the im-
plementation details of logic blocks is unavailable. These tools generally model
soft errors in both storage and combinational logic elements in the same manner.
The combination of these trends indicate the need for additional investigation
with regards to the effects of soft errors in logic, and more specifically how these
effects impact architectural design decisions.

The work completed in this thesis represents a successful attempt at gaining



il

a greater understanding of these effects. The experiments conducted uncover
several surprising and counterintuitive insights relating to this subject, including
the appropriate manner in which comparisons relating to rgliability should be
made, the level of detaii in which faults should be modeled, and the manner
which transient faults manifest themselves. These insights are valuable in that
they serve to refine the intuition of architects with regards to how various design
decisions affect the reliability of logic. These insights also can be used to drive
the assumptions made by tools at higher levels of abstraction when modeling
transient faults. Additionally, this thesis explores how the insights gained can
be leveraged in order to determine the best strategy to protect a particular logic

component.
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' Introduction

As computing systems become increasingly ubiquitous, architects strive to createf_
| rObﬁsf systems capable of dperation ina wide rénge of environments. In addition
to meeting perforfnancé éhd powér requii‘eménts, engiheers now have to Spend a
 significant amount of time ensuring fheir 'designs also meet reliability goals. The
combination of continued techhology_ scaling and increased on-chip transistor
densities haye made _i.fulnerability to radiation—induéed transient faults (sdft errors)
a significant design ééncem [35]. Soft errors were initially d problem in high
| ‘ vdensityr memory éevll's:, first being observed in DRAMs and then later on in SRAM-

based caches[83]. This initial discovery led to a significant number of proposed

SQIUfions designed to prevent, detect, vand/or correét:faults occurring in storage
cells. o | | |
~ One consequence of this pervasive protection of storage structures is that an

fincr‘easingly large fraction of the vulnerable transistors on die belong to combina-



tional log1c blocks. In addition to this; failure rates due to transient faults on logic '
' nodesiare predicted to increase by several orders of magnitude due to technology
- scaling [61]. For these .reasons,engineers will need to ‘devote additional design
effort to protecting logic‘in order to meet reliability goals in future systems.
Recent research on soft errors has largely been divided 1nto two domains

.,In the arch1tecture domain most proposals either offer some form of global

B “ thread-level redundancy [8][34][66] or monitor storage structures which hold

sens1t1ve micro- archltectural state [10][73][35] In the context of these schemes

logic dom1nated units are either not protected or are essentially replicated (either .

R spatiallyor temporally) as part of a larger redundancy scheme. The majority of

‘ Work in this domain relies on performance simulation tools for evaluation with
latch- accurate RTL models used in a minority of cases[70]. Modeling the effects
" of soft errors at this level is difficult, as structural and t1m1ng characteristlcs of
log1c blocks are not available.
| In contrast, there eXist a si gniﬁcant number of propOSals inthe implementation
- domain with the purpose of mitigating the effects of transient faults in combina-
'tiOnal'logic.' A myriad of techniques'_' _[81][:14][3_8][32][13] have been .proposed | |
in this domain. Techniques presented in this context typically use gate and/or
'_ tranSistor-level models for evaluation; allowing for the effects of circuit structure
and timing constraints to be considered. Unfortunately, modeling industrial sized
circuits at this level of detail is often computationally intractable. | |
This dissertation has two overarching objectives. The ﬁrst objective 1s to

~ gain a more detailed understanding of transient fault propagation characteristics -



in comb1natlonal log1c blocks typ1cally found in h1gh performance m1croproces-
sors. The primary motivatlon for this isto allow arch1tects to: accurately reason
’about the effects of soft errors in lo; g1c earlier in the des1 gn cycle essentlally bridg-
1ng the gap between the two prev1ously descr1bed doma1ns of soft error research |
~ The second obJective of this thesis i is to leverage the aforementloned fault propa-
gation characterlstics in order to explore cost- effective means of protectlng logic :
blocks from transient faults. These objectives were successfully«accomphshed '
through the completlon of several steps. First 51mple intuitive fault models,
were developed to facilltate reasomng about how trans1ents propagate Next sev-
eral studies were performed to understand how low-level structural and timing
.characterlstlcs could potentially affect high level design declslons F1nally, fault
propagation characterlstlcs discovered from the prev1ous steps of this thesis were

used to develop cost effectlve soft error protection techmques

1.1 Thesis Contributions »

In this dissertation, several contributions are made. “With respect to gaining a
deeper understanding of the soft error problem within logic,“ the work completed
in this thesis provides several new insights related to answering the following

questions:

~ * How should architects conceptually think about this problem? The results
- presented in this dissertation show that contrary to conventional intuition,

‘ the vulnerability of a given logic block is largely’independent of pipeline



depth. In addition to this, combinational_IOgic gates within more. deeply

pipelined circuits are actlially less vulnerable to transient faults.

Whateffects are the most important to rnodel? Several existing p_roposals ‘

- .on methodologies tomodel. soft errors ‘i'n logic only focus on modeling the =
logical propagation of errors, modeling timing eﬁ'ects analytically.‘ ‘The
results .presented in this worl( shovi/ that this simpliﬁcation can lead to

: misleading_ results with respect to how the impact of transients faults varies

with clock frequency. -

How are the artifacts of transient faults structured? Many reliability studies
: performed at thei architecture or application level of abstraction model the R
final result of a transient fault in logic in the same manner as SRAM, as a
single bit flip. The analysis conducted in this,dissertation shows that when -
transients faults are studied using a gate-level infrastructure; this single bit -
flip assumption is not always valid. Speciﬁcally, it is shoWn.that in many

- cases a single tran51ent fault can result in multiple state bits being corrupted,

and that state bits are not corrupted with equal probabllity

The insights uncovered in this thesis related to these questions contrast with

prevailing intuition and are particularly beneficial to architects and others working

at h1gher levels of abstractlon Addltlonally, this the51s explores how the answers T

‘to these questions can be practlcally applled in terms of protecting 1nd1v1dual]

logic blocks :



1.2 Thesis Organization

The remainder of this thesis is divided into six chapters. Chapters 2 and 3 pro-
vide basic background related to soft errors along with a description of the‘tools
developed to cdnduct this study, respectively. Chapter 4 is devoted to exploring
the how scaling clock frequencies and pipeline depths affect the soft error vul-
nerability of a given logic block. Chapter 5 primarily focuses on systematically
outlining which protection schemes are best for a given logic block, and also
presents characterization results for a paréllel instruction deéoder regarding the
structure of the artifacts produced by transient faults. Chapter 6 presents a novel
framework for transient fault analysis, which uses the fault propagation charac-
teristics of a circuit in order to provide error tolerance in a cost effective manner.
Finally, Chapter 7 outlines the conclusions reached in this thesis and outlines

various avenues of future work.



Chapter 2

‘Background

2.1 Introduction

The purpose of this chapter is to provide additional background related to what
physically occurs when a transient fault is induced, as well as historically how
the soft error probiem evolved to be a concern for general purpose architects.
The remainder of this chapter is divided into four sections. The first section
describes the mechanics of how transient faults affect memory cells, in addition
to providing some historical background on the problem. The second section
provides more details on how transient faults manifest themselves in logic. The
final two sections describe metrics used to express soft error rates, and provide
a qualitative argument about why logic soft error .rates are expected to rise to a

level equivalent to unprotected SRAM.



2.2 Soft Errors
‘ Radiation“ induced transient faults, or soft errors, typically originate-from‘two :
sources. Soft errors can be caused by alpha particles present in packaging materi-‘ L
als or by neutron particles from cosmic radiation. While alpha particle induced |
 errors were previously 1dent1ﬁed asa senous problem in high den31ty memories,
neutron part1cles are the primary source of errors 1n current generatlon systems.
[83][35]. A soft error occurs when a radiation partlcle stnkes the bulk of a tran-
-sistor, generating some amOunt of charge. The exact amount of charge generated
by particle is primarily dependent on its. energy. If a sufficient amount of charge
is absorbed by"the source and/or drain region of the af‘fected’transis‘tor, a single
event effect is‘induced; meaning that the value stored at that particular circuit
‘node is flipped. If the affected transistor is part of a memory cell, this corruption
is known as a single event upset (SEU). It the‘affected transistor is part of a
c0mbinational logic gate, the fault is known asa single event transient (SET)[61].
The minimum amount of generated charge necessary to 1nduce a single event

effect is generally denoted as the cr1t1cal charge or th[IS] “This Quriz value is
| primarlly dependent on the smng of the transistors within the gate or memory
: cell of interest, as this directly affects the capacitance stored at each circuit node. |
A lower Qci; value indicates that a component is‘lesbs reliable, vas it implies that
a larger fraction of str*iking. particles will be able to generate enough charge in
~order to induce a single event effect[ N |

thile a soft error related failure in current generation process technology is



‘ likely to originate from a particle strike either ona logic gate or a memory cell
h1stor1cally memones have been si gniﬁcantly more susceptible to faults. Moore’s
Law, an emp1r1ca1 observation Wthh descnbes the rapid i increase in tran51stor |
1ntegrat10n den51ty over t1me[33] has transformed the phenomena of soft errors |
from an issue that was or1g1nally only of concern in the high ava11ab111ty server
or avionics appllcatlon spaces [8][75][68] to somethlng that architects of general

' purpose systems now worry about.

In previous technology generations, soft error rates were low enough such '

that the effects of transient faults were only not1ceable in high den51ty memory
components. The early appearance of error correcting codes (ECC) and parity | ,‘
‘logic first in DRAMs and later in large SRAM caches is evidence of this initial :
:c0ncem The continued shrinking.of transistor dimensions, which is generally
v1ewed as a benefit of Moore’s Law, also has the negative effect of reducing the
: m1n1mum amount of charge required to induce a single event effect, effectively
'1ncreas1ng the soft error rate w1th every technology generation
Eventually soft error rates rose to a level that the effects of transient faults
- started to- become observable not only in high density Imemory components, but
also withinv storage structures commonly ‘found within conventional microprQ_
l cessor pipelines.r At this point, controlling soft error rates became a topic of
increased interest in the architectural research .community. This renewed interest
_inspired numerous proposals‘on ways to model and understand the effects of soft |
errors at an architeCtutal level [37][70][35]. Because these techniques arose out

of the ’archite_cture community, the majority of these proposals model soft errors
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‘using binary instrumentation tools, performance s.imulétdrs, and in some cases .
" behavioral RT‘L» models. | | |
In parallel. with thg previously described observati(‘)n:of er_rofé within architec-
tural storage'structﬁrés, sbft errdf fates dﬁ_e to particle strikes on c'ombinatidnél
lbgic gates ‘also increased 'dr”é'matically.' In the past naturally occurring masking
phe‘nofhena preQéﬁted alarge ﬁaction of SETs frbm evér resulting in>e‘rrors. The
‘rate at whiéh SETs are masked is decreasing rapidly due to technology scaling.
Essentially, logibc"soft error rates are not 6hly rising due to lower Qc;it due fov
shrihking geométrieé, but also because of 'diminishéd rates 6f masking. The prek- |
| vioﬁsly mentioned archite'ct'uralv 'sthdie_s use tools at levels Of abstraction such thét
o ~an undersfériding (on an architectural level) of'the effects of _soﬁ errors in logic .

is precluded.

2.3 Soft Errors in Logic

Recall from the previous section tﬁat a particle strike aﬁ’ebting a combinétional
logié gate manifests itself as a transient pulse at the g.ate o’_uvtpu'tv. In order fof an |
VVYSET to have the same result as an SEU, which would.be to irivert’the value in
a storagé bit, the transient pﬁlse neéds to‘ logicalIy propagét¢ thfoﬁgh the circuit
and ultimately alter the vaiu_e captured by a downstream v'quuential element. In
previous technology generations, logic soft error rates Were kept low due to natural
masking phénomena that preveﬁted this described scenario from ’bccurring. Eaéh

of _thése masking phénomena will now be discussed in detail, aldng with how
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/\ NN

Figure 2.1: Example of Electrical Masking.

scaling is affecting its significance.

Electrical Masking

As a transient pulse propagates through a combinational logic chain, some atten-
uation occurs (in terms of the height and width of the waveform) as the transient

passes from the input to the output of each gate. If the height of the pulse is

degraded to the point where the transient does not represent a logically altered

value, or the width is shortened to the point where the transient value does not

persist long enough to méet the setup +‘hold time required alter the value cap-
tured by a sequential element, the transient is said to be electrically masked[61].
The amount of electrical masking that occurs at each gate is a function of the

.propagation delay of that gate as well as the width of the transient pulse[39]. An

example of a transient pulse being attenuated as it propagates through a logic

chain is shown in Figure 2.1. The amplitude and duration of the transient pulse |
decreases as it propagates through the successive gates in the logic chain.

The general trend of decreasing clock cycle times reduces the effect of elec-
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trical masking because there are fewer levels of logic per pipeline stage meaning
that a translent pulse propagates through fewer downstream gates before arnv- "
1ng at a sequential element. In addltlon to th1s decreas1ng feature sizes across :

‘success1ve technology generatlons 1mpact the effect of electncal masklng 1n.two o
: vways Frrst decreas1ng feature sizes 1mply that trans1stors will have lower th o
values meanlng that translent waveforms w1ll 1ncrease in size (1n terms of he1ght

and w1dth) Also, because propagat1on delays decrease w1th smaller feature sizes, |
the amount of waveform attenuat1on that oceurs at each 1nd1v1dual gate w1ll be .'

} d1m1n1shed

‘Logical Maskmg

g When a partlcle strikes a dev1ce ina comb1natlonal logic cha1n the resultrng__
transient pulse is only in danger of corruptmg a downstream se‘quentlal element
ifthe chain ls on a sensitized path. 'Whether ornota pathis sensltized isa function

| of the inputs applied to the ‘logic block. Consider the logic shown in Figure 22.
- The transient present at the output of gate A is el1m1nated because the controllrng
value at the other input of gate B prevents it from propagatmg any further.

- | Trans1ent faults blocked in this manner are said to be log1cally masked [61]. |
" The amount of logical masking that occurs wlthin a logic block ‘is‘a‘property’of _

the function computed and is independent of all technology parameters. '.
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1
1
Gb 0
0 P——
Figure 2.2: Example of Logical Masking.
Timing Window Masking

Even if a radiation particle hits a gate on an approbriately sensitized path, and
generates a transient waveform with sufficient height and width to corrupt the
value captured by a downstream sequential element, the transient must arrive
at the input of the sequential element dudhg' the period where the sequential
~captures a new value. This period of time is defined by the setup and hold time
of the sequential in question, and is generally referred to as the latching window
[61][76][44]. Pulses that reach the inputs 0f sequentials outside of this time
period are said to be timing window mésked. Figure 2.3 illustrates different
timing window masking scenarios that might occur.
For this figure, it is assumed that the sequential element being corrupted is
a positive-edge triggered flip-flop, meaning that the latching window is centered
around the rising edge of the clock. In Figure 2.3, the waveform at the top of the
illustration represents the clock signal, and the dotted lines represent the latching

window. As shown in this figure, a transient only alters what is captured by a .
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jatched

/\ B masked
/\ masked

Figure 2.3: Example of Timing Window Masking.

flip-flop when the transient value is present at the data input of the flip-flop during
the latching window. Continued technology scaling will decrease the amount of
timing-window masking occurs. Shrinking @)..;; values mean that propagating
transients will have greater widths, and shrinking gate delays mean that both
clock periods and latching windows will be shorter. The combination of these
two effects tincrease the probability that a transient arriving at a flip-flop input
will do so during the latching window, meaning that timing-window masking will

occur less often.



