
CORTICAL COLUMNS: A N O N V O N N E U M A N N COMPUTATIONAL

A B S T R A C T I O N

by

Atif G. Hashmi

A dissertation submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

(Electrical Engineering)

at the

UNIVERSITY OF WISCONSIN-MADISON

2011

UMI Number: 3501352

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

UMI
Dissertation Publishing

UMI 3501352
Copyright 2012 by ProQuest LLC.

All rights reserved. This edition of the work is protected against
unauthorized copying under Title 17, United States Code.

uest
ProQuest LLC

789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, Ml 48106-1346

CORTICAL COLUMNS: A NON VON NEUMANN
COMPUTATIONAL ABSTRACTION

submitted to the Graduate School of the
University of Wisconsin-Madison

in partial fulfillment of the requirements for the
degree of Doctor of Philosophy

By

Atif G. Hashmi

Date of final oral examination: November 23, 2011
Month and year degree to be awarded: December 2011

The dissertation is approved by the following members of the Final Oral Committee:

Mikko Lipasti, Professor, Department of Electrical and Computer Engineering

Timothy Rogers, Assistant Professor, Department of Psychology

Matthew Banks, Associate Professor, Department of Anesthesiology

Yu Hen Hu, Professor, Department of Electrical and Computer Engineering

Nam Kim, Assistant Professor, Department of Electrical and Computer Engineering

© Copyright by Atif G. Hashmi 2011

All Rights Reserved

1

/ dedicate this thesis to my parents Gul Mohammad Hashmi and Zahida Hashmi and to my

wife Irrum Hashmi for their continuous support and encouragements

A C K N O W L E D G M E N T S

n

Throughout the course of my graduate studies, I received support and encouragements from

several people. I take this opportunity to show my gratitude to all of them.

First of all, I thank my parents Gul Mohammad Hashmi and Zahida Hashmi for their

continuous and unconditional support and love. They taught me never to give up and always

strive to succeed. They stood by me through the thick and thin, believed in me, and prayed

for me during all of my research endeavors. I know I could not have achieved all the success

in my life without the sacrifices they have made for me.

I thank my loving wife, Irrum, for being extremely understanding of my schedule during

these last few months when I was quite busy wrapping up my research and writing my

dissertation. She made sure that I do not have to worry about anything else apart from

working on my research and writing my dissertation. As a result, these last few months when

I was wrapping things up went by quite smoothly.

I extend my deepest gratitude to my research adviser, Professor Mikko Lipasti, for

providing me with an opportunity to work with him and conduct research on an extremely

novel and interesting topic. Even though the research endeavor that I undertook was extremely

risky, I realize that Mikko's unconditional guidance and eternal optimism made it a risk worth

taking. My interactions with Mikko over the last few years have allowed me to significantly

improve upon myself both personally and professionally. It was a pleasure and an honor to

work under his supervision.

I also thank all of my collaborators Olivier Temam, Hugues Berry, and Andrew Nere.

iii

Together, all of us were able to convince the computer architecture community that now is

the right time to explore computational paradigms other than the traditional von Neumann

model. We received a lot of criticisms and setbacks but we did not give up and eventually

succeeded. I thank you all for your commitment towards the end goal, for all your efforts,

and for your comments and suggestions. I am especially grateful to Andrew Nere for all the

fruitful discussions we had during the course of this project and for providing me with his

insightful comments and feedback. I look forward to collaborating with all of them in the

future.

I extend my acknowledgments to my present and former lab-mates including Arslan

Zulfiqar, Andrew Nere, Sean Franey, Mitch Hayenga, David Palframan, Vignyan Naresh,

Natalie Jerger, Erica Gunadi, and Dana Vantrease for their company and friendship.

Finally, I thank my thesis committee for their insightful feedback and comments, overall

interest in my research, and general support throughout the time I was conducting my

research.

iv

T A B L E O F C O N T E N T S

Table of Contents iv

List of Tables xi

List of Figures xii

Abstract xiv

1. Introduction 1

1.1 Recent Challenges to the Von Neumann Model 1

1.1.1 Power Dissipation 1

1.1.2 Reliability 2

1.1.3 Programmability 3

1.2 Biologically Inspired Computing 3

1.3 Dissertation Contributions 4

1.3.1 Biologically Inspired Learning Model 5

1.3.1.1 Cortical Column Model 5

1.3.1.2 Learning via Spontaneous Activations 5

1.3.1.3 Feedback for Learning Invariant Representations 6

1.3.1.4 Biologically Inspired Mechanisms for Developing Self Orga­

nizing Maps 6

1.3.2 Architectural Solutions and Opportunities 6

V

1.3.2.1 Neuromorphic Instruction Set Architecture 7

1.3.2.2 Cortical Network Optimizations 7

1.3.2.3 Tolerance to Permanent Faults 7

1.4 Related Published Work 8

1.5 Dissertation Structure 9

2. Background 10

2.1 Cortical Structures 10

2.1.1 The Mammalian Brain 10

2.1.2 The Neocortex 10

2.1.3 Neurons and Synapses 11

2.1.4 Receptive Field 12

2.1.5 Cortical Columns 13

2.2 Cortical Organization 14

2.2.1 Hierarchy 15

2.2.2 Neocortical Connections 15

2.3 Cortical Operations 16

2.3.1 Independent Feature Identification 17

2.3.2 Automatic Abstraction 18

2.4 The Visual Cortex 18

2.4.1 Input Pathways 19

2.4.2 Hierarchical Organization 20

vi

2.4.3 Invariant Representations 22

2.4.4 Feature Maps 22

2.4.5 Spontaneous Activations 23

2.4.6 Role of Feedback Connections 24

2.5 Summary 26

3. Related Work 27

3.1 Artificial Intelligence and Neural Networks 27

3.1.1 Abstract Models with Limited Biological Fidelity 27

3.1.1.1 Artificial Neural Networks 28

3.1.1.2 Deep Belief Networks 30

3.1.1.3 Competitive Learning 31

3.1.1.4 Self Organizing Maps 32

3.1.1.5 Convolutional Neural Network 35

3.1.2 Abstract Models with Moderate Biological Plausibility 36

3.1.2.1 Hierarchical Temporal Memories 37

3.1.2.2 Adaptive Resonance Theory 38

3.1.2.3 HMAX 41

3.1.3 Detailed Models with High Biologically Plausibility 43

3.1.3.1 Hodgkin-Huxley Model 43

3.1.3.2 Izhikevich Spiking Neuron Model 44

3.1.4 Biological vs. Artificial Neural Networks 44

vii

3.2 Computer Architecture 47

3.2.1 Learning Models 47

3.2.1.1 Blue Brain 47

3.2.1.2 FACETS 48

3.2.1.3 SyNAPSE 48

3.2.1.4 Silicon-based Implementation 49

3.2.2 Abstraction Layers 49

3.2.3 Instruction Set Architecture 51

3.3 Summary 52

4. Biologically Inspired Learning Model 53

4-1 Visual Input Pattern Preprocessing 53

4-2 Cortical Columns: Building Blocks for Intelligent Systems 54

4.2.1 Spontaneous Activations and Unsupervised Learning 57

4.2.2 Evaluation of Minicolumn Activity using a Non-Linear Activation

Function 59

4.2.3 Lateral Inhibition and Independent Feature Identification 61

4.2.4 Minicolumn Weight Update Rule 62

4.2.5 Learning to Forget 64

4.2.6 Evaluation of Hypercolumn Activity 64

4-3 Hierarchy to Realize Complex Tasks 65

4.3.1 Role of Feedforward Information Processing 67

viii

4.3.1.1 Generation of Topographic Feature Maps 67

4.3.1.2 Gaussian-like Feedforward Connectivity for Invariant Repre­

sentation 69

4.3.1.3 Automatic Abstraction 71

4.3.2 Role of Feedback Information Processing 73

4.3.2.1 Width Modulations of Gaussian-like Feedforward Connectivity 74

4.3.2.2 Pooling to Develop Invariant Representations 76

4.3.2.3 Un-pooling Exceptions from Generalized Representations . . 78

4.3.3 Hypercolumns as Universal Boolean Approximators 79

4-4 Experimental Results 82

4.4.1 Experiment 1: Invariance due to Log-Polar Transform 85

4.4.2 Experiment 2: Independent Feature Identification and Automatic Ab­

straction 87

4.4.3 Experiment 3: Hierarchical Feature Maps 89

4.4.4 Experiment 4: Feedforward Gaussian Connectivity 91

4.4.5 Experiment 5: Feedback based Pooling to Develop Invariant Object

Representations 95

4.4.6 Experiment 6: Comparison with Conventional Neural Networks . . . 97

4.4.7 Summary of Experimental Results 99

4-5 Summary 100

5. Architectural Solutions and Opportunities 102

ix

5.1 Leveraging Architectural Tools to Optimize Biological Networks 102

5.1.1 A Unified Neuromorphic Instruction Set Architecture 102

5.1.2 Hypercolumn Network Optimizations 105

5.1.3 Hypercolumn Networks to Functional Boolean Logic Conversion . . . 108

5.1.4 Code/Logic Hybrid Generation I l l

5.2 Leveraging Biological Behaviors to Improve Fault Tolerance 113

5.2.1 Model Implementation on GPUs 115

5.2.2 Fault Identification and Detection Model 116

5.3 Experimental Results 118

5.3.1 Experiment 1: Hypercolumn Network Optimizations 119

5.3.2 Experiment 2: Speedups Due to Boolean Logic Conversion 122

5.3.3 Experiment 3: Online Monitoring of Boolean Logic Network 123

5.3.4 Experiment 4: Fast Emulation of a Faulty GPU using a Fault-free GPU 125

5.3.5 Experiment 5: Spatially Distributed Defects 128

5.3.6 Experiment 6: Spatially Clustered Defects 132

5.3.7 Summary of Experimental Results 134

5.4 Summary 136

6. Conclusion and Reflections 138

6.1 Summary and Conclusion 138

6.2 Reflections and Future Work 140

6.2.1 From a Blank Slate to a Complex Hierarchical Network 140

X

6.2.2 Identifying Sufficient Features for Recognition 142

6.2.3 Integrating Multi-modal Information 144

6.2.4 Temporal Information Processing 145

6.2.5 Summary 147

Bibliography 148

xi

LIST OF TABLES

4.1 Hierarchical Hypercolumn Organization 85

4.2 Average Gaussian Connectivity Widths 93

5.1 Boolean Logic Conversion Benefits 123

xii

LIST O F F I G U R E S

2.1 The Human Brain 11

2.2 A Neuron 12

2.3 A Cortical Column 14

2.4 Automatic Abstraction 19

2.5 The Visual Cortex 21

2.6 Orientation Maps in Primary Visual Cortex 23

2.7 Spontaneous Activations in Retinal Ganglion Cells 24

2.8 Dalmatian Image 25

3.1 HMAX Hierarhcy 42

3.2 Model Comparison 46

4.1 A Modeled Hypercolumn 56

4.2 Non Linear Summation Example 60

4.3 A Simple Hypercolumn Hierarhcy 66

4.4 Emergence of Shapes 72

4.5 XOR Initial State 81

4.6 XOR Pooled State 81

4.7 XOR Pooled State 81

4.8 Sample of MNIST Digit Images 84

4.9 Log-Polar transformed digit images 84

xiii

4.10 Rotation Invariance due to Log-Polar Transform 86

4.11 Independent Feature Extraction 88

4.12 Topographical Feature Maps 91

4.13 Role of Gaussian-like Connectivity 92

4.14 Invariant Digit Representations Developed 96

4.15 Comparison between the Hypercolumn Network, CNN, and HTM 98

5.1 NISA Abstraction 104

5.2 Hypercolumn Network Optimization 108

5.3 Hypercolumn Network to Logic Conversion I l l

5.4 A Hybrid Logic/Hypercolumn Network 112

5.5 Mapping Hypercolumns and Minicolumns onto a GPU Multiprocessor 116

5.6 Execution Time of Optimized Network 120

5.7 Resource Utilization of Optimized Network 121

5.8 Recognition Rate of Boolean Logic Circuit 124

5.9 GPU Equivalence Results 128

5.10 Tolerance to Random Defects 130

5.11 Tolerance to Random Defects with Redundant Hierarchies 131

5.12 Tolerance to Spatially Localized Defects 134

6.1 Spatial Correlation Graph 142

6.2 Reduced Spatial Correlation Graph 143

A B S T R A C T

XIV

Recent advances in the understanding of the structure and function of the mammalian

brain have provided researchers with an opportunity to investigate computational paradigms

other than the traditional von Neumann model. These brain-like architectures, which are

premised on our understanding of how the human neocortex computes, have the potential to

be fault-tolerant, power-efficient, easily programmed, and manage to solve several difficult

problems more reliably than traditional computational approaches.

This dissertation seeks to challenge the contemporary techniques for implementing com­

putational models both in software and in hardware. Further, it argues that the traditional

von Neumann model of computation is under growing pressures in terms of power dissipation,

reliability, and programmability, therefore it is essential to investigate alternate computational

paradigms that can cater to the needs of the future generation workloads and processing

hardware. In this effort, this dissertation proposes a computational model inspired by the

structural and functional properties of the neocortex and highlights various biologically

inspired aspects which make such a model superior to conventional computational approaches.

Further, these biologically inspired aspects endow the model's software implementation the

ability to intrinsically preserve its functionality even in the presence of faulty hardware, with­

out requiring any reprogramming or recompilation. Finally, this dissertation also establishes

a symbiotic relationship between computer architecture and complex biological networks by

proposing mechanisms that allow both of these fields co-evolve benefiting from each other.

This dissertation is geared towards developing a comprehensive and biologically inspired

XV

understanding of the microarchitecture of computing systems that mimic the human neocortex,

and applying such systems for robust realization of complex tasks.

1 I N T R O D U C T I O N

1

The original von Neumann model1 of a computing unit has been a relatively nice fit for the

technology evolutions of the past four decades. However, it is hard not to notice that this

model is under growing pressure. The power dissipation bottleneck has made architects

shift their focus to many-core architectures but the programming bottleneck of many-cores

raises doubts on the ability to truly take advantage of many-core systems. More recently,

the reliability bottleneck brings a whole new set of challenges to the table. Architects

have attempted to meet all these challenges, but the proposed solutions progressively erode

performance scalability.

1.1 Recent Challenges to the Von Neumann Model

In the recent years, the widely accepted von Neumann model of computation has been

challenged by following three major issues.

1.1.1 Power Dissipation

Traditionally, the decrease in the feature size of individual transistors (technology scaling)

has been governed by Moore's law [93] i.e. the transistor size is halved approximately every

two years. This means that the number of transistors that can be packaged within a unit

area of a chip doubles every two years. In terms of power dissipation, this increase in the
JA design model for a stored-program digital computer that uses a central processing unit (CPU) and a

single separate storage structure (memory) to hold both instructions and data.

2

number of transistor per unit area along with their increased operating frequency increases

the overall power dissipation of the chip [14]. This is mainly from an increase in leakage

current and from the repeated capacitance charge and discharge on the output of billions of

transistors in today's chips [72]. A decade ago, this increase in the power dissipation was

not an issue but recently, with the advent of mobile computing and portable devices, it has

become a major concern for computer processor designers [72, 96], and many software and

hardware schemes including [32, 50, 58, 83] have been proposed to resolve this issue.

1.1.2 Reliability

One of the most common techniques to reduce the power dissipation due to leakage current

is voltage scaling. In order to reduce the power dissipated by transistors, the voltage applied

across individual transistors is decreased. This reduction in the applied voltage is concomitant

with a degradation in the reliability of a transistor. Single-event upsets, also known as soft

errors [7], are a major source of this degradation. Soft errors are caused by alpha particles

that may exist in the chip material and in cosmic rays from space. With a reduced transistor

feature size and decreased applied voltage, a small amount of charge is required to flip the

state of a transistor and a small influx of alpha particles is enough for such an event to take

place. This degradation in the reliability of the transistors will continue to increase over

time [14, 97] and has already forced computer architects to rethink modern processor design.

Some of these designs are discussed in [13, 26, 51, 91].

3

1.1.3 Programmability

Both the power dissipation and reliability issues have made architects shift their focus

to many-core architectures, but the programming bottleneck of such architectures raises

doubts on the ability to truly take advantage of many-core systems. Since most of the

current generation programming languages, compilers, and software have been developed for

a uniprocessor computational paradigm, there seems to exist a programmability gap between

many-core based systems and current generation applications. Programming of many-core

systems has emerged as one of the main issues that the computer industry has yet to solve.

1.2 Biologically Inspired Computing

With such limitations (as described in Section 1.1), it now makes sense to investigate alterna­

tive computational models better suited to cope with the technology evolution. Even the

upcoming computational technologies like ultra-CMOS [122], nanotubes [25], and memris-

tors [135] will suffer from the same limitations. Technology scaling will continue to provide an

increasing number of transistors/elements on a single chip. These elements will not necessarily

be much faster (slower in some cases) and will come with a growing number of defects and

faults. Considering that these basic elements will be slower and faulty, it is hard not to

observe that in order to realize complex computational tasks, nature has already found a way

to package a large number of elements with similar properties in the form of the mammalian

brain.

4

Considering the abilities of the brain, it is clear that computer architects should leverage the

tremendous progress made in understanding the working of the brain to develop biologically

inspired computational models. Computer architects are uniquely positioned for this task

because they can apply traditional system design approaches to architect biologically inspired

computing systems. These approaches include understanding how to combine and control

biologically inspired elementary components hierarchically into increasingly complex building

blocks, defining a programming approach for these computing systems, understanding their

potential applications scope, and understanding the appropriate modeling level to integrate

billions of components without being overwhelmed by complexity nor missing key properties.

1.3 Dissertation Contributions

Various contributions of this dissertation can be grouped into two major categories. First,

this dissertation investigates a biologically inspired computational model inspired by the

structural and functional properties of the mammalian brain. The emphasis here is to develop

a biologically inspired hierarchical learning model, to justify its biological basis, and to

evaluate its performance compared to traditional artificial intelligence approaches. Second,

this dissertation discusses various architectural aspects that help generalize and optimize

large biologically inspired learning networks and describes various biological properties that

can help develop robust and fault-tolerant computational models.

5

1.3.1 Biologically Inspired Learning Model

In addition to presenting the implementation details of the biologically inspired model, this

dissertation also puts an emphasis on the biological justifications for various components of

the proposed model. In this regard, this dissertation makes the following contributions.

1.3.1.1 Cortical Column Model

The first major of contribution of this dissertation is that it presents a biologically inspired

learning model motivated by the properties of the cortical columns [94, 95] that exist

throughout the mammalian neocortex. Rather than modeling individual neurons as the

basic implementation abstraction, this dissertation proposes using cortical columns as the

basic functional unit within an intelligent learning network. This results in models that are

both biologically inspired and computationally efficient as a single column can abstract the

functionality of thousands of neurons.

1.3.1.2 Learning via Spontaneous Activations

This dissertation proposes using spatially localized and temporally correlated spontaneous

activations rather than randomized weights [99] for triggering initial learning behavior within

the network. This is a completely novel approach and has a strong biological basis. Unlike

traditional artificial neural networks, spontaneous activations help the proposed cortical

model avoid the trap where certain unique features in the training dataset are not learned

because of the network's inability to distinguish them due to the initial random weights.

6

1.3.1.3 Feedback for Learning Invariant Representations

Due to the limited understanding of the role of feedback processing during learning, contem­

porary learning models do not effectively utilize feedback connections during the training

phase. This dissertation presents a very powerful role that feedback connections can play in

terms of learning variations of the same object to generate an invariant representations for

each unique object.

1.3.1.4 Biologically Inspired Mechanisms for Developing Self Organizing Maps

Finally, combining the ideas of spatially localized and temporally correlated spontaneous

activations and object permanence, this dissertation describes a biologically inspired technique

for generating hierarchical self organizing feature maps. This technique overcomes the two

main issues the traditional self organizing maps face, i.e. learning hierarchical feature maps

and their computational requirements.

1.3.2 Architectural Solutions and Opportunities

In terms of utilizing computer architecture concepts to generalize and optimize biologically

inspired networks and utilizing biological properties to develop robust computational models,

this dissertation makes the following contributions.

7

1.3.2.1 Neuromorphic Instruction Set Architecture

With the advent of multiple neuromorphic hardware and software, there is a need to develop

an abstraction layer that separates neural algorithm from the execution substrate. Such

abstractions allow the programmer to implement complex neural networks without worrying

about the details of the underlying hardware. This dissertation advocates the use of a

neuromorphic instruction set architecture to realize such a goal.

1.3.2.2 Cortical Network Optimizations

Utilizing a neuromorphic instruction set architecture [46], this dissertation also discusses

various optimizations that can enhance the functionality of a complex neural network. These

optimizations result in reducing the overall complexity as well as the execution time of large

neural networks.

1.3.2.3 Tolerance to Permanent Faults

Utilizing the ideas of automatic abstraction and learning via spontaneous activations [43],

the proposed biologically inspired computational model demonstrates inherent tolerance to

permanent hardware failures and can execute without any reprogramming or recompilation

on a hardware substrate experiencing permanent faults. The performance of the proposed

learning model gracefully degrades with an increase in the permanent hardware faults and

even when 50% of the hardware is damaged, with retraining the software model can recover

to achieve 100% functionality.

1.4 Related Published Work

This dissertation encompasses work that has appeared in four conference proceedings and

will appear in one accepted journal paper.

• Discovering Cortical Algorithms (ICNC - 2010). This paper [44] provides the feed­

forward cortical column model details and justifies its biological basis. This paper was

coauthored by Mikko Lipasti.

• Learning via Spontaneous Activations (ICCNS - 2011). This article [45] describes

the use of spatially localized and temporally correlated spontaneous activations and

their role in developing hierarchical self organizing maps. This paper was coauthored

by Andrew Nere and Mikko Lipasti.

• Neuromorphic ISAs (ASPLOS - 2011). This paper [46] discusses the need for an

abstraction that separates the neural algorithm from the execution substrate using

an xml-based neuromorphic instructions set architecture. This work was done in

collaboration with Andrew Nere, James Thomas, and Mikko Lipasti.

• Automatic Abstraction and Fault Tolerance (ISCA - 2011). This article [43] details

the use of hierarchal networks for generation of automatic abstractions and to develop

biological learning models that are inherently fault tolerant. This paper was coauthored

by Hugues Berry, Olivier Temam, and Mikko Lipasti.

• Feedback Processing and Invariant Representations (SCI - 2011) This journal

article (to be published) provides the details of incorporating feedback processing in the

9

cortical column model, interactions between the feed-forward and feedback processing

networks, and the role of feedback in learning variations of the same pattern. This

article was coauthored by Mikko Lipasti.

1.5 Dissertation Structure

The rest of this dissertation is organized as: Chapter 2 provides background material

pertaining to the structural and functional aspects of the mammalian brain and describes

various neocortical properties that inspire the proposed learning model. Chapter 3 briefly

describes the research in artificial intelligence and computer architecture that relates to

the model proposed in this dissertations. Chapter 4 provides a detailed description of the

biologically inspired computational model proposed in this dissertation. Chapter 5 establishes

a bidirectional relationship between conventional computer architecture approaches and

biologically inspired networks and describes how both the fields can benefit from each other.