. 14
- 2.4 Reliability Metrics
Soft error rates are »generally expressed using the metric of 'Failures in Time (FIT),
- which is deﬁned as the number of failures per 10° hours [35] 1In some situations, '
the metric of mean tlme to fallure (MTTF) which is the inverse.of FIT is also
used to express failure rates. In general, the FIT rate can be calculated in the
manner shown in Equation 2.1 » | |

FIT = '(RapwbStrz'keRate) * (Derating) o (2.1) |

‘ The FIT rate of a system is typically calculated by multiplying the Raw Strike -

Rate and a derating factor. Because neutron particles are the dominant source of .

soft errors, the Raw Stnke Rate can be approx1mated by the expression shown in

Equatlon 2. 2

- SER o< F x A *exp(—Qcrit/Qs) : (2.2)

Equation 2.2 represents the soft error rate as a function of altitude dependent
neutron flux (F), vulnerable drain area (A), and the ratio of (-Qm-'t/Qs) where
Qs 1is the charge collection eﬂicrency, and is property the the transistor affected |

by the partlcle strike [19] The deratlng factor is defined as the probablhty thata -

 particle strikes manifests itself as an visible output error. What actually factors in .

deterrnlnlng the derat1ng factor is largely dependent on thedeﬁnltlon ofa v1s_1ble

N error. In the context of a logic block, a visible error might be defined as the case:
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where a fault results -in incorrect values computed at-the outputs of that block*;

- Inthis case the derat1ng value would be determ1ned by the degree that electr1cal, '

- log1cal and t1m1ng w1ndow masklng occur w1th1n the block In the context .

of an entire system a v1s1ble error might be deﬁned as the. case where a fault
results ina d1vergence in comm1tted arch1tectural state In th1s case, the degree
: of arch1tectural masklng within a system would also play a role i in determ1n1ng

the derating factor

2 5 Relationshlp Between Logic and SRAM Soft
Error Rates

The combination of shrmklng feature sizes and d1m1n1sh1ng amounts of timing
' w1ndow and electrical masking occurr1ng imply that loglc soft error rates w1ll
increase by several orders of magnitude over the next several technology gen-

_erations. Both of these trends have the ultimate effect of reducing the average -

Qo for a circuit, mean1ng the rad1at10n part1cles with less energy will be able

to 1nduce SETs A relat1vely recent study on the logic soft error scaling has
| predicted that as a consequence of both of the the aforementioned trends, log1c _
soft error rates will be comparable to unprotected SRAM error rates by the 50nm
technology,generation[61]. A plot of estimatede-; values from this study is‘ |
plotted in Figure 24..In this graph, the estimated Qcri; values for SRAM cells, -
combinational logic gates are plotted, along with the ‘charge-collectioneﬂiciency

Q;. The lines with diamond, square, and triangle markers represent the values
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Figure 2.4: Scaling of Q).+ With Process Technology. Adapted from [61].

of Qi for logic, Q.;x for SRAM, and @), respectively. This plot can be used
to qualitatively explain why technology scaling will cause logic error rates to
significantly increase. »

Recall from Equation 2.2 the soft error rates have an exponential relationship
with the ratio (Q¢it/Q 3).‘ In Figure 2.4, the Q.;;_ SRAM is plotted in the context
of an individual transistor within an SRAM cell; while @) .+ logic is shown in
thevcontext of a transistor within a logic chain, meaning that the plot of this
quantity also includes the effects of electrical and timing window masking.. It is
clear from the plot shown in Figure 2.4 thatth_logic is decreasing significantly

faster than ).;; SRAM across technology generations. The underlying reason
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behind the trend shown in the plot is that ()..;; SRAM is only decreasing as a
result of diminishing feature size, while Q)..;; logic is decreasing because of the
combined effects of smaller features sizes and less timing and electrical masking.
Essentially the quantities of Q..;; SRAM/Q); and Q;;_logic/Q)s are converging

to the same value.

2.6 Summary

In this chapter, background information relating to soft errors was provided. In
particular, the historical background regarding the context in which the effects
of transient faults were first observed was described, as well as the underlying
physical processes that occur in order for a particle strike to induce an actual
fault. Finally, this chapter concluded by providing a qualitative rationalization
as to why logic soft error rates are projected to increase faster than SRAM error

rates.
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Chapter 3

Methodolo gy

3.1 Introduction

In this chapter, the infrastructure developed to evaluate the effects of soft errors
in logic is described. In order to develop this infrastructure, several trade offs had
to be made with respect to the level of detail used to model faults. While a certain
level of detail is required in order to draw useful conclusions from experiments
performed, too much detail makes the study of any logic block large enough to
be of interest computationally intractable. The strategy taken in this dissertation
is to study the effects of soft errors in logic through statistical fault injection. Thé
actual modeling dbne is split into two parts, a circuit level modeling component
with the pufpose of obtaining realistic characteristics of transient pulses, and logic
level modeling to accurately capture transient propagation characteristics within

a given logic block. The rest of this chapter is divided into four sections. The
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lirst section provides an ove\\rview of prior proposals for modeling transient faults.
-Following this, the next two sections discuss the circuit and logic-level modeling
performed for this work respectlvely Because the tool chain developed for th1s. '
study relies on: stat1st1cal fault 1nJectlon ‘the last sectron of this chapter is devoted
| to establlshrng proper exper1ment lengths in order to ensure the stat1st1cal validity

of later results collected w1th this framework

3.2 Related Work

,‘ While statistical fault injection is intuitively the most straightforward approach
to obtalmng re11ab111ty estimates, in many cases it can be an extremely tlme
‘consuming methodology Many log1c blocks have a large state space of operat1ng
condltlons under whlch faults may naturally occur. In the context of transient
‘fault, modeling, t_h‘is space at the very vleast has several dimensions: the range
of all possible inputs, all vulnerable circuitnodes, all points in time vduringx the
clock cycle, and all possible particleenergies. For this reason, there have been -
numerous proposals aimed at reducing the time requiredv for fault simulation ‘by
B remov1ng one or more dimensions of th1s state space. |
In th1s vein there have been several techmques proposed Wthh reduce the

input dimension th_rough either symbolically model1ng circuitnodes and propagat-
ing faults with binary decision‘diagrams (BDDs)[9][30], or bit_-parallel simulation[23].
. Parallel simulation vhas also been applied with respect to the particle-energy div-

~ mension, with several existing proposals advocating the simultaneous simulation
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- of transients with a range of waveform charactenst1cs[46][79]
Perhaps the most commonly utilized strategy for reducing the computational
”requirements is to ellmmate the timing dimension. Proposals usmg this s1mpli-'
iﬁcation typically model the effects of logical masking in de-_ta11, while model-
ing tirning-window .maskving and in some cases _electrical‘ masking analytically
_»[76][44][61] [51[23]. One advantage of this par'ticular strategy is that many tools
,in’the ATPG domain ,Afe designed to measure the degree to which the values at
| circuit'nodes are observable at outputs, and can-be tri\rially extended to model 1
a the effects of logical masking | |
- For the purposes of this work, the framework constructed does not explicitly
remove any of the previously described state space d1mens1ons. The rationaliza- -
tion for this design decision was thatnot removing any dimensiohs would_ yield
the most accurate results, and that ‘the availability of machines for parallelisim-,
ulation would allow for experiments to be conducted in a reasonable amount of \

time. |
3.3 Circuit-Level Modeling
| Recalling the background discussion in Chapter 2, particle strikes on combina-

tional logic gates mamfest themselves as transient pulses (or glitches) occurring

at the output of the affected gate The most important charactenstics of these -

trans1ent waveforms are the amplitude and duration of these pulses wh1ch are -

primarily dependent on the size of the affected transistor as well as the energy i
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Figure 3.1: Charge Deposition PDF. From [13].

of the striking particle. The purpose of the circuit-level modeling component of
this study was to establish realistic ranges for these quantities.

Several prior studies on soft errors in logic have simulated particle strikes
by first modeling a combinational CMOS gate at a transistor level, and then
injecting pulses of current, simulating the charge collection process, into drain
nodes within that gate and observing the transient waveforms that occur at the the
gate outputs [13][61]. This methodology was also used for the modeling done in
this dissertation work. These experiments were conducted using HSPICE using
the 65 nm predictive technology model [2]. The shape of the injected pulse was

modeled as a time-dependent exponential function, as described by [61]. The
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Figure 3.2: NAND Structure Used for SET Waveform Characterization.

function used is shown in Equation 3.1.

I(t) = Q/T * \/{/T % exp(~t/T) I RY

This equation describes a time depéndent current pulse as a function of the
charge generated by a striking particle (Q), and a technology dependent time
constant for charge collection (T). The time constant used corresponds to the
valﬁ’e given in [61] that most closely corresponds to a 65 nm process. A range of
values for Q was obtained from a previous published probability density function
for charge deposition shown in Figure 3.1. Figure 3.2 illustrates the experimental
setup used for particle strike simulation. This test bench mimics the methodology
used in [13].

In terms of modeling, the most important transient waveform characteristics
that need to be captured are waveform height and duration. Instead .of tracking
and storing both of these characteristics, the framework developed for this study
defined and measures SET duration, which is defined as the period of time thev

transient wave form is above or below the value of Vdd/2 (a supply voltage of
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0.9 V was used), corresponding to a logically different value.

The ultimate goal of the described circuit modeling experiments was to sweep
across the range of possible amounts of,charge being generated, and détermine
the corresponding SET durations. The results of this exercise are shown in Figure
3.3, with the range of charges used represented on the x-axis, and the correspond-
ing SET durations plotted on the y-axis. These SET duration values were then
mapped to the x-axis of the probability density function shown in Figure 3.1,
creating a new probability density function for SET duration. This newly created
function was then discretized and us.ed asan inpuf to the gate-level fault injection

component of the developed framework.
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3.4 Gate-Level Modeling
The second coniponent of the franleWork 'deueloped for this study is a gate-level :
simulator used for statistical faultinjection. This simulator was created by add'ing
~timing support to an existing tool oﬁginally intended for automatic test program -
‘generation (ATPG) Additio‘nally, the . 5-valued logic alphabet originally pro--
posed by Roth [55] and typ1cally used for ATPG, was extended to 1nclude 7
values in total giving the s1mulator the additional ab111ty to model faults w1th1n
ﬂ1p—ﬂops. | |
Each fault injected can be represented by a 4-tuple, with niembers representing
.the gate or flip-flop affected, the point in the clock'period during which the particle -
' strike oc'curs, the input Vector applied to the logic block, and the duration of the
generated SET. When faults are injected, the time that the fault occurs as well as
the input vector applied to the logic block are chosen randomly. For the input | :
vectors additional functionality is added to the simulator which allovi/s' certain

j1nputs to be fixed to predetermrned values This is especially useful during the

evaluation of logic blocks w1th control inputs, elimrnatmg input combinations -

that would never occur in practice and outside of the intended functionality of -

the log1c block. SET durat1ons are chosen accordrng to the d1screte probab111ty

density function, whose constructron was prev1ously described. |
Reahst1cally choosmg gates and flip- ﬂops to 1nJect faults into. presented an ad-

ditional challenge. Because the developed, simulation 1nfrastructure was der1ved

from ATPG tools, the logic blocks evaluated must be represented in the UW net
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Figure 3.4: Example Inverter Layout for Area Estimation.

list format, which is derived from the more commonly used ISCAS format [17].
This format‘represents gates as one of several elementary types (NAND, NOR,
XOR, BUF, DFF, etc...) with no notion of area. A first order area model was
developed by creating simple layout level diagram of each gate, and estimating
the vulnerable drain area. '

An example stick diagram of a CMOS inverter is shown in Figure 3.4. By
constructing diagrams like this for each gate type, drain area can be easily cal-
culated. In Figure 3.4 both the length and width of the diffusion regions are
specified in terms of a constant A. VLSI design rules are typically specified in
terms of )\, which usually represents half of the minimum feature size of a given

process. By specifying rules in terms of this variable, migrating design rules
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of one process generation to the next is greatly simplified [74]. The length of
the diffusion regions modeled was assumed to be 5\, which was suggested as a

reasonable value by [74].

| Gate Type) | Delay (ps) | Drain Area (nm?) |

NAND 21 84500
NOR 21 105625
AND 39 147875

OR 39 169000
INV 17 63375
DFF n/a 126750

Table 3.1: Gate Characteristics.

The delay of each type of gate was calculated through the ﬁse of logical effort.
The logical effort of a gate is defined as the‘ ratio of its input capacitance to
the input capacitance of an equivalently sized inverter[67]. This ratio is useful
because it allows the delay of a more complex gate to be easily approximated
from the delay of an inverter. Table 3.1 shows the different types of elementary
gates modeled, along with the assumed propagation delays and vulnerable drain
area. |
The diagram in Figure 3.5 shows all of the possible outcovmesvthat can occur
. when a particle strike affects a combinational logic gate. Looking at this figure,
there are several different classes of outcomes possible for each fault. Outcomes
A and E represent cases where the transient is logically masked, cither before cor-
rupting a flip-flop (A), or afier (E). Outcomes B and D represent cases where a

SET reached the input of a flip-flop, but not during the rising clock edge, meaning
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the fault was timing window masked. Only outéomes C and F actually represent
cases where an injected fault results in incorrect bits at the primary outputs of a
circuit. From fhis diagram it should be clear that while the developed framework
does account for logical and timing window masking effects, electrical masking
is not modeled. For this work the choice was made to ignore' the effects of elec-
trical masking for two reasons. Because it is well understood that the degree a
combinational gate can attenuate a propagating transient pulse is dependent on

both the delay of the gate as well as the width of the transient [39][61][79][44],
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-the amount of observed eleCtrical masking will be essentia_lly'constant across all
| ei(periments (since no gate sizing is bein’gv performeil). Any effects of electri--
cal masking will be canceled out when comparisons are performed. In addition. :
to this, prior proposals exist which model the effects of electrical masking by
constructlng piecewise equations wh1ch relate the waveform characteristics of
* a transient waveform at the output of the gate to the input waveform as well
as the delay of the gate't39] Generally,if a transient has a pulse width that
is s1gn1ﬁcantly larger than the delay of the gate it is passmg through the fault -
will propagate unattenuated During the prev1ously described c1rcu1t level char-'
' acterization expenments the observed trans1ent w1dths were significantly larger
than the gate delays used.v This relatlonship should hold as process technology -
- continues to scale. | | “\
In addition to mo(leling'faults due to particle strikes on transistors within _’
combinational logic gates, the infrastructlire developed for this dissertation is
' also capab'le of modeling particle strikes within storage cells within flip-flops.
For this case, it is assumed that a particle strike will only corrupt the SRAM -
. cell used for storage' within either the master or slave latch. It is assumed‘ for
this work that allﬂip-ﬂops are constructed by placing 2 level sensitive latches
back to back." Furthermore, in the developed gate—level simulator, each flip-flop

is only modeled as a single SRAM cell. This desi'gnchoice was made because -

of a previous observation made by Siefert which is that an individual latch is

only vulnerable to pamcle strikes in opaque state [S9]. Assuming a s1ngle phase

clocking scheme with a 50 % duty cycle, implying that only one SRAM cell is
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vulnerable at any given time.

A diagram of the possible outcomes that can occur when a latch is affected
by a particle strike is shown in Figure 3.6. The outcomes shown in this diagram
were conceptually derived by considering the abstraction of a 1-bit wide arbitrary
datapath, beginning and terminated with single flip-flops, denoted as launching
and receiving, respectively. For each outcome, it is assumed that one latch in the
launching ﬂip—ﬂdp is affected by a particle strike. It should be noted that in cases

where latches are affected by particle strikes, the erroneous values that propagate
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~ through the restof the circuit are not transient pulses, but rather permanen'f values
which will persist until the next clock cycle. Using this s_ingle bit datapath abstrac-
tion, outcome A in F igure 3 6 represents the case where the launching ﬁip'—ﬁop 18
h affected by a pamcle str1ke but no erroneous values propagate to the rece1v1ng |
‘ ’ﬁlp ﬂop because of loglcal masking. Outcome B represents the case where the
1aunch1ng flip-flop is affected by a particle strike .that is capable of logically prop--
_ agating to the receiving flip-flop, but this is prevented from happening, because
the particle strike occurred too late in the clock cycle. This scenario ismost likely
to occur on long pat'hs within a circuit and was explicitly characterized in [59],
where each flip-flop in the circuit was assi gned a window of vulnerability (WOV),
) bounding the poltion of a clock cycle where a SEU would have enough time to |
propagate toa downstream receiving ﬂ1p-ﬁop |
} ~ Outcomes C D, and E represent the cases where the launching ﬁlp-ﬁop is
affected bya partlcle str1ke within its des1gnated WOV, and the erroneous values
- ended up propagating to at least one receiving ﬂip-ﬁop downstream. Outcome o
represents the case where the receiving »ﬁip,—ﬂop isalsoa primary output, meaning :
that an ei_'ro.r has occurred. Outcome C alsoincludes a special subset of cases
where primary output flip-flop is directly affected by a palticle strike. Outcomes
D and E represent cases where the receiving flip-flop is not a primary output, and
erroneous values are either logicaily masked later (D) or eventually affect primary

outputs ®.
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3.5 Benchmark Creation :

~In order to be evaluated using the tool chain developed for th1s work, Verllog ‘
modules were syntheslzed to LSI10k standard llbrary cells using Synopsys De-

31gn Compller Vers1on Y 2006 06-SP1. These synthes1zed modules were then

translated to the requ1red Uuw net list format via perl scrlpts ' .

3.6 ,Statistical Signiﬁcance of F‘aultInj‘ection "

Because the tool cha1n developed for this d1ssertat10n work relies on stat1st1cal
fault 1nJect10n for data collection, a lower bound on the number of faults to
inject in order to generate results with some degree of stat1st1cal validity needs
to be established. This lower bound of mjected faults is establlshed through
the construction of conﬁdence intervals. Ultimately the result produced by the
'tools whose development is described in this chapteris a derat1ng value, which
is the ‘number of errors observed, where an error 1s defined as a case where
an mjected faults results in incorrect values at circuit outputs divided by the
total number mjected The true deratmg value ofa 01rcu1t can only be obtalned
,w1th absolute certamty if faults were injected under all 1nput location, t1m1ng,.
- and partlcle energy conditions, a task which i is computatlonally 1ntractable The
stat1st1ca1 fault 1nJect10n tools developed for th1s work 1nJect faults only under a’
subset of all poss1ble condltlons essentlally producmg a sample measurement
~which is an approx1mat10n of the true quantity. Confidence 1nterva1s provide a

measurement of the representativeness of these measurements by establishing an
‘\ . : . '
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interval centered around the sample value as well a probability that the true value
‘, . lies within that interval. N o

Conﬁdence lntervals are typically defined in terms of the size of the interval
(usually expressed as the percent difference between the ends of the interval and |
_ the sample value), and a conﬁdence level (denoted as a), where the probab111ty»
H that the true Value lies w1th1n the defined 1nterval is (1 o) 20].

For the purposes of our study, the bounds of our interval are defined by the

expression shown in Equat1on 3.2

X Hto/2(n-1) * (s/y/M)(3.2)

This equation shows the 'construction of an interval dependent on the mean of
the sample measurement ()D theimeasured standard deviation (s),a distribution
and conﬁdence level dependent constant (t/2(n - 1)), and the number of samples .
taken (n). The statistical methodology used for th1s study were based primarily

on the discussion of confidence intervals in [20]. The most important dec1s1on

‘ made was th.e use of the t- distribution rather than the normal diStIibution which
. was made due to the small number of samples used, as well as the lack of prior i
knowledge regard1ng the d1stnbut1on of the values bemg est1mated _ _

For the purposes of this study, the most important var1able in Equat1on 3.21s
n, wh1ch directly represents the number of faults that need to be injected in order
to achieye a desired confidence interval. Rearranging the terms for the upper

bounds of the conﬁdence interval (as shown in F igure 3.2), an expression_ for n-
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can be obtained. This expression is shown in Equation 3.3.

_ttapn-D)
1= (Gpperbound -x) | (3.3)

Determinirig. a Minimal:Sa’mple Size
In order to determ1ne the m1n1mal sample size requ1red to have stat1st1cally valid
results several character1zat1on exper1ments were performed For th1s study,
: the OpenSPARC floating point rnult1pl1er was used as a benchmark._ [29]. ‘This
circuit was chosen, because it is the 'largest circuit studied 'in this dissertation
- work, containing over 35,000 gates and 2,000 ﬂip:-_ﬂops when synthesized to.
'LSIIOk' librarycells. For the first part ,‘Of th.is‘ experiment, 10 Separate fault
: injection experiments were performed, with 10,000 faults 'injecte'd in ﬁeach case
with a different randorn seed. For each simulation the measured derating was
, recorded. From these initial simulations the values of the sample mean and |
'standard dev1atlon (denoted by x x and s, respect1vely) as well as the upper bound
‘of the des1red conﬁdencemterval can be calculated With all of these values
deterrmned the number of samples requlred can be obta1ned by applylng the
formula shown in Equation 3.3.

The results of this experiment are summanzed in Table 3 2. The rows in this
table represent the size of the interval in terms of the percent deviation from the |
sample mean(lO% means that the lower and upper bounds would be 0 95*x and
1 05*x respectlvely) whlle the columns represent the (1 a) or the probab1l1ty ‘

that the true derating value falls within the defined interval.
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| [90% | 95% [ 99% |
10% [ 0.24 | 0.36 | 0.75
5% | 095 | 145 [ 2.9
1% |23.78 | 36.21 | 74.75

Table 3.2: Estimation of Required Sample Size.

The summarized results of this experiment indicate that using a sample size
of 10 (correspondiﬁg to 100,000 total faults injected) is sufficiently large enough
to have a 5% confidence interval with a confidence level of 99%. This essentially
means that there is a 99% probability that the frue derating value is within plus or
minus 5% of the mean sample derating value measured using the developed tool
chain. The results of this study justify the experiment lengths used for evaluation

in the rest of this dissertation, where at least 30,000 faults are injected in all cases.

3.7 Summary

In this chapter, the tools and methodology used to conduct fhe experimehts de-
scribed later on in this dissertation are described. The developed tool chain
combines gate-level statistical fault injection with low level circuit simulation
with the goal of enabling the effects of transient faults to be modeled in a great
level of detail, while allowing simulations to complete in a reasonable amount bf

time.
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Chapter 4

Impact of Pipeline Depth

4.1 Introduction

“In this chapter, the relationship between clock frequency and reliability is ex-
plored. Increasing clock frequencies are commonly cited as one of the reasons
that soft errors in logic are becoming an important design concern [61][56]. The
relationship between the frequency a circuit is clocked at and its soft error rate is
intuitive, as shortening the clock cycle time of a circuit decreases the probability
that a SET is timing window masked. The experiments conducted in th'is chapter
show that this intuition is in fact flawed, and that the vulnerability of a logic
block to soft errors is largely independent of the degree to which it is pipelined.
These experiments also show that combinational gates within more aggressively .
pipelined circuits are more ‘vresilient to the effects of transient faults.

This study also uncovers two key observations which not only explain these
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surprising results, but also serve to refine conventional intuition regarding the
proper manner in which to make fair comparisons of reliability, and the appropri-
| ate level of modeling detail required to obtain realistic results. The first key result
produced by this study is that the direct comparison of soft error rates is nof al-
ways the appropriate manner in which to evaluate the reliability of different logic
blocks. In this chapter, the scenarios where direct rate comparisons are inappro-
priate are outlined. In addition to this, the results presented in this chapter also
‘underscore the importance of modeling the effects of timing window masking
explicitly. The use of analytical models for timing window masking [61][9][30],‘
obscure second order effects which can significantly impact the errdr rates of
combinational logic.
The remainder of this chapter is divided into four sections. In the first section,
the conventional intuition regarding how logic soft error rates scale with clock
: frequéncy is defined formally and Validated experimentally. The next two sec-
tions identify the flaws in this intuition, and propose methodological refinements
in order to address these flaws, respectively. The final section of this chapter

discusses the implications of these presented results.

4.2 Conventional Intuition

Combinational Logic Soft Error Rates

As was discussed in Chapter 2, a bit flip only‘occurs as aresult of a particle strike

on a combinational logic gate when the generated SET logically propagates to
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the 1nput ofa ﬂ1p-ﬂop and changes the value captured In order for this to happen |
 the SET has to arrive at the ﬂ1p -flop data 1nput durlng the rising edge of the clock.
- Inthe cases where a SET arrives at the input of a ﬂ1p ﬂop, but not when the rising
"edge occurs, the SET is sa1d to be tlmln\g-wmdow masked. The express1on shown ‘. ”
in Er{uation 4.1 was proposed by [61] to analytically determine the probabi‘lity‘
that the arrival of a SET at the 1nput of a flip- ﬂop would comclde W1th the nsmg‘

edge of the clock

Taerating = S0y
R Equation 4.1 expresses this probahility as the function of 3 quantities' the
SET duration d, wh1ch in this work is the amount of time the amplltude of the- '
pulse is above or below Vdd/2, the latchlng window w, which is the sum of the
setup and hold t1mes for the ﬂ1p flop, and the clock period C. F rom thls equation
it is 31mple to 1nfer the ﬁrst—order effect of 1ncreasmg the p1pe11ne depth of a unit
on the comblnatlonal logic soft error rate. At deeper p1pe11ne depths, C decreases,
v irnplying an increase in Tgerqting. Simply put, the value Of Terating (and thus the

overall error rate) should be inversely proportional to the'clock period.

| Latch Soft Error Rates

- In addition to be1ng vulnerable to part1c1e strikes on comb1natlonal logic gates,
’ errors in computatlon can also occur when bits are flipped as a result of d1rect

'strlkes on storage cells within ﬂ1p-ﬂops. It is assumed in thls work that all ﬂlp—
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| flops considered are constructed of back to back level sensitive latches. Seifert et

al. characterized the vulnerability of latches to particle strikes, finding that latches

are only Vulnerableto bit flips in opaque mode [59]. A latch in transparent mode

- isnot vulnerable becauseit is being driven by fan-in lo gic. Ifit 1s assurned that the -
waveform used to clock the circuits has a 50% duty cycle, this implies that each _
latch is only vulnerable to.a part1cle strike 50% of the t1me When the p1pel1ne

; ,v depth ofa funct1onal unit is doubled the ﬁrst order intuition is that the latch count
(andthus the latch area) should also double, 1mply1ng a proport1onal 1ncrease in

i

the latch soft error rate.

First Order Analysis :
‘Follow1ng from the intuition establ1shed in the prev1ous section, both latch and

- logic soft error rates should 1ncrease with pipeline depth Several expenments

Were conducted with the purpose of validating the above stated intuition.

Experimental Setup .

For this particular study, floating point addition and rnultiplication units based on

: ’,the designs frorn the UltraSPARC T1 were chosen as benchmarks [29]. These

. umts were chosen because nearly every general purpose m1croprocessor has ﬂoat-

ing po1nt hardware. In addition to th1s ‘the dec1s1on of whether or not to fully
p1pel1ne a un1t (which affects the frequency at which the unit is clocked) often '
comes up in the des1gn of ﬂoat1ng point hardware Generatmg several compari-

son polnts for evaluatlon requ1red the creation of mult1ple versions of each unit,
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pipelined to varying degrees'. In order to createv these benchmarks, all flip—ﬂOps:
within the behavioral Verilog representation of these units were removed, creating |
purely combmatlonal versions of each log1c block These comb1nat10nal logic

- blocks were then synthes1zed to LSI 10k standard cells us1ng Synopsys Design
Compller and te- t1med using the automatlc plpellnmg functlonallty w1th1n the .
synthesis tool cha1n Th1s process y1elded 2 stage, 4 stage, and 8 stage plpellned
_ versions of each ongmal _c1rcu1t.» The attnbutes of each benchmark- c1rcu1t are
- shown in Table 4.1. The_ clock periods shown in this table were obtained by
taking the measured critical path delayvfor each8 stage design, and doubling that
- value successively as the number,of pipeline stages is halved. While it is unlikely
that theactual critical path delay would double When,the number of stages is
halved, the premise of this study Was to consider a system where in the nominal
case a functional unit is fully pipelined (into 8 stages in this case) and to explore
how makmg the unit not fully p1pel1ned affected rel1ab111ty The last column of
‘Table 4 1 reports the area percentage in the context of drain reglons vulnerable
~ to particles strikes. Usmg the evaluat1on-framework and methodology described
~in Chapter 3, statistical fault injection was performed on each benchmark, with

100,000 par_ticle strikes being 'simulated' in each case. .

In order to properly compare the effects of p1pehne depth on soft error rates,
* the error rates of comblnatlonal logic and latches are evaluated separately The
: reason this is done is because the soft error rates are dependent on both area-
and deratmg factor. For the comb1nat10nal logic case, it is suﬁic1ent to only

look at derating as the overall area of gates stays roughly the same across all
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’ [ Benchmark | Clock Period [ ﬂip;ﬂops [ %FFarea |

fpadd_comb 3040 104 1.1% |
fpadd_2stg 1520 419 | - 40% |
fpadd 4stg | 760 1123 | 99% |
[fpadd 8stg | 380 2463 18.5%
fpmul_comb | .- 3120 83 | 03%

fpmul 2stg 1560 | 389 1.5%
fpmul_dstg 780 | 2269 | 8.1%
fpmul_Sstg 390 | 3598 | 12.1%

Table 4.1: Description of Benchmarks Used for Pipeline Depth Study. |

pipeline conﬁgurations. In the latch case, both the area and derating factors'
- change siglliﬁcantly with pipeline depth, meaning both must be considered to

compare error rates.

- Combinational Lo‘gic Soft Error Rates

The results of statistical fault injection into the ﬂoating.point adder and multiplier
circuits are shown.in Figures 4.1 and 4.2, respectively. In 'ea_ch ﬁgure,‘the X-axis
renresents the different pipeline configurations studiéd for each circuit, while the‘
stacked bars on the y-axis fepfesent the. frac‘t‘i‘on of injected faults that renulted in
a particula‘rbfault outcome. A description of each fault outcome 1s shown in Table
42 F rorn both ﬁgureé, i'tris clear that a significant émount of injected faults nener

manifest themselves as errors due to either logical or timing window masking. |

For the 'addér and rnultiplier, 64 and 53 percent of injected faults fail into
the,LMv outcome in the combinational‘casve‘, respéctiVely, Which is the scenario -

- where the SET is logically masked before readhing a ﬂip—ﬂ'opbinput. As expectéd,
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| Outcome | Description
LSERR : SET corrupts primary output flip-flop
LSTWM SET reaches primary output flip-flop, but is logically masked

ISLER | SET corrupts-intermediate flip-flop, error propagates to primary output

ISLLM SET corrupts intermediate flip-flop, but error is logically masked

ISTWM SET reaches intermediate flip-flop, but is timing window masked

LM SET is logically masked before reaching flip-flop

Table 4.2: Possible Outcomes for Combinational Logic Transient Fault Injection.
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plpeline conflguration

" LSERR
ELSTWM
| ISLER
B ISUM
R ISTWM

‘mwm

fraction of faults injected

Figure 4.1: FP Adder Combinational Logic Fault Injection Breakdown.

the number of faults resulting in the LM outcome decreases as both circuits are
pipelined into a larger number of stages. This decrease can be attributed to the fact
that as pipeline depth increases a SET needs to propagaté through fewer levels

of logic before reaching a flip-flop, meaning that it is less likely to be logically
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Figure 4.2: FP Multiplier Combinational Logic F ault Injection Breakdown.

masked before this happens. Correspondingly, there is an increase in ISLLM and

ISLER cases, where a SET ends up corrupting at least one intermediate flip-flop,

across the pipelined configurations.

The logic derating, defined as probability a particle strike on a combinational

logic gate will cause the unit to compute erroneous results, is plotted in Figure

4.3. This quantity is calculated by dividing the number of faults falling into the

ISLER and LSERR cases by the subset of faults injected into combinational logic

gates. The derating factors presented in these plots represent the effects of both

logical and timing-window masking.

As was stated previouSly, logical masking is an effect that should be solely
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' Figure 4.3: Measured Overall Logic Derating of Floating Point Units.

dependent on the function computed by a particular circuit, and therefore-invéri ant
across all pipelined conﬁgurations. The lvogical deraﬁng, defined for our study as .
'vthé pfobability that an inj ected fault will not be lo gically masked, can be measured |

experimentally .as showh in Equation 4.2.

f | LSTWM + LSERR + ISLER + ISTWM * ror-rlSLER
logical derating = : ISLER + ISLIM

faults injected o
o (4.2)
~In additibn to accounting for cases where SETs logically propagate to a pri-

* mary output (ISLER, LSERR, LSTWM), this equation also accounts for cases
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Figure 4.4: Measured Logical Derating of Floating Point Units.

where faults would have logically propagated to outputs but end up being tirﬁing
window masked. The measured logical derating for both floating point circuits
are shown in Figure 4.4.

Looking across the different pipeline depths, the measured logical derating is
relatively stable, remaining at roughly 30 and 40% for the adder and multiplier,

respectively.

i erating LSERR + ISLLM + ISLER
g & = TSTWM + LSERR + ISTWM + ISLLM + ISLER

(4.3)
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A significant amount of timing window masking is also occurring in both
circuits. The timing defating, defined here as the probability that a SET eventually
results in a bit flip, can be measured experimentally as shown in Equation4.3. The
equation shown is simply the ratio of bit flips that occur to the number of outcomes
where a SET propagates to the input of a ﬂip—ﬂop. To separate timing window
masking from logical masking, cases where a bit flip occurs and is later logically
masked (ISLLM) are included in this calculation. The measured timing derating
is plotted for both functional units in Figure 4.5. As expected, the probability
of at least one bit flip occurring as the results of a SET increases with pipeline
depth. It should also be noted that the increase in timing derating observed in
Figure 4.5 is not varying linearly with clock period, as predicted by the analytical
expression shown in Equation 4.1. The second order effect responsible for this
nonlinear variation will be discussed in Section 4.4.

Collectively, the plots shown in Figures 4.3, 4.4, and 4.5, confirm the previ-
ously developed intuition regarding how the combinational logic soft error rate
should vary with pipeline depth. Figure 4.3 shows that the error rate dbes indeed
increase, while the combination of Figures 4.4 and 4.5 show that the increase in
error rate is due to a decrease in fhe amount of timing window masking going on

in the more aggressively pipelined versions of each circuit. -

Latch Soft Error Rates

In addition to looking at the effects of particle strikes in combinational logic,

another experiment was performed to understand how latch soft error rates scaled
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Figure 4.5: Measured Timing ‘Derating of Floating Point Un'its. -

with plpellne depth In this expenment 100 ,000 faults were aga1n 1nJ ected in each
- case, but every fault was injected into latch storage Because the area vulnerable
to partlcle strlkes increases with the number of plpellne stages this analys1s
| cons1ders the product of area and derating in order to accurately compare €rror
rates. ‘This is in contrast to the-prev1ous analys1s shown for combinational logic, |
‘whlch only cons1dered derat1ng 7 “ _ |
Flgures 4 6 and 4 7 show the outcome ‘breakdown of fault 1nJect10n on the’
3 adder and multlpher respectlvely The X-axis 1n each ﬁgure represents the dlffer-
ent plpehne conﬁguratlons studled, whlle the stacked bars on the y-axis represent

the fraction cf injected faultsresulting ina particular cutcome; The FFPO and
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Figure 4.6: FP Adder Latch Fault Injection Breakdown.