Chapter 6 concludes the dissertation and discusses several interesting ideas that initiated

during the course of this project but are not part of this dissertation.

2 BACKGROUND

10

This chapter describes various biological phenomena that influence different components of

the proposed biologically inspired computational model. It also familiarizes the general reader

with these phenomena by explaining various terms and concepts and providing factual data.

2.1 Cortical Structures

2.1.1 The Mammalian Brain

The mammalian brain can be divided into two main parts; the old brain and the new brain.

The old brain constitutes the parts that developed early in evolution, including pathways from

sensory modalities to the new brain, spinal cord, and other parts that deal with instinctive

behavior and basic urges. The new brain, also referred to as the neocortex, is the part of the

brain that developed later in evolution. Figure 2.1 provides a very high level diagram of the

human brain. In this figure, the regions titled middle brain and reptilian brain comprise the

old brain while the top convoluted part is the neocortex.

2.1.2 The Neocortex

The neocortex is unique to mammals and is highly developed for humans; it accounts for

about 77% of the human brain (in volume) [129] and is responsible for perception, language,

mathematics, planning, and all the other aspects necessary for an intelligent system. For a

typical adult, it is estimated the neocortex has around 11.5 billion neurons and 360 trillion

11

Figure 2.1: Overview of the human brain. Old brain constitute the middle brain and the
reptilian complex. The upper convoluted part is the neocortex. [38].

synapses, or connections between neurons [111].

A very intriguing property of the neocortex is its apparent structural and functional

uniformity [95]. Because of this property, the regions of the neocortex that process auditory

inputs, for instance, appear very similar to the regions that handle visual processing. This

uniformity suggests that even though different regions specialize in different tasks, they

employ the same underlying processing algorithm.

2.1.3 Neurons and Synapses

Neurons and synapses are the most well-known elementary building blocks of the brain. A

neuron performs two types of operations: it sums its inputs (dendrites) and it triggers a spike

at its output (axon) if the sum is beyond a certain threshold. Typical firing interval for a

neuron is 20ms to 200ms [76], orders of magnitude slower than CMOS transistors switching

12

Figure 2.2: Diagram of a typical neuron [9].

times. A synapse is the connection between two neurons, each neuron has hundreds to

thousands of synaptic connections. Neurons communicate with each other through these

synapses by generating electrical spikes and releasing neurotransmitters. Figure 2.2 shows

the structure of a typical neuron.

2.1.4 Receptive Field

The receptive field is a tool used by biologists to describe what a neuron sees. Typically, it

defines the set of input connections to a neuron. A neuron responds only to the activations

that occur within its receptive field. Experiments by Hubel and Wiesel [59] suggest that

receptive fields of neurons in a certain cortical region consist of multiple neurons at lower

cortical regions. Thus, neurons at higher cortical regions progressively combine small and

simple receptive fields of their input neurons to develop large and complex receptive fields.

13

This ability of the neurons to progressively broaden their receptive fields is implemented in

the biological inspired computational model proposed in this dissertation and is described in

Section 4.3.

2.1.5 Cortical Columns

Within the neocortex, neurons are vertically grouped into structures called cortical columns.

This columnar organization of the neurons was first observed by a neuroscientist Vernon

Mountcastle as described in his seminal paper in 1957 [94]. Anatomically, a cortical column

consists of six layers [17, 53, 111]. Feed-forward information from lower cortical regions is

received by Layer IV. Layer IV sends this information to Layers II and III which communicate

it to higher cortical regions. Similarly, feedback information from the higher cortical regions is

received by Layer I and is transfered to Layers II and III. Layers II and III then communicate

that information to the Layers V and VI. Layers V and VI then transfer this information to

lower cortical regions. Apart from these vertical paths, which convey information up and

down the hierarchy, there are also horizontal paths between the cortical columns at the same

level. Layers II and III connect the columns at the same hierarchical level with each other.

The cortical columns are further classified into minicolumns and hypercolumns [95]. A

hypercolumn comprises around 50-100 minicolumns bound together with lateral or horizontal

connections. Each minicolumn is composed of around 200 neurons and minicolumns within the

same hypercolumnn share the same receptive field. The term cortical column is sometimes used

for both types of columns, though, in biology, it usually refers to a hypercolumn. Figure 2.3

14

Figure 2.3: Forward, feedback and lateral connections between neurons and cortical columns.
Neurons are represented by triangles in the figure.

shows a high level diagram of a column. Section 4.2 describes how the proposed computational

model implements various functional aspects of minicolumns and hypercolumns.

2.2 Cortical Organization

Section 2 1 describes various structural and functional abstraction that exist within the

mammalian brain. Along with these abstractions, their actual organization within the biam

results in making the brain such a robust and powerful processing system.

15

2.2.1 Hierarchy

The cortical columns within the neocortex are organized in the form of a hierarchy. Columns

at the lower levels extract simple features exciting their receptive fields and communicate

their outputs to columns in the upper levels which extract more complex features. Columns

at the higher levels also make projections to the columns in the lower levels and modulate

the behavior of the lower levels.

Among others, [60, 95] present a detailed description of the arrangement and function­

ality of hypercolumns and minicolumns within the neocortex. Their findings suggest that

minicolumns at the lower levels of the hierarchy learn to identify very basic features (like

edges of different orientation) and communicate their responses to minicolumns at the higher

levels. The minicolumns at the higher cortical levels combine the outputs to multiple lower

level minicolumns to identify more complex shapes. Such a hierarchical organization of

hypercolumns is discussed in Section 4.3 in the context of the proposed computational model.

2.2.2 Neocortical Connections

Within and across cortical columns, there are numerous forward, backward (called feedback)

and lateral connections. These connections can be either excitatory (they can increase the

output of the target neuron) or inhibitory (they decrease its output). This multi-directional

flow of information can be observed at different levels of granularity: within a cortical column,

across cortical columns, and across regions which derive from the hierarchical organization

of cortical columns. Columns at the lower levels communicate information to the higher

16

levels via the feedforward connections while the columns at the higher levels project into the

lower level columns via the feedback paths and modulate the lower levels' behavior in the

presence of a global context [31]. These feedback paths that bring predictive information

from the higher regions to the lower ones are one of the most important and powerful features

of the neocortex. Research shows that the number of feedback paths taking predictions down

the hierarchy is significantly greater than the number of feedforward paths going up the

hierarchy [16, 31]. This clearly suggests the importance of the feedback predictive paths.

The minicolumns within the same hypercolumn are connected with each other through

inhibitory lateral connections. These inhibitory connections may implement a competitive

learning behavior [112] among minicolumns within a hypercolumn. Studies including [60]

hypothesize that the minicolumns use these connections to learn unique and independent

features from set of inputs exciting their receptive fields. Figure 2.3 exhibits the three types

of connections that exist among various neuron populations within a cortical column.

Sections 4.2.3, 4.3.1, and 4.3.2 describe how the computational model proposed in this

dissertation implements forward, backward, and lateral connections and the roles each of

these connections plays in order to realize complex processing tasks.

2.3 Cortical Operations

The hierarchical organization of the neocortex along with the various types of connections

provides a number of powerful operations. Some of these operations are discussed in this

section.

17

2.3.1 Independent Feature Identification

The lateral or horizontal links among minicolumns within the same hypercolumn are respon­

sible for dimensionality reduction, which plays a critical role during the learning process.

Minicolumns monitor the activity of nearby minicolumns within the same hypercolumn using

these horizontal paths, and can modify the synaptic connections of their neurons to identify

features from the data that are not being detected by other columns [40]. At the same

time, the minicolumns might also use these horizontal connection to determine if they are

generating redundant information i.e. information that is being generated by some other

minicolumn in the same network. By doing so, each of the minicolumns in the same network

learns to detect independent features from the input data. One of the classical examples

of this behavior is the primary visual cortex. Minicolumns in the primary visual cortex

train themselves to identify edges of different orientation from the image formed at the

retina [59, 60, 82]. Each of the edges can be treated as an independent feature. A direct

consequence of independent feature detection is that it reduces the dimensionality of the

data. Once the columns train themselves to identify independent features from the input, it

gets very easy to identify columns that are providing redundant information. The outputs of

columns that generate redundant information can be ignored, and the columns themselves can

be pruned and reassigned to other tasks. Such an ability is provided by the computational

model proposed in this dissertation and is described in details in Section 4.2.3.

18

2.3.2 Automatic Abstraction

It is believed that cortical regions operate by progressively abstracting and manipulating

increasingly complex notions throughout the neural hierarchy [103]. For instance, from the

set of pixels of an image, the visual cortex will first identify segments, then elementary shapes

such as angles and intersections, and increasingly complex combinations, such as objects

found in our environment, see Figure 2.4. This automatic abstraction capability for various

inputs partly explains why the neocortex still outperforms traditional computers for a number

of tasks. Emulating such capability is thus a major step in building computing systems that

can compete with at least some processing characteristics of the brain. While the cortical

structure of certain regions of the brain, such as the visual cortex, has been investigated for a

long time, quantitative models, consistent with physiological data, and capable of accounting

for complex visual tasks, were proposed only recently [119, 120]. Section 4.3.1.3 highlights the

ability of the proposed computational model to emulate the notion of automatic abstractions.

2.4 The Visual Cortex

The neocortex is divided into a number of sub-regions e.g. the visual cortex, the auditory

cortex, the somatosensory cortex, etc. Each of these subregions of the neocortex processes

information provided by a different sensory modality. For example, the visual cortex deals

with visual data, the auditory cortex processes sounds experienced by the ear, and so on.

This dissertation focuses on the visual cortex for discussions and results mainly because

19

Figure 2.4: Increasingly complex visual abstractions (segments, angles and long segments,
complex shapes, etc.) [43].

various aspects of the visual cortex have been studied in far more detail as compared to other

cortical regions.

2.4.1 Input Pathways

In mammals, visual scenes are projected onto the retina. The activations of the retinal cells

in response to the visual scene are transfered via the optical nerve to the Lateral Geniculate

Nucleus (LGN) cells [69]. LGN is the first cortical stage for visual processing. The LGN cells

are contrast sensitive. They react strongly to an illuminated point surrounded by darkness

(known as on-off cells) or conversely to a dark point surrounded by light (off-on) cells. These

20

cells are spatially distributed in such a way that on-off and off-on cells are intertwined [109]

and receive inputs from neighboring retinal cells. Finally, the activations of the LGN cells

become the input to the primary visual cortex.

While the visual inputs are being transferred from the retina to the LGN cells, they

undergo a transform commonly known as the log-polar transform [117, 118]. This transform

converts the visual image from a Cartesian coordinate system to a log-polar one. Studies

show that log-polar transform plays an integral role towards achieving rotation, scale, and

translation invariance [136] since variations in scale and rotation in a Cartesian system are

transformed into translations in a log-polar system. Section 4.1 describes the techniques that

the computational model proposed in this dissertation uses to process visual patterns using

mathematical operations to approximate the biological behaviors as implemented within the

optical pathways.

2.4.2 Hierarchical Organization

As described in Section 2.2, the entire neocortex is organized in the form of a hierarchy. This

hierarchical organization of the neocortex cortex has been studied in detail in the visual

cortex which is subdivided into different hierarchical regions. These regions are broadly

classified into the primary visual cortex (VI), the secondary visual cortex (V2/V4), the

inferior temporal cortex (IT), and middle temporal cortex (MT).

The LGN cells send their feedforward projections to VI. VI then project into V2/V4

which further project into IT and MT [11, 53, 82, 103]. Neurons in VI specialize in identifying

21

Figure 2.5: A simplified representation of hierarchical organization of the visual cortex.

edges of different orientation while neurons in V2/V4 identify complex combinations of these

edges. Neurons in IT detect further complex visual patterns and also develops invariant

representations for different visual inputs. Finally, neurons in MT play a major role in the

perception of motion. Figure 2.5 presents a simplified representation of the hierarchical

organization of the visual cortex. Section 4.3 describes how a hierarchical network that

realizes complex visual processing tasks can be constructed using various functional blocks

22

provided by the proposed computational model. This section also describes the role of

feedforward, feedback, and lateral connections within such a hierarchical network.

2.4.3 Invariant Representations

A very powerful attribute of the visual cortex is its ability to generate invariant representations.

The mammalian visual cortex is able to recognize an object that it has learned before no

matter what size or orientation it appears in. Even in the presence of significant distortions

and noise, the visual cortex is able to recognize a previously learned object. Invariance of

the visual cortex to variations in scale and rotation have been the focus of research for a

while now [118, 106] but the exact mechanisms that the visual cortex employs to achieve

this invariance are still not completely understood. Sections 4.1, 4.3.1.2, and 4.3.2.2 describe

various biologically inspired techniques that the proposed computational model relies on to

develop invariant representations for various complex patterns exposed to the network.

2.4.4 Feature Maps

A very interesting property of various subregions of the visual cortex is the generation of

feature maps. Neurons within the visual cortex are organized into multiple feature maps

according to parameters including receptive field, ocular dominance, orientation selectivity,

and spatial frequency. Each of these complex maps is spatially interrelated, but it is unclear

what guides the development of these relationships [30]. These feature maps have been

studied in detail in the visual area VI where their existence was first discovered by Hubel

23

Figure 2.6: Layout of orientation preference observed in area VI of macaque monkey [12].

and Wiesel in 1962 [59] in the form of edge specific orientation maps. In primates, including

humans, feature maps are present in many, and possibly all, visual areas of the cerebral cortex

beyond VI [133]. Figure 2.6 shows the orientation map preference observed in the primary

visual cortex of a macaque monkey. Section 4.3.1.1 describes how the proposed computational

model develops topographical feature maps using spatially localized spontaneous activations.

2.4.5 Spontaneous Activations

Although various aspects of the neocortex have been studied in detail, there exist a number

of not so well understood properties of the neocortex which may also contribute to its unique

abilities. One such behavior is the spontaneous activation of the cortical neurons [33]; that is,

neurons in the neocortex may exhibit activity even in the absence of a driving input stimulus.

These spontaneous activations have been studied in detail in the retinal ganglion cells [18]

24

t = 0 sec t = 2 sec t = 4 sec t = 6 sec t = 8 sec

Figure 2.7: Spontaneous retinal activity in early post-natal retinas [12].

where they are shown to be both spatially localized and temporally correlated. Recently,

various studies have shown that such activations are essential for the proper development

of orientation maps within the primary visual cortex [4, 18]. Even though the exact role

of these spontaneous activations is not understood, studies suggest that they are essential

during the early development stages of the mammalian neocortex [18]. Figure 2.7 shows

the spontaneous activations recorded in the early post natal mice retinas. In the figure, the

spontaneous activations are triggered at the bottom-left and they propagate towards the

top-right in a spatially localized and temporally correlated manner. Within the proposed

computational model, spontaneous activations play two important roles. First, they allow the

model to develop hierarchical feature maps (see Section 4.3.1.1). Second, they provide the

model with an ability to robustly recover from permanent hardware failures (see Section 5.2).

2.4.6 Role of Feedback Connections

Along with the feedforward processing paths, the feedback paths play an important role in

making the neocortex a very robust and powerful processing system. Lower hierarchical levels

send feedforward projections to the higher cortical levels and the higher level in turn project

into the lower levels. Even though the exact role of the feedback paths in the overall cortical

25

Figure 2.8: One of the possible roles of feedback paths is pattern completion. Richard
Gregory's Dalmatian image [39].

processing and learning is not well understood, their importance has been highlighted in a

number of studies including [16, 31, 62, 61, 124].

Feedback projections are an integral part of the mammalian visual system. Within the

visual cortex, IT sends feedback projections to V2/V4, to VI and also to the LGN cells.

Similarly, V2/V4 send projections to VI and LGN cells and VI cells send feedback only to

LGN. Recent studies show that these feedback paths from the higher regions to the lower

ones modulate the lower level responses based on context and predictions [16, 61], improve

discriminating objects of interest from background [62], and help in robust recognition of

noisy visual inputs [131]. These are only a few examples of the powerful role of the feedback

paths within the overall functionality of the visual cortex. Many other roles, especially the

26

role of feedback paths in learning, are yet to be completely understood.

Figure 2.8 contains Richard Gregory's Dalmatian image. This image demonstrates the

power of feedback connections. It essentially contains black spots on a white background but

after sometime, the observer is able to see a Dalmatian in the middle of the image. Using

the feedback connections, the visual cortex is able to construct the missing features and a

Dalmatian is suddenly recognized. Section 4.3.2 provides a detailed discussion on the role

of feedback paths during the learning process in the context of the proposed computational

model.

2.5 Summary

This chapter describes and explains various neocortical properties and operations that have

inspired the construction and working of the biologically inspired computational model

proposed in the dissertation. The main objective of this chapter is to introduce various

biological concepts to the reader and briefly describe the current level of understanding of

various neocortical regions especially the visual cortex.

3 R E L A T E D W O R K

27

This chapter summarizes research work related to this dissertations. Section 3.1 summarizes

research in artificial intelligence and neural networks that pertains to the proposed learning

model. Section 3.2 briefly describes various hardware based learning models and certain tools

proposed by the computer architecture community that can benefit the design of a powerful

and robust learning model.

3.1 Artificial Intelligence and Neural Networks

This sections describes various learning models proposed for intelligent processing of input

data. These models have mostly been applied to classification tasks. The main goal of this

section is to discuss these models in terms of their applications, limitations, and biological

fidelity.

3.1.1 Abstract Models with Limited Biological Fidelity

This class of models includes artificial neural networks [99], Bayesian networks [49], deep

belief networks [52], competitive learning [113, 112], self-organizing maps [74], convolutional

neural networks [80], etc. These models have been utilized for different type of classification

tasks including object recognition [79, 80], disease diagnostics [78, 102, 125], forecasting

market business trends and share prices [3, 134], industrial process control [36, 73, 86], risk

management [66, 70], and target marketing [71]. Even though these models were inspired

28

by biology, over time they have moved significantly away from their biological inspiration in

terms of implementation and functionality.

3.1.1.1 Artificial Neural Networks

An artificial neural network (ANN) is an information processing paradigm that is inspired

by the way mammalian brain processes information. A neural network consists of an

interconnected group of artificial neurons also known as perceptrons which contain a set of

weights that determine the behavior of the perceptron to its inputs. In most cases an ANN is

an adaptive system that changes its behavior based on external or internal information that

flows through the network during the learning phase. Modern neural networks are non-linear

statistical data modeling tools. They are usually used to model complex relationships between

inputs and outputs or to find patterns in data [79, 80].

A artificial neural network consists of multiple levels and each of these levels is connected

to the previous one via feedforward processing paths. During every training iteration,

a perceptron evaluates the correlation between its inputs and its set of weights. It this

correlations is greater than a threshold, the perceptron sets its output to be high using a

sigmoid activation function. Furthermore, perceptrons within each of the neural network's

levels modify their set of weights according to a predefined learning rule. The biologically

inspired learning model discussed in this dissertation borrows the notion of sigmoid activation

function from the perceptron model and further extends it to evaluate the output of a node

(refer to Section 4.2.2).

29

Even though ANNs have been employed to perform a number of pattern recognition and

classification tasks, they have always been challenged in terms of their generalizations and

correct identification of possible causal relationships [67]. Various parameters determining

the behavior of an ANN need to be fine-tuned for each specific processing task [67] and

to achieve best network performance. These parameters include the learning rate of the

network, the number of hidden layers, the number of neurons within each hidden layer,

random seeds to initialize the weights, etc. Another shortcoming of ANNs is their dependence

on only the feedforward information during both the training and testing phases. As

discussed in Chapter 2, within the neocortex, along with the feedforward processing paths,

the feedback paths play a very important role in realizing complex tasks. Absence of these

feedback processing paths leaves the ANNs at a major disadvantage. Back propagation neural

networks [79], a commonly known type of ANNs, include feedback paths from the upper

levels to lower levels. These feedback paths from higher levels to the lower ones essentially

propagate the error between the output of the network and the desired response. Even though

these networks contain a notion of feedback, this type of feedback has no biological basis.

Finally, the convergence of an ANN towards an optimal solution is not guaranteed. Based on

the random initial weight values, the network may converge to any local minimum on the

error surface if the stochastic gradient descent traverses a surface which is not convex [37].

Section 4.2.1 describes that the computational model proposed in this dissertation does

not rely on random initialization of weights. Rather the proposed model uses spontaneous

activations for triggering the initial learning process and does not suffer from any convergence

30

issues. Section 4.3.2 discusses various biological inspired mechanisms to implement feedback

processing paths within the computational model proposed in this dissertation and the

powerful role these feedback paths play during the learning process.

3.1.1.2 Deep Belief Networks

Deep belief networks (DBN) are probabilistic generative models that are composed of multiple

layers of latent variables. The latent variables typically have binary values and are often called

hidden units or feature detectors. The top two layers have undirected, symmetric connections

between them and form an associative memory. The lower layers receive top-down, directed

connections from the layer above. The states of the units in the lowest layer represent a

data vector. Deep belief nets are learned one layer at a time. During each training epoch,

the output values of the latent variables in one layer are treated as the training inputs

for the next layer. This efficient, greedy learning can be followed by, or combined with,

other learning procedures that fine-tune all of the weights to improve the generative or

discriminative performance of the whole network. Among many other applications, DBNs

have also been used for generating and recognizing images [52, 107], video sequences [127]

and motion-capture data [130].

Even though DBN are considered to be quite powerful compared to other neural networks,

they demonstrate moderate performance in terms of their recognition accuracy on complex

data sets [77]. Even the most sophisticated and highly fine tuned DBN trained on 1.6

million images [77] only achieves the best recognition rate of 78% on simple natural images.

31

This clearly demonstrates that these DBNs lack the ability to develop generalized internal

representations for effective pattern recognition. Apart from their hierarchical organization,

DBNs do not model other interesting structural or functional aspects of the neocortex like

the use of spontaneous activations for initial learning and fault tolerance, independent feature

identification, generation of feature maps, and the role of feedback processing paths in learning

and development of invariant representations. Sections 4.2.1, 4.2.3, 4.3.1.1, and 4.3.2 describe

how such powerful neocortical aspects are implemented within the computational model

proposed in this dissertation and how such aspects make the proposed model more attractive

than other contemporary approaches.

3.1.1.3 Competitive Learning

Competitive learning is a powerful learning paradigms in which nodes within a spatial locality

compete for the right to respond to a subset of input data [112]. Competitive learning networks

usually perform feedforward processing on the input data and implement a winner-take-all

behavior. During each epoch, all the nodes within a spatial locality evaluate their output in

response to an input and the node with the highest response is allowed to fire while the others

a inhibited. Furthermore the winner node updates its weights using a predefined weight

update rule, similar to gradient descent. The learning model described in this dissertation

further extends the idea of competitive learning to implement the functionality of minicolumns

and hypercolumns described in Section 2.1.5. The competitive learning rule and further

extensions to it are discussed in Sections 4.2.1 and 4.2.3.