FFERR outcomes represent errors, or cases where an injected fault ultimately
results in the wrong value computed at the primary 6utput of the circuit. For
the combinational cases 100% of the faults injected result in the FFPO outcome,
as the only flip-flops presént in these circuits are at the primary outputs. One
distinct difference between the breakdowns presented in Figures 4.6 and 4.7 and
_the charts previously shown for combinational logic fault injection is that there
is significantly less timing window masking occurring. Recalling the discussion
from the fault model presented in Chapter 3, the FFTWM outcome only occurs
when a fault is injected to a flip-flop sﬁﬂiciently late in the clock cycle such that

the erroneous value does not reach a downstream flip-flop by the end of the clock
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Figure 4.7: FP Multiplier Latch Fault Injection Breakdown.

cycle. In contrast to a SET, a fault injected directly into a flip-flop can be vcon-
ceptually thought of as a stable value. Because of this, it siéniﬁcantly less likely
that the erroneous value that propagates as a result of a direct strike on a flip-flop
will be timing window masked. |

In Figure 4.8, the dverall latch error rates are plotted for both floating point
units across all considered pipeline conﬁgurations. This error rate was rheasured
experimentally by using the formula shown in Equation 4.4. For this calculation,

“all area values used are normalized to the combinational case (where the only
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latches present in the circuit are for the primary outputs). -

FFPO + FFERR
faults injected -

. labtch,c'rror, raté = (normalized aréa)‘ * _ (»4.4)
- Lookiﬁg at th‘i's’ p>lot; it is cle‘éf that tﬁc soft eno{ rétc;s (specifically for "t_h'e
o muitiplier'unit) mdré thén double 'when the pipéiine depth is incrc;ased bya factorv.' )
of 2. ‘The adder circuit has results similar to‘what was predi’(:ted by the .p'reviou'sl'y
| devel‘(‘)p'ed iﬂtuition, haVihg‘ é, roughiy 2X increase gding from C§mbinatibnal to
tWo;:two to ‘fou‘r,' and four to elght pipelirie stages. In cbntrast, there is a 4X
increas¢ obs_erve_d in the measure latch soft error ‘rvatc' go'ing from Rthe two stage
" to four ,Stagé'éasés. This ‘u,ne'xpec‘ted grthh 1n the obéerved soft error fafé can
ﬁiainly be att‘ributed‘ toa léirger than expééted growth in latch _éoun_t,"as canbe
observed in Table 4.1. . |
The latch deratihg, shown‘ as the rightinost part of Equation 4.4, is pld_ttéd
in Figure 4.9. Both derating factors are 1 in the combinational casé because all
flip-flops belong to primiiry outputs, meaning that no masking éan’ochr. The
derating values plotted in this figure again depeﬁd on logical and tiimingr window N
masking, but in contrast to the combinatvionél'logic' experiment, 1logi¢al :fnasking
is the ddrri‘inant phehonﬂené. The “dcb)'minancve of logical _r'nasidng is evident in
‘ Figure 49 'by the é,pproximatevequivalen_ce‘ of the measufed. derating values for

‘the 2, 4, and 8.stage pipeline cases.
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Figﬁre 4.8: Meesur,ed Normalized Latch Soft Erfor Rate.
Relative Contribution of Latch and Logic Strikes -

: Combined SER = (logic area * legic derating) + (latchvarea . latch derating)
: | o | ' (4.5) B

Because the ﬂoat‘invg-.point unlts evaluated in this study are vulhe,rable to -

. particle strikes in_,lateh vstoravge as well ?S combinational legic gatee, it is ‘als‘o .
o interesting to 'leek at the reletive centributioh of each tybe ef fault to the overall -
failure rate. The expression di‘splayed in Eqﬁaﬁon 4.5 was used to ealculate the ‘
~overall error rate. | |

The area values used for this calculation are all normalized to the combined
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Figure 4.9: Measured Derating for Latch Strikes.

area of the baseline (combinational case). The éombined error rate (with stacked
bars representing the contribution of latch and logic error rates) is shown for the
floating point adder in Figure 4.10 and for the multiplier in Figure 4.11. From
these figures it is clear that particle strikes in combinational logic gates as well as
flip-flops contribute significantly to the overall numi)er of failures observed, and
that both sources need to be dealt ‘with in order to reduce the overall error rate.
This is particularly true for the deeper pipeline depths, where flip-flops make up
a larger part of the vulnerable area. In particular, the contribution of the latch soft
error rate to the overall error rate rises significantly faster for the floating point

adder. The reason for this dramatic increase can be explained by the rightmost
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Figure 4.10: Combined Soft Error Rate for F loating Point Adder.

column of Table 4.1. There are less> gates overall in the floating point adder, so

flip-flops take up significantly more area.

43 | Challengihg the Conventional Intuition

While the results presented in the previous section do validate the previously
developed intuition, the experiments conducted do nbt represent a fair comparison
between the different pipeline configurations for each circuit. The reason that
these experiments are not valid is they only represent of comparison of error

rates. As was discussed in Chapter 2, system reliability is bommonly quantified
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Figure 4.11: Combined Soft Error Rate for Floating Point Multiplier.

in terms of a error rate A (and its reciprocal MTTF). Directly comparing error
rates of two systems is only valid when both systems take the same amount of time
to complete a task. Ultimately, the impact of errors on a system is represented
by the product of the failure rate and the time time system is running, as shown

by equation 4.6. |

errors observed = A * time (4.6)

Despite the fact that MTTF is generally accepted as a standard reliability

metric, it is not adequate for comparisons when two systems have different failure
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rates and running times.

A Hypothetical Example

To illustrate how comparing error rates directly does not always result in a fair
comparison, consider the two functional units shown in Table 4.3. This table
shows two logic blocks which are identical in functiqnality. Additionally, Unit A
is purely combinational, while‘Unit B is pipelined into 2 stages. The clock periods
for Unit A and Unit B are set to 1 and 0.5 time units, respectively. Additionally,
both units have the same amount of area devoted to logic, while Unit B has
the twice vthe latch area. Because the two units are functionally the same, it is
valid to make the assumption that approximately the same fraction of faults are
logically masked by each circuit. Given this, the analytical expression for timing
derating, shown in Equation 4.1 can be leveraged, allowing the combinational
logic soft error rate to be approximated in this example as being proportional to
~ the reciprocal.of the clock period. In a similar manner, the latch error rate should

be proportional to the latch area.

Scenarios Where Rate Comparison is not Appropriate

In the context of combinational logic SER, these assumptions imply that the
error rate should be dependent only on the timing component of the derating
factor. From this, it follows that the error rate of Unit B should be twice that

of Unit A, due to its shorter clock period. If error rates are used as a direct
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SR [UnitA | UnitB |

Pipestages 1 2
- Clock Period o1 0.5
. Logic Area 1 1
Latch Area & 2
Logic Error Rate 1 2
Latch Error Rate 1 2

‘ Table 4.3: Hypothetical Functional Unit Descriptions. All values shown in terms
~of arbitrary units. - S o o ,

"compari‘son here, the conclusion would be tha_t .Uhit A i§ more reliable,vsince its ‘

'ldnger ciock period allows mo'rg particle Strikeé to be timing-WindoW masked. .
Consider the scenarios shown in Figure 4.12. This figure is designed to illustrate
the ways that each unit described in .Tablé 4.3 could’complefe four arbitrary units
of work over time. The top pdftidn of this diagram depicts hoW these four units ,
- of work woﬁld be compléted over timé by Unit A The lower portions of this
.ﬁgufe depict two different ways Unit B could complete the same amount of Work.

These‘twb cases represent sce_n‘arios Wheré. Unit B is not and is the execution
bottleneck, respectiQely. In ali caseS, the x;axié repfesénts time (in arbitrary time
- units), while the‘y-axis ‘(fb.r each of the thiee_ scenaﬁds) represents the status of a
particular pipe;stége. Colored and blank regions répfeSept pcriods of tir‘névwhere ‘
a particular pipe-stage is computing or idie, respe¢tivély.‘ : | |
| In the case‘Where Ugit A i's"pro}cesvsing this v_vork, éll four time units are o
heeded,' so the yl-b pipe-stage in that particular circuit is alwéys bﬁsy. In this case -
the expression 1*4T (it takes four time units for unif A to complete the work

~ shown in Figure 4.12, at an error rate of 1) represents the total number of errors
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Figure 4.12: Timing Diagram for Instruction Processing.

that would be observed for Unit A. In contrast to this, consider the scenario
shown in middle of Figure 4.12. In the case where Unit B is not the performance
 bottleneck units of work will arrive for processing at the same rate as the scenario
shown for Unit A. In this case, despite the fact that it takes the same amount
of time to complete thé task on both units, Unit B will be idle half of the time.
This is illustrated in Figure 4.12 by the unshaded regions in the timing diagram.
Because pérticle strikes are uniformly distributed across time, only half of the
strikes on Unit B will hit pipe-stages computiﬁg valid.results. A similar situation
occurs in the third scenario depicted, where Unit B is the system bottleneck, and
units of work arrive and are processed aé fast as possible. In both of these cases,
the expression 2*2T represents the number of errors that would be obsérved (it

takes two time units to complete the work, at an error rate of 2). To summarize,
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' when only rates are cdmpared, Unit A will be chosen as‘ t he more reliable design,
asit flaé ah érror _rétc' of 1, while Unit B has an errof rate of 2. "In”contravsf, when .
the amdunt 6f errorsv'(v)l.)serﬂ(ed is used as a.comparison metric, 4T errors will be

observed in both cases implying that Unit A and Unit B aie equiValent ih terms ( )f ,
- reliability. A similar situ"ation arises in the ¢ontext of latch SER The»irblcvrelase: in
erfor ,fa'te due to the érea increas»e Sﬂould'alSo be offset ‘by the shortened amount

of time it takes to complete the assigned work.

Using the Right Metric
As was stated previously, MTTF is a widely used metric for reliability. It is
| typically'é,alculated as the ratio | o
total time

M number of errors encountered ‘ (4 ),

which simplifies to

L total time 1 - B '

. MTTF = "m =5 | o 4.8)

Cpmparisons using this rﬁetric have the implicit assumptioﬁ that the total time

- required to pefform cbmputatidh in each System is identical. This is not the case
| fo; our functional unit comparison, me‘aning‘thét MTTF is nét the correct metric

to use.

Weaver et. al more recently proposed an altcmative'reliébility metric, mean
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instructions to failure (MITF) [73]. MITF is calculated as the ratio

instructions committed

MITF = 4.9
number of errors encountered (4.9)
which simplifies to
* 1 time * fi PC * fr
MITF — UWPC * total time * frequency _ Uw equency (4.10)

A * total time A

The original work proposihg MITF expressed the metriclin terms of instruc-
tions per cycle (IPC), as the work was proposed in the context of considering the
effects of soft errors in microprocessor. In the context of this discussion MITF
is expressed in ter@s of units of work per Cycle (UWPC), where a unit of work
is described as the amount of work done in a single pipe-stage of Unit A or B.
The implicit assumption made by this metric is that the default unit of work (an
“instruction” in [73]) is consistent across all systems being compared. In our
~ comparison, the unit of work is not consistent. One unit of work for Unit A is
equivalent to two units of work for Unit B.

In order to accurately compare system with inconsistent units of work, Reis et.
al proposed a more generalized metric, mean work to failure (MWTF) [53]. This
~ metric was originally proposed to provide fair comparisons of reliability across

dissimilar architectures, which fni'ght have inconsistently defined units of work.
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MWTTF is defined as the ratio

amount of work completed

MWTF = number of errors encountered @.11)
which simplifies to
f work 1
MWTF — amount of work completed 4.12)

A * execution time

This metric takes a more abstract definition of what constitutes a unit of work.
It also factors in the difference in execution time for different systems. For this
metric, typically something larger (like a transaction or an entire benchmark) is
used as the basis for a unit of work. This broader definition allows for consistency
across systems that may be very different. For the purposes of our comparison,
it is best to define a unit of work, as one item processed by Unit A. This means
that (looking at the diagrams in 4.12 and 4.12) that both Unit A and Unit B are
doing 4 units of work (even though Unit B completes the work in 8 clock cycles

rather than 4). Applying this metric, the MWTF for Unit A would be

1
A*4T T *.13)
~ and MWTTF for Unit B would be
4 1
2% \*2T T (4‘14),

Which is the result we expected from the discussion in Section 4.3.
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Revised Intuition

The application of the appropriate metric, MWTF, to evaluate the effects of
pipelining a functional unit make it clear that to a first order an increase in pipeline
depth should have no effect on the SER. Several experiments were conducted to

validate this revised intuition.

4.4 Fair Analysis

Combinational Logic SER

“In order to further explore the revised intuition developed in the previous section,
the resultsv from the experiments described in Section 4.2 were adjusted to account
for the execution time differences that would exist between pipeline configura-
tions. The adjusted results are shown in Figure 4.13. From this figure it is clear
that the results of this experiment do not match our revised intuition. Instead
of staying constant, the measured derating actually decreases across pipelining
conﬁgurétions, when adjusted for execution time. The propagation of SETs to
multiple flip-flops along unbalanced paths is responsible for this counterintuitive
result, and is only observable when the effects of timing window masking are

modeled explicitly.
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Figure 4.13: Plot of Logic Derating Adjusted for Execution Time.

SET Fanout Effects

A diagram describing the second order effect responsible for the counterintuitive
results in Figure 4.13 is shown in VFigure 4.14. In the scenario depicted in Fig-
ure 4.14, transient pulses fan out from a single combinational logic gate to two
downstream flip-flops. In this case, the path length and delay from the gate to
each flip-flop is different. In this situation, the absolute window of time where
at least one flip-flop could be corrupted is lengthened. This new window of time
was defined as the effective SET width. This quantity is illustrated in Figure 4.14

as the superposition of the SET's arriving at each flip-flop. The equation shown in
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effective SET widfh

Figure 4.14: Illustration of SET Fanning out to Multiple Flip-flops.

Equation 4.1 to characterize timing derating can be written as shown in Equation

4.15 to account for the impact of this second order effect.

Tderatihg. -

effective SET width “W(415)

The average effective SET width observed duriﬁg several fault injection exper-
iments was vméasured and plotted for different pipeline c_onﬁgtiraﬁons in Figure
4.15. Aé_Was discussed in Chapter 3, the average transient width of an injected
SET is 100 ps. From this figure it is clear that at the shallower pipeline depths,
the SET fanout effect is Signiﬁcantly more pronounced. The eﬁ'cct is more pro-

nounced in these pipeline configurations because there is the same amount of
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Figure 4.15: Experimental Measurement of Effective SET Width.

combinational logic, but fewer flip-flops, implying that a transient will have to
propagate through more levels of logic (and thus fanout further) before reaching
a flip-flop.

If the SET fanout phenomena mentioned previously is more pronounced at
shallower pipeline depths, one would also expect that instances of multiple bit.
flips (cases where the .injection of a SET results in multiple flip-flops capturing
wrong values) would also be increased. In Figure 4.16, histograms displaying
the number of bit flips caused by a single SET are shown for both the floating
point multiplier and adder. These histogréms show that the nuﬁlber of multiple

bit flips does indeed rise proportionally with the effective SET width. The bar -
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corresponding to the 2 stage floating point multiplier represents an interesting
case in Figure 4.16. Intuitively, this circuit would be expected‘ to have fewer
multiple bit flips than the combinational case, as SETs only need to propagate
through half the levels of logic to reach a flip-flop (and thus have less opportunity
to fanout). Surprisingly, the histogram in Figure 4.16 actually shows an increase
in the amount of multiple bit flips for the 2 stage case. This unexpected behavior is
an artifact of how the circuit was automatically pipelined by the Synopsys Design
Compiler tool chain. While the combinational multiplier has 83 flip-flops at the
outputs of the circuit, the 2 stage pipeline version has 306 additional flip-flops
separating the two pipelined stages. This means that in the combinational case,
many SETs are fanning out in the middle of the circuit and then fanning back
in as they propagate to the outputs, while in the in two stage version only the
fanhing out is occurring.

It should also be noted that the SET fanout phenomena discussed in this work
was also discovered concurrently by [24]'. Their work was performed in the
context of selecting gates for hardening. In this study each gate was assigned a
window determined through static timing analysis, which represented the period
during the clock cycle where a particle strike could occur and arrive at the input of
a downstream flip-flop during the latching window. In this work the observatioﬂ
was made that some gates had significantly larger windows than others because
of unbalanced fanout to flip-flops along multiple paths.

Despite the fact that this study was conducted entirely in the context of the

1The results in this chapter were first collected in 2007.
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Figure 4.16: Histogram of Number of Bits Flipped by a SET.