32

Even though competitive learning provides powerful unsupervised learning capabilities,

it suffers from a number of shortcomings as well. First, since most competitive learning

networks contain only feedforward connections, they suffer from the same problems described

in Section 3.1.1.1 in the context of multi-layer perceptron models. Furthermore, the inherent

competitive nature of the nodes within a network makes them more prone to getting stuck

in a local minimum. As a result, convergence of competitive learning networks to optimal

solution is not guaranteed. Finally, learning generalized and invariant representations using

solely a competitive learning rule is difficult as two variations of the same pattern may

not be learned by the same node in a competitive learning paradigm. Sections 4.2.1, 4.2.2,

and 4.3.2.2 describe various biologically inspired properties that help resolve various issues

concerning the competitive learning paradigm.

3.1.1.4 Self Organizing Maps

A self-organizing map (SOM) [74] is a type of artificial neural network that is trained using

unsupervised learning to produce a low-dimensional, discretized representation of the input

space of the training samples. Self-organizing maps are different from other artificial neural

networks in the sense that they use a neighborhood function to preserve the topological

properties of the input space. A self-organizing map consists of components called nodes or

neurons. Associated with each node is a weight vector of the same dimension as the input

data vectors and a position in the map space. The usual arrangement of nodes is a regular

spacing in a hexagonal or rectangular grid. The self-organizing map describes a mapping

33

from a higher dimensional input space to a lower dimensional map space. The procedure for

placing a vector from data space onto the map is to first find the node with the closest weight

vector to the vector taken from data space. Once the closest node is located it is assigned

the values from the vector taken from the data space.

The goal of learning in the self-organizing map is to cause different parts of the network to

respond similarly to certain input patterns. This is partly motivated by how visual, auditory,

or other sensory information is handled in separate parts of the cerebral cortex in the human

brain [60]. The weights of the neurons are initialized either to small random values or sampled

evenly from the subspace spanned by the two largest principal component eigenvectors. With

the latter alternative, learning is much faster because the initial weights already give good

approximation of SOM weights [75]. The network must be fed a large number of example

vectors that represent, as close as possible, the kinds of vectors expected during mapping.

The examples are usually administered several times as iterations. The training utilizes

competitive learning [112]. When a training example is fed to the network, its Euclidean

distance to all weight vectors is computed. The neuron with weight vector most similar to

the input is called the best matching unit. The weights of the best matching unit and neurons

close to it in the SOM lattice are adjusted towards the input vector.

Despite the wide use of SOMs for data clustering and classification, they suffer from three

major problems. First, the SOM uses a fixed network architecture in terms of number and

arrangement of neurons which has to be defined prior to training. Obviously, in case of largely

unknown input data characteristics it remains far from trivial to determine the network

34

architecture that allows for satisfying results. Second, hierarchical relations between the input

data are not mirrored in a straight-forward manner [27]. Such relations are rather shown in

the same representation space and are thus hard to identify. Hierarchical relations, however,

may be observed in a wide spectrum of application domains. Thus, their proper identification

remains a highly important data mining task that cannot be addressed conveniently within

the framework of the SOM.

In terms of their biological fidelity, apart from creating feature maps, SOMs do not model

any other properties inspired by the mammalian brain. Furthermore, the Euclidean distance

based methodology that the SOMs use for creating the feature maps has no biological basis.

Traditional SOMs organize themselves simply based on the similarity of input features. A

neuron which has the highest response will not only improve its correlation with an input,

but also the correlation of its neighbors to encourage a topological organization of similar

features. However, such SOMs do not account for the temporal aspect of input patterns and

how they can help shape the feature maps.

Sections 4.2.1, 4.3.1.1, 4.3.1.2, and 4.3.1.3 describe how the computational model proposed

in this dissertation utilizes various biologically inspired mechanisms including spatially

localized and temporally correlated spontaneous activations, automatic abstraction, and

Gaussian like connectivity to develop hierarchical feature maps. - Since these biological

mechanisms do not rely on evaluation of any Euclidean distance like metric, they are

inherently computationally efficient as compared to the traditional SOM approaches for

developing feature maps.

35

3.1.1.5 Convolutional Neural Network

Convolutional Neural Networks (CNN) [80] are a kind of multi-layer neural networks. Like

other ANNs, they are trained using a back-propagation algorithm. CNNs differ from other

ANN approaches in terms of their architecture. First, CNNs exploit spatially local correlation

by enforcing a local connectivity between neurons in adjacent layers. The input units in the

m t h layer are connected to a local subset of units in the (m — l) t H layer. Second, at each

level, there exist a number of filter masks with shared receptive fields that are convolved with

the input. The outputs of these filter masks undergo a max operation where the strongest

output of all the filters with the same receptive field is transferred to the next level. Finally,

in CNNs, each of the filters is replicated across the entire visual field. These replicated filters

form a feature map, which share the same parameterization, i.e. the same weight vector and

the same bias. Conceptually, a feature map is obtained by convolving the input image with a

linear filter, adding a bias term and then applying a non-linear function.

CNNs are especially tricky to train, as they add even more hyper-parameters than a

standard ANN. While the usual rules for learning rates and regularization constants still

apply, the following should be kept in mind when optimizing CNNs.

• Number of filters per layer needs to be specified before the training period.

• Since different filter shapes have different effect on the overall performance of the

network, filter shapes need to be fine-tuned to improve the network's performance.

• Number of filters per max operation has to be specified before the training phase.

36

With all these additional parameters, fine-tuning a convolution network to achieve optimal

performance becomes quite cumbersome.

Similar to other artificial neural networks, apart from hierarchical arrangement, CNNs

also do not incorporate other biological operations and abstractions including the use of

spontaneous activations for initial learning and fault tolerance, independent feature identifi­

cation, generation of feature maps, and the role of feedback processing paths in learning and

development of invariant representations. Sections 4.2.1, 4.2.3, 4.3.1.1, and 4.3.2 describe how

such powerful neocortical aspects are implemented within the computational model proposed

in this dissertation and how such aspects make the proposed model more attractive than

other contemporary approaches. .

3.1.2 Abstract Models with Moderate Biological Plausibility

Unlike the neural models discussed in Section 3.1.1, this class of models tends to implement

several properties that are inspired by certain neocortical properties including hierarchy,

spatial and temporal pooling, vigilance, competitive learning, etc. Among others, Hierarchical

Temporal Memories (HTM) [34], Adaptive Resonance Theory (ART) [41], and HMAX [108,

119] are the most famous models within this class. Despite the fact that these models tend to

be moderately close to the biology, they ignore a number of very powerful biological properties

like plasticity, spontaneous activity, feedback processing paths, etc.

37

3.1.2.1 Hierarchical Temporal Memories

Hierarchical temporal memory (HTM) is a machine learning algorithm that models some of

the structural and algorithmic properties of the neocortex. The functionality of HTM model

is based on the memory-prediction theory of brain function described by Jeff Hawkins in

his book On Intelligence [47]. A typical HTM network is a tree-shaped hierarchy of levels

that are composed of smaller elements called nodes. Higher levels in the hierarchy have

fewer nodes, so the resolution in space is lost. At the same time, higher levels reuse patterns

learned at the lower levels by combining them to memorize more complex patterns. Input is

exposed to the levels at the bottom of the hierarchy and from there activation propagate up

the hierarchy until the top level where complex objects are recognized. The top level node is

usually a classifier trained using back-propagation and it learns general categories (concepts)

which are determined by smaller concepts in the lower levels. HTM networks have mainly

been used for pattern recognition and classification tasks and have demonstrated comparable

results as other neural network models [34].

A HTM network can simply be classified as a complex hierarchical Bayesian network.

The main difference between HTM and a traditional Bayesian network is the spatial and

temporal pooling aspect of HTMs. Each node within the HTM network has the ability to

pool feature in terms of their spatial similarities and temporal co-occurrences. Using the

spatial pooling aspect, an HTM node can generate invariant representations for variations of

the same feature while the temporal pooling property allows the HTM network to predict

the outcome using the global context. [34]

38

Even though HTM implements a number of neocortical properties like hierarchy, spatial

pooling to generate partial invariant representations, and context based prediction, they do

not model some other very powerful aspects of the neocortex like utilizing feedback paths to

generate feature maps and hierarchically organized invariant representations, spontaneous

activity, inherent fault tolerance, and connectivity rules among various hierarchical levels.

These are some of the major shortcomings of HTM and the reason why HTM networks are

not very widely applied for pattern recognition tasks. Sections 4.2.1, 4.2.3, 4.3.1.1, and 4.3.2

describe how such powerful neocortical aspects are implemented within the computational

model proposed in this dissertation and how such aspects make the proposed model more

attractive than other contemporary approaches.

3.1.2.2 Adaptive Resonance Theory

Adaptive Resonance Theory (ART) [41] is a theory inspired by various aspects utilized by

the brain to process information. It describes a number of neural network models which

use supervised and unsupervised learning methods, and address problems such as pattern

recognition and prediction. The primary intuition behind the ART model is that object

identification and recognition generally occur as a result of the interactions between the

feedforward sensory information and context dependent feedback predictions. The model

postulates that top-level predictions take the form of a memory template that is then

compared with the various features of an object as detected and communicated by the sensory

modalities. This comparison is then used to evaluate the feedforward information and to

39

classify the input patterns. As long as this difference between feedforward sensation and

feedback prediction does not exceed a set threshold called the vigilance of the network, the

sensed object is considered a member of the expected class.

The basic ART system is an unsupervised learning model. It typically consists of a

comparison field and a recognition field composed of neurons, a vigilance parameter, and

a reset module. The vigilance parameter has considerable influence on the system: higher

vigilance produces highly detailed memories (many, fine-grained categories), while lower

vigilance results in more general memories (fewer, more-general categories). The comparison

field takes an input vector (a one-dimensional array of values) and transfers it to its best

match in the recognition field. Its best match is the single neuron whose set of weights most

closely matches the input vector. Each recognition field neuron outputs a negative signal

(proportional to that neuron's quality of match to the input vector) to each of the other

recognition field neurons and inhibits their output accordingly. In this way the recognition

field exhibits lateral inhibition, allowing each neuron in it to represent a category to which

input vectors are classified. After the input vector is classified, the reset module compares

the strength of the recognition match to the vigilance parameter. If the vigilance threshold

is met, training commences. Otherwise, if the match level does not meet the vigilance

parameter, the firing recognition neuron is inhibited. This allows some other neuron with the

same recognition field to learn the feedforward pattern. In the search procedure, recognition

neurons are disabled one by one by the reset function until the vigilance parameter is satisfied

by a recognition match.

40

To date, a number of variations if ART have been proposed. These include,

• ART-1: Simplest variety of ART networks, accepting only binary inputs [21].

• ART-2: Extends network capabilities to support continuous inputs [19].

• Fuzzy ART: Implements fuzzy logic into ART pattern recognition algorithm, thus

improving network's ability to generate invariant representation [20].

• ARTMAP: Combines two slightly modified ART-1 or ART-2 units into a supervised

learning structure with a vigilance parameter [22].

ART models have been utilized for a number of pattern recognition and classification

tasks. One of the major weaknesses of ART is that the performance of ART depends on the

order in which the training data are processed. This effect can be reduced to some extent

by using a slower learning rate, but is present regardless of the size of the input data set.

Furthermore, although ART models a number of interesting neocortical properties, like HTM,

it also disregards a number of powerful neocortical properties as well. These include the role

of feedback in learning and generation of invariant representations, spontaneous activations,

inherent fault-tolerance, and cortical rules for evolution of connections among various layers.

Sections 4.2.1, 4.2.3, 4.3.1.1, and 4.3.2 describe how such powerful neocortical aspects are

implemented within the computational model proposed in this dissertation and how such

aspects make the proposed model more attractive than other contemporary approaches.

41

3.1.2.3 H M A X

The Hierarchical Model and X or HMAX model [108] implements the basic known facts about

the feedforward information processing pathways in the ventral visual stream [84], a hierarchy

of brain areas thought to mediate object recognition in the cortex. This model reflects the

general organization of visual cortex in a series of layers from VI to IT. A traditional HMAX

network consists of 5 levels [108] and in terms of generating invariant representations, the

model implements two types of cells: simple (S) cells and complex (C) cells. Input images

are filtered using an array of 2D Gabor-like filters which model the first layer of simple

cells (SI). Centered at each pixel location there are around 50 filters sensitive to bars of

different orientations and sizes, thus roughly resembling properties of simple cells in striate

cortex [84]. The output of the Si cells is transferred to the next level which implements the

first layer of complex cells (Cl). The Cl cells pool the response of multiple SI cells and apply

a winner-take-all like max operation on the activations of the SI cells within their receptive

field. The output of the Cl cells is then fed into another simple cell layer (S2) which connects

to a layer of complex cells (C2). Finally, the C2 cells connect to the view-tuned cells [84]

(VTUs) which classify different objects. Figure 3.1 shows a standard 5 level HMAX network.

One of the major shortcomings of HMAX is that it adds a number of hyper-parameters

that need to be fine tuned to optimize the performance of the network. This fine-tuning

mechanism is highly dependent on the type of patterns in both the training and testing set.

Furthermore, even though different layers of HMAX are inspired by the functionality of the

ventral visual stream, they miss a number of cortical features that play a very important role

42

© © @

y y

•v.:

/ \

: /) (\ ;

view-tuned cells

"complex composite" cells (C2)

"composite -feature" cells (S2)

complex cells (C1)

simple cells (S1)

weighted sura

- ~ MAX

Figure 3.1: Schematic of the Standard HMAX network [108].

within the cortical processing streams. First, HMAX relies only on the feedforward processing

paths of learning and recognition. Feedback paths are omitted in this model. Second, the

properties of different simple and complex cells are hard-coded in the before the learning

process takes place. Thus, they are not learned over time. Finally, the role of spontaneous

activations in learning and inherent fault-tolerance is missing. Sections 4.2.1, 4.3.2, and 5.2

describe how such powerful neocortical aspects are implemented within the computational

model proposed in this dissertation and how such aspects make the proposed model more

attractive than other contemporary approaches.

43

3.1.3 Detailed Models with High Biologically Plausibility

This section discusses a few low level cortical models which implement various aspects of the

structure of neurons and their functional behavior. This section also discusses the application

of such models and their limitations. Two very famous models that fall under this category

are the Hodgkin-Huxley model [54, 55, 56] and the Izhikevich spiking neuron model [65].

3.1.3.1 Hodgkin-Huxley Model

The Hodgkin-Huxley model is a mathematical model that describes how action potentials in

neurons are initiated and propagated. It is a set of nonlinear ordinary differential equations

that approximates the electrical characteristics of excitable cells such as neurons. Alan Lloyd

Hodgkin and Andrew Huxley described the model in 1952 to explain the ionic mechanisms

underlying the initiation and propagation of action potentials in the squid giant axon [54, 55,

56]. They received the 1963 Nobel Prize in Physiology or Medicine for this work.

The Hodgkin-Huxley model is quite useful to study and understand interactions between

neurons as long as the number of neurons in the network is small. In case of larger networks,

this model suffers two main problems. First, implementing large hierarchical networks that

may realize complex tasks becomes quite cumbersome when using this model. Second,

since various non-linear differential equations need to be evaluate every cycle, the overall

computation cost of large Hodgkin-Huxley networks because very high. Finally, the Hodgkin-

Huxley model does not define any rules for learning and training. These shortcomings make

it quite hard and cumbersome to realize complex tasks using this model.

44

3.1.3.2 Izhikevich Spiking Neuron Model

The Izhikevich model reproduces spiking and bursting behavior of known types of cortical

neurons. This model combines the biological plausibility of Hodgkin-Huxley dynamics and

the computational efficiency of traditional artificial neurons. Using this model, one can

simulate tens of thousands of spiking cortical neurons in real time (1 ms resolution). The

Izhikevich model simplifies various non-linear complex differential equations into a system of

ordinary differential equations. This significantly improves the computational cost required

to evaluate the behavior of neurons during every execution cycle.

The Izhikevich model provides biologically plausible and computationally efficient tools

to study detailed interactions among various neurons. However, like the Hogdkin-Huxley

model, the Izhikevich model suffers from two main shortcomings. First, constructing large

networks using the Izhikevich model to realize complex tasks gets quite cumbersome. Second,

the Izhikevich model also does not provide any rules for learning or training. All the

connections between different neurons need to be hardwired beforehand. As a result, there is

no straightforward way to realize complex tasks that require online learning and training.

3.1.4 Biological vs. Artificial Neural Networks

In terms of developing neural models, the machine learning and the neurobiology communities

pursue two different goals. Researchers in the machine learning community have an extreme

interest in developing the most efficient classification algorithm. On the other hand, researchers

in the neurobiology seek to build models inspired by various structural and functional aspects

45

of biological neural networks with an eventual goal of ultimately emulating the whole range

of biological neural networks' capabilities, with classification being only one such capability.

The goals of this dissertation are more in sync with the neurobiology community: emulate

biological neural networks with the goal of reproducing a large range of their capabilities,

along with the additional goal of achieving computational efficiency.

Additionally, the biological and the artificial neural networks differ from each other on a

number of other dimensions as well. First, both of these networks typically rely on different

learning strategies. ANNs often rely on back-propagation for learning classification tasks:

the correct answer is known and is fed back through the network by adjusting the synapse

weights based on the network error; this form of learning is called supervised learning [48].

Biological neural networks rely on what the machine-learning community calls unsupervised

learning: the correct answer is not known, but the network learns through repeated exposure

to the input via local learning rules, i.e., Hebbian learning [15]. There may also exist indirect

supervisory feedback, e.g. reward/punishment (reinforcement learning) [128]. However, the

way biological networks implement feedback is radically different from the back-propagation

algorithm used by traditional ANNs. Second, both the biological and artificial neural networks

differ in terms of the attention given to the network structure. ANNs often rely on full

connectivity, or random structures [48]. Recent progress in neurobiology [42, 10] show that

the network structure and the nature and arrangement of connections are complex and play

a major role in the abstraction capabilities of the network.

Third, both single and multi-layer ANN models are intolerant of permanent hardware

46

iX Computational Efficiency

ANN,
DBN

CNN

SOM !l
HTM,
ART

E ™ ^

Performance

ANN: Artificial Neural Networks
DBN. Deep Belief Networks
CNN: Convolutional Neural Network
SOM: Self-Organizing Maps
HTM: Hierarchical Temporal Memory
ART: Adaptive Resonance Theory
HMAX: Hierarchical Model and X
Izhikev: Izhikevich Spiking Neuron Model
HH: Hodgkin-Huxley Model

I z h i k e v
>_

Go Biological Fidelity

Figure 3.2: A comparison between various neural models in terms of their biological fidelity,
computational efficiency, and performance.

defects. Emmerson and Damper [28] show that even a slight amount of faulty behavior

(either in the perceptron or the connections) can significantly deteriorate the recognition rate

of these models.

At the other end of the spectrum, there are highly detailed biologically plausible models

which realize a number of low level cortical properties but these models suffer from their

computational costs and difficulty in constructing large networks to realize complex tasks.

Figure 3.2 compares all the models discussed in this section in terms of their biological fidelity,

47

computational efficiency, and performance. Performance in the figure is defined as the ability

of the network to efficiently realize complex tasks. Ideally, we need a model that has high

biological fidelity, is computationally efficient, and performs well in realizing complex tasks.

3.2 Computer Architecture

The purpose of this section is twofold. First, it provides a brief description of various

biologically inspired hardware based learning models and discusses various limitations of

such models. Second, it describes some of the tools developed by the computer architecture

community that can help in constructing powerful learning models.

3.2.1 Learning Models

This section presents three hardware based learning models. These models include the Blue

Brain project [68, 87], the FACETS project [29], and the SyNAPSE project [92]. The main

focus of this section is on the implementation details of these hardware based systems and

their limitations.

3.2.1.1 Blue Brain

The Blue Brain Project is an attempt to create a synthetic brain by reverse-engineering the

mammalian brain down to the molecular level. The main goal of this project is to reconstruct

the brain piece by piece and build a virtual brain in a supercomputer [87]. This virtual tool

will give neuroscientists a better understanding of the brain and various neurological diseases.

48

As a first step, the project succeeded in simulating a rat cortical column [8]. A rat's brain has

about 100,000 columns. Each of these columns consists of around 10,000 neurons. A longer

term goal of this project is to build a detailed, functional simulation of the physiological

processes in the human brain.

Even though the Blue Brain project strongly adheres to the structural properties of the

brain, it suffers from two main problems. First, simulating even a small network of neurons

requires massive computations and a huge amount of time. Thus, this model cannot be used

for any applications with real time execution requirements. Second, as is the case with other

biologically realistic models, constructing large networks to realize complex tasks gets quite

cumbersome and extremely time consuming.

3.2.1.2 FACETS

The Fast Analog Computing with Emergent Transient States (FACETS) project aims to

address the unsolved question of how the brain computes using analog circuits and devices.

Another objective of this project is to create a microchip hardware equaling approximately

200,000 neurons with 50 million synapses on a single silicon wafer. One of the major issues

that this project is facing is fabricating analog circuits on a wafer. This process is quite tricky

and is prone to a number of unexpected behaviors and reliability issues [35].

3.2.1.3 S y N A P S E

Researchers at IBM have been working on a cognitive computing project called Systems

of Neuromorphic Adaptive Plastic Scalable Electronics (SyNAPSE). By reproducing the

49

structure and architecture of the brain, the SyNAPSE project models computing systems

using digital circuits that emulate the brain's computing efficiency, size and power usage

without being programmed. So far, the research team at IBM has been able to fabricate

a chip with 256 neuron-like elements and 65536 synapses. This chip is the very first step

towards making a powerful hardware based neuromorphic system. The SyNAPSE project is

in a very early stages of development and its full potential is yet to be known.

3.2.1.4 Silicon-based Implementation

This dissertation does not present a specific silicon-based implementation of the proposed

model, because the recent progress in neurobiology, which motivates this work, relates more

to the structure and connections between neurons, than to the behavior of neurons and

synapses themselves. As a result, the neural arrangements presented here can be readily

implemented in silicon by leveraging the large body of work on hardware implementation of

artificial neural networks, for example [57, 116].

3.2.2 Abstraction Layers

The externally-observable operation of many systems can be reproduced with a behavioral

model that operates at an appropriate level. As architects, we are familiar with many

examples of such behavioral models. Increasingly high-level models often aggregate the

behavior of lower-level elements in time and/or in space. For example, a gate-level model of a

digital circuit removes details related to individual transistors and does not model transient

50

switching behavior, reporting only steady-state logic values. Typically, the precision of these

models varies inversely with their computational demands, and an appropriate model must

be chosen to satisfy both reasonable time to completion and sufficient precision.