65nm technology generation, which is what the circuit level modeling was based
on, the SET phenomena uncovered in this study should persist even with tech-
nology scaling. The effective SET widfh term in Equation 4.15 will continue to
dominate the timiﬂg derating with scaling, because SET width will continue to

increase as feature sizes continue to shrink.

Combined SER

The combined SER adjusted for execution time (essentially the quantity expressed

by Equation 4.6) is plotted in Figure 4.17. The execution times are normalized to
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the combinational case. Because the majority of vulnerable area in all comparison
points shown can be attributed to combinational logic gates, the effects described
in the previous section have a profound effect on the scaling of the soft error
rate. This is especially true for the shallower pipeline depths, where not only a
larger fraction of area can be attributed to logic, but also SET fanout affects are
reducing the amount of timing window masking. For the deeper pipeline depths,
increasing latch area means the latch soft error rate has a larger influence on the

overall error rate observed.
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4.5 Conclusion

In this chapter, the effect of pipelining logic, commonly cited as a reason the
logic soft error prob.lem is being exacerbated, was explored. In this exploration,
the fallacy in this line of thinking (the use of MTTF as a comparison metric)
was uncovered, and the correct metric to use, MWTF, was identified. The newer
MWTF metric was used to refine the previously cited conventional intuition to
having the soft error vulnerability of a circuit be independent of pipeline depth,
rather than directly proportional to it. In validating this revised intuition, a second
order effect causing adjusted failure rates to decrease at deeper pipeline depths
was uncovered. The use of the correct comparison metric (MWTF), along with
this second order effect, SET fanout, mean that deeper pipelines are in many
cases more resilient that their shallower counterparts, reversing the previously

held intuition.
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Chapter 5

‘Choosing the Right Strategy for

P-rotection

5.1 Introduction

Up until this point, this dissertation has focused on refining both the intuition
~ and the methodology used to study transient faults in logic. This chapter goes
in a more practical direction, identifying appropriate mitigation techniques for a
| given logic block. In this study, taxonomies are developed to classify techniques
according to the level and means by which faults are handled, and to classify
logic blocks according to functionality and gate level structure. Related to this
logic block classification, a case study is performed, in which the soft error
vuhlerability of a z80 parallel deéoder is characterized in detail. This case study

serves the purpose of illustrating the structure of the resulting artifacts produced by



69

transient faults at the output of a logic block. The experimental results presented
in this study show that these artifacts cannot always be modeled as SEUs; whic.h
is an assumption commonly made by studies on reliability performed at higher
levels of abstraction [43] [12][49]. Finally, this chapter concludes by qualitatively
determining which class of initigation technique is most appropriate for each

different type of logic block.

5.2 Classification of Protection Techniques

Macro-Level Replication Techniques

Mitigation techniques in this category generally involve replicating some signif-
icantly large portion of hardware (or in some cases software) either spatially or
temporally, and comparing the results of computation in order to detect the pres-
ence of faults. In some cases, this replication can be global, at the system level
[8], processor level [62][6][7], or at the thread level [34]. In other cases, replica-
tion can occur only on a functional unit level[48], or even in software[52]. While
techniques in this category typically exhibit a significant amount of error toler-
ance due to the large amount of hardware (or software) replicated, the overhead
incurred in terms of power, area, and performance are often large. These high
costs (specifically for the global subset of this category) have inspired many other
research proposals with the expressed goél of achieving some form of replication,
while reducing the overheads incurred [63][66][16][7]. The ideas proposed in

this thesis are primarily intended for commodity computer systems, where the
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costs of techniques in this category would be prohibitive.

Property Based Checking Techniques

In contrast to techniques which provide error tolerance through macro-level repli-
cation, property checking approaches detect and/or correct errors by verifying a
chosen property of either the result computed (in the case of a logic block) or a
value held in storage (in the case of a memory cell). In some cases whether or
. not the property is verified allows an absolute conclusion to be drawn on whether
or not an error occurred. Information redundancy techniques used for storage |
fall into this category, as well és code-based checking approaches used for logic
blocks [3][72]. Additionally, techniqﬁes which check correctness [51][50][60].
also fall into this category. In other cases, a property check failing only indicates
a guess that an error occurred, meaning that there is a potential for performance-
degrading false positives. Symptom-based approaches [71]{43] fali into this

éategory.

Implementation-Level Techniques

Mitigation techniques in this category generally involve manipulating individual
gates and/or transistors in order to improve soft error tolerance. As a consequence
of this, these techniques often are not integrated into a design until late in the
development process. A pbsitive aspect of this situation is that in many ways

less design effort may be required, because a réliability solutions in this category
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_ vtyr‘)ically do not impact'the functional verification ‘of a design (as is commonly :
-the case with technlques in the ﬁrst two categor1es) Because techmques in th1s |
‘_category generally man1pulate low level components, some effort is needed to
only modlfy a subset of components in order to ensure that other design goals v'
- are not sacriﬁced for the sake of rellabllity. For this reason, techmques.ln this

s category are often coupled with h‘euristics’ in order to make these ‘decisions; "

Techmques in this category can prov1de reliability by man1pulat1ng compo— o

y'nents in several ways. Many. of the early 1mplementat10n—level technlques pro-

'v1ded re11ab111ty by re31zmg 1nd1v1dual trans1stors within a c1rcu1t 1ncreas1ng' i

the drain capac1tance (and thus minimum amount of charge (Q).rit) needed to be A

‘ generated by a striking partlclein order to 1nduce a fault)[81]. This subset of tech-
' 'n1ques can be apphed to translstors inside of comblnatlonal logic gates as well as | |
in storage cells Another subset of techmques also exists in wh1ch the presence
of trans1ent activity is detected at the input of sequentlal elements [14'][3 8][3 l].’
‘Many of thesetechniques were originally proposed to enable' yarying degrees of
timing speculation, \yhere logic circ'uits are clocked at a frequency higher than .
' what their critical paths would safely: allow. These teChniqujes‘ are useful for SET -
detection‘because timing violations _manifest themselves in the same manner' as.
- SETs arriv1ng at flip- ﬂop inputs. | ,
Ina correctly des1gned synchronous logic block, the data input lines of the :
: ﬂlpfﬂops at__ the output of the c1rcu1t should have stable values at the end ofa -
clock cycle __(wh_en the rising edge occurs). V'In the case of a timing violation, when |

the rising clock edge occurs, a data input line still might not have settled to its
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final value and may continue to change after the rising edge. Given this, the most
straightforward way to detect a timing violation is to check the value of a data
input line during the period of time after the rising edge of the clock, but before
the work from the previous pipe stage can propagate through the circuit. If there
is no change in the value of the data input line during this period, then the value
was stable and no timing violation occurred. However, if there was a detected
change, then there is a timing violation.

SETs manifest themselves in a similar manner. Recall from the discussion
in Chapter 2 that a SET flips the value stored by a downstream flip-flop when an
erroneous value is present at the data input line of the ﬂip-ﬂop during the latching
window, or the period around the. rising edge of the clock. By monitoring the data
input to a flip-flop during and after the latching window, the presence of SETs
can also be detected.

Techniques in each category (or combinations of categories) can be used to
represent the entire possible solution space of a fault tolerant computer system. At
one extreme end, a macro-level approach similar to the NonStop system provides
fault tolerance by replicating every component [8]. At the other end, property-
based and implementation level techniques can be combined in order to create a

microprocessor that is fault tolerant with a minimum amount of replicaﬁon.
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5.3 Classification of Logic Blocks
. B‘esides classifying mitigation techniques,“it is also useful to categorize 'logic-"- '
: dor’ninated structures within a sySterrl according to structure and functionality'
With respect to these attributes, logic blocks are categorlzed as e1ther datapath
blocks hybr1d blocks, or control blocks Each category has distinct deﬁmng
- characterlstlcs with regard to how trans1ent faults propagate. These characterlst1cs v

‘ w1ll be considered in Section 54 when different strategles for protection are

discussed.

: Datapath' Blocks |

b_ ‘The Datapath category is prlmar1ly intended to include logic blocks w1th min-
imal control logic and 51mple funct1onal1ty In the context of a convent1onal »
mlcroprocessor the most prominent locat10n of datapath logic would be in the
execute stage of the processor pipeline, where ALUs perform'simple arithmetic
and logical operations' on instruction source operands. In addition to the eXecute
vstage, similar logic structures typicallyare spread throughout a systerrl. In many
cases these logic blocks are tr1v1al (a single level of gates can be used to perform
a logic operation); and regular in structure."' This implies that logic blocks of
this type would not be very arr.lenable to logical masking of transient faults. In |

‘ general, 'datapath blocksblocks are lmportant to. protect, as these logic blocks

| are responsible for generating values used to drive control and memory data flow,

either directly or indirectly via register file communication.
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Hybrid Blocks
*‘This category is meant to include logic blocks whichcontain signiﬁcant'amounts
- of both datapath and control logic. F loating point units typically' have a large
’- ‘amount of datapath '10gic‘ to‘calculate the 'fractional portion of a floating point
result Also a ﬂoating p01nt unit is generally capable of performing the required :
'computation for multiple instructions, usually in both s1ngle and double prec1s1on
modes. As. an example the ﬂoating pomt adder studied in Chapter 4 can perform
s1ng_le and double preclsion addltlon,. subtractlon, and comparlson, as well as
conversions,toand from integers [29]7; A unit like the one j,ust described needs a
signiﬁcant amount of control logic in order to choose the appropriate functionality :
to utilize 1n order to execute an instruction For blocks in this category, transient
faults in datapath components can propagate in a manner s1m11ar to the scenarios
descrlbed for the prev1ous category, while strikes in control logic can result in
more serlous erTors, as the wrong function can be computed ent1rely F ortunately, :
control log1c tends to be less regular in structure than datapath logic, 1mply1ng

that trans1ent faults in this case are more likely to be logically masked.

Control Blocks
This final category includes logic blocks containing onlycontrol logic. This
category is meant for units that compute state that is only used to control other

: unlts ‘and not for the d1rect computation of values stored in the reglster ﬁle-~

or memory. The most prominent examples of blocks falling into this category
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would be _instruction decoders, finite state machine logic, andon-chip structures
: for environment monitoring (such as a power management unit)." Units in this
'category w1ll typically logrcally mask a s1gn1ﬁcant amount of transient faults but
the cases where faults are not logically masked can potent1ally have catastrophrc

v effects on the rest of the vsystem. For ‘example, a hypothetical scenario could
| "'occur wh‘ere a transient fault during instruction decode could invert the condition
used to determ1ne whether a branch instruction 1s to be taken (a branch 1f equal
could be decoded as a branch 1f not equal) In this scenario, control ﬂow would
'be forced down the wrong. path In some cases the end effect of this s1tuat1on
‘ could be severe (a silent data corruption event) moderate (a crash), or benign (no

visible difference in execution, as studied by [69]).

Case Study; z80 Instruction Decoder

Inorderto betterunderstand how faults propagate through control blocks, a paral-
| lel instruction decoder was designed and then characterized in terms of soft error B
vulnerability. Decoder logic was chosen as a particular case to study because
: instruction decoders are primarily‘.compose_d of cornbinational logic and highly
i utilized. Also, recent work aimed at either modeling or mitigating faults within
decdders has not considercd.their gate level structure [12][49'] [28]. Architectures
featuring instructions with variable lengths are of particular interest, mainly be-
cause of the difficulties associated with decoding multiple instructions in parallel,
as noted by [40]. . | | - | o

The decoder 1mplemented for th1s work decodes z80 instructions. The 280
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[prefix byte], opcode, [displacement], [immediate data]
-OR- v
two prefix bytes, displacement, opcode

Figure 5.1: z80 Instruction Format. Adapted from [58].

architecture is commonly used for embedded micro-controllers, and is thus sub-
stantially simpler (in terms of ISA complexity) than architectures prevalent in the
high performance general purpose microprocessor design space. While z80 is
substantially simpler than x86, several commonalities do exist between the two
ISAs. First, both x86 and z80 have variable length instructions [40][57]. Second,
280 was originally designed to be binary compatible with the 8080 ISA, an pre-
decessor to x86 [57]. In addition to this, this decoder implementation is inspired
by industry published descriptions of parallel decoder designs[41], mapping a
bsingle z80 instruction to potentially many RISC operations. For these reasons, I
am confident that the decoder implemented for this study has a similar functional
structure (and thus similar transient fault propagation characteristics) to a parallel
x86 instruction decoder within a high performance MiCroprocessor.

Instructions in the z80 instruction set can be between one and four bytes in
length, and and are formatted in one of the two forms shown in Figure 5.1. In the
case of the first form shown, the prefix byte, displacerhent byte, and immediate’

data field are optional depending on the instruction being represehted.
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Deco.der Des'i’gn:
A block d1agram of the parallel 280 decoder is shown in F1gure 5. 2 The decoder _
s capable of decod1ng up to three 280 1nstruct1ons per cycle and each 1nstruct10n
| can be translated into up to 12 RISC operat1ons The decoder is p1pe11ned into
-;3_ stages: speculatlve length decode, opcode 1dent1ﬁcat1on, and translation. The ‘
. boundaries'between each of -the stages are denoted by the dotted lines in Figure
| 5.2, Decod1ng multlple 1nstruct10ns in parallel can be dlﬂicult for ISAs featunng"i
) variable 1nstructlon lengths The most dlﬂicult aspect of parallel decode in these
' cases is 1dent1fy1ng the start of each new 1nstruct10n follow1ng the ﬁrstlnstructlon,
| 'be'caus'e the starting point of each instruction is dependent on the length of its
, predecessors For example the decoderlmplementedlnthls study takes fourbytes‘ _
‘ofinput, and is capable of decodlng up to3 mstructlons in parallel While the first
instruction can only start at the beginning of the first byte, the second 1nstructlon
can start at the second byte the third byte or the fourth byte depending on the
whether the first instruction is one, two, or three bytes in length, respectively. o
: The third 1nstructlon can e1ther start at the beglnnlng of the thlrd byte (1n the
f case where both precedmg 1nstruct10ns are of length one) or at the begmmng
of the fourth byte (when one precedlng 1nstructlon is one byte, and the other is
two bytes in length) ThlS means that for three p0331ble 1nstructlon slots there
are six poss1ble startlng p01nts (one for the first instruction, three for the second-
1nstructlon and two for the third 1nstructlon) Enumeratlng all p0331ble startlng |
points for thls s1mple des1gn should make it clear that reahzmg wide parallel a

decoders can be extremely dlﬂicult especlally for more complex ISAs such as
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length opcode xlate
decode id single
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decode {engthl + length2
\H opcode xlate
) id single

Figure 5.2: z80 Decoder Block Diagram.

x86, where instructions can have a larger range of possible lengths.'

A naive approach for decoding variable length instructions in parallel would
be to speculatively perform all decoding taské from all possible starting positions
for each instruction slot, and then select the correct decoded ihstructions to used
based on the results of the first instruction (for the second slot), and the first
and second instruction (for the third slot). While this would be a valid solution -
to the problem, it would require a signiﬁcant amount of wasted computation,
- as six candidate instructions would be speculative decoded for just three slots
in the best case. To circumvent this overhead, conventional parallel deéoders

adopt a strategy where the starting point of each instruction slot is determined
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Figure 5.3: RISC Operation Format.
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first (a process denoted as length decoding), allowing'the other decoding tasks

to be performed ina non-speculativ'_e manner. Dividing decode up in the manner

described is advantageous in that the‘ only speculative logic needed is in the

length decode stage. It sh‘ould be noted that while there are six starting points for

780 instructions as discussed previously, in F igure 5.2 there are only four length

: deeeders present in the first stage of logic. The reason for this is that the results

of speculative length decode starting from the third and fourth bytes can beused

“ for instructions potentially in the second and third slots The hardware for length -

~ decoding is relat1vely s1mple (as there are only four pos51ble 1nstruct10n lengths)

and is thus an attractlve candldate for speculat10n

In the final two stages of decode opcodes are ﬁrst identified and then translated
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into RISC operations. In the design implemented for this study, a RISC operation
can have one of three forms depending on the nature of its source operands. The
 bit level format of each RISC operation form is shown in Figure 5.3. Each
operation is 39 bits in length, and classified as either RRR (both source operands
| come from registers), RRI (one register source operand, one immediate source
operand), or RI (a single immediate source operand). Inspired by the decoder
implementation described in [41], the translation logic for the first instruction
slot (labeled a§ xlate full in Figure 5.2) can translate any instruction, while the -
translate logic for the other two slots (denoted as xlate single) can only handle
z80 instructions which are translated into a single RISC operation. This means
that the ‘decoder can produce up to 14 RISC operations per cycle. The decoder
also includes three valid bits for reach instruction slot, as well as 14 valid bits for

each possible RISC operation produced.

Soft Error Characterization

In order to understand how transients propagate through the decoder, characteri-
~zation experiments were performed using the fault injection framework described |
in Chapter 3. In the first experiment, 30,000 faults were injected into combina-
tional logic gates exclusively. The results of this experiment are shown in Figure
5.4.