Sandberg and Bostrom provide a thorough introduction to neural modeling, and identify

eleven different levels of model, ranging from ANNs all the way to molecular dynamics

and even quantum-level simulation [115]. They argue that brains can be emulated without

higher-level algorithmic understanding: as long as biological details are measured carefully

and replicated faithfully, a feline brain, or even a human brain, will boot up and work as

expected. A recent experiment showed that a large-scale supercomputer (IBM Blue Gene)

possesses the computational throughput for modeling a rat cortex using this approach within

an order of magnitude of real time (9x slowdown) [5]. Also, the DARPA Synapse [24] program

has set a goal of scaling emulation up to a feline cortex.

In contrast, as architects, we want to build cortically-inspired computing systems which

emulate selected functional subsets of the human cortex. This requires detailed high-level

algorithmic understanding of the cortical properties, rather than simply precisely reconstruct­

ing the biological baseline. It also requires high computational efficiency, which suggests

developing high-level behavior models emulating cortical functionality. The pitfall is develop­

ment of high-level but unfaithful models which fail to emulate the target functions because

they do not capture the key aspects of their biological implementation. For that reason, such

high-level models must be validated against lower-level, less computationally efficient, but

biologically plausible models.

51

Sections 5.1.2 and 5.1.3 describe mechanisms that use the notion of abstraction layers to

achieve computational efficiency within the learning model proposed in this dissertation.

3.2.3 Instruction Set Architecture

An instruction set architecture (ISA) is the part of the processor architecture that specifies the

native data types, instructions, registers, addressing modes, and memory architecture. An ISA

includes a specification of the set of opcodes (machine language), and the native commands

implemented by a particular processor. Instruction set architecture is distinguished from

the microarchitecture, which is the set of processor design techniques used to implement the

instruction set. Computers with different microarchitectures can share a common instruction

set. For example, the Intel Pentium and the AMD Athlon implement nearly identical versions

of the x86 instruction set, but have radically different internal designs.

Given that a number of neural algorithms and hardware have been developed, there is a

need to establish a common neuromorphic instruction set architecture. As architects, we can

utilize the ideas behind the implementation of a traditional ISA and use them to implement

a general neuromorphic ISA. This will separate the neural algorithm from the execution

substrate and will allow the neural network developers to implement neural algorithms

without the need to understand the details of the execution hardware. One such mechanism

to separate neural algorithm from underlying substrate is discussed in Section 5.1.1 and

various optimization tools that can be built on top of such a mechanism are discussed in

Sections 5.1.2 and 5.1.3.

52

3.3 Summary

This chapter briefly describes various software and hardware based learning models and

highlights various limitations of these models. It also compares various learning models it

terms of their biological fidelity, computational.efficiency, and performance. Finally, this

section describes some computer architecture tools that can help in developing robust and

powerful learning model.

53

4 B I O L O G I C A L L Y I N S P I R E D L E A R N I N G M O D E L

This chapter provides a detailed description of the biologically inspired learning model

proposed in this dissertation in the context of the visual processing stream in the mammalian

neocortex. This chapter serves two main objectives. First, it presents and discusses various

aspects of the proposed model and justifies their biological inspirations. Second, it highlights

various aspects that make the proposed model computationally more attractive than the

models discussed in Chapter 3 using various experimental studies.

4.1 Visual Input Pattern Preprocessing

In the mammalian visual cortex, a nerve path transfers visual data from the retina to the

LGN cells. During this transmission, the visual data undergoes the log-polar transform (see

Section 2.4.1). Modeling biology, before exposing the visual inputs (2D images) to the learning

model, they are preprocessed using both the log-polar [104] and the LGN transform [109].

Essentially, if F(x,vj) represents a visual input pattern with origin at (xo,"yo), then the

log-polar transform L{Y{x,y)} is defined by mapping the image pixels at [x,y) to (a, cj>) such

that,

a = l o g (v / (x - x 0) 2 + (y - y 0) 2 (4.1)

54

The log-polar transform converts the visual patterns from the Cartesian coordinate system

to polar coordinate system and provides partial invariance to changes in rotation and scale of

the input patterns. Section 4.4.1 demonstrates the amount of invariance that the learning

model proposed in this dissertation achieves due to the log-polar transform. This transformed

input pattern is processed further with the LGN transform. The LGN transform is contrast

sensitive. Thus, contrast among different regions of the input patterns is enhanced after

transforming them through the LGN transform. This transformed pattern then becomes the

input to the proposed learning model.

4.2 Cortical Columns: Building Blocks for Intelligent

Systems

Unlike traditional neural network models (see Chapter 3), remaining true to the biological

inspiration is one of the key considerations while implementing various features of the proposed

learning model. As discussed in Section 2.2, the neocortex is composed of a hierarchy of

uniformly structured entities called the cortical columns. These columns are further classified

into hypercolumns and minicolumns. A typical hypercolumn consists of around 50-100

minicolummns. Each of these minicolumns comprises around 200 neurons. Thus, on the

average, a typical hypercolumn contains around 10,000 neurons. Chapter 2 also describes that

the minicolumns within the same hypercolumn share the same receptive field (see Section 2.1.5)

and neurons within the same minicolumn tend to have similar firing preferences [59, 60].

55

Even though neurons are the basic structural building blocks of the neocortex, in terms of

functionality, they are not a very powerful abstraction. On the other hand, cortical columns

(both minicolumns and hypercolumns), appear to be a very powerful and biologically inspired

functional abstraction. Thus, in order to achieve biological fidelity and to construct powerful

learning models, this dissertation proposes a learning model inspired by the structural and

functional properties of the cortical columns.

Furthermore, complex neural network models as discussed in Chapter 3, use neurons as

their basic functional abstraction. This results in very high computational requirements

for such models. In the proposed learning model, computational efficiency is another key

consideration. Computational efficiency in this model is achieved by the fact that a single

hypercolumn can abstract out the working and computational requirements of 10,000 neurons.

Thus, using hypercolumns as the basic functional abstraction within a learning model can

provide significant computational speedups.

Figure 4.1 shows a high level schematic of a hypercolumn within the proposed learning

model and compares it with a typical biological cortical column. In the proposed hypercolumn

model, a hypercolumn contains multiple perceptron like elements, i.e. the minicolumns. Each

of these minicolumns contains feedforward, feedback, and lateral inhibitory connections,

corresponding weight vectors, a variable threshold value, and an activation function for

evaluating its output. Based on the biological findings discussed in Section 2.1, in the

proposed model, minicolumns are grouped into hypercolumns with the following rules. First,

minicolumns within a hypercolumn are fully connected to all the other minicolumns within

56

Key: Feedforward Feedback Lateral Inhibition

Hyper Column Model Hyper Column in Neocortex

0010"* Outf Out2
A Outsf I ' \ / ' ; , '

Figure 4.1: Left: The hypercolumn model with feedforward, feedback, and lateral inhibitory
paths as defined by the cortical learning algorithm. Right: The structure of a typical biological
hyppercolumn. MC=Minicolumn, T=Threshold of Activation Function.

the same hypercolumn via lateral inhibitory connections. This emulates a winner-take-all

behavior among the minicolumns within the same hypercolumn. Second, all the minicolumns

within the same hypercolumns share the same receptive field, i.e. minicolumns within the same

hypercolumn share the same input connections (albeit with different synaptic weights). Third,

minicolumns within a hypercolumn receive feedback connections from other minicolumns in

upper hierarchical regions. These feedback connections modulate the learning behavior of

the minicolumns in the lower hierarchical regions.

57

4.2.1 Spontaneous Activations and Unsupervised Learning

Unlike traditional neural network approaches, the synaptic weights of minicolumns within the

modeled hypercolumns are initialized with near zero values. This suggests that minicolumns

do not assume any initial connectivity and the whole network behaves like a blank slate.

Thus, initially, none of the minicolumns show a preference to any input pattern.

The minicolumns within the modeled hypercolumn learn through their ability to generate

spatially localized and temporally correlated spontaneous activations (see Section 2.4.5).

These spontaneous activations, inspired by biology, are a very robust mechanism to initiate the

learning process within individual minicolumns. During any training iteration, a minicolumn

can become spontaneously active even in the absence of direct stimulus within its receptive

field. More precisely, at each time step, each minicolumn has a small probability to become

active even if its inputs do not justify that activity. Each minicolumn leverages on this

spontaneous activation property for inducing random initial conditions, and for perturbing

its weights as the learning process occurs. If a minicolumn spontaneously fires, its synaptic

weights corresponding to its active inputs are reinforced. When the spontaneous activation

of a specific minicolumn coincides frequently with a particular stimulus, the synaptic weights

corresponding to the active inputs of the minicolumn are reinforced. In effect, the frequent

co-occurrence of spontaneous activations and the presence of a particular input pattern (due

to object permanence) initiates learning. The main advantage of learning through these

spontaneous activations instead of initial random initialization of minicolumn synaptic weights

is that they help the proposed learning model avoid the scenario where certain features are

58

Algorithm 1 Pseudo code for evaluation of spontaneous activity behavior of a minicolumn.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

if HasFired = = 1 then
spontaneousActivity = 0
HasFired = 0

else
spontaneousActivity — = leakValue
{//leakValue determines the time window of past neighbor activations}

if spontaueousActivity < 0 then
spontaneous Activity = 0

end if
for i = 1 to number of rainicolumns do

spontaneousActivity + = (activity[i] * GaussConuectivtty(rnyID — i))
{//GaussConnectivity(i) = ae~x /v, V = variance}

end for
spontaneousActivity / = AbsoluteSum(syuapticWeights)
{//ensures less spontaneous activity as synaptic weights strengthen}

if spontaneousActivity ^ activity Threshold then
activity [ray ID] = Sigmoid(spoutaneous Activity — activity Threshold)
{//Sigmoid(x) = 1.0/(1.0 + e - " / p) }

HasFired = 1
end if

end if

not learned due to the networks disfavor to them because of the initial random weights (See

Section 3.1.1.1).

The spontaneous activation property of a minicolumn depends on several factors, including

the time since it was last activated, the absolute sum of its synaptic weights, and the

recent activity of its neighboring minicolumns. As is observed within the retinal ganglion

cells in the visual processing stream (see Section 2.4.5), a minicolumn within the modeled

hypercolumn has a higher chance of becoming active if there already is some activity in

its neighborhood. The influence of the activity of neighboring minicolumns on the activity

of a particular minicolumn is modulated by a Gaussian distribution of relative connection

strength. Algorithm 1 shows the pseudo-code for evaluating the spontaneous activation

59

behavior of a minicolumn. Various components of this pseudo-code are motivated by the

analysis presented by Albert et al. [4] about the formation of spontaneous activations within

the retinal ganglion cells. Section 4.4.2 evaluates the proposed learning model's ability to

learn unique features using these spontaneous activations.

4.2.2 Evaluation of Minicolumn Activity using a Non-Linear

Activation Function

Activity of a minicolumn depends on the activations of its inputs weighted by the corresponding

synaptic weights. Formally, the output activity of a minicolumn in response to an input

vector x at any time step is given by a sigmoid function f(x),

f(x) = r T 7 7r (4.3)

g(x) = e (x , W) - T x JQ(W) (4.4)
N

CL{W) = ^ C i W i (4.5)
i= l
f

Cx - K
1.0, i f W t > 0 . 5

0.0, otherwise

(4.6)

N

6(x,W) = J>(x i ;W t) (4.7)
1 = 1

I -2, ifXi = 1 . 0 a n d W i < 0 . 5
y(Xi,Wi)

Xt Wt, otherwise

(4.8)

60

'

1
/ \

r*

Feature!

Feature 2

Feature 3

Feedforward
Connection

Figure 4.2: A simple example demonstrating the use of the proposed non-linear evaluation of
correlation for propoer functional behavior of the hypercolumn model.

(3 in Equation 4.3 controls the step-like behavior of the sigmoid function. In Equation 4.4,

g(x) evaluates a non-linear correlation between the input vector and the synaptic weights

of the minicolumn and compares it with jQ(W) which estimates the firing threshold based

on the sum of high synaptic weight values of the minicolumn (see Equations 4.5 and 4.6).

Note that J Q (W) is a (simple) emulation of the synaptic scaling phenomenon observed in

several regions of the brain [63]. Within the brain, synaptic scaling serves to maintain

strengths of synapses relative to each other. T in Equation 4.4 determines the tolerance of

a minicolumn to noise and can take a value between 0.0 and 1.0. During each training or

61

testing epoch, every minicolumn evaluates the correlation ©(x, W) between the input vector

x and its synaptic weights W using Equation 4.7. Typical ANN models define the input of

the activation function simply as ^XiWj. . However, in the proposed model, y(xt ,Wi) in

Equation 4.8 can be seen as a reflection of a non-linear evaluation of correlation between the

input vector x and the synaptic weights W.

If Wt corresponding to an active input Xi is low, Wt contributes negatively to the input

of the activation function. Within the neocortex, these non-linear summation properties

have been observed in some dendrites [85]. This non-linearity is found to to be necessary

for proper functional behavior of the hypercolumn model as demonstrated by a simple

example in Figure 4.2. In this figure, as demonstrated by the feedforward connectivity arrows,

minicolumn A learns to fire in response to the co-occurrence of features 1 and 2, while

minicolumn B learns to recognize the co-occurrence of features 1,2, and 3. In the absence of

such a non-linear correlation evaluation, along with firing for the co-occurrence of features

1 and 2, minicolumn A will also fire whenever features 1,2, and 3 appear in its receptive

field. Using the simple biologically inspired non-linear activation rule, such a situation can

be prevented.

4.2.3 Lateral Inhibition and Independent Feature Identification

When an input x is presented to the hypercolumn, none of the untrained minicolumns fire

for that input. However, if the random firing activity of a minicolumn coincides with the

occurrence of an input pattern, that minicolumn adjusts its weights so that the correlation

62

between the input and the weights is improved. This is achieved by strengthening the weights

corresponding to the inputs Xt that are currently active. Thus, over multiple iterations a

minicolumn learns to identify a feature that initially coincided with the random activity of

the minicolumn. At the same time, each minicolumn inhibits neighboring minicolumns from

firing via lateral inhibitory connections for the pattern it has already learned to recognize.

If multiple minicolumns fire at the same time, the one with the strongest response inhibits

the ones with weaker responses. The inhibited minicolumns then weaken their weights

corresponding to highly active Xi so that their dot-product with the input is minimized. As a

result of this process, the hypercolumn network is able to recognize unique patterns without

any supervision. Section 4.4.2 demonstrates the ability of the proposed learning model to

learn independent features in an unsupervised manner.

A very interesting byproduct of having minicolumns learn independent features through

spontaneous activations and lateral inhibition is inherent fault tolerance: if a minicolumn

that is firing for a feature suddenly dies (permanent hardware or software error in a future

synthetic application), over time, another available neighboring minicolumn will start firing

for that feature. This makes the hypercolumn structure inherently tolerant to permanent

faults (see section 5.2).

4.2.4 Minicolumn Weight Update Rule

Hebbian learning [15] is a dominant form of learning in large-scale biological neural networks.

With Hebbian learning, if one input of a neuron has strong activation, and that neuron

63

itself has a strong output, then the synapse (synaptic weight) corresponding to that input

is reinforced. Intuitively, if the input is strong at the same time as the output, it means

that input plays a significant role in the output and should be reinforced. According to

this definition, the synaptic weight Wt is increased if the input Xt to the minicolumn is

active (emulating long-term potentiation), or decreased if the input x^ to the minicolumn is

inactive (emulating long-term depression). This weight modification is only applied to active

minicolumns Xt in accordance to Hebbian learning. Each time a minicolumn fires it modifies

its weights so that its correlation with the input pattern that has caused it to fire increases.

Weights are strengthened using the following update rule.

^^HK.ow-^))) (49)

Here, x t is the input corresponding to W i ; and C defines how the present YV\ will affect

the weight update. Finally, (3 controls the step-like behavior of the sigmoid weight update

function and y determines the learning rate.

In this weight strengthening rule, the update added to Wi is dependent upon the present

value of W\. This means that if Wt is strong it will get a higher update value. Essentially,

if a minicolumn with strong synaptic weights fires in response to an input, its synapses

are updated with higher value as compared to the scenario when a minicolumn with weak

synaptic weights fire in response to an input. This is in accordance with biological data

[110, 121].

In the case when a minicolumn is inhibited, it modifies the weights using the following

64

update rule.

Wi = Xi x (W t - 6) (4.10)

Here, 5 defines the weight update rate in the presence of inhibition. As a result of these

weight update rules, at each level, minicolumns will progressively react most strongly to

inputs they receive repeatedly, in effect learning them. In the visual cortex, these inputs

correspond to shapes, which become increasingly more complex in the upper levels.

4.2.5 Learning to Forget

Apart from updating the weights in the presence of excitation and inhibition, the weights

also decay over time. This is quite similar to the forgetting behavior in animals. This update

is done using a rule quite similar to the one used for excitatory updates and is given by.

W l = W l - (e x (1 - _ l ^)) (4.1!)

Here, e determines the increase in forgetting rate proportional to the current weight value. It

should be noted that e < < y. This insures that the forgetting rate is significantly slower

than the learning rate.

4.2.6 Evaluation of Hypercolumn Activity

In our model, a hypercolumn is an abstract representation of a group of minicolumns that

are tightly bound together via lateral inhibitory connections. A hypercolumn gets active if

65

any of the minicolumns within that hypercolumn gets activated. The minicolumns within

a hypercolumn follow a winner-take-all approach i.e. if multiple minicolumns within a

hypercolumn become active, the minicolumn with the strongest activation inhibits the rest

of the activated minicolumns. Thus at any moment in time only one minicolumn within a

hypercolumn is active. Furthermore, the inhibited minicolumns modify their synaptic weights

to decrease their correlation with the present input so that they do not become activated

by the same input pattern in the future. This results in minicolumns within a hypercolumn

learning independent/unique inputs exciting the receptive field of the hypercolumn.

4.3 Hierarchy to Realize Complex Tasks

A single modeled hypercolumn can extract simple features from occurring within its small

receptive field, but to realize complex tasks, these hypercolumns need to be hierarchically

organized. This hierarchical organization of hypercolumns is also inspired by the biological

example. Within the neocortex, especially in the visual cortex, there is a clear evidence of

hierarchical organization of cortical columns (See Section 2.4.2). Figure 4.3 shows a two level

hierarchical network of hypercolumns.

Hierarchical organization of modeled hypercolumns provides three main functions.

• Arranging the hypercolumns in the form of a hierarchy increases the overall receptive

field of the hierarchical network as hypercolumns in upper levels can react to the

activations of multiple lower level hypercolumns.

66

Hypercolumn

Minicolumn

Excitation

Inhibition

r
/~* o Level n+1

~J ' U\} M Level n
l ' / >i •(. r

^

Figure 4.3: Organization of the connectivity. For clarity, this scheme only considers two
minicolumns pet hypercolumn and only shows some of the connections of a single hypercolumn
in level n + 1. Further, excitatory connections can be in both feedforward and feedback
direction. [43]

In this hierarchical organization, using global context, minicolumns in the higher

areas can modulate the response and learning behavior of hypercolumns in the lower

hierarchical areas.

Hierarchical organization of hypercolumns allows the network to develop the notion of

automatic abstraction, where hypercolumns in lower regions learn to recognize simple

features while hypercolumns in the upper regions learn to identify complex shapes.

67

Throughout the hypercolumn hierarchy, processing of a minicolumn activity depends on

both the feedforward and feedback information.

4.3.1 Role of Feedforward Information Processing

The first type of information processing within the hypercolumn hierarchy is applied to the

feedforward paths. Throughout the hierarchy, minicolumns within multiple hypercolumns at

level n connect to minicolumns within a single hypercolumn at level n + 1. As a result, the

number of hypercolumns within a level decreases as we move up the hierarchy. Furthermore,

receiving inputs from multiple lower level hypercolumns increases the effective receptive field

of upper level hypercolumns.

As described in Section 4.2, the main role of feedforward information processing is to

allow individual minicolumns within a hypercolumn to learn independent features from

the input data occurring within their receptive field. Apart from this straight-forward

application, within the proposed hypercolumn hierarchy, the feedforward processing also help

hypercolumns generate feature maps and invariant representations using object permanence.

4.3.1.1 Generation of Topographic Feature Maps

It is well understood that topological feature maps are present in various cortical areas, as

evidenced by a number of experiments [60, 126]. For example, tono-topic maps maps are

known to arrange frequencies from low to high along the surface of the auditory cortex; color

and orientation maps in the visual cortex are arranged similarly. In the proposed cortical

68

model, emergence of such feature maps is also investigated. The main hypothesis is that

object permanence, the fact that natural stimuli maintain a temporal presence, plays a

significant role in the formation of these maps. Spatially correlated spontaneous activations

(as described in Section 4.2.1) contribute the second part to this equation. During learning, an

object will maintain some level of permanence, even though the features perceived by sensory

input may vary as the object moves or slightly changes its form. The spatially localized

and temporally correlated spontaneous activations of the minicolumns within a hypercolumn

encourage each of these features to be learned by a localized group of minicolumns, creating

a robust topologically organized feature map.

To promote the formation of such feature maps, the hypercolumn network is trained on

variations of the same object in a sequential manner (as opposed to random training inputs).

Using object permanence and temporally correlated spontaneous activations, minicolumns

responding to variations of a pattern are lumped together. Thus, over time, well-segregated

topological feature maps for each digit emerge from a training regimen that respects object

permanence. Essentially, if a minicolumn learns a specific feature and fires in response to it,

it primes its neighboring minicolumns to fire. This increases the probability of the primed

neighboring minicolumns to generate spontaneous activity in the future epochs. Due to

object permanence, as the object slightly varies, the slightly different features are in turn

learned by some of the neighboring minicolumns. As a result, variations of similar features

are learned by minicolumns that are spatially localized. In this manner, using the concept of

object permanence and spatially localized and temporally correlated spontaneous activations,

69

the proposed learning model generates hierarchical feature maps.

It should be noted that the proposed method of generating the feature maps is more

attractive than the traditional SOMs discussed in Section 3.1.1.4 in two ways.

• The proposed method is computational quite efficient as compared to traditional SOMs

as there is no need to evaluate the distance metric to determine spatial positioning of

the node that learned a new feature within the network.

• A major shortcoming of traditional SOMs, i.e. difficulty to construct hierarchical

relations, is overcome is a very straight-forward manner, simply by applying the

correlated spontaneous activity rule throughout the hypercolumn hierarchy.

Section 4.4.3 evaluates the ability of the proposed learning model to develop hierarchical

feature maps using spatially localized and temporally correlated spontaneous activations.

4.3.1.2 Gaussian-like Feedforward Connectivity for Invariant Representation

Within our cortical network, inputs to a minicolumn in a hypercolumn at Level n are actually

the outputs of multiple minicolumns in the hypercolumns at Level n — 1 . Thus, an active

minicolumn creates connections with the lower level active minicolumns within its receptive

field. However, since the minicolumns responding to variations of the same pattern are

topologically organized within a hypercolumn (as discussed in Section 4.3.1.1), a higher

level minicolumn has the opportunity to learn feature invariance by forming connections

to the minicolumns neighboring the lower level active minicolumn. To achieve this feature

invariance, an active minicolumn in Level n also creates connections to the neighbors of the

70

Algorithm 2 Pseudo code for evaluation of a minicolumn's response to an input stimulus.

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17:
18:
19
20
21
22
23
24:
25
26
27
28
29

cor re la t ion = 0
for i = 1 to receptiveReldSize do

for) = 1 to receptiveFieldSize do
cor re la t ion + = (synapt ic Weight[i] * input[j] * Gauss Connectivity (i — j)
{//GaussConnectivity(i) = a e _ i ' v , V = variance}

end for
end for
for i = 1 to receptiveFieldSize do

if synapticWeight[i] > 0.5 t h e n
foundAct iveMin ico lumn = False
for) = -GAUSSIANWIDTH/2 to GAUSSIANWIDTH/2 do

if input [i — j] > 0.8 t h e n
foundAct iveMin ico lumn = True

end if
end for
if foundAct iveMin ico lumn = = False t h e n

corre la t ion — — 2
end if

end if
end for
{//The above piece of code models Equations 4.7 & 4.8}
threshold = 0
for i = 1 to receptiveFieldSize do

if synapticWeight[i] > MINVALUE t h e n
th reshold + = syuapticWeight[i]

end if
end for{//The above for-loop models Equations 4.5 & 4.6}
activity [my ID] = Sigmoid(corre la t ion, threshold) {//Models Equation 4.3}
{//Sigmoid(x,y) = 1.0/(1.0+ e - s (* .y^)}

active minicolumn in Level n — 1 using a Gaussian-like feedforward connectivity. Due to the

formation of topologic feature maps, it is highly likely that these neighboring minicolumns

have learned variations of the same pattern. Here, the width of the Gaussian determines the

resolution of a minicolumn. If the Gaussian is narrow, the minicolumn is very specialized and

will respond only to a single minicolumn (or feature) below it. However, if the Gaussian is

71

wide, the minicolumn is quite generalized and will respond to many minicolumns located in the

same topological area of the feature map. Algorithm 2 shows the pseudo-code for evaluating

a minicolumn's response to its inputs using the described Gaussian like connectivity.

The notion of this Gaussian-like connectivity is rooted in biology where neurons connect

to other neurons (either within or between columns) with a Gaussian probabilistic law,

i.e., the probability of connection decreases with distance. Empirically, the connectivity is

actually fairly dense (about 70%), almost uniform, within a given neighborhood [68], and

drops afterward [109]. Section 4.4.4 demonstrates and evaluates the role of this Gaussian-like

feedforward connectivity within the proposed learning model.

4.3.1.3 Automatic Abstraction

Another powerful tool that the feedforward information processing system provides within the

proposed hierarchical hypercolumn model is the notion of automatic abstraction. This notion

of automatic abstraction is explained in a hypercolumn hierarchy, using our visual cortex

example. Each minicolumn of the first level "samples" the input pixels within its receptive

field, see level 1 in Figure 4.4. The subsequent minicolumns progressively respond to the

activations of the minicolumns within their receptive fields and thus learn complex shapes.

The first-level minicolumns connect to the output of the LGN cells. Based on the initial

spontaneous activation of these minicolumns, connections between the first level minicolumns

and the LGN cells within their receptive field are established.

Figure 4.4 demonstrates how the feedforward information processing utilizes the idea

72

Figure 4.4: Illustration of automatic abstraction of complex objects applied to visual processing
with a 4-layer hierarchy. For clarity, the minicolumn-hypercolumn structure is not illustrated
and only a fraction of the connections is illustrated. [43]

of independent feature detection and automatic abstraction to learn and recognize various

complex shapes. As explained in Section 4.1, the LGN cells detect contrasts and extract

contours. These contours of most natural shapes decompose into tiny segments at a fine

granularity. The first-level minicolumns, initially by virtue of spontaneous firing, respond

to such segments, and afterwards are strengthened through the proposed Hebbian learning

based weight update rules (See Section 4.2.4). These segments progressively emerge as some

of the dominant shapes in the first-level columns, (see Figure 4.4). This behavior is supported

by biological evidence of the existence of orientation specific neuron populations within

73

the primary visual cortex [60]. The subsequent levels continue the same process and learn

increasingly complex shapes. For instance, combinations of segments can produce crosses,

angles, and other complex shapes.

The minicolumns higher up in the hierarchy correspond to the aggregate information

(sum) of an increasingly high number of lower level minicolums. As a result, their receptive

field rapidly becomes a murky combination of more simple shapes, and does not carry a

crisp semantic. Here, lateral inhibitory connections enable a necessary filtering role by

silencing weak minicolumns, and allowing crisper shapes (with richer semantics) to emerge in

upper-level columns. These lateral inhibitory connections implement a form of max operators

among clusters of MCs. Section 4.4.2 demonstrates and evaluates the ability of the learning

model proposed in this dissertation to develop automatic abstraction.

4.3.2 Role of Feedback Information Processing

As described in Section 2.4.6, feedback paths play a very important rule within the neocortical

hierarchy. One of the major contributions of this thesis is to describe a learning model that

effectively uses the feedback processing paths during the training and the testing phase.

Throughout the hypercolumn hierarchy, feedback paths play three critical roles.

• Modulate the widths of the inter-level Gaussian connectivity described in Section 4.3.1.2

during the learning phase.

• Force lower level minicolumns to pool variations of the same feature.

74

• Help lower level minicolumns un-pool exceptions from generalized representations.

These three roles of feedback processing paths are described in detail in the following sections.

4.3.2.1 Width Modulations of Gaussian-like Feedforward Connectivity

Minicolumns within a hypercolumn are initialized with a very narrow Gaussian-like connectiv­

ity, so each minicolumn within a hypercolumn extracts very specific and unique features from

their receptive field. In the first phase of training, these narrow Gaussian connections are

maintained, and the network uses the Hebbian plasticity rules to achieve 100% recognition rate

for the training data. In the second phase of training, these learned synaptic connections are

maintained, but the Gaussian-like connectivity is modified to generalize the representations

of unique features learned at various hierarchical levels. Since this widening occurs for all

levels of a cortical network, the generalization is distributed in a hierarchical manner. Upper

hierarchical levels modulate (widen or narrow) the connectivity of lower levels using the

feedback processing paths. It should also be noted that the second phase of training uses the

same training data as the first phase.

First, the minicolumns at the top-most level of the hypercolumn hierarchy use an external

supervisory feedback signal to widen their Gaussian connectivity so long as the false-positive

rate (the number of patterns recognized incorrectly) stays below a particular threshold. For

our experiments, this threshold is set to be 0 (i.e. no false positives allowed). Once the

false positive rate at a certain hierarchical level increases beyond the specified threshold,

the Gaussian update process is shifted to the next lower level through a feedback path.

75

Algorithm 3 Pseudo code for updating the Feedforward Gaussian like connectivity of the
minicolumns using feedback processing paths.

1: for i = 1 to N do
2: {//Gaussian widths are updated for each unique pattern class}
3: Deac t iva teAUMinicolumns()
4: ExposeAUVariationsOfPatternToNetwork.(i, 'TrainingSet')
5: for k = 1 to fit)percolurrinsAtLevel[j] do
6: ac t iveMmico lumnLis t — GetAct tveMinicolurans(j ,k)
7: {//GetActiveMinicolumns(j,k) provides the list of active minicolumns in hypercolumn k at

level j}
8: while EvaluateFalsePositiveRate('TrainingSet') <— falsePositiveThxesfiold

do
9
10
11
12
13
14
15
16
17
18

{//falsePositiveThreshold is set to 0 in our experiments}
IncTeaseGaussiarLWidth(activeM.inicolumnList,INCREMENT)

end while
DecreaseGaussianWtdth(act iveM.micolumnList , INCREMENT)
{//Brings the false positive rate below the threshold again.}
for j = 1 to NumChildrer i do

TriggerCh.UdGaussiaTiConnectivityM.odulation(j)
end for

end for
end for

Eventually, the Gaussian update process reaches the lowest hierarchical level, and the widths

of the Gaussian-like connectivity of all the hierarchical levels of the network are locked. While

this simple heuristic proves to be effective for simple image recognition tasks, we believe that

more complex update rules for feedforward Gaussian-like connectivity will be required for

more complex datasets. Algorithm 3 shows the pseudo-code for updating the Feedforward

Gaussian-like connectivity of the minicolumns. Section 4.4.4 evaluates the improvement in

the performance of a hierarchical hypercolumn network due to the feedback based modulation

in widths of the Gaussian-like connectivity.

76

4.3.2.2 Pooling to Develop Invariant Representations

Another important role that the feedback plays throughout the hypercolumn hierarchy is it

allows minicolumns at different levels to develop invariant representations of the features they

have learned to recognize. The feedforward learning process enables our cortical hierarchy

to learn unique features from the input patterns. Each of the minicolumns can fire for

minor variations of the same patterns but variations of a patterns with major differences are

recognized as different patterns. This means that two variations of the same pattern may

be recognized as two different patterns by different minicolumns. To resolve this issue and

generate a robust invariant representation for variations of the same pattern, the hypercolumn

hierarchy utilizes the supervised feedback based pooling algorithm.

Let us assume that during the training phase the hierarchical network has started to

recognize a pattern. Now it is exposed to another variation of the same patterns that is quite

different from the previous one e.g. two different variations of the same handwritten digit.

At this point, only some of the minicolumns within the hierarchy may fire. Since there is

not enough feedforward evidence, the top level minicolumn that is supposed to fire for that

pattern does not fire. If this behavior persists, new minicolumns will train themselves to

recognize features in the new variation that are quite different from the original pattern and

over time, that new variation will be identified as a new pattern. This will be marked by

firing of a new minicolumn in the top level of the hierarchy in response to that new variation.

At this point, the top level hypercolumn receives an external feedback signal. This feedback

signal forces the minicolumn firing for the original pattern to fire and at the same time

77

inhibits the top level minicolumn that is firing for the new variation. Now, the minicolumn

receiving excitatory feedback adjusts its weights so that in the future it fires for the new

variation. On the other hand, the inhibited minicolumn changes its weights so that it does

not fire for that input pattern. Thus, over multiple exposures, the minicolumn firing for the

original pattern will also start to fire for the new variation. Figures 4.5 and 4.6 explain this

feedback based pooling using a simple example.

Once the top level minicolumn starts to give a stable activation for both the variations, it

will start to send the feedback signal to the hypercolumns in the lower levels so that lower

level minicolumns can also create pooled representations. The amount of feedback sent to

each of the lower level minicolumns is proportional to its firing history: if a minicolumn has

been firing a lot in the past, it will get stronger feedback. Thus, over time the most active

minicolumn ends up pooling its child minicolumns to generate invariant representations. One

of the by-products of the proposed feedback algorithm to develop invariant representations

is the it results in significant resource optimizations. As minicolumns get freed, they can

be used to recognize other features. The process of generating invariant representations

within a minicolumn using feedback is explained in the pseudo-code provided in Algorithm 4.

In Algorithm 4, UpdateSynapticWtsExcitatory models the functionality of Equation 4.9

while UpdateSynapticWtsInhibitory models Equation 4.10. Section 4.4.5 evaluates the

improvements in resource utilization of a hypercolumn network due to the feedback based

pooling algorithm and also present various invariant representations that the network generates

for different input patters.

78

Algorithm 4 Pseudo code for generating invariant representations within a minicolumn
using supervised feedback.

if feedback > 0 then
if HasNotFired then

if hasMaxFiringHistory then
UpdateSyuapticWtsExcitatory (feedback)

end if
else

if hasMaxFiringHistory then
UpdateSynapticWtsExcvtatory (feedback)
if isStable then

for i = 1 to N do
if Is Active (child [i]) then

SendFBToChild(i, feedback)
end if

end for
end if

else
UpdateSyuapticWtsInhibitory (feedback)

end if
end if

end if

4.3.2.3 Un-pooling Exceptions from Generalized Representations

The feedback based pooling algorithm described in Section 4.3.2.2 helps the hypercolumn

hierarchy to develop invariant representation of complex patterns by pooling different vari­

ations of the same pattern in a hierarchical manner. Relying only on this simple pooling

scheme to develop invariant representations can also result in pooling exceptions with the

generalized representation, e.g. the representation of letter 'Q' may pool with the generalized

representation of letter 'O'. To unpool an exception from the generalized representation, an

algorithm similar to the one proposed for feedback based pooling is implemented.

In the case when an exception needs to be unpooled from the generalized representation,

79

the minicolumn responding to the exception is inhibited via an external supervisory signal.

This allows some other minicolumn within the same hypercolumn to learn the exception. Now,

the firings of the minicolumn that has recently learned to recognize the exception coincide

with the inhibition being received by the minicolumn with the generalized representation.

At this point, the generalized minicolumn establishes a strong inhibitory connection with

the minicolumn that has learned to recognize the exception. As a result, the generalized

minicolumn stops firing for the exception as it is inhibited by the minicolumn responding to

the exception. It should be noted that the inhibitory connection between the minicolumn

responding to the exception and the generalized minicolumn is in addition to the lateral

inhibitory connections that exist among all the minicolumns within a hypercolumn.

4.3.3 Hypercolumns as Universal Boolean Approximators

Both the feedforward and the feedback processing paths allow the hypercolumn network

to approximate both linearly separable boolean operations like AND and OR and linearly

inseparable boolean operations like XOR. A useful conceptual example of such a behavior is

the exclusive-or (XOR) operation which incorporates both AND and OR operations in it.

An XOR is symbolically represented as © and is defined as,

A © B = (A A - B) V f - A A B) (4.12)

Figure 4.5 shows a 2-level hypercolumn network that initially learns to identify (AA--B),

(-WAB) , and (AAB) as three separate entities, i.e. three different minicolumns fire for

80

each of the two patterns. Minicolumn 1 in hypercolumn 0 in level 1 (LlHOMl) fires for

(A A - B) , Minicolumn 3 in hypercolumn 0 in level 1 (L1H0M3) fires for (- A A B) , and

Minicolumn 2 in hypercolumn 0 in level 1 (L1H0M2) fires for (A AB) . At this point, the

external supervisory signal triggers the pooling mechanism described in Section 4.3.2.2 in

LlHOMl so that it learns A © B. As described in Section 4.3.2.2, the feedback based pooling

mechanism inhibits L1H0M3 from firing for (BA-'A) and forces LlHOMl to fire for (BA-'A).

As a results, LlHOMl starts pooling the inputs of L1H0M3. Over time, the input of L1H0M3

migrate to LlHOMl and LlHOMl starts to fire for both (A A - B) and (- A A B) . Now,

LlHOMl has developed a generalized representation for A © B (See Figure 4.6). The problem

is that because of the pooling process, LlHOMl also starts to fire for (A A B). This means

that LlHOMl has developed an over-generalized representation and the exception (AAB)

needs to be un-pooled from this generalized representation. At this point, the unpooling

mechanism triggers. Whenever LlHOMl fires for (A A B) , it gets a negative feedback signal

from the external supervisor. As a results LlHOMl is inhibited from firing for (AAB) . At

the same time, L1H0M2 fires for (A A B) . Since the firing of L1H0M2 coincides with the

external inhibition received by LlHOMl, it develops a specific inhibitory connection with

L1H0M2 (See Figure 4.7). This inhibitory connection is different from the lateral inhibitory

connections discussed in Section 4.2.3. This specific inhibitory connection from L1H0M2 to

LlHOMl prevents LlHOMl from firing whenver L1H0M2 fires for (AAB) . Thus, using the

unpooling mechanism, the hypercolumn in level 1 has unpooled the exception (AAB) from

the generalized representation. By this process, LlHOMl only fires for A © B while L1H0M2

81

Hypercolumrio

Leveli
M0 Mi

(AB)

M2

(-.AB)

M3

(A)

M 0

(HA)

M1 M2 Levelo
(B)

Mo

(-B)

Mi

Hypercolumrio Hypercolumrti

Figure 4 5 Initial hypercolumn hierarchy state LlHOMl learns to recognize (A A - ' B) ,
L1H0M3 learns to recognize (- A A B) , and L1H0M2 learns to recognize (AAB)

Leveh
M0

(A-B)
(-AB)
(AB)

Mi

(AB)

M2 M3

(A)

Mo

(-•A)

Mi M2 Leveln
(B)

M0

(-B)

Mi M2

Hypercolumn0 HypercolumrH

Figure 4 6 After the pooling process tiiggers, LlHOMl pools the input of L1H0M3 and fires
for (A A - B) , h A A B) , and (AAB)

Hypercolumrio

Leveh

(A)

M 0

(-•A)

Mi M2 Leveln
(B)

M 0

CB)
Mi M2

Hypercolumrio Hypercolumn1

Figure 4 7 After the unpoolmg process triggers, L1H0M2 creates a specific inhibitory
connection with LlHOMl so that LlHOMl does not fire for (AAB) Note that this specific
connection is different from the regular lateral inhibitory connections discussed in Section 4 2 3

82

only fires for (AAB), while L1H0M3 is declared redundant and can be used to recognize some

different patterns. In order to correctly learn A © B, traditional artificial neural networks

need to add an extra hidden layer in between the input layer and the output layer. In the

proposed hypercolumn network, using the described pooling and unpooling mechanisms,

A © B is correctly learned using just two levels. Using the feedforward processing paths, the

hypercolumn can approximate AND operations. Furthermore, the feedback based pooling

allows the hypercolumn to learn the OR operations. Finally, the feedback based unpooling

allows the hypercolumn to learn the XOR operations.

4.4 Experimental Results

This section presents results demonstrating and validating several powerful aspects of the

proposed the hierarchical hypercolumn model and various hypothesis presented in the previous

sections. Section 4.4.1 validates the hypothesis that the log-polar transform plays a crucial

role in providing rotation and scale invariance to a small extent in the early vision processing

stages. Section 4.4.2 validates the ability of learning model proposed in this dissertation to

learn unique features in an unsupervised manner by using spontaneous activations and lateral

inhibitions. By combining different features in a hierarchical manner, the network learns to

recognize complex shapes without any external supervisory signal. Section 4.4.3 validates the

hypothesis that object permanence and temporally correlated spontaneous activations provide

a simple mechanism to develop hierarchically organized feature maps. This section also

demonstrates the ability of the hypercolumn network to develop hierarchical feature maps by

83

relying on simple biological mechanisms. Due to object permanence and temporally correlated

spontaneous activations, variations of the same pattern a grouped together in a hierarchical

manner. Section 4.4.4 evaluates the improvement in the performance of a hierarchical hyper-

column network by developing a Gaussian-like connectivity between various hierarchically

organized feature maps. Significant improvements in terms of average recognition rate of

the network are observed simply by modulating the widths of the feedforward Gaussian

connectivity. Section 4.4.5 validates the hypothesis that feedback based pooling provides a

robust mechanism to generate invariant representations for different variations of the same

pattern. This feedback based pooling mechanism improves the performance of the network in

terms of recognition rate and resource utilization. By pooling variations of the same patterns,

minicolumns within a hypercolumn, previously responding to the pooled variations, can be

used to learn other unique patterns. Section 4.4.5 compares the performance of the proposed

hierarchical hypercolumn network with the contemporary state-of-the-art neural network

implementations including convolution neural networks (CNN) and hierarchical temporal

memory (HTM). This section clearly demonstrates that the proposed hypercolumn network

outperforms both CNN and HTM in terms of generating robust invariant representations of

the input patterns when using a very modest number of training samples.

For all the experiments discussed in this section, handwritten digits obtained from the

MNIST database [81] are used. The MNIST database consists of 60,000 training images of

handwritten digits from 0 to 9 and 10,000 test images. Each of the handwritten digits is a gray­

scale image of size 28x28 pixels. A subset of these handwritten images is shown in Figure 4.8.

84

&

Figure 4.8: Sample of handwritten digits obtained from MNIST database.

Theta = 0 Theta = 8 Theta = 16 Theta = 24

E2
Q 0

El
II

Figure 4.9
between 0-

• L ^ L L ^ E !
Digits and corresponding averaged log-polar transforms for different orientations

•24 degrees with an increment of 8 degrees.

All of these handwritten digit images are preprocessed using the log-polar/LGN transform

described in Section 4.1 before they are exposed to a hypercolumn network. Figure 4.9 shows

a subset of digits and their corresponding averaged log-polar transformed images at different

orientations. Each of the log-polar transformed images corresponds to the digit rotated at

a certain angle. The angle of orientation of each of the digits is varied from 0-24 degrees

with an increment of 8 degrees. Figure 4.9 demonstrates that as the actual image is rotated,

the corresponding averaged log-polar transformed images look quite similar. These log-polar

85

Level
4
3
2
1
0

Hypercolumns (HC)
1
3
6
12
24

Table 4.1: Description of the hierarchical hypercolumn network created for recognition of
handwritten digit images.

transformed images incorporate the first level of scale and rotation invariance provided by

the hypercolumn network. It should be noted that this first level of invariance relies on

feedforward information processing only. Finally, for all the experiments described in this

section, the hierarchical organization of hypercolums described in Table 4.1 is used.

4.4.1 Experiment 1: Invariance due to Log-Polar Transform

The first experiment validates the hypothesis that the log-polar transforms plays a key role in

providing invariance to rotation and scale variations to a small extent in early vision processing

stages. In this experiment, invariance achieved by preprocessing the digit images with the

log-polar transform is studied. For this experiment, the hypercolumn network described in

Table 4.1 is initialized with 10 minicolumns in each of the hypercolumns and the network is

trained with one variation of each of the digits (0-9). The network is then tested with several

rotated versions of all the digit variations in the training dataset and the overall recognition

rate is measured. Figure 4.10 shows the results of this experiment. The maximum rotation

invariance (±30 degrees) is achieved for digit 2 while the minimum rotation invariance is

observed for digit 1 (±10 degrees). On average, the network demonstrates about ±15 degrees

86

1.2

o
o
£ 0.8
o

| 0.6

>

D)
CO
<5
< 0.2

0
0 20 40 60 80 100 120 140 160 180

Orientation of digits in degrees

Figure 4.10: Average rotation invariance achieved by the network when tested with rotated
digit variations.

of rotation invariance. These results conform with the rotation invariance observed in the

mammalian visual cortex [59]. Similar network behavior was observed for scale invariance as

well.

Modeling biology, invariant representations are learned by the hypercolumn network at

different levels. The Log-polar transform applied on the input images is one of these levels.

Even though the invariance developed due to the log-polar transform can not withstand large

variations in rotation and scale, the log-polar transform plays a key role in terms of creating

invariance to minor rotation and scale variations. This helps in improving the recognition

rate of the hypercolumn network as well as the resources required by the network to robust

recognition of input patterns. Resource requirement is measured in terms of the number of

minicolumns throughout the hypercolumn hierarchy that have locked themselves to identify a

certain feature within the training dataset. The recognition rate of the network is improved

Max. Rotation Invariance (Digit 2)
Mm. Rotation Invariance (Digit 1)

Avg Rotation Invariance (Digits 0-9)

V\ \^± A r

87

because different variations of the same digit with minor rotation and scale variations are

recognized by the same minicolumns. This also helps in lowering the resource requirements

of the network as at each hierarchical level extra minicolumns are not allocated for each of

the slightly different variations of the same input image.