Each slice of the pie chart shown in this figure represents the fraction of in-
jected faults which result in a particular outcome. All of the possible outcomes

that can occur when a fault is injected into combinational logic are shown in
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Figure 5.4: z80 Logic Fault Outcome Breakdown.

Table 5.1. -Of all the fuults injected into combi‘nati:on'al logic gates, only 7.1 %
(representlng the combination of the ISLER and LSERR sllces) result in errors.
Probably the most 1nterest1ng attrlbute of this particular circuit is its Ioglcal mask-
1ng behav1or. Looklngrat Figure 54, 45 4 % of thevlnjected faults result in the
LM outcome. This result is partlcularly interesting when it is contrasted with
the small fractlon of faults resulting in the ISLLM outcome. This outcome only
- occurs 0.12 % of the time overall, or 18 % of the time when a SET flips at least

one bit (either the ISLER or ISLLM outcofue). ’

- The cause of this distinctly diffetent observed logical masking behavior stems
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,[Outcomel '> SR Descr1pt10n

. [ LSERR . SET corrupts primary output ﬂ1p-ﬂop .
|- LSTWM SET reaches primary output flip-flop, but is logically masked

ISLER | SET corrupts intermediate flip-flop, error propagates to primary output

ISLLM SET corrupts intermediate flip-flop, but error is logically masked

ISTWM | = SET reaches intermediate flip-flop, but is timing window masked

1M SET is loglcally masked before reachlng flip-flop

-Table 5.1: Poss1b1e Outcomes for Comb1nat10na1 Logic Trans1ent Fault InJectlon :

‘ from the ﬁmctlonal structure of the decoder. As stated prev1ous1y, the decoder

loglc is part1t10ned into 1ength decode opcode 1dent1ﬁcat10n and translate stages

| In th1s des1gn many outputs of each 1ntema1 stage d1rect1y 1nﬂuence the function- v‘
, a11ty of the succeedlng stage For example opcode identification is performed in
the second p1pe11ne stage by looking at the opcode byte (whose pos1tlon is deter-

.mmed by length decodmg) as well as the instruction length (not necessary, but _
used to narrow the space of candldate opcodes) Because of this 1mp1ementatlon
bit ﬂ1ps resultmg from partlcle str1kes in the length decode stage w111 likely result

in incorrect opcodes being identified, and thuslncorrect RISC operations being

‘generated at the output of the decoder. A similar 'situatj'on/occurs in the ‘transla-v

| tion stage. Any corruption in the opcode identifiers generated at the :output of the :
‘secondvstage is lbikelyftocause an error in translation. If the decoder was pipelined
. into a larger number of stages, thefr'aCtion of faults resulttngin ISLLM’outcomes
(where the fault is masked after flipping a state bit) observed should intuitively

increase. V.This is not the case in our design,vbecause the ranks of ﬂip-ﬂops yvere :

placed at coarse logical boundaries. The observed logica'l'de'rating» is 54%.
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Figure 5.5: z80 Error Origin.

In Figure 5.5, the errors observed dﬁring fault injection are broken down ac-
cording to the pipeline stage the fault originated in. Thé pie ch}art shown in this |
figure has 3 slicc{es”:- lcngfh (representing the length décode stage), opcode  id (rep-
resenting the opcode identiﬁcat_ion‘stage), and xlate (representing the translation
‘stage). Ffom this chart, it is cléar that the fnajoﬁfy of errors observéd origiriafe
in ‘the translation stage df the decddcr. This 1is the largest‘stage of thc pipeline in
_ terms of area, 50 staﬁstically a larger fraction of ‘faulrtsare iﬁjeéted'into its gates.
" Ahdther intefesting' ph‘énbménon explored in this case study was the sensitiv- -
ity of decoder output bits to particle strikes in cbrribinationéi logic. Oné of the

original stated motivations for this chapter wés'tq explore the choice made by
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jmany stud1es at higher abstractlon levels to always model the artifacts of partlcle |
| -‘ strlkes as SEUs This ch01ce has two 1mp11c1t assumptions first, all output bits
are equally likely to be corrupted, and second that only a s1ngle bit is corrupted _
‘atatime. ' . IR ,

In order to examine the va11d1ty of the ﬁrst assumption the deratlng per output ‘:~
bit, calculated by d1v1d1ng the number of times each output bit was corrupted ’
by the total number of faults 1nJected, was measured and dlsplayed in the scatter
plot shown in Figure 5 6 Each point in this plot represents the probability that a
partlcular output bit’s value will be 1ncorrect duetoa trans1ent fault. They- ax1s in
‘ﬁgure represents the deratlng per bitof each output while the X-axis is the number
assrgned to that particular node The netlist format used for the developed tool
. -chain ass1gns each 1nput gate ﬂip-ﬂop, and output within a circuit a un1que
‘ vnumber The range of output bits correspondlng to each RISC operation slot is -

vshown in Table 5.2. Looklng at th1s plot, it is clear that some output bits are

signiﬁcantly more likely to be corrupted than_others. o , | /

As was stated previously, the 1mplemented decoder design is capable of trans- '

) lat1ng the 1nstruction in the first slot 1nto upto 12 RISC operations and the instruc-

tions .mthe second and third slotsinto a single RISC operatlon. The majorlty of
the instructions 1n the trace used as input stimulus during in this experiment had
shOrt'translations,v which why the bits on the left hand side of the graph (which a
- _corre»spond .to the uanSIation RlSC operations for the first instruction slot)'and |
| the bits on the extreme right hand side of the graph (which correspond to RISC

operations'for the second and third instruction slot) have higher derating values.
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| Bit1 Number | “Description |
| 454 - 441 RISC operation valid b1ts '
- 493 -455. RISC operation 1
532-494 |  RISC operation 2 -
571 -533 RISC operation 3
610-572 |  RISC operation4 -
649 - 611 - RISC operation § ',
688 -650 | ~ RISC operation6
727 - 689  RISC operation 7
- 766-728 | = RISC operation 8 -
. 805-767 | - RISC operation 9
844 - 768 RISC operation 10
883 - 845 'RISC operation 11
922-846 |  RISC operation 12 .
961 -923 RISC operation 13 *
1000 - 962 RISC operation 14
1003 - 1001 | z80 instruction valid bits

Table 5.2: Description of 280 Decoder Output Bits.

‘Inaddition to looking atwhich output oitswere most likely to be corrupted, the
number: vof output bits‘corrupted simultaneously by a single injected fault was also -
' s'tudied The pie chart shown in Figure 5.7 ‘shows a breakdown of the observede
errors in the decoder class1ﬁed by fault or1g1n (xlate, opcode_id, length) and how

many b1ts were s1multaneously corrupted (s - single, m - multlple) Lookmg :

at Flgure 5 7, nearlyv60% of the injected faults result in a s1ngle output being

o 71ncorrect w1th a vast majorlty of those cases or1g1nat1ng in the translate stage.. :

ThlS case is. denoted by the slice labeled xlate s in the pie chart Apart from :
- this, multi-bit errors comprise 40% of the overall errors observed, including the

‘majority of cases originating from the length decode and opcode identification’
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Figure 5.6: z80 Decoder Output Derating per Bit.

stages.

The histogram shown in Figure 5.8 represents a breakdown of how many
output bits are incorrect in each multi-bit error case. The individual cases where
different numbers of bits flip are represented on the x-axis, while the stacked bars
indicate the fraction of total multi-bit output errors in that case originating from
a particular pipeline stage. From this h'istogram it is clear that the cases where
- a higher number of bits are corrupted are more likely to originate from particle
strikes in the length decode and opcode identification stages.

Finally, the design Qf the decoder itself has significant implications with re-

spect to how detectable errors are at program outputs. The majority of conven-
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Figure 5.7: z80 Output Error Characterization.

mlength_s
B length_m
m opcode_s
u opci)de_m
mate_s

mxlate m

tional CISC architectures translate instructions into RISC primitives in order to
simplify the design of the execution hardware. One general attribute of RISC
ISAs is their regularity, specifically in terms of which combinations of opcodes,
source registers, and destination register can be combined to form valid instruc-
tions. From an error detection standpoint, an irregular ISA could be attractive
. because if many invalid opcode-register combinations exist, it is likely that a tran-
sient fault in the decoder logic could generate a translation of RISC instructions
in an invalid format. Unfortunately, the underlying RISC ISA for the decoder
implemented for this study is regular, precluding such a scheme from being ef-

fective.
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Figure 5.8: Characterization of Multi-bit Output Errors for zZ80 Decoder.

In summary, the results of the transient fault characterization performed on the
z80 instruction decoder has shown that the assumptions made by many higher
level reliability studies with respect to transient fault artifacts are not always
valid. In particular, it has been shown that not only are output bits not corrupted
with equal probability, but also that in many cases, multiple output bits can be

corrupted simultaneously.
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- 54 'Mapping Protection Techniq'ue's:to LogicBlocks

Finding the most appropr1ate technique (or class of techniques) to use to protect '
a particular unit is greatly dependent on the functionallty and gate level struc-

ture of the particular logic block in question In the context of logic macro-level

techniques generally provide protection 1mp11c1tly, as any log1c block w1th1n ami-

croprocessor are often protected v1a spatial or temporal redundancy. While these
‘techniques can generally be applied to' all»types of logic blocks, 'their associated
‘overheads preclude their further evaluation in this dissertation work. |

Property—based checking techniques are a natural fit for log1c blocks in the
datapath category, due to their narrow ﬁmctionality and regular gate-level struc- |
‘ture. Arlthmetic circuits generally have regular structures and compute s1mple )
operations whose correctness can eas1ly be checked offline by ver1fy1ng math-
'ematical properties. Prior works by [72][2‘8‘], where the correctness of integer
‘arithmetic computatio'n are checked’, through the use of residue codes are exam-
ples of property checking techniques being a good match with datapath logic
blocks. S |

In contrast to property-based checking techniques implementation level tech-
il n1ques are naturally suited to be applied to hybr1d and control log1c blocks. Logic
blocks in this in these categor1es typically have more complex 1nput to output map-
pings, whose correctness can not be as easily verified as datapath blocks As an
example, consider an integer multiplier (a datapath block) and the 280 decoder .

studied in this chapter (a control block). Forthe multiplier case, -results can be i
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. checked by performing modulo a‘rithmeticon the multiplicands (essentially per-
forming a much smaller multiplication operation), as discussed in [28]. For the
z80 decoder case, it is sigrliﬁcarltly hardervto deter»mine if a sequence Qf‘RIS‘C’

’ ’operations produced,at the output of thellogicr block matches the z80 instruction |
provided at the input. In addition to this, control logic is likely to be signiﬁcantly

; more random in Structure than datapath logic,, implying that some gates withi»n'v |
sucha logic block are morelikely to logically mask faults. This is an attractive at-
tribute Because it irrrplies that an implementation level technique can be eﬁ’ective
while only manipulating a small subset ot’ components. Considering the decoder _

| again, there exists logic within that circuit Which provides translations for instruc-
tions that rarely occur, which means transient faults originating at those nodes are

likely to be masked In contrast a mult1pl1er circuit, specifically one which- sums -
partlal products to produce a final result, should have very little loglcal masklng

foccurrlng, as a transient fault affecting any part1a1 result has a high probab111ty

of propagatmg.

5.5 Summary

" In summary,‘this chapter has examined the task of identifying appropriate protec-
tion strategies for different types of logic blocks Taxonomies for both classes of
soft error tolerance solutions and d1fferent types of logic blocks were developed

: allowmg this task to be approached in a systemat1c manner. In add1t1on to clas- -

sifying logic blocks, the_ soft error vulnerab1l1ty of a parallel mstruct1on deco_der
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- was characterlzed in detail. This charactenzatlon serves not only to Justlfy the '
- conclusion that 1mplementat10n level technlques are the a good fit for protecting

control blocks but also to 1llustrate that many assumptlons made by prlor works

_regardlng the artifacts produced by trans1ent faults are not vahd in all cases.
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Chapter 6

‘A Quantltatrve and Quahtatlve

| Approach to Protectron and Analysrs

| 6,1 Introduction

With the ult1mate goal in mind of developlng more effectlve ways to protect hy- »
-’ br1d and control logic blocks, the final part ofthis study presents a new framework ,
for transient charactenzatlon and 1 analysis. This framework is proposed and eval- |
uated in the context of the 1mplementat10n—level class of m1t1gat10n technlques
G1ven the fact that 1mplementat10n level techmques ach1eve hlgher reliability .
: _by manlpulatlng components. on the gate or ‘transistor level there are typxcally ’
‘numerous ch01ces regardlng Wthh components should be’ protected first. In or-
‘der to handle this, mltlgatlonv techniques in this category are typlcally cou_pled

with heuristics whose purpose is to make qualitative decisions regarding which
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a elements should be protected ‘ﬁrst‘. The ngalof such“a heuristic is generally to
:provide some amount of beneﬁt (higher reliability inb this case), while minimiiing ,‘
:some other important metric (area, cost, pou/er, etc.A.‘.).' Typically, when qualita-
' tive methodologieslike the one just described are employed, initial analysis is
_done' to ﬁrst select the componentsto be protected:(in some ranked order), then
'additional anaISIsis is performed to obtain a “costébeneﬁt” _curve, indicating how
'- -much benefit could behad fora particular cost[’l 11[79]. |
:' The work proposed in this section of the study eXpands the space of imple-
mentation level techniques by presenting avmethodology that is both qualitative
| as well as quantitative. In addition to making ‘qualitative decisions about which
elements should be protected our heuristic allows. for immediate quant1tat1ve de-
cisions to also be made regardmg how much benefit could be had by protect1ng a |
| .partlcular element The beneﬁt of such a methodology 1s that it allows for compo- B
: nentselection and a “cost-benefit” curve to be obtained in a smgle simulation pass, |
.reducing the amount of effort requ1red for analys1s. Addltlonally, this technlque _
18 ideally suited for identifying particularly sensitive 'components within hybrid

~ ‘and controllogic blocks, which can have complex fault propagation behavior. |
6.2 Choosing an Implementation Level Technique
‘As was statedpreviously, implementation level techniques manipulate either indi-

vidual transrstors combinational logic gates or ﬂ1p flops to improve the re11ab111ty ‘

of log1c blocks. In th1s work, our framework is proposed and evaluated in the con- |
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‘ text of man1pulat1ng ﬂ1p-ﬂops Flip flops were chosen as the point of protection

vfor two reasons First, in most logic blocks ﬂip-ﬂops are s1gn1ﬁcantly smaller in

number as.well as total area consumed when compared to combinational logic, g
: " gates. Also, detecting SETs at flip-flop inputs is attractive, as they 'are driven by

-a fan-in cone oi' combinational logic gates, meaning that the addition of detection B
- logicata single flip-flop can detect transients originating from many possible

gates.

P

63 SET Detection and Corr,ectiong’ -

This section provides an overvievv of the SET detection techniciues that could be
| selectively based on the results of the presented heuristic._‘Solutions are primarily
~ considered which detect the presenceof transients at flip-flop inputs by creating

a duplicate copy of the master latch and comparing the values captured by both )
“copies. Tran51ents are actually detected by forcing the duplicate latch to capture

its Value ata slightly different t1me than the original ThlS strategy works because

, SETs manifest themselves in a manner similar to timing v1olations- The capture

_time of the dupllcated master latch can be modiﬁed by e1ther add1ng some ad-‘

d1tional delay on the data input path or by using an altered clock waveform to. “
‘ ‘control the latch Examples of modiﬁed ﬂip flops using both strategies are shown
bjin Figure d 1. In each case, only the master latch in each flip-flop is dup11cated
and the slave latch (not shown in either picture) does not need to bemodiﬁed.,

Both solutions are conceptually similar, but each has unique advantages and dis-
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F igure 6.1: SET Detectidn via Master Latch Duplication.
advantages; these will be discussed bin detail.

Time Shifted Clock Inputs

.This':methodof SET d,ete>ctio_nvvvvas. inspired by the Razor ﬂip-ﬂop proposed by
Emst et al.‘ [14]. It should be noted thaf the original purpose of this flip-flop to |
- alloW for aggvressivve‘ dynamic voltage .scaling by detecting when timing‘ S)io.lations
~ occur. A timing diagram of how fhis ‘tec.hvnique detects the pre5¢nc§ of errors is ;
éﬁown iﬁ Figuré 6.2. The waveforms labeled C1 and C2 répresent the clock |
‘inputs for thef normal and redundant latches, resbectiivelyi Both latches take théir

data samples during the intervals specified by the vertical dotted lihes (this work
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Figﬁre 6.2: Timing Didgrafn for Time Shifted Clock SET Detection.

}as‘surrblesv positivé édge triggered flip-flops). If there is a mismatchvbet\Véén the
_ two data samples, the presence of an SET is detected and appropriate action can
‘vbe faken. Tﬁe main trade-off tﬁaf mqu be considered when using a tcchllliqu_e
 like this is related to how much delay is placed between. the main and.duplicate
clock signals. A large amdunt of skcw between the‘ main and shadow clocks -
detects a greater fraction of pfopagating SETs, but can potentially create short/
path issues. If the skew betWeen.cloéks is longer than the shortest path in thé
circuit, the ‘data. sarhple tal/cen by the shadow ﬂbip-ﬂo‘pvcould\ Be next unit of daté |
| 'propvagating through the pipeliﬁe, poténtially resulting in pérfbrmahce degrading .
i v:fal'se positives. The 'original ,Rézor work dealt with this'p'r_oblervr; by manually

‘padding short pathys [14]. :



97
| Time"Shifted Data Inputs
Another equ1valent method of SET detection is to time shift the data rather than

the clock 1nputs to each latch ‘This method was 1nsp1red by the BISER work by :

Mitra et. al. [31]). In th1s case, each (the original and redundant latch) data 1nput

is being dr1ven by the exact same fan-in cone of log1c except for an additional E

amount of delay placed on the 1nput path of the redundant data mput This
.additional 1nserted delay results n each latch seeing shifted values during the
rising edge of the clock (whlch is how SETs are detected). The timing diagram
“shown in Figure 6.3 illustrates how this techniquecan be used to detect errors.
Like the previously presented solution,'there valso exists a trade-off conceming
‘ how much additional delay should be inserted hetween theoriginal and redundant -
Aflip-flop. A large amount of delay:can detect a greater fraction 'iof SETs, but if
the augmented_ ﬂip}ﬂop is on’a critical path, the clock period must be increased.
It should be noted that.while the work proposed in this chapterselectively aug- o
_ ments ﬂip-‘ﬂops with BISER detectors the original proposal intended to realize
detectors through the modification of already present scan hardware [31]. De-’
: splte this ongmal 1ntent10n the work presented in this chapter is useful because
--'all m1croprocessors are not full scan, meanlng that many sequential elements do "
" not have corresponding scan elements. Th1s is espec1ally true for pipelined logic
, units,,where scan hardware is unnecessary for internal ranks of flip-flops.
- The best technique for a particu'lar logic unit can vary depending on the char- N
acteristics of its timing paths. Time”shifting the clock inputs is"n'ot an optimal

solution for a circuit with a large number of short or zero delay paths as a sig-
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Figure 6.3: Timing Diagram for Time Shifted Data SETDetection; -

'niﬁcant amount of delay padding would be required.“ In contrast a circuit with
- balanced paths could potentially suffer a great deal of delay overhead (1n terms of
the mrnrmum clock perlod ach1evable) if the data inputs were t1me shifted.” For
the purposes of this work, all detectors applied used time shlfted data 1nputs but

- we believe our results would be app11cable for e1ther approach

~ Recovery
Another 1mportant issue that comes up durlng the des1gn of a mitigation scheme is

the actlon that should be taken after an error is detected In general a system can

employ e1ther backward or forward recovery upon detectlon of an error. When» E

backward recovery is used all computation occurrrng after the polnt where the'
error was detected is thrown away and redone. This typlcally requires some -

ﬂ _amount of check pomtmg and is best suited for macro-level mitl_gat_ion techniques,
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Figure 6.4: Muller C-element with Keeper Circuit.

where errors originating from a variety of sources can be detected and recovered
from in a uniform fashion. Because implementation level techniques are targeted
toward protecting only a small subset of a system from faults, forward error
recovery, where errors are corrected in place is an attractive option. In this
work, both backward error recovery (where errors only need to be detected), and
forward error recovery (where errors are detected and corrected) will both be
explored. The detectors shown in 6.1 are sufficient for detection only and need to
be modi}ﬁed in order to correct errors. The rest of this section will discuss these
' necessary modifications.

The BISER detectors, proposed by Mitra et. al. [31], correct errors in-place
through the use of Muller C-elements. A C-element is a logic gate typically used
within asynchronous circuits for synchronization [36]. A transistor level diagram
of this logic gate (along with a keeper circuit) is shown in Figure 6.4.

C-elements act as inverters (buffers when the keeper circuit is considered)
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Figure 6.5: Error Correcting Flip-ﬂep. '

‘:only when both inputs are rdentical. V,When the inputs are different values, the
'output of a C-element retains the outp‘ut value determined by its previous input.
Such agatecanbe used to correet SETs arriving at ﬂip?ﬂep inputs in the following
- manner: Each data input (the‘Qriginal'line goihg to the ﬂip;ﬂop, aleng With the
- delayed input going to the redundant copy for the ﬂip-ﬂep) is connected to the .
~ inputs of the C—elemerrt.. Assuruirlg that there is envough‘ delay between the.ﬁip—‘
ﬂep inputs such that both inputs'never glitch simultaneouslly,‘ the output at the
' keeper will always be correct. -

An error correctlng ﬂ1p-ﬂop de51gn is shown in Flgure 6.5. In thls de51gn, the
'output of the original and dup11cated master latches are fed into the C—elem‘e_nt.’
The output of the C-element is then used to drlve the slave latch |

The plot shown in Flgure 6 6 111ustrates how this correctlon can occur. In the
figure three waveforms are shown. The top two wave forms represent the 1nputs to .

the C-elerner_rt (which are also inputs to a normal and redundant flip-flop), While :
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the bottom wave form shows the output of the keeper. In the scenario shown,
“the corréci value is 0, and a striking particle as forced a 0-1-0 SET to propagate
through thé circuit. Because there is sufﬁcient skew between.the inputs, neither
input to the C—elcrnent glitches at the same tirne, meaning' thaf the output of the
kecper (thé bottom WaVe_form) never clianges. There is alé_o some probability that |
the transient is lbng gnough such that both C-element inputs glitch af the same
time. In this case, both ﬂip-ﬂops wili sainple the wrong value, and theboutput of
‘the keeper will alsoﬂ be wrong. When this happens, the cornipied state will end

up prbpagating through the rest of the circuit.
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 Heuristic Motivation

As discussed previously, SETs oply cause bit ﬂips when they propagate from

‘a combinafional ‘log'ic gate to an dufput and alter the value that is captured" by |

a downstreafn flip-flop. FA‘s particle strikes occur with equal vprob'ab‘ility at any

o given point in timé, individual output bits (flip-flops) in a circuit fiming window

 mask SETs uniformly. In c}ontrast, individual output bits c,an' have differing
‘fan-ih‘ coneé, meaning that SETs can potentially propagate to individual dutpﬁt

 bits at varying rates. This essentially means that in contrast to timing window
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masking, logical masking is not necessarily uniform across output bits. A prior
study on estimating SER reports that in multipliers the center bits tend to have
an error rate that is orders of magnitude larger than those of the bits closer to
the most and least significant positions [76]. The authors of this work refer to
this phenomenon as SER peaking [76]. We have also observed this phenomenon
by modeling a cdmbinational 16x16 integer multiplier and performing statistical
fault injection. Figure 6.8 shows the amount of errors that occur on each output
bit of the multiplier. We believe that this SER peaking phenomena presents an
opportunity for low cost soft error protection. Ideally, a combinational multiplier
with this behavior could cost-effectively be hardened from logic soft errors by

simply protecting the subset of output flip-flops where SER peaking occurs.
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"For combinational circuits the subset of Output ﬂip-ﬂops that need to be‘-'
,protected can be identified by perform1ng statistical fault 1nJectlon and observ1ng
the number of t1mes each output b1t is corrupted Ident1fy1ng a similar subset
‘of flip-flops in a p1pe11ned-c1rcu1t is a significantly harder problem. Frgure 6.7‘ ;
' shows our assumed fault model for a SET occurring ina p1pe11ned c1rcu1t This is .
s1gn1ﬁcantly more complex than the model fora SET ina combmatlonal c1rcu1t, j
wh1ch would only cons1st of outcomes A, B and C. From this model itis clear K
‘that even if a SET propagates to and is captured by a ﬂlp-ﬂop, that error- could
still potentrally be loglcally masked as 1t propagates throughthe ensuing p1pelme
- stages, never manifesting itself at a circuit output. In addition to this, it is also -
~ possible for an SET to corrupt multiple intermediate flip-flops in a circuit, and
have only a subset of the corruptedelements be responsible for 'propagating that
error to the outputs Examples of such scenarios ‘will be prov1ded durmg the -
presentatlon of the proposed heuristic. The methodology presented in this work
' ccurately identifies the ﬂ1p-ﬁops in intermediate ranks as well as outputs ‘which )
‘ ~most s1gn1ﬁcantly 1mpact the fallure rate ( and thus are the best location to place

SET detectors) in the context of this more complex fault model.

- F 11p -F lop Selectlon

In this section, the heur1st1c for selectmg flip-flops is presented Prior to stat1st1cal o
* fault injection, each ﬂ1pfﬂop in the circuit is allocated a counter. This counter -
representsthe overall contribution (of the corresponding_ flip-flop) to the circuit

failure rate. The pseudo-code for our proposed selection heuristic is shown in_
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1 for (each fault injected)‘ :
if (error) .
3 |f (case C). I" strlke in last stage of logic % .
4 compute set P /* set of all outputs flipped ks
5 score_jnc= 1 /ourdlnalrty(P) :
6 mcrement counter for each mernber of P by score_inc
7 else if (case F) /* strike in an intermediate stage */
8 compute set S/ setof ﬂlpﬂops which propagated ‘error *I o
9 score inc=1 /urdmalrty(S) :
10 increment counter fof each member of S by score_inc
: n ) :
12 sort coUnters in-descending order

Figure 6.9: Selection Heuristic Pseudo-code.

Figure 6.9. Referencing the fault model shown in Figure 6.7, an error is defined
as a particle strike which results in either outcome Cq( SET occurnng in the

’ last stage of log1c and subsequently altering the Value of captured by an output -

. ﬂ1p ﬂop) or outcome F (a SET occurrlng in an intermediate stage and propagatlng

to an output ﬂ1p ﬂop)
| " An example of outcome F (represented by lines 7- 10 in Figure 6 9) is shown ‘
-in F igure 6.10. In this example a SET occurring in the first p1pe11ne state ends |
up propagating and corruptlng the values captured by flip-flops 1, 2 and 3. In
the next clock cycle, the erroneous values launched from ﬂylp-ﬂops 1 and 2 end
. up propagating and,c‘orrup_ting output bits 4v'and 6. ’t‘he_ value launched frorn
., flip-flop 5, on the other hand, is iogically masked. In this case, the set P (defined
as all ﬂip-ﬂops thatstored inoorrectrvalues), contains flip-flops 1, 2, 3, 4, and 6v.
Set S (referenced{i‘n line 8 in Figure 6.9) repre‘sents flip-flops that in addition to |

'capturingv a transient value, are responsible for propagating incorrect values to
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v _eircuit-outpUts. For this injected fault,‘ only ﬂip—ﬂops_ l*and 2 b‘elon'g toset S, and
protecting both guarante_es that this fault will not propagate. Set S is computed by
back‘ propagating along the the D-f'rontier (deﬁnition and ref) from allicorrupted
outputs. The counter' for each ﬂip-ﬂop belonging» to »set S is then incremented'
: appropriately | | ”
| From the statement shown in 11ne 9 of Flgure 6 9 it is clear that amount a
e lrﬂlp ﬂops counter get 1ncremented for propagating an error is d1rectly dependent
~ on the size of set S. In cases where a smaller number of ﬂ1p flops are responsrble
for propagatlng a fault, the members of S will be ,1ncremented by a larger value.
The reason for this is because a primary goal of this m‘ethodOIOgv vvas_to':try and
' minimize area, and preventing faults vvhich arepropagated by a: single (or small
number) of bits flips is the most cost el’fective approach in this _regard. |
‘At the end of the characterization run each counter contains (for its cofre-
' spond1ng ﬂ1p-ﬂop) the overall contr1but10n in terms of the total number of errors |

observed during fault m_]ectlon The value stored by each counter represents an

approx1mat10n of the number of times a flip-flop is responsible for e1ther directly =

causing an error by capturing a transient value (output flip-flops ‘in the last stage)
:‘or indirectly causingb an error by captming a transient value and logically propa--
gating that value to a circuit output (ﬂip-ﬂops in intermediate stages). A counter .
‘with a high value implies that the associated ﬂip—ﬂop is more likely to capture

- and/or loglcally propagate a transient value, and thus would be an ideal cand1date )

- _for protection Sort1ng these counters (performed on lme 12 of F 1gure 6.9) cre-

ates a llst of flip-flops ranked according how much of an overall_beneﬁt could be
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Figure 6.10: Example of SET in an Intermediate Pipeline Stage.

obtained by augmenting a particular sequential element with a soft error detec-
tor. This obtained ranking allows for quantitative decisions to be made regarding
which flip-flops should be protected first.

The ranking technique presented in this work is unique in that in addition to
identifying which flip-flops are the most likely to capture and propagate transient
values, this technique also gives a quantitatively accurate estimate of how much
protecting each flip-flop impacts the overall error rate. Quantitative accuracy is

achieved through the counting policy employed by the presented heuristic. As
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stated previously, the value held by each counter represents the total nurnber of
errors observed that were caused either directly or indirectly by the corresponding |
ﬂip-ﬂop". VThe sum of all of the vc_ounters represents the total ninhber of errors that
were observed during’ the fault injection. Dividing the counter tfalne ofa ﬂip-
B flop (or the sum of values of a grodp 'o_f ﬂip—ﬂons) by the total number of errors »
observed vyie_lds a percentage which represents a prediction of error coverage, or R
What fraction of observed errors could be eliminated if the ﬂip—ﬂop ’(or group of -
flip-flops) was augmented With SET detection and correction logic. |
-

6.4 Results

In this section the proposed quantitative _and qualitative methodology is evalu-
ated. Three benchmarks, the parallel z80 decoder, a double precision floating

point adder and a pipelined integer multiplier were chosen for evaluation. These

~ benchmarks were chosen because together they represent all classes of the pre-

V1ously defined logic block taxonomy The decoder, adder and mult1p11er each -

represent’ the control, hybrid, and datapath logic block classes, respectively.

Predicted Error Coverage _

- Predicted error coverage estimates yielded by the presented heuristic are shownrb ,
in Figure 6.11. The x-axis represents for each circuit the fraction of flip-flops
augmented with detection logic, and the y-axis represents the predicted amount

of error coverage that can be gained by protecting that fraction of flip-flops. Each
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Figure 6.11: Predicted Error Coverage.

' individUal point in'the cu‘rves‘shov‘vn is obtained by ﬁrst taking the summation‘
of counter values correspondlng to the fractlon of flip- ﬂops being protected and»
then dividing the by the total number of errors observed durmg fault 1nJectlon for |
that benchmark The fractlon of sequential elements belng protected corresponds
to the x-coordmate of each pomt wh11e the prev1ously deﬁned ration represents :

the y- coordmate | | ‘ | | |

Looklng at all of the curves shown in Fi igure 6.11, it is clear that all ﬂlp-ﬂops |

in each c1rcu1t are not equal in terms of the amount of error coverage that can .

| p0tentiallybe'obtained through the placement of an SET detector. Ifall flip-flops

~ within each»circuit were indeed equivalent in this regard, each of the three curves
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shown in Fignre6.1 1 would be str'aightlines.' The integer multlplier;, represe‘n‘ted.
' bythe dotted green line in the figure, is flatter than the other "curvesl The reason
" for this can be attributed to the highly regular structure of this particular circuit.
This inlpl,ementation is fairly straightforward, withl‘part'ial products first being - |
generated and then added togetherto obtain the ﬁnal product meaning» SETs can B
propagate to many flip- ﬂops in this c1rcu1t with a hlgh probab111ty N |
- For the z80 decoder the most vulnerable state bits are pnmanly the output
:ﬂrp flops in the last stage of the p1pe11ne Wh11e the z80 decoder 1mplemented
2 | for this study 1s d1v1ded into length decode opcode 1dent1ﬁcatlon and translatlon _
' v :stages the translation stage is the largest in terms of area. Addltlonally, the
, ﬂ1p-ﬂops storing decoded opcodes follow1ng the second p1pe11ne stage are also ,
o respon51b1e for propagatlng a s1gmﬁcant number of transient faults.-
In the ﬂoatlng point adder ﬂlp ﬂops present in the 1ntermed1ate stages of the
the adder, respons1ble for holding the aligned fractions, at the end of stage 2,i
| and the sum of the added fr_actions (following stage 3) have'the most potential
_beneﬁt in terms of the overall nuﬁrber of errors observed if angmentedWith SET_
'detectors Despite the fact that the loglc block taxonomy proposed for this study
- : deﬁned the floating p01nt adder asa hybnd block the datapath for th1s circuit is
| 51gn1ﬁcantly wider than the control path, mean1ng that SETs are more 11kely to | |

propagate to datapath ﬂ1p flops.:
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~Verification
In addition to present1ng results on pred1cted error coverage y1elded by the pro-
posed heur1st1c a second set. of experiments was performed in order to ver1fy

‘the accuracy ‘of this coverage est1mate The purpose of these experiments was to

B essent1ally va11date the initial claim that the heurlstlc presented is quant1tat1vely ;

- accurate It i is 1mportant to note that this veriﬁcatlon step 1s not required for the