4.4.2 Experiment 2: Independent Feature Identification and

Automatic Abstraction

The second experiment verifies the hypothesis that the spontaneous activations ability of the

minicolumns along with strong lateral inhibitory connections among the minicolumns within

a hypercolumn provides an unsupervised mechanism for independent features identification

and automatic abstraction. In this experiment, only the feedforward information processing

and learning algorithm is tested and the independent feature identification capability of

the proposed hierarchical hypercolumn model is validated. For this experiment, feedback

processing paths are disabled and very narrow feedforward Gaussian-like connectivities (See

Section 4.3.1.2) are enforced. Since there is no feedback and very narrow connectivity widths,

it is anticipated that in Level 4 (top most level of the hierarchy), different minicolumns

will recognize significantly different variations of same digits. For this experiment, each of

the hypercolumns is initialized with 100 minicolumns and 100 handwritten digit images (10

variations of each digit) from the MNIST database are used. The network is trained with

these 100 variations until it achieves 100% recognition rate on the training set.

Figure 4.11 shows the results of this experiment. This figures plots the number of

88

!/> C
o
CO

r CD
c/> CI)
Q.
0)
DC
CD
-1
CT

Z>
*•—

o
CI)
o
F
Z3
Z

80 r

70 -

HO -

50 -

40 -

30 -

20 -

10 -

0
0 10 20 30 40 50 60 70 80 90 100

Number of Digits Variations

Figure 4.11: Unique digit variations learned by the hierarchical network in the absence of
feedback.

unique digit representations (i.e. number of useful minicolumns) developed by the top-Level

hypercolumn as it is exposed to more and more digit variations. In this figure, it is seen that

the top level hypercolumn contains around 72 minicolumns that have learned to recognize

various digit variations present in the training dataset. 28 digit variations are pooled with

other variation of the same digit due to spatial similarities and due to the invariance provided

by the log-polar transform. Clearly, this experiment demonstrates that the competitive nature

of the feedforward processing paths helps the hierarchical hypercolumn network to extract

independent features from the input dataset. Furthermore, hypercolumns in each of the

hierarchical levels automatically generates an abstract representation of features being exposed

to them. Thus, a hierarchical abstract representation of the input space is automatically

created by the network.

This experiment also highlights the need for mechanisms that allow the network to pool

89

variations of the same pattern to develop a robust invariant representation for each unique

pattern in the training set. The hypercolumn network has the ability to learn independent

features in a unsupervised manner. Such a network that uses an unsupervised mechanism

which relies solely on spontaneous activations of the minicolumns and the feedforward

processing paths clearly lacks the ability to develop robust invariant representation. The

top level hypercolumn should essentially contain 10 minicolumns each recognizing digits 0

through 9. Developing topological feature maps along with feedback based pooling operations

allow the hierarchical hypercolumn network to overcome these shortcomings and develop

robust invariant representation using a modest number of training samples. Experiments

described in Sections 4.4.5 and 4.4.6 validate this hypothesis.

4.4.3 Experiment 3: Hierarchical Feature Maps

The aim of this experiment is to study the hierarchical hypercolumn network's ability to

develop hierarchical feature maps to represent variations of different digits in a topological

manner. This experiment also verifies the hypothesis object permanence along with that

spatially localized and temporally correlated spontaneous activations of the minicolums lend

the hierarchical hypercolumn network the ability to learn such hierarchical feature maps in a

unsupervised manner. For this experiment, each hypercolumn within our cortical network

is initialized with 200 minicolumns. To study the formation of hierarchical feature maps in

our cortical network, the hierarchical network is trained with 100 variations of digits 0 and

2. Once the network is fully trained, i.e. 100% recognition rate is obtained for the training

90

set, the hypercolumn network is tested with 1,000 test images of digits 0 and 2. During the

testing phase, the minicolumns which exhibit any response to any variation of 0 or 2 are

tracked. Figure 4.12 presents the results of this experiment. In this figure, the topological

organization of four sampled hypercolumns from Level-1 through Level-3, as well as the

single hypercolumn in Level 4 is shown. The plots on the left show the normalized firing

rate of each minicolumn within the observed hypercolumns when variations of the digit 0 are

presented to the network; the plot on the right shows the normalized firing rates when the

digit 2 is presented to the network. First, a clear topological segregation of minicolumns when

comparing the figure on the left (responses to digit 0) and the figure on the right (responses

to digit 2) can be seen. Second, the different variations of each of the digits (0 or 2) are

learned by spatially localized minicolumns within each of the hypercolumns. Third, at the

lower hierarchical levels, various features are shared between 0 and 2 but the segregation

between these features increases in the upper hierarchical levels. Overlapping minicolumns in

the lower levels are simply a result of features common to variations of both the digits.

In addition to the log-polar transform, such a hierarchical organization where neighboring

minicolumns learn to recognize similar features provides another level of object invariance.

As the minicolumns in the upper hierarchical levels learn to respond to the stable activations

of lower level minicolums, they connect to the lower level minicolumns with a Gaussian­

like connectivity. Both the topological organization of minicolumns with similar feature

preferences and the Gaussian-like connectivity allow the hierarchical hypercolumn network

to develop robust invariant representations. Experiment describes in Section 4.4.4 verifies

91

Figure 4.12: Topographical maps obtained for digits 0 (left) and 2 (right) in hypercolumns
sampled from the hierarchical levels in the cortical network. We see the localized sponta­
neous activations and object permanence have lead to digit features becoming localized and
segregated.

this hypothesis. Furthermore, the proposed mechanisms that use spatially localized and

temporally correlated spontaneous activations for generating hierarchical feature maps also

provide us with a theory on how orientation maps in the primary visual cortex might evolve.

4.4.4 Experiment 4: Feedforward Gaussian Connectivity

This experiment verifies the hypothesis that feedforward Gaussian connectivity among the

hierarchically organized hypercolumns and the feedback based modulation of widths of such

a connectivity allows the hypercolumn network to generate robust invariant representations.

For this experiment, the five level hypercolumn network is initialize with 500 minicolumns

within each of the hypercolumns. The hypercolumn network is trained with 50 variations

of each digit (500 images total) and tested with the full 10,000 test images in the MNIST

database. The first phase of the training alters synaptic weights until a recognition rate of

100% is achieved on the training set. In the second phase, Gaussian connectivity modulations

(See Section 4.3.1.2) are enabled from Level-4 (the top level) to the feature maps of Level-3,

92

100

50
None Level 4 Level 4,3 Level 4-2 Level 4-1

Gaussian Connectivity Activated

Figure 4.13: Improvement in the overall recognition rate as Gaussian connectivity is applied
at different levels in cortical network with 500 training images.

and average recognition rate is measured. Afterwards, each subsequent Gaussian connectivity

is enabled between the layers of the network, and the average recognition rate is evaluated.

During the second phase, the Gaussian connectivity is updated via Algorithm 3 using the

same 500 images in the training set.

Figure 4.13 shows the result of this experiment. Without the Gaussian connectivity

update algorithm ('None' in Figure 4.13), the cortical network achieves a recognition rate of

65% on the test set. As the Gaussian connectivity is updated via Algorithm 3, the recognition

rate improves. When the Gaussian connectivity is updated from Level-4 to the Level-3

feature maps, the recognition rate improves to 83%. After the second phase of training has

updated the Gaussian connectivity of the minicolumns in Level-3, 2, and 1, the recognition

rate improves to 88%, 91%, and 94% respectively. The improvement in performance directly

shows the ability of our network to create generalized and invariant representations of the

93

Level
4
3
2
1
0

Average Gaussian Width (a)
185
105
20
3

2.5

Average Connectivity (# of Minicolumns)
42
23
10
4
4

Table 4.2: Average Gaussian Widths obtained using Algorithm 3 for different levels in the
cortical network. Connections between minicolumns in Levels and minicolumns in Levelt_i
are modulated by the strength of the Gaussian. Average Connectivity defines the minicolumns
within one standard deviation of all the zero mean Gaussians.

learned images, as provided by the topological organization with Gaussian connectivity.

Table 4.2 shows the widths of Gaussian connectivity obtained by applying Algorithm 3 to

the different levels in our cortical network. In this table, Average Gaussian Width defines

the width of the Gaussian for feedforward connectivity determined during the second phase

of training. From the table, it can be seen that minicolumns at the higher levels have wide

Gaussian connectivity, but in the lower levels of the hierarchy the connectivity narrows

progressively. The results in Figure 4.13 show that applying the Gaussian connectivity to the

lower levels provides noticeably less performance gains, as many of these lower level features

are shared among different digits; hence, the Gaussians are more narrow and less able to

generalize to affect recognition. However, it should be noted that this is quite in accordance

with the organization and behavior of the biological visual cortex. Higher processing levels of

the visual cortex (such as the IT) exhibit a much higher degree of invariance with respect to

image recognition. The cortical network shows exactly the same behavior, as exhibited by

the drastic improvement in recognition rate when feature maps and Gaussian connectivity

were learned for the highest level of the network.

94

The grouping of minicolumns with similar feature preferences using spatially localized and

temporally correlated spontaneous activations and modulation on the feedforward connectivity

widths allow the hypercolumn to develop invariant representations without any external

intervention. This entire process simply relies on object permanence which has a strong

biological basis. Table 4.2 also provides us with a theory that explains why lower cortical

regions consists of a significantly larger number of neurons as compared to higher cortical

regions. In order to develop robust generalized representations, neurons in higher cortical

regions connect with large number of lower level neurons. However, a large number of neurons

in the lower cortical regions are required since these neurons respond to very specific features

(narrow Gaussian widths). At each cortical level, the width of the Gaussian connectivity are

modulated and adjusted to create some notion of generalized representation.

The widths of the Gaussian connectivity can also be thought of as the vigilance of the

hypercolumn. This idea can further be extended to model attention within a hypercolumn

network. If a certain hypercolumn intends to pay more attention to a certain input, it can

simple decrease its feedforward Gaussian width. As a results, this hypercolumn can extract

more specific features from the input exciting its receptive field. Modeling such an ability

within the model proposed in this dissertation is left as future work.

95

4.4.5 Experiment 5: Feedback based Pooling to Develop

Invariant Object Representations

This experiment validates the hypothesis that a supervised feedback based pooling mechanism

allows the hypercolumn network to pool significantly different variations of the same pattern

together in order to generate robust invariant representations. To test how such a feedback

processing algorithm generates invariant representations, the same hierarchical hypercolumn

network described in Table 4.1 is used. For this experiment, each of the hypercolumns is

initialized with 100 minicolumns each. For the input dataset, 100 digit images (10 variations

for each digit) are used for training. The network is trained with these images till achieved

100% recognition rate is achieved. At this point, only 10 of the 100 minicolumns in the

top level hypercolumn maintain a stable representation. This representation corresponds

to each of the unique digits (0-9) in the training dataset. This means the feedback pooling

algorithm has merged together all the different variations of the same digit and there is

just one minicolumn that responds to all of the different variations of the same digit. To

estimate the resource optimizations achieved by the feedback based pooling algorithm, the

number of active minicolumns throughout the hierarchical network is calculated with and

without the feedback. In steady state, without feedback based pooling, the network used

3876 minicolumns while with feedback it only used 1283 minicolumns. Thus, the proposed

feedback processing algorithm results in about 3x resource optimization. Figure 4.14 shows

the invariant representations for different digits developed by the hierarchical hypercolumn

network using the feedback based pooling and unpooling mechanisms.

96

Figure 4.14: Invariant representations of different digits developed throughout the hierarchical
hypercolumn network.

Generation of robust invariant representation of unique patterns is one of the most powerful

abilities of the neocortex. The experiment described in this section demonstrates one such

mechanism that the neocortex might utilize to generate these invariant representations. It

should be noted that the feedback based pooling operation described here is localized within a

hypercolumn. As a result, the invariant representation of a pattern is hierarchically distributed

throughout the hypercolumn hierarchy. Minicolumns within the hypercolumns at lower

hierarchical levels create invariant representations for simple features while the minicolumns

in the hypercolumns at the higher hierarchical levels generate invariant representations for

complex features that combine several simple features. Finally, at the top level, minicolumns

generate invariant representations for various objects that may exist in the surroundings. This

feedback based pooling mechanism must be accompanied with an unpooling mechanism (see

Section 4.3.2.3) in order to separate exceptions from the generalized invariant representation.

The role of feedback paths within the neocortex in terms of learning and generation

of invariant representations is not well-known. The results of this experiment allow us to

hypothesize that such supervised feedback based pooling and unpooling mechanisms might

97

play an important role during the early years of a mammalian brain in order to develop robust

invariant representations of various patterns that exist in the surrounding of the mammal.

This supervised feedback can be thought of as a teaching signal that allows the neocortex to

pool variations of the same animal e.g. different breeds of horses together and distinguish

them from other similar looking animals like a donkey.

4.4.6 Experiment 6: Comparison with Conventional Neural

Networks

In this final experiment, the ability of the proposed hierarchical hypercolumn network

to generate invariant representations is compared against two contemporary state-of-the-

art traditional neural network models. These include open-source implementations of a

convolutional neural network (CNN) [101] and hierarchical temporal memory (HTM) [64].

For this experiment, the hypercolumn network described in Table 4.1 is initialize with 500

minicolumns in each hypercolumn. The hypercolumn network, the CNN, and the HTM are

trained using only a small subset of the MNIST training images, and are tested using the

entire MNIST test set that consists of 10,000 handwritten test images. Figure 4.15 clearly

demonstrates that the proposed hierarchical hypercolumn network is able to outperform

the CNN and HTM in terms of quickly generating invariant representations of each digit.

While both the CNN and the HTM show a slightly higher recognition rate after training

with only 100 images (65% and 66% respectively), the cortical network quickly overtakes the

performance of both the CNN and HTM in terms of recognition rate and generalization of

98

40

a, 100
CO

? 90
o
-»—'
g, 80
o o 05 -rr\

cc 70 CD
CO

B 60
c CD
O
a5 50

-

•

Cortical Network
HTM
Convolutional Network

100 200 300 400

Training set size (images)

500

Figure 4.15: Recognition rate comparison between the proposed hierarchical hypercolumn
network and fine-tuned implementations of CNN and HTM.

the input patterns. With 50 variations of each digit in the training set, our cortical network

achieves a recognition rate of 94% while the CNN and HTM achieve a recognition rate of

84% and 87% respectively.

This experiment highlights the fact that utilizing all the biologically inspired aspects

described in this chapter, the hypercolumn network is able to generate robust invariant

representations for each of the digits in the training set. Further, the hypercolumn network is

able to develop these invariant representations using a very modest number of training samples.

The state-of-the-art neural network implementations which are fine-tuned specifically to

perform optimally on the MNIST database generate invariant representations at a much slower

rate as compared to the hypercolumn network. It should also be noted that hypercolumn

network does not rely on fine tuning of any hyper-parameters. All the parameters like the size

of the topological groupings, widths of the feedforward Gaussian-like connectivity, pooling

99

and unpooling parameters, etc. that determine the behavior of the hypercolumn network are

learned by the network based on the type of type of data that it is exposed to. Unlike CNN

and HTM implementation, which need to be fine tuned every time the type of the training

data i.e. digits, faces, natural images, etc. changes, the hypercolumn network does not require

fine tuning. The hypercolumn network learns to extract independent features from any type

of input data exposed to it and to generate corresponding invariant representations using

various feedforward and feedback processing operations discussed in this chapter.

4.4.7 Summary of Experimental Results

In this section, various experiments are used to validate the hypothesis proposed in this

chapter. These experiments also evaluate the hypercolumn network in terms of learning

independent features and generating robust invariant representations. Section 4.4.1 validates

the hypothesis that the log-polar transforms plays a key role in providing invariance to

rotation and scale variations to a small extent in early vision processing stages. Results

discussed in this section show that log-polar transform helps the hypercolumn network develop

invariance to minor variations in rotation and scale of the digit images. Section 4.4.2 verifies

the hypothesis that the spontaneous activations ability of the minicolumns along with strong

lateral inhibitory connections among the minicolumns within a hypercolumn provides an

unsupervised mechanism for independent features identification and automatic abstraction.

This section shows that the hypercolumn network is able to learn different digit variations in

an unsupervised manner. Section 4.4.3 studies the hierarchical hypercolumn network's ability

100

to develop hierarchical feature maps to represent variations of different digits in a topological

manner. Results provided in this section show that the hypercolumn network is able to

effectively segregate features corresponding to digit 0 from the features corresponding to digit

2 by organizing features with temporal associations in close vicinity. Section 4.4.4 verifies

the hypothesis that feedforward Gaussian connectivity among the hierarchically organized

hypercolumns and the feedback based modulation of widths of such a connectivity allows the

hypercolumn network to generate robust invariant representations. Results described in this

section demonstrate that by allowing the network to learn the Gaussian connectivity widths,

average recognition rate of the network is significantly improved. Section 4.4.5 validates the

hypothesis that a supervised feedback based pooling mechanism allows the hypercolumn

network to pool significantly different variations of the same pattern together in order to

generate robust invariant representations. Finally, Section 4.4.6 compares the ability of the

proposed hierarchical hypercolumn network to generate invariant representations against two

contemporary state-of-the-art traditional neural network models. This section shows that

the hypercolumn network outperforms tradition state-of-the-art neural network approaches

in terms of generating robust invariant representations using a modest number of training

samples.

4.5 Summary

This chapter provides a detailed description of the proposed learning model which inspired

by various structural and functional properties of cortical columns. The main goal of this

101

chapter is to show that all the features incorporated in the proposed learning model are

biologically inspired. This chapter also describes the role of feedforward, feedback, and lateral

communications paths in terms of learning independent features, developing feature maps,

and constructing robust invariant representations. A lot of emphasis is put on the powerful

role of feedback communication paths within the proposed learning model. Finally, through

a series of experimental studies this chapter highlights how the proposed learning model is

more attractive than the contemporary traditional neural network approaches.

102

5 A R C H I T E C T U R A L S O L U T I O N S A N D O P P O R T U N I T I E S

This chapter serves to establish a bidirectional relationship between conventional computer

architecture and the proposed biologically inspired model. On the one hand, this chapter

describes various existing architectural solutions that can be applied to improve the per­

formance of a complex biological models. On the other hand, it also highlights biological

properties that can be helpful to contemporary architectural and processing models.

5.1 Leveraging Architectural Tools to Optimize

Biological Networks

This section provides an overview of several architectural tools that can benefit the construction

and working of complex biologically inspired networks. In this effort, first, this dissertation

highlights the need for a unified Neuromorphic Instruction Set Architecture (NISA) to

represent complex biological networks. Second, this section describes various optimizations

that are build on top of the notion of NISA to improve a complex biological network's

structure as well as to reduce its overall execution time.

5.1.1 A Unified Neuromorphic Instruction Set Architecture

In the recent years, a number of neuromorphic architectures, with the eventual goal of

implementing brain-like devices, have been proposed. Some of these include the IBM's

neurosynaptic chip [90], the FACETS hardware [1], and the SpiNNaker project [2]. At the

103

same time, a broad variety of neural algorithms has been proposed e.g. traditional neural

networks, spiking neuron models (See Chapter 3), and the proposed hypercolumn model.

Each of these algorithms uses very different primitives to implement complex networks. In

order to run one of these neural algorithm on the aforementioned neural architectures, it has

to be reimplemented using an application programming interface (API) provided by each of

the specific hardware substrates. This approach strongly ties the neural algorithm to the

underlying execution hardware. As a results, this neural algorithm cannot be ported to other

neural hardwares in a straightforward manner. Also, this excessive dependence between

the neural algorithm and hardware requires that any change in the underlying hardware be

reflected in the neural algorithm as well.

This issue can be solved by borrowing a widely accepted idea from the computer archi­

tecture domain: Instruction Set Architecture (ISA). An ISA defines an interface between

a hardware and software and by doing so it separates a conventional algorithm from the

execution substrate. This means that the algorithm developer does not have to worry about

the details of the execution hardware. Any changes in the hardware be incorporated into the

ISA and no modifications are required on the algorithm development side. The same ISA

concepts can be applied to separate the neural algorithms from the neuromorphic hardware

(See Figure 5.1). This means that the neural algorithms are implemented using an invariant

representation that this dissertation refers to as a neuromorphic ISA. This neuromorphic ISA

defines an interface between the neural algorithm and the neuromorphic hardware. As a result,

the neural algorithm developer does not need to worry about the details of the underlying

104

Convolutionai Neural Network Hypercolumn Model Spiking Neuron Model

Hardware-Software Interface (NISA) i

Figure 5.1: The Neuromorphic ISA defines an interface between the neural algorithm and
the execution substrate.

hardware and any neural algorithm can run on any of the aforementioned neuromorphic

architectures without any modifications as long as it conforms to a well-defined NISA.

A NISA abstraction model has been developed for the hypercolumn model proposed in

this dissertation. Presently, the NISA based implementation of the hypercolumn model runs

on multi-threaded CPUs, GPUs, and can also be ported to custom designed ASICS [46]. The

details of this NISA are out of the scope of this dissertation, however, major contributions of

Hashmi et al. [46] are summarized below. This dissertation describes various optimizations

that are built on top of the developed NISA for the proposed hypercolumn model.

In [46] Hashmi et al. present the Aivo1 framework. This framework provides a well-

1 Aivo is the Finnish word for Brain

105

defined NISA to precisely specify state, structure, and semantics for a hypercolumn network

described in Chapter 4. This NISA also separates the hypercolumn learning algorithm

from the execution substrate. By separating the hypercolumn learning algorithm from the

deployment substrate, each can be developed independently without one placing restrictions

or limitations on the other. The Aivo NISA abstraction allows a complex hypercolumn

hierarchy to be deployed on CPUs, GPGPUs, and custom designed ASICs. It also provides an

integrated development environment (IDE) that simplifies the task of developing, initializing,

and debugging complex hypercolumn networks. The Aivo framework provides the ability to

profile complex hypercolumn network as well. The profiling information obtained from the

Aivo framework can help optimize and restructure the hypercolumn network for improved

robustness and reduced execution time.

5.1.2 Hypercolumn Network Optimizations

This section describes one of the optimizations implemented on top of the NISA abstraction

described in Section 5.1.1. The hypercolumn network optimizer is a high level optimization

tool developed to improve the structure of the cortical network, either by expanding the

structure to improve learning robustness, or reducing the structure to reduce required

processing time. When a user initially creates a hypercolumn network, the optimal number of

resources (hypercolumns and minicolumns) required to achieve a particular task (e.g. robust

recognition of the entire feature set) is usually not known. Thus, it is likely that resources

have been either over allocated or under allocated for the network to learn a particular task.

106

When the resources are over allocated, the cortical network requires more computation than is

necessary for each learning iteration. On the other hand, an under-allocated cortical network

may not contain enough minicolumns to learn the full number of features in the dataset.

In the case when the cortical network resources are over allocated, all of the unique

features of the dataset will be fully recognized after a sufficient amount of learning epochs.