;proposed heuristic to be used, but a step like this would be requ1red to obtain
a “cost-benefit” curve if any ‘prev1ously proposed qualltatlve methodology was
'employﬁed. In order to perform this verification step, the quantitative,information
. given by our heuristic the rankings of ﬂip-ﬂops in order of the most important
.~ to protect, is taken and d1v1ded up into subsets a basellne set (conta1n1ng no
ﬂlp-ﬂops) the top 5%, 10%, 25%, 0%, and 100% of ﬂ1p ﬂops Another set
N of fault 1nJectlons is performed (using a different random seed from the 1n1t1al
_. characterization experiment), augmenting each ﬂip-flop in the previously deﬁned
. subsets with.a SETidetector. For these experiments, real ‘error coverage is plotted,
| which is‘deﬁned as the fraction of errors that occur in the baseline set case (where -
‘nothing is protected), that yvould have been prote.ctedby the SET detectors in
-’one of the'other-subset cases. Also the detectors assumed for this verification are
N ideal, meaning that a sufficient amount of delay is placed between the data inputs
of the normal and redundant flip-flops used in order to make sure that all arriving
transient_s can be detected and corrected. Adding this additional delay, means
that in some cases the clock ‘period for the unit being protected may have to be |

‘ increased. The trade-off between clock cycle time, and the amount of protection
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~that can be obtained is further explored later 1n a, separate section. B‘oth for;,’
Ward‘ and backward.error recovery are considered 1n the ver_iﬁcationexperirnents
'conducted in this section. | | | | - | |

| Figures 6 12, 6. 13 and 6 14 plot real vs predicted error coverage for the

280 decoder ﬂoating pomt adder and 1nteger multiplier respectlvely ‘In each

- ﬁgure 3 curves are plotted representing the predicted error coverage (shown

. prev1ously in Figure 6.11), the measured real coverage assuming backward érror
‘recovery, and the measured real coverage assuming forward error recovery. For )
the experiments assuming backward error recovery, as long asat least one flip-flop
.capt_uring an incorrect value during the injection of a transient fault is ,protecte_d,
the error (assuming the transient :end up propagating to a»primaryoutput)' is
’ counted as prevented ' In the forward error recovery case an error is not. counted
as prevented unless all flip- ﬂops in the cr1t1cal set respons1ble for propagating the
‘error are protected |

‘ The results of this verlﬁcation experiment on the 280 decoder are shown in
Flgure 6 12 In this ﬁgure the dotted line represents the predlcted error cover-‘
R age (previously plotted in Figure 6. ll) while the two solid lmes represent the

* results of the validations experiments For this partlcular benchmark circuit, the vv
predlcted error coverage very closely‘track the measured real coverage. '
’ For the ﬂoating point adder both predicted 'and real error coverage are plotted )
~ together in F1gure 6.13. For this benchmark the predicted and and real error
coverage are relat1vely closely correlated but not as closely as what was observed ':

' for the decoder c1rcu1t
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' Figure 6.12: Predicted vs. Real Error Coverage for z80 Decoder.

. Figﬁrc 6.14 shows the resulié of thé verification expérirhents conducted on.
the infeger' _muit_iplier. For this ciréuit, it is clear that the real coverage plotted
does- not correlate as éloSély to the predicted error coverage as obsérved for the
" decoder and ﬂoétmg poiht addér, parﬁcularfor' the éorreétion case. F_or this case,
the 'correctionb‘curvve is actually siightly convex in the middle of the plot, implying
that in this. range 01;r heuristic is making the Wfong,decisions about which flip-
flops to-protect. This can be attributed to the stfucﬁlral’ tegularity of the integer
multiplier, meaning that many of the flip-flops in fhis ciréuit have similar counter =
:valuves. ‘ o ' x o : | |

~ For both the hybrid and control logic blocks used in the evaluation of the
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Figure 6.13: Predicted vs. Real Error Coverage for the Floating Point Adder.

| présented méthddology, thé real coverage measuréments obtained from the ver-
ification experiments correlaté’ closely to the predicted error coverage obtained
from the selection heuristic. This means that a designer using this friethbdbiogy
to analjzze (and ultimately protect) a ldgic block cah‘ rely eXcluSively on the pre-

dicted error coverage given by the preéented methodology (which only requir_e‘s
one experiment), rathcr thaﬁ also having to perform this additional Veriﬁcation ‘

step (which requires several more experiments).
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Approximation Bias
o0 : .
' While the measured real coverage does correlate closely with the predicted error
‘coverage, some approximation bias does exist. Looking at the graphs in the
previous section, the predicted €ITOr Coverage always overestimates the measured
real error coverage for the correction case. In addition to this, the measured real
error coverage for the detection case is usually larger than the coverage measured
when forward error recovery is assumed.
~ This bias can be attributed to a small subset of cases similar to the situ:iti_on :

‘shown in "Figure 6.V10, Recall thét this figure dépicts'aﬂtrans'ient faﬁlt océurring in
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~an 1ntermed1ate p1pe11ne stage with mult1ple ﬂlp—ﬂops follow1ng that 1ntermed1ate
B stage be1ng respons1ble for propagat1ng erroneous values through the rest of the |
| circuit. If only a ’subset of those prev1ously mentloned’ ﬂ1p-ﬂops respons1ble for -
ipropagatmg the etror are protected a d1screpancy in the calculated error coverage o
between the heur1st1c and valldatlon experiment will occur. For the purposes of
this d1scuss1on, assume thatonly candldate ﬂip-ﬂop l is protected. |
The heuristic presented in this worlc treats each ﬂip-ilop in a circuit asan indi- "
-‘v1dual ent1ty When the pred1cted error coverage is calculated (correspondlng to
' :hav1ng a subset of ﬂlp ﬂops protected) the sum of all the counters correspondlng
to flip-flops i in the subset is divided by the total number of errors observed. In |
 this particular case, the predicted error coverage would be (172), as the: counter
for flip-flop 1 has a value of (1/2"), and 1 total error was observed.‘ Assuming only
error detection (backwards error recovery)’ if an identical fault (on the same gate
with the same input st1mulus) occurred dur1ng the venﬁcatlon un; the measured
| real coverage would be 1, because a trans1ent fault was detected at the 1nput of at
.least of on the ﬂlp-ﬂops in the c1rcu1t (1n this case ﬂlp-ﬂop 1). In contrast for the
correction case, the measured real coverage would be 0, because ﬂ1p ﬂop 2 was

‘ unprotected allow1ng erroneous values to still propagate to pnmary outputs

Overhead
As was stated previously, the fraction of transients that can be detected with
detectors like the one shown in Figure 6.1 vdepends primarily on the amount of

additional delay inserted between the master and redundant latch. The drawing
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in‘Figure 6.15 illustrates the"relationship,betWeen transient width (denoted. as -~ A

‘ duration in this diagram); and the insert_ed delay bet\ireen detectors (denoted as
delay). In t.his_diagram, twowaveforms are shown, representing the inputs to the
‘master and redundant latch in the proposed SET detector, respectively. In:both'
- waveforms a 0-1-0 transient is present, with the transientbeing;skewed by delay
| time units for:the input to the redundant latch. The timin’g diagram shoWn is also,.‘
d1v1ded in into three regions based on what would happen if the r1s1ng edge of
“the clock occurred dur1ng that particular penod of t1me Reglon I represents the
51tuat10n where both inputs were correct initially, and then only the 1nput to the
k master latch g11tched due to the presence of a SET. In this case, the transient can
not only be detected, but can also be corrected because the C element (1f we
-are aSsum1ng correction) would not have changedlt value when the master input -
glitched. In RegionII, both the master and redundant latch inputs haye glitched to
the wrong Value. In this situation, a transient will never be detected because both
the ‘master' and redundant latch inputs agree, meaning the output of the XOR gate |
‘in Figure 6.1 will Stay at éérd, Region III represents the case were both inputs
have glitched,'but the input to the master latch has returned back to the correct
‘value. In this case, it 1s possible to detect an error (since both inputs do not match),/‘ |
but irnpossible to correct an error (because the yalue stored by the C-_element‘will
be wrong). If detection"alone is assumed (implying baclc'ward error re’Covery), the -
.rising clock ‘edge occurring in Region III represents a bfalse 'positive, because in
~the unprotected case, the transient fault would have been timing window masked.-

If forward error recovery is assumed, this same situation could be problematic, |
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"’Flgure 6.15: Relat1onsh1p Between Inserted Delay and Probab111ty of Trans1ent
Detection. ; - o

ias a protected ﬂ1p-ﬂop would correct tl1e output bit to the:wrong value;
Assummg that transients arrive at flip-flop inputs at any given time with equal
' vlike'lihood the probability that a transient is detected or corrected is ﬁ"{; For
~ the detection case, transrents falling in Region 111 can be 1gnored because these
’ are false pos1t1ves wh1ch only affect performance For the correctlon case, the
: fract10n of Region. III trans1ents that don t result in errors can be expressed by
mult1ply1ng m% by the probab1l1ty of log1cal maskmg |
The previously described relatlonshlps between inserted delay‘ and transient

width can be used to approx1mate the eﬁ‘ects of havmg detectors w1th less than

~ ideal delay (meamng that some fraction of trans1ents are not detected) The d1s-
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' crete probability function used for injected transient width (desCribe_d in Chapter -
- 3) can be scaled in order to calCulatethe fracti‘on of transients that that would
~ be detected assuming a-given amount of inserted delay. This fraction can be
calculated using the expression given in Equation 6.1. |

scaled_coverage = Z wz * min(—‘i@—y—— 1)6.1)

duration’
=0

B | The predicted error coverage measurements presented earlier 1n this chapter
represent the error coverage attainable' if there\_'was enough inserted delay to detect
all arriving transients. The scaled | coverage value yielded by the expression
‘shown in Equatlon 6.1 represents what fractlon of that attainable coverage can
: be had by hav1ng a SET detector W1th a smaller amount of 1nserted delay:. |
- Combining the outlined strategy for scaling error coverage w1th area estimates
obtained through synthesis allows the simultaneous ¢ comparison of error coverage
'delay, and area overhead. Aswas dlscussed n Chapter 3, all benchmarks circuits
‘A studied in this thesis were synthesiZedvinto ‘LSIl 0k standard cell library gates.
The reported area from this synthesis was used as the baseline area, and the cost
‘of each detector was defined tobe the area of a latch (representing the duplicated
| rnaster latch in Figure 6.1) plus four inverters (representing the C-element and
keeper logic). For the delay inserted between latches within a detector, the amount
-of delay is increased in 1ncrements of 20 p1coseconds | |
The three-dimensional plot shown in Figure 6.16 illustrates the trade offs .

‘between error coverage, delay, and area overhead. The z-axis in this figure rep-
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Figure 6.16: Tradeoff Between Area, Delay, and Error Coverage for z80 Decoder. - |

resents error cove'rage while the x and y-axes repreéent delay and area overhead -
_respectlvely In add1tlon to thlS the data label d1splayed at the end of each curve
represent the amount of error coverage achlevable using the max1mum delay
penalty. The labeled set of points in this ﬁgure correspond to the reported pre-
| d1cted error coverage for the z80 decoder (shown in Flgure 6. 11) From this -
plot it is clear that a des1red level of error coverage can be achleved via multlple

combinations of area and delay o,verheadT
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6.5 Summary

In this chapter, a framework for combinational logic soft error analysis was pre- -
sented. This framework is unique in that it is quantitative as well as qualitative,
allowing rapid “cost-benefit” trade-offs relating to reliability to be \made. The
ﬁ'arhework is speciﬁcallyta_rgeted towards protecting hybrid and control logic
blocks in a cost-effective manner, and achieving this goal through the modifica-

tion of sequential elements. The results presented in this chapter illustrate the

~ vast space of design possibilities in terms of delay, area, and reliability.
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,Chapter,7 ;
Conclusion

The work cqmpleféd in this diss_ertation is motivated by s'c_:veralvfactors. One df the
S majof reasons soft errors in logic are becoming a more signiﬁcaﬁt d_esign concern
is because of technology scaling. While critical Charge values for transistors
‘ withih both SRAM cells and ldgic gates are shrinkihg because of smaller feature
. sizes, Qm-t Vélues for combinatidnal logic gates are shrinking at a-fa,ster rate
because of the additional effects of diminished electﬁqal and tinﬁhg window -
masking. Independcnt of teéhnology tfends, the issue of soft errors in logic is
~also gameﬁng‘ an increaSed‘amount of é.ttenﬁo‘n because prbtection techniques for
 storage are alréady used extensively in current generation chips.- This'pervasivé
use of storage protection means that an incréasihg fraction of the on-chip die
area vulnerable to particle strikes belongs to transistors within logic blocks. In
addition to this, macro-level redundancy schemes often have performance, power,

area, and verification overheads that make their use prohibitive in - many design
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spaces.
| These motivating factor's» inspired the work presented in this dissertation,
which represents a successful attempt at tnily understanding the effects of soft
_ errors in logic, and what 'those effects imply on ah architectural level. In the
process of completing this study, several important insights related tb logic SER

were uncovered:

. Contrafy to conventional intuition, the 6verall impact of transient faults on
logic‘(combinatibnal logic gates and sequential elements) is largely ihde-'
pendént of pipeline depth. In addition to this, transient faults actually have
a smaller impact on combinational logic within deeper pipelines. As the
analysis in Chapter 4 shows, this flawed intuition stems from two sources:
the use of rates"as direct combarison point (which is not appropriate in this
situation) and a second order effect relating to how SETSs fan-out along
multiple combinational paths. This second order effect has a significant

effect on the rate in which logic blocks timing window mask faults, and is

obscured unless timing window masking is modeled in detail.

* Several t:o’mnionly held assumptions ébout the manner in which transient
faults maﬁifest_themselves have been shown to ndt be vvalid in all cases.

. The results presentéd in chapters 4 and 5 show than particle strikes on com- .‘
binational logic gates often do not result ina singlc state elemeht (whether
intefnally or at a primary output) being flipped. Additionally, the study

done in chapter 5 shows that within a pipelined unit, not all state elements
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are corrupted with the same probability, and those wh1ch are corrupted are

logically masked at varymg rates.

~These insights help answer questions related to how to think about this prob— ‘
lem, which effects are most important to model and what the structure is of
the artifacts left behind by these faults. In addition to these conceptual 1ns1ghts
an analysis framework was presented in Chapter 6 that is both quantitative and
qualitative. ,This methodology is valuable in that it facilitates rapid ‘,‘cost-beneﬁt”
analysis to be performed, and accounts for the complex manner in which many
 faults propagate. | | ‘
The cor'nbination of the insights and other contributions made by this thesis
should ultimately provide for architects (and other engineers working at layers of
 abstraction above the gate level)v a groundwork for understanding the appropriate

manner in which logic soft errors should be attacked.

7.1_’ Future WOrk

The work done in this dissertation can be expanded in several directions. While
the results presented in this thesis have exclusively focused on the problem of soft
erTors, the tools developed can be extended to study other modes of failure. Prob-
~ lems such as wear-out, env1ronmental and process var1ations and manufacturmg- |
related defects are also significant design concerns and warrant additional study.

kIn terms of developing newtechniques for transient error tolerance,v the pre-

sented work can be extended in a,fewidirections. The analysis in Chapter 5
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can be leveraged‘at a design level in order to decide hovi/ a logic block can be
‘ redesigned ‘at a high level in order to provide error tolerance. The z80 decoder
studied in Chapter 5 provides an example of this opportunity. One of the major
conclusions of the characterization of thét particular io gic block was that because
of the regu‘larity‘ of the underlying RISC ISA that instructions were translated
to, error (ietectir)n would be difficult. One possible imprqvernent that could be
made would be to intentionally design some irregulerity into this ISA in order to
allow for simpler detection. This irregularity could come in the form of a larger
| space of invalid op-code register combinations, speciﬁe' bit enc/oding patterns for
* opcode and register identifiers, or a number of other options.
Perhaps the most significant extension of this wori( is how the presented
insights could be used to irnprove higher level studies on fault toleratnce. All
of the insights regarding the effects of soft errors in logic came about because
the problem was studied at the ‘gate and circuit levels of abstraction. Despite
this, thereare still so_rne situations (especially early in the design cycle or during
software development), where hi gher level models (behavioral RTL, performance
_simulators, or even binary instrumentation tools) may"ne,ed' to be used to study
the effects of faults. The lessons learned during the course of this dissertation
can serve to improve the effectiveness of these tools by guiding the assumptions
made with respect to mbdeling faults. |
For example, in the context of application fault injection s’tudies the effect of
a soft error is commonly rriodeled as a single bit corrupted in the co'rnbuted result

(if a functional unit is affected), ora single bit corruption in one of the instruction
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~

specifying ﬁélds (if the fault in in eifher storage element or the decoder). Instead
| of an SEU-based deel, bése'd on the work presented in this dissertation, the
functional unit fault case could be modeled by identifying clustefs of output
bits which are likely to flip together, while decoder faults could be modeled as
é transfonhation from the correct stream of micro-operatiohs to a élterhative

incorrect stream.
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