However, there may be a number of minicolumns that will not perform useful work, even

though they must still evaluate at each learning iteration. While the evaluation of these

minicolumns does not affect the activations propagated to the next level of the network,

they still contribute to the total execution time. In such cases, the network optimizer can

be invoked to perform network pruning and remove unnecessary minicolumns. First, the

state and structure of the trained cortical network is exported using the NISA in the form

of XML files. Then, the network optimizer parses these files and deletes the unnecessary

minicolumns. A minicolumn is declared unnecessary if all its synaptic weights are close

to zero, which suggests that it has not learned any interesting features from the training

dataset; thus it is not required to robustly perform the learned task. Along with pruning

unnecessary minicolumns, the network optimizer will regenerate the net-list that defines the

connections between the minicolumns at various levels in the hierarchy to account for the

deleted minicolumns and their connections.

Conversely, an under-allocated cortical network may not possess enough minicolumns to

robustly recognize all of the features of the dataset. After a significant amount of learning

epochs, the network optimizer may be invoked to perform a robustness expansion of the cortical

107

network. The trained network's state is again exported in the NISA format, which the network

optimizer parses, and then allocates more resources for under-allocated hypercolumns, as

determined by a defined threshold (i.e. if 90% of minicolumns within a hypercolumns are doing

useful computations, network optimizer allocates more minicolumns to this hypercolumn).

Minicolumns are useful if they contain strong weights corresponding to the input activations.

This feature is quite useful because the network optimizer adds minicolumns only to the

necessary hypercolumns. Thus, using multiple invocations, hypercolumn network optimizer

generates a cortical network that is sufficient in terms of resource allocation and execution time

for the given input dataset. Figure 5.2 provides a pictorial representation of the hypercolumn

network optimizer.

An offline optimization approach is used for the network optimizations rather than

performing such major structural changes to cortical network during runtime. Such offline

structural changes can be considered biologically inspired as well, since there is evidence that

memory-consolidations and translations that occur in the brain during sleep have a significant

impact on how and where memories are stored [88]. Generally, changing the cortical network

structure during runtime results in both code complications and a drastic increase in the

execution time for each learning epoch. Furthermore, the structure does not significantly

change on an iteration by iteration basis, so it makes sense to optimize after a large number

of training epochs.

In the future, further optimizations can also be introduced in the hypercolumn network op­

timizer. These optimizations may include flattening of different hierarchical layers, adding new

108

Orrgmai Network
Network Pruning

Figure 5.2: The Hypercolumn Network Optimizer optimizes a trained cortical network for
resources utilization or for robustness.

hypercolumn layers within the hypercolumn hierarchy, generating long distance connections,

etc. In terms of the human brain, the response time to perform a task improves with training.

One of the hypotheses explaining such a behavior is that with training, intermediate cortical

neurons are bypassed and information from sensory modalities is directly communicated to

higher cortical regions. Such a mechanism can also be implemented using the offline hyper­

column network optimizer. After sufficient training, the network optimizer can restructure

the network. Lower level hypercolumns can bypass intermediate level hypercolumns and

connect directly to upper level hypercolumns. Over time, the intermediate hypercolumns can

be completely pruned.

5.1.3 Hypercolumn Networks to Functional Boolean Logic

Conversion

Another feature built on top of the NISA absti action is the ability to convert a fully trained

hypercolumn network into an equivalent functional logic circuit. This optimization utilizes

109

the observation that once the biological neurons are in a stable state i.e. they learn to

recognize specific features, their synapses demonstrate an all or none response [105], i.e.

they can be treated as binary synapses. The NISA abstraction supports deployment of a

hypercolumn network in the form of logic functions that can be converted to netlists. AND-

and OR-operations are hierarchically connected to represent the structure of the corresponding

network. Once a network is fully trained (i.e. 100% recognition rate on the training dataset),

it can be converted to a logic representation for efficient execution. To achieve this, the state

of the hypercolumns and minicolumns of the fully trained network is exported into a NISA

representation. The NISA representation is then processed off-line to generate the equivalent

functional logic representation of the cortical network.

Once a minicolumn has concretely learned a particular feature, its weights can be consid­

ered as binary synapses, i.e. it has a strong synaptic connection or no synaptic connection to

a particular input. In terms of boolean logic, the output 'Y' of such a minicolumn can be

represented as:

Y t = V k e S A N D (k)

Here, 'S' is the set of inputs to the minicolumn corresponding to high weights.

If a minicolumn has pooled different variations of an input as described in Section 4.3.2.2,

then its output can be represented as:

Y i = V j A N D (O j)

110

O j = V k e M O R (k)

Here, 'M' is the set of inputs corresponding to high weights that pool different variations of

the same pattern.

Figure 5.3 illustrates the logic generation process using a simple trained cortical network

as an example. In this example, the two levels of hypercolumns are replaced with logic

equations that perform the equivalent detection or classification function. However, since the

LGN cells in this circuit perform a type of analog-to-digital conversion of the input image,

they are not simplified to boolean logic.

Even though converting the cortical network to boolean representation results in significant

reduction in execution time for a learned task, it comes with a trade-off: this boolean network

cannot learn new tasks or features. Rather, it can only detect the features it has already

learned, and will not respond to new features appearing in the input. To address this

shortcoming, a runtime monitor is used to detect when a boolean logic equivalent network

is not sufficient for the learning task at hand. This runtime monitor relies on a simple

property of the competitive learning-based cortical column model: a fully-trained cortical

network should evoke a single winning response for every input (i.e. one minicolumn in

each hypercolumn should fire). The runtime system monitors the firing rate of each boolean

circuit hypercolumn, and once it falls below a given threshold, runtime monitor reverts the

boolean circuit back to a computational model that is able to learn the new features in the

input. After the cortical network learns the new features, a new boolean logic circuit can

be regenerated to obtain execution efficiency. This process is very similar to profile-driven

I l l

Figure 5.3: A simple fully trained cortical network and corresponding logic network.

re-optimization of machine code in managed runtime systems with just-in-time compilers

(e.g. Java, C#) .

5.1.4 Code/Logic Hybrid Generation

The NISA abstraction also supports generation of cortical networks using a code/logic hybrid

approach. As described in Section 5.1.3, once a network is fully converted to logic, it is

unable to learn new features. Therefore, the cortical network should achieve 100% recognition

rate on the training dataset before it may be converted into an equivalent functional logic

representation. This means that during the training period, the cortical network cannot

benefit from the logic generation capability of the NISA abstraction, as recognition has

not stabilized. To avoid this dilemma, the NISA abstraction is extended to allow cortical

networks to be partially converted as they stabilize, which is referred to as Code/Logic hybrid

networks. This addition lets the NISA abstraction to partially convert a cortical network into

112

Yo Y, Y2

\

) i

X

rnTi
Hypercolumns L1 \ \ |

tUJ.
Hypercolumns LO

' /

l/l
/ / A/W

^

Tvte

7^-
A / X ^ G N C e l ^

/ h

J&F-

f̂ \
^

Figure 5.4: An example of a hybrid network created using the NISA abstraction.

logic (i.e. some of the hypercolumns are converted into their functional logic representation

while others are not). To achieve this, the NISA abstraction can store the state activity of

the hypercolumns in the network. If after a significant number of training epochs no new

minicolumns within a hypercolumn learn to recognize any new features, the hypercolumn

may be considered stabilized and can be safely converted to a functional logic representation.

The NISA abstraction also allows the programmer to explicitly control the conversion of

a hypercolumns to a logic function (i.e. the programmer can mark certain hypercolumns so

that they are not converted to logic). For example, the program may configure an explicit

hybrid network where the upper levels of the hierarchy are converted to logic functions while

the hypercolumns m the lower levels are not. Typically, this type of hybrid conversion is

113

useful for robust recognition of input patterns in the presence of noise. Since the lower levels

execute the hypercolumn learning algorithm, they exhibit more resilience to noise or slight

variations present in the inputs while the logic converted upper level hypercolumns identify

complex objects with computational efficiency. Figure 5.4 demonstrates this hybrid approach.

In the future, we plan to extend the boolean logic circuit generating mechanism so that it

can generate hypercolumn equivalent circuits for any of the execution substrates described in

Section 5.1.1.

5.2 Leveraging Biological Behaviors to Improve Fault

Tolerance

This section describes how the biologically inspired spontaneous activity property of the

proposed hypercolumn model helps the model achieve tolerance to permanent hardware

defects. Permanent defects and transient faults are not only a concern for future architectures,

but are already a prevalent issue in some of the latest systems. For instance, the NVIDIA

Fermi is the first Graphical Processing Unit (GPU) architecture to provide SECDED error

correcting code for all DRAMs, caches and registers [100]. Permanent defects, at design time

or during the chip lifetime, are also expected to further increase in the future.

Currently, applications programmed for GPU chips like Fermi or Tesla assume that all

cores of the GPU function correctly. If any of the 512 shaders (cores) of a Fermi chip becomes

dysfunctional (increasingly likely as the number of cores increases), it will be necessary to

114

rewrite applications so that no task is mapped to faulty shaders, or the compiler would have to

perform that remapping automatically. Here, it is assumed that the programmer or compiler

is given explicit control over the shader mapping, though no such' ability is yet present in

current generation GPGPUs. For instance, all existing vision recognition applications written

for GPUs will have to go through that reprogramming or recompilation process to execute

correctly on the defective GPU. Even vision recognition applications based on artificial neural

networks will suffer from the same limitation. While ANNs are inspired by biological neural

networks, neither their back-propagation learning process nor their software implementation

as imperative array-based computations are defect tolerant.

The software implementation of the cortical column based learning model proposed in

this dissertation for the GeForce 9800 GT GPU preserves the key concepts of the model: the

connections (synaptic weights) are initialized with weak random values, operators (sum, max)

are implemented in a robust manner through a set of synapses, there is no central control

nor supervision for the learning process since it happens in a distributed manner, yet it can

implement complex tasks such as vision recognition. Thanks to these properties, the software

implementation of the learning model proposed in this dissertation is inherently tolerant of

faulty GPU hardware. It can function properly and thus, unlike most other applications, it

can take advantage of the GPU, without requiring any reprogramming or recompilation, even

if one or several of the cores is dysfunctional and has to be deactivated. All that is needed

is to periodically retrain the application so that it adapts to the new configuration of the

faulty hardware, but again without specifying that configuration; the learning process will

115

automatically adjust to the faulty hardware.

5.2.1 Model Implementation on GPUs

While the model described in this dissertation may eventually be realized with specialized

hardware, fitting a software version of that model on a currently available architecture is

also investigated. The most attractive architecture encountered so far is the general purpose

graphics processing unit (GPGPU), specifically NVIDIA's CUDA. In this programming model,

highly parallel workloads can be processed on hundreds to thousands of CUDA threads.

In current top-end CUDA devices, groups of threads are scheduled to run on a streaming

multiprocessor (SM) which is composed of eight in-order cores and 16KB of fast-access shared

memory [23]. CUDA makes it easy for programmers to optimize their applications through

a number of different methods, including memory access coalescing and using the shared

memory space as a fast-access user-managed cache [114].

Nere et al. [98] have successfully demonstrated that the proposed hypercolumn model

maps well onto the CUDA architecture. In their implementation, each of the hypercolumn

maps onto a SM and each minicolumn maps onto a CUDA thread. By mapping a single

minicolumn to a CUDA thread, thousands of minicolumns can be concurrently active on

a GPGPU. Since the minicolumn's firing is based on the dot-product evaluation of the

input and minicolumn weights, the model is an example of a high-throughput data-intensive

application CUDA was invented for. Finally, the shared memory space per SM is ideal for

fast lateral communication between neighboring minicolumns.

116

GPGPU

Streaming Multiprocessor - N

Streaming Multiprocessor - 0

CUDA CTA

s s s s
|£ftare$ Memory

TTT?

Hypercolumn

Lateral Connections

u u u u
Figure 5.5: Mapping a hypercolumn to a CUDA CTA. [46]

Section 4.3 describes the proposed cortical architecture as having different hierarchically

organized components, composed of minicolumns and hypercolumns. Similarly, NVIDIA's

CUDA framework consists of a hierarchical organization, with threads, cooperative thread

arrays (CTAs), and kernel launches. The GPU-accelerated code translates the components of

the cortical architecture to the CUDA framework. With such an organization on CUDA, the

minicolumns in a hypercolumn can easily synchronize as well as laterally communicate and

share receptive field inputs in the fast access shared memory space, as seen in Figure 5.5.

5.2.2 Fault Identification and Detection Model

In the case of a biological network (the neocortex), the fault model is quite simple: if neurons

or minicolumns become defective, they stop generating any activations and eventually die out.

When this type of fault occurs, other neurons/ minicolumns modify their synaptic weights

117

to detect and interpret the feature that was previously recognized by the damaged neuron/

minicolumn.

In the software implementation of the proposed hypercolumn model, each minicolumn

runs on a shader core, which can have multiple failure modes. Ultimately, due to the

sigmoid nature of the output activation functions these faults will manifest themselves as a

minicolumn either not firing when it should (a stuck-at-zero fault), or firing when it should

not (a stuck-at-one fault).

A minicolumn stuck-at-zero behaves the same as a damaged neuron/ minicolumn in a

biological network: since it is not generating any activity, its functionality is automatically

taken over by the neighboring minicolumns. On the other hand, any minicolumn that is

stuck-at-one can severely impact the performance of the hypercolumn network, since it will

inhibit its peer minicolumns continuously, effectively masking all feedforward information

that passes through that point in the network. Biological neurons in such a mode would

exhaust their resources and eventually cease activity, allowing others to learn and assume

their role in the network. Since the synthetic minicolumns proposed in this dissertation do

not have built-in resource limits on their behavior, the resilient fall-back is mimicked by

intermittently recomputing the response of the winning minicolumns on two neighboring

shaders, and disabling shaders that exhibit stuck-at-one behavior. A shader is disabled if two

of its neighbors disagree with its result. In subsequent iterations of the model, all neighboring

minicolumns (in the same hypercolumn) as well as upstream minicolumns in the next level of

the hierarchy ignore the output of the defective minicolumn.

118

At this point, the proposed learning model utilizes the idea of automatic abstraction and

random firing to relearn the features being recognized by the minicolumns running on the

defected shader core. It should be noted that since all the minicolumns within a hypercolumn

share the same receptive field, minicolumns connected to defected minicolumns need not be

reconnected as their output is already being exposed to multiple minicolumns at the upper

level in the hierarchy.

5.3 Experimental Results

This section describes various experimental studies demonstrating the bidirectional benefits

obtained by combining biological network ideas and conventional computer architecture

concepts. Section 5.3.1 verifies the hypothesis that restructuring a complex hypercolumn

network through hypercolumn network optimizer can result in significant gains in terms

of execution time per epoch as well as the resources utilized by the trained network. The

experiment discussed in this section shows that using the hypercolumn network optimizer, a

complex hypercolumn network executes significantly faster than the unoptimized network and

requires less resources when fully trained. Section 5.3.2 verifies the hypothesis that a fully

trained hierarchical hypercolumn network can be converted into an equivalent boolean logic

circuit. It also shows that such a conversion can allow the hypercolumn network to execute

orders of magnitude faster than the one not converted to a boolean logic representation.

Section 5.3.3 evaluates the ability of the hypercolumn runtime monitoring system to revert a

highly optimized boolean logic network to a network of hypercolumns for improved robustness.

119

The experiment described in this section clearly demonstrates that the boolean logic network

can be converted back to a hypercolumn network if the overall recognition rate of the network

does not meet a specified threshold. Sections 5.3.4, 5.3.5, and 5.3.6 verify the hypothesis that

spontaneous activations of the minicolumns along with the automatic abstraction property

lends the hierarchical hypercolumn networks the ability to recover from permanent hardware

defects. The results in these sections show that a complex hypercolumn network can fully

recover in the presence of permanent hardware failures even in the case when 50% of the

hardware is defected. These experiments also study the inherent fault tolerance ability of the

hypercolumn network in various permanent defect scenarios that might exist in the future

generation computational hardware.

5.3.1 Experiment 1: Hypercolumn Network Optimizations

This experiment validates the improvements achieved in terms of execution time and resource

requirements when the structure of a hypercolumn network is optimized using the profiling

information provided by the NISA abstraction. In this experiment, four variations of the

hypercolumn network described in Table 4.1 are created and are deployed on the CPU. Each

of these variations is trained with 64, 128, 256, and 512 images of handwritten digits from

the MNIST database respectivley. The network trained with 64 images is initialized with 64

minicolumns per hypercolumn, the network learning 128 images began with 128 minicolumns,

and so on. Figure 5.6 shows the execution time of each of the network configurations deployed

on the CPU. As can be seen, the execution time grows substantially as the number of

120

30000

25000

& 20000
(D

E
^ 15000
g
o 10000
x

LU

' ' C P U [>«x»<><
CPU Optimized essays

-

am™* Rxtes %3&

'

^

XX>*&H
0>Q4&*VH

5000

64 128 256 512
Number of Unique Digit Variations

Figure 5.6: Performance of original and optimized networks on CPU.

minicolumns is increased in each hypercolumn. After the hypercolumn network is fully

trained and it achieves 100% recognition rate on the training set, the hypercolumn network

optimizer is invoked to restructure the network. After hypercolumn network is profiled

and optimized, the performance benefit of pruning the unused minicolumns can clearly be

seen in Figure 5.6. These optimizations result in nearly 2x speedup for each of the network

configurations tested.

Further, the amount of resources recovered by the network optimized is examined in

in Figure 5.7. Here, the resources utilization is estimated using the memory footprint of

the entire hypercolumn network. As can been seen in Figure 5.7, pruning unnecessary

minicolumns significantly reduces the resources required by the hypercolumn network for

each of the different minicolumn configurations. On the average, the hypercolumn network

optimizer is able to recover approximately 50% of the resources initially allocated to each of

121

CO
X.

c
o
03
N

"•i^

o
• ^

i_

O
E
a>
2

14000

12000

10000

8000

6000

4000

2000

0
64 128 256 512

Number of Unique Digit Variation

Figure 5.7: Memory footprint of minicolumns before and after optimization.

the hypercolumn network configurations.

Pruning of unnecessary minicolumns improves both the execution time of the network

and its resource requirements. These improvements can be attributed to two main reasons.

First, if unnecessary minicolumns are reduced, the computational cycles wasted in evaluating

the response of those minicolumns as well as the memory allocated to those minicolumns are

recovered. Second, when the number of minicolumns is reduced across various hypercolumns,

the receptive field size of higher level hypercolumns is reduced. As this receptive field size

is reduced, the number of synaptic weights needed for these upper level hypercolumns is in

turn minimized as well. This reduces the overall computational and memory requirements of

the useful minicolumns as well.

Unoptimized i s s s
CPU Optimized ssssssa

m

zm

122

5.3.2 Experiment 2: Speedups Due to Boolean Logic Conversion

In this experiment, the ability of the hypercolumn model proposed in this dissertation to

interpret a trained cortical network exported using the NISA abstraction and to translate it

into a boolean logic equivalent is evaluated. For this experiment, the hypercolumn network

described in Table 4.1 is initialized with 20 minicolumns within each hypercolumn, and is

trained with 10 variations of a single digit until 100% recognition rate is achieved. At this

point, the hierarchical hypercolumn network is converted into an equivalent boolean logic

circuit through the operations described in Section 5.1.3. Once the boolean logic is generated,

the equivalent logic circuit is deployed to perform the recognition tasks. For the purposes of

this experiment, the boolean logic circuit is deployed using C + + boolean logic constructs on

a conventional CPU. Table 5.1 compares the performance of the optimized cortical network

deployed on the CPU with the corresponding boolean logic equivalent circuit. From the

table it can be seen that using the hypercolumn network to prune unnecesary minicolumns

provides a nearly 3x speedup, while deploying an equivalent boolean logic network results in

44x speedup for the hypercolumn network described in Table 4.1.

For this experiment, the working of boolean logic equivalent circuit is emulated using

C + + boolean constructs. However, further improvements in the execution time can be

achieved if such a boolean logic equivalent circuit of a hypercolumn is deployed on a FPGAs

or customized ASICs. Once a hypercolumn network is fully trained and provides acceptable

results on the test set, it can be converted into an equivalent boolean logic circuit and then

can be deployed on a customized hardware. Such an approach can be quite fruitful for

123

Execution Time / Iteration
Speedup

Original Net­
work
3000 us
lx

Optimized Network

1080 us
2.78x

Logic Net­
work
68 us
44.12x

Table 5.1: The NISA abstraction provides performance benefits for equivalent optimized
networks and boolean logic conversion.

applications with real time requirements or stringent power or energy limits.

5.3.3 Experiment 3: Online Monitoring of Boolean Logic

Network

In this experiment, the ability of the network monitoring system to revert the highly optimized

boolean logic network back to a network of hypercolumns when new features are introduced

into the learning dataset is evaluated. If the boolean logic network deployed on the CPU does

not exhibit any activity for a large number of epochs, network monitoring system detects it as

an anomaly and reverts the boolean logic network back to a network of hypercolumns in an

effort to learn new features. For this experiment, a similar hierarchy as described in Table 4.1

is constructed and 10 variations of a single digit are exposed to it until 100% recognition rate

is achieved. At this point the boolean logic equivalent circuit of the hypercolumn network is

generated as C + + boolean logic constructs. Once the optimized boolean logic network for

the trained cortical network is generated and deployed, five new variations of the same digit

are introduced to the original network and optimized boolean logic network. For the sake of

this experiment, both the hypercolumn network and boolean logic translated network are

run alongside to observe their corresponding recognition rates.

124

100

© 80
to
DC

.2 60
'c

8 40

20

0
0 2 4 6 8 10 12 14 16 18 20

Training Epoch (x1000)

Figure 5.8: Recognition performance of the original cortical network and its logic based
equivalent. At 8000 learning epochs (arrow), the boolean logic equivalent network is replaced
with a hypercolumn network.

In Figure 5.8, it can be seen that initially the new variations are not recognized by either

the hypercolumn network or the equivalent boolean logic circuit. Thus, both the original

and the converted logic network exhibit a recognition rate of 67%, i.e. 10 out of 15 digit

variations are recognized. Since the original network of hypercolumns has enough resources

available to learn new features, after 3000 training epochs, it starts to learn the new variations

added to the training dataset. On the other hand, the optimized boolean logic network does

not show any improvement in the recognition rate since it lacks the ability to modify its

structure in response to the new inputs in the training set. The runtime monitoring system

eventually recognizes that the logic network does not show any response to the new variations

introduced in the training set. As a result, it translates the boolean logic network back into

a trainable hypercolumn network. This hypercolumn network is then redeployed instead of

the boolean logic equivalent. Once the logic network is replaced with a hypercolumn network

—\ r̂

Original Network
Hybrid Network

J L

125

(at around 8000 epochs in Figure 5.8), improvement in the recognition rate of the hybrid

network are observed and at around 14000 epochs this network achieves 100% recognition

rate on the training set. At this point, this network can again be converted into a boolean

logic equivalent circuit that can be redeployed for improved execution time.

Since the logic conversion mechanism evaluated here is very infrequently invoked, it incurs

minimal overheads on the overall performance and execution of a hypercolumn network.

However, such mechanisms can play a very important role in developing intelligent systems

that can operate in real-time and at the same time are robust enough to adapt to the changing

environment. As long as the intelligent system demonstrates acceptable results in terms of

recognition, classification, or other complex decision making scenarios, it can stay in the

boolean logic state. This allows the system to quickly provide a response. However, if the

performance of the system does not meet a predefined criteria, it can be reverted into a

conventional hypercolumn network. This allows the system to restructure itself to adapt

to the changes introduced in the environment. Once the network adapts and improves its

performance, it can be redeployed as a boolean logic circuit.

5.3.4 Experiment 4: Fast Emulation of a Faulty G P U using a

Fault-free G P U

In this experiment, it is demonstrated that the behavior of a faulty GPU as described in

Section 5.2 can be emulated by simply deactivating one or more minicolumns within the

hierarchical hypercolumn network and running the network on a fault-free GPU. Demon-

126

strating this equivalence allows performing long-running and large-scale experiments on the

robustness of the model without incurring the overhead of detailed simulation of a faulty

GPGPU.

In order to show this equivalence, a cycle-accurate GPU simulator, GPGPUSim [6],

configured to emulate the real GPU (GeForce 9800 GT) is used. GPGPUSim is used

to simulate the effects of deactivated shader cores on the hypercolumn model. For this

experiments, GPGPUSim is modified to support deactivation of different shader cores. The

output of deactivated shader cores remain unchanged at zero.

On GPGPUSim, the following experiment is performed. A single hypercolumn is initialized

with 32 minicolumns with a receptive field of size 3 x 3 . Fifteen unique patterns of size 3 x 3

are then exposed to this hypercolumn. After a few training epochs, the hypercolumn starts

to recognize each of the unique patterns. This means that, out of 32 minicolumns, 15 adjust

their weights so that they fire for one of the unique features in the training set.

Consequently, randomly selected shader cores within GPGPUSim are deactivated to

emulate permanent fault injections. These defected shader cores are then detected and

deactivated. At this point, the impact of deactivating the defected shader cores on the

recognition rate of the hypercolumn is evaluated. The results of this experiment are reported

in Figure 5.9, labeled as GPGPUSim. All the results are averaged over 20 trials unless otherwise

stated. The initial recognition rate (IRR) is the recognition rate immediately after the shader

cores are deactivated, before any retraining, while the final recognition rate (FRR) is the

recognition rate after retraining. Afterwards, the following experiment is conducted on the

127

real GPU, labeled as HC Model. 4 randomly selected minicolumns are deactivated by setting

their output to zero and IRR and FRR for the real GPU are reported.

Two observations can be drawn from these experiments. First, the model demonstrates

graceful degradation in the presence of permanent defects. After fault injection, the recognition

rate of the hypercolumn falls. After retraining, the recognition rate of the hypercolumn

recovers to 100% until the number of faulty shader cores per multiprocessor equals 5. GeForce

9800 GT has 8 shader cores per SM. This means that when executing a hypercolumn with

32 minicolumns on a SM, each shader core executes 4 minicolumns. Therefore, deactivating

5 shader cores is effectively equivalent to disabling 20 minicolumns. As a result, 3 out of

the 15 features are not learned even after retraining because there are only 12 working

minicolumns within the hypercolumn. Second, the GPGPUSim simulator with faulty shaders

behaves almost exactly the same as the real GPU with deactivated minicolumns. Hence,

for subsequent large-scale experiments, faulty shaders are emulated on a real GPU with

deactivated minicolumns.

It should be noted that the shader core model and failures studied in this experiment are

a proxy for the types of hardware and defects expected in a future computational hardware.

Future generation processing hardware is expected to have multiple simple processing units

similar to the shader cores available on current generation GPUs. Further, these simple

cores might consist of multiple defective units. Considering these factors, the results of this

experiment can be extrapolated to estimate how the proposed learning model might behave

on faulty future technologies.

128

1 1 1 1 1

IRRHC Model 1XX>0<X>I IRRGPGPUSim : >'
FRRHC Model c^SSSS3 FRRGPGPUSim

Number of deactivated shader cores per multiprocessor

Figure 5.9: Effects of shader core deactivation on hypercolumn recognition rate while executing
on GPGPUSim and real GPU (GeForce 9800 GT).

5.3.5 Experiment 5: Spatially Distributed Defects

In this experiment, the impact of faulty shaders, which are randomly spatially distributed,

on the performance of a complex hypercolumn network is studied. For this experiment, the

hierarchical hypercolumn network described in Table 4.1 is used and each of the hypercolumns

is initialized with 20 minicolumns. This network is trained on a sample of handwritten digits

(0-9) obtained from the MNIST database until it achieves 100% recognition rate. At this

point, deactivation of randomly selected shader cores is simulated. Within the GeForce

9800, each multiprocessor has 8 shader cores and all the minicolumns within a hypercolumn

are evenly distributed among these 8 shader cores. Since there are 20 minicolumns within

a hypercolumn, deactivating one shader core affects 2.5 minicolumns per hypercolumn on

average. Since on average 3.3 out of 47 hypercolumns map onto a single GeForce 9800 GT

multiprocessor, deactivating 8.5 minicolumns emulates the behavior of one permanently

129

damaged shader core. After deactivating the minicolumns to emulate damaged shader cores,

IRR is evaluated. At this point, the network is retrained until it achieves a stable recognition

rate and FRR is measured. The results for this experiment are presented in Figure 5.10.

On average, the same behavior as in the validation experiment described in Section 5.3.4 is

observed. Immediately after fault injection, the recognition rate of the hypercolumn network

drops. For example, when 6% of the shader cores are deactivated, IRR is measures to be

50%. Afterwards, with retraining using the same training set, the hypercolumn network

recovers and FRR is measured to be 100%. Eventually, it should be noted that 100% final

recognition accuracy is achieved even with only 50% functional shader cores. Damaging more

that 50% shader cores affects results in deteriorating FRR. For example, with 56% shader

cores deactivated FRR is measured to be around 40%. This is mainly because of the fact

that at this point enough resources are not available for the hypercolumn network to recover

the functionality lost due to the defected shader cores.

Figure 5.10 also highlights a shortcoming of using a single hierarchy of hypercolumns.

Even with small number of defected shader cores, the recognition rate of the hypercolumn

network is significantly affected. For example, even with only 6% defected shader cores, the

measured IRR is around 50%. Such an issue can be resolved by exploiting the redundant

information representation idea which also a strong biological basis. The robustness of the

proposed hypercolumn model can directly benefit from redundant parallel hierarchies without

any special algorithmic modification. All of these hierarchies share the same input but due to

the randomness incorporated within the spontaneous activation behavior of the minicolumns,

130

6 12 18 25 31 38 44 50 56
Percentage of deactivated shader cores

Figure 5.10: Effects of shader core deactivation on the hierarchical hypercolumn network
recognition rate.

different minicolumns in each of the hierarchies will learn to recognize a specific feature.

Thus, the overall chance of that specific feature getting lost due to any permanent defects is

reduced.

To evaluate this hypothesis, 3 parallel hierarchical networks similar to the one described

above are created. Each hypercolumn within these hierarchies contains 20 minicolumns. The

output of each of these hierarchies is fed to an association network which pools minicolumns

in the top level of each of the hierarchies firing for the same digit. Thus, if a minicolumn

corresponding to a digit in any of the 3 hierarchies fires, the minicolumn in the association

network associated to the digit will fire. Essentially, a minicolumn in the association network

can be thought of as an 'OR' of of its inputs from the each of the hierarchical hypercolumn

networks.

Each of these 3 hierarchies is trained on a sample of MNIST digits. After training,

131

IRR rxxxxxx
FRR Sl£i:5i£3

6 12 18 25 31 38 44 50 56
Percentage of deactivated shader cores

Figure 5.11: Effects of shader core deactivation on hypercolumn recognition rate with
redundant hierarchies.

the same shader core deactivation process as described above is repeated. For this case,

deactivating a single shader core once again affects 2.5 minicolumns per hypercolumn. But

for this case 10 hypercolumns map onto a single multiprocessor. Thus deactivating a single

shader core affects approximately 25 minicolumns throughout the 3 hierarchical networks.

Figure 5.11 shows the IRR and FRR for this experiment. Comparing with Figure 5.10, it

can be seen that the IRR of the larger hierarchical network degrades much more slowly and

its FRR is improved as well. For this experiment, with 6% shader cores deactivated, IRR

is measured to be 80% which is significantly better than the case with a single hierarchical

hypercolumn network. Creating redundant hierarchies also improves FRR in the case when

more that 50% shader cores are defective. For this case, with redundant hierarchies, FRR is

measured to be around 70% as compared to 40% in the case of a single hypercolumn network.

The experiments described in this section mainly cover the case when defects are introduced

132

within the execution substrate due to wear-out or process variations. The results provided

in Figures 5.10 and 5.11 clearly demonstrate that the hypercolumn model proposed in

this dissertation has an inherent ability to gracefully tolerate such errors and recover its

functionality through retraining. In addition to various modeled biological aspects, such

a tolerance to permanent hardware failure is also attributed to the localized learning and

operational rules of the hypercolumn model proposed in this dissertation. Since all the rules

determining the behavior of a hypercolumn are local to it, any permanent hardware defect

does not have global consequences. Thus, if a hypercolumn is affected due to a permanent

hardware failure, it does not affect the correct behavior of any other hypercolumn. The only

this that is affected is the structural connectivity among hypercolumns, that can be relearned

through training. Conventional artificial neural networks lack such an ability to recover from

permanent hardware defects. Any damage in the execution hardware can significantly affect

the performance of these networks and in most cases renders them nonoperational.

5.3.6 Experiment 6: Spatially Clustered Defects

Apart from spatially distributed defects studied in Section 5.3.5, hardware defects can also

occur in spatial clusters. For example some memory banks within a multi-processor unit in

the GPU might get damaged. This will affect the working of multiple shader cores within

the same multi-processor unit.

The sensitivity of a hypercolumn hierarchy to clustered defects is assessed in this experi­

ment. In the model, neighboring minicolumns are more likely to carry similar information, or

133

to interact in an inhibitory fashion. As a result, clustered defects can potentially be more

harmful to the task functionality. On the other hand, the fact that the information quickly

spreads out across hierarchy levels can compensate for that vulnerability. For this experiment,

the same hierarchical hypercolumn network as described in Section 4.1 is constructed and

trained on a subset of MNIST digits. 5 neighbor shader cores at any hierarchical level are

deactivated at a time and the recognition rates are measured. Figure 5.12 plots the results of

this experiment. This figure plots the number of training iterations required by the network

to achieve a stable FRR after the fault injection. It can be seen that if the deactivated shader

cores are used for minicolumns higher in the hypercolumn hierarchy, it takes fewer retraining

iterations for the network to achieve a stable FRR as compared to the case when the affected

minicolumns are lower in the hierarchy. This is mainly due to the fact that if a minicolumn

at level n is disabled, all the hypercolumns above level n getting input from the disabled

minicolumn have to retrain themselves to relearn the lost features. This is an incremental

process: first, the hypercolumn in level n will relearn the lost feature; then, given the new

activation pattern in level n minicolumns, level n + 1 hypercolumns must relearn this pattern;

this learning is repeated all the way to the top of the hierarchy.

The results of this experiment also provide an insight into how a damaged region within

the neocortex might manifest itself. If the damage is in some higher cortical region, the

subject might recover at a faster rate as compared to the case when the damage is in

some lower cortical regions. A damage in lower cortical regions indirectly affects higher

cortical regions because higher regions need to restructure themselves to reflect or incorporate

134

-̂̂
o
o
o
T—

X
• - — '

(/) JZ

o o
a.

c
(~

'(Ti
1 _

H—'
(1)

*^
O

* (1)
_Q

b 13
2

1H0 r

140 -

120 -

100 -

80 -

60 -

40 -
'

?o L
4 3 2 1 0

Level in the hierarchical network

Figure 5.12: Number of retraining epochs required to achieve a stable FRR with spatially
localized shader core deactivation.

the structural changes that took place in the lower cortical regions to recover the lost

functionality. In such a case, depending on the location of the damaged region within the

cortical hierarchy, more time is required to recover the lost functionality. Furthermore, the

amount of functionality recovered directly depends on the amount of available resources.

In the case of the hypercolumn network, the number of free minicolumns determine the

amount of available resources. If a large number of minicolumns are available, most of the

functionality lost because of the defects introduced will be recovered. However, if there are

not enough minicolumns available, all of the functionality might not be recovered.

5.3.7 Summary of Experimental Results

This section describes several experiments that verify various hypothesis presented in the first

half of this chapter. The main goal of these experiments is to verify that various conventional

135

computer architecture tools can be used to improve the performance as well as the resource

utilization of complex biologically inspired networks. Furthermore, these experiments also

demonstrate that biological properties like spontaneous activation and automatic abstraction

allow computational models to develop inherent tolerance to permanent hardware failures.

Section 5.3.1 demonstrates the ability of the hypercolumn network optimizer to restructure

complex hierarchical networks to improve its performance as well as the robustness. Results

described in this section clearly show that pruning the unnecessary minicolumns within

a hypercolumn can result in 2x average speedup as well as 50% decrease in the memory

requirement of a fully trained hypercolumn network. Section Section 5.3.2 demonstrates

that the execution time of a hierarchical network can further be improved by generating an

equivalent boolean logic circuit corresponding to the fully trained hypercolumn network in

which synaptic weights are approximated with binary values. Such a conversion can allow

the hypercolumn network execute orders of magnitude faster than the one not converted

to a boolean logic representation. Section 5.3.3 evaluates the ability of the hypercolumn

runtime monitoring system to revert a highly optimized boolean logic network to a network

of hypercolumns for improved robustness. The experiment described in this section clearly

demonstrates that the boolean logic network can be converted back to a hypercolumn network

if the overall recognition rate of the network does not meet a specified threshold. Section 5.3.4

validates the hypothesis that permanent hardware faults can be emulated in software. As

a result, instead of modeling permanent hardware faults in a detailed simulator which in

extremely time consuming, permanent hardware faults are emulated in software by disabling

136

individual minicolumns within a hypercolumn. The experiment described in this section

also demonstrate the inherent fault tolerance ability of the hypercolumn model proposed in

this dissertation using a simple hypercolumn network. Section 5.3.5 validates the hypothesis

that spontaneous activation property of the minicolumns within a hypercolumn provides the

hypercolumn network with an inherent ability to tolerate randomly distributed permanent

hardware failures. The results of the experiment described in this section clearly demonstrate

the ability of the hypercolumn network to recover from permanent hardware failures simple

through retraining. This section also shows that the tolerance of a hierarchical hypercolumn

network to permanent hardware defects can further be improved using redundant parallel

hierarchies. Finally, Section 5.3.6 demonstrates the ability of the hypercolumn network to

tolerate spatially clustered hardware defects. The results of this experiment demonstrate

that the time taken by the hypercolumn network to recover from spatially clustered defects

is determined by the location of the minicolumns with the hypercolumn hierarchy that

are affected by such defects. If the minicolumns affected by the defects are within the

hypercolumns in the upper hierarchical levels, the network takes less time to recover as

compared to the case when affected minicolumns are in the lower hierarchical levels.

5.4 Summary

This chapter establishes a bidirectional relationship between computer architecture and the

proposed biologically inspired model. Through various experiments, this section demonstrates

that various conventional architectural tools can help optimize the performance of complex

137

biological networks. At the same time, the automatic abstraction and spontaneous activation

properties of the proposed hypercolumn model help develop computational models that are

inherently tolerant to permanent hardware failures.

138

6 C O N C L U S I O N A N D R E F L E C T I O N S

Advances in the understanding of the structural and functional properties of the brain

paired with the recent technological pressures on the traditional von Neumann model has

led researchers to explore alternative computational paradigms. This dissertation advocates

using the cortical columns that exist throughout the mammalian neocortex as an inspiration

towards developing a biologically inspired computational abstraction that addresses some of

the recent architectural challenges.

In this chapter, first, various contributions and findings of this dissertation are reviewed.

Second, reflections on various interesting ideas that did not become part of this dissertation

are discussed as future work.

6.1 Summary and Conclusion

This dissertation is grounded in the philosophy that computational paradigms radically

different from the traditional von Neumann model must be explored in order to cater

to the needs of the future generation applications as well as hardware constraints. In

this effort, this dissertation proposes a uniformly structured, hierarchically organized, and

biologically inspired computational model inspired by the structural and functional properties

of the mammalian neocortex. This model uses cortical columns as its basic functional

abstraction and organizes these columns in the form of hierarchical networks to realize

complex tasks. Biological inspirations of the proposed model is ascribed to its detailed

139

modeling of various aspects of biological cortical columns (hypercolumns and minicolumns)

as well as the feedforward, feedback, and lateral inhibitory processing pathways. In addition

to being biologically inspired, the proposed model is computationally efficient as well, as each

modeled hypercolumn abstracts away the working of around 10,000 neurons.

In terms of modeling a biologically inspired hierarchical network, this dissertation demon­

strates the use of spatially localized and temporally correlated spontaneous activations,

feedforward and lateral communication paths, and Hebbian-like learning rules to develop

hierarchical organized feature maps. These feature maps that evolve through the concept

of automatic abstraction are used to generate invariant representations of various unique

objects. Furthermore, this dissertation also highlights and models several important roles of

feedback communication paths in the neocortical hierarchy. Within the proposed model, these

feedback paths help in modulating the Gaussian-like feedforward connectivity using global

context. These feedback paths are also used to implement various pooling mechanisms to

develop generalized representations for the variations of the same pattern as well as unpooling

mechanism to separate exceptions for the generalized representations.

Another key contribution of this dissertation is to establish a symbiotic relationship

between cortical networks and computer architecture. On the one hand, complex networks

can benefit from several computer architecture concepts like functional abstractions, Instruc­

tion Set Architecture, online profiling and optimizations, efficient resource management,

etc. These architectural concepts make a complex biological model scalable, portable, and

computationally efficient. On the other hand, conventional algorithms and hardware can

140

benefit from biological properties like automatic abstraction and spontaneous activations to

develop tolerance to permanent hardware defects.

Finally, this dissertation is geared towards developing a comprehensive and biologically

inspired understanding of the microarchitecture of computing systems that mimic the human

neocortex, and applying such systems for robust realization of complex tasks.

6.2 Reflections and Future Work

This section describes various interesting ideas that initiated during the course of this project

but are not part of this dissertation.

6.2.1 From a Blank Slate to a Complex Hierarchical Network

A very interesting property of the mammalian brain, especially the neocortex, is the formation

of complex and densely interconnected structures of neurons to realize complex behavior.

The process of forming these complex structures involves both developing new connections as

well as pruning unnecessary connections. This clearly suggests that initially the neocortex

has limited or even no connectivity (like a blank slate) but, over time, based on the learning

experiences of an individual, the connectivity and the hierarchy evolves.

In a typical artificial or biological neural network model, the hierarchical organization

does not evolve over time; rather some notion of hierarchical connectivity is assumed. This

may limit the robustness of such a network in terms of developing an efficient hierarchical

network to realize a complex task. We hypothesize that initially, the neocortex appears

141

as a blank slate and neurons have very limited connectivity but the neurons observe three

operational rules that ensure their survival. First, neurons must fire in response to some

stable stimulus in order to survive. Second, firing neurons want someone to listen to them.

Any useful activity generated by a neuron results in release of certain low-level chemicals

(a reward mechanism) that results in nourishing that neuron. Third, populations of neuron

compete with each other to improve their chances of survival. In summary, neurons want

to fire and they want their firing to be heard because these two mechanisms ensure the

survival of neurons. With the help of these operational rules, complex hierarchical structures

evolve over time. Initially, the neurons physically located near the sensory modalities start

to respond to stable input stimuli and learn to extract independent features. Neurons with

similar feature preferences form tightly connected networks and compete with other neurons

firing for the same feature. This implements a winner-take-all sort of a behavior. Afterwards,

neurons that are physically distant from the sensory modalities, connect with populations

closer to the sensory modalities and start to extract higher order features. This process

continues and eventually complex hierarchical networks of densely connected populations of

neurons are formed to realize complex higher order tasks.

In summary, formal mechanisms that allow artificial or biologically inspired neural networks

to evolve hierarchically and in a robust manner need to be investigated. Rather than defining

the hierarchical organization of a neural network prior to exposing it to a dataset, the network

should learn to develop its hierarchical organization based on the training data properties.

142

Level

Hypercolurnno

Mr Mi M2 M3

Figure 6.1: A graphical representation of spatial correlations created among various features
recognized by the 2-Level hypercolumn network after it reaches a steady state.

6.2.2 Identifying Sufficient Features for Recognition

Although there exists a large body of literature explaining the various neocortical properties

described in Chapter 3, certain alternative properties of the neocortex have not been sufficiently

explored. One such property of the neocortex is its ability to determine the set of features

that are sufficient to recognize variations of an object. Obviously, the neocortex does not

require all of the object's features to recognize it. For example, Maw and Pomplun [89] show

that while recognizing a human face, subjects tend to gaze more at the eyes, lips, and nose.

Thus, out of all the features that constitute a human face the neocortex uses a small subset

to process the facial recognition task. Sigala and Logothetis [123] show similar results in

more details. Thus, within the neocortex, there exists of notion of a sets of features that

are sufficient to differentiate visual patterns. To determine the set of features sufficient

143

Level

Figure 6.2: Reduced graph obtained after removing the connections with redundant informa­
tion from the graph shown in Figure 6.1.

for recognition of unique images, we propose considering the spatial correlations that exist

among the occurrence of different independent features constructing an object. This results

in a connectivity graph of features with spatial correlations. One such spatial correlation

graph is shown in Figure 6.1. This figure contains a 2-Level hierarchical hypercolumn

network and shows various spatial correlations that exist among the minicolumns in Levelo

hypercolumns. For example, Minicolumn 0 in Hypercolumn 0 within Level 0 (MOHOLO) has

a spatial correlation with MOHILO and MIHILO because MOHOLO always co-occurs with

MOHILO OR MIHILO.

Now, the set of features sufficient for identifying the shapes exposed to the network are

determined using the spatial correlation graph like the one shown in Figure 6.1.

At each level of the hierarchy, the spatial correlations between different minicolumns are

144

observed and the associations that provide redundant information are marked. For example,

if minicolumn A is just spatially associated to minicolumn B and minicolumn B is spatially

associated to some other minicolumn as well, then the feature recognized by minicolumn

A is sufficient enough to identify the shape typically recognized by minicolumns A and B

together. Figure 6.2 shows the same graph as displayed in Figure 6.1 but with the redundant

connections removed. Now, the output of minicolumn A is associated with a relatively higher

weight value. This ensures that if minicolumn A fires then it is highly likely that its the same

shape that is typically recognized by minicolumns A and B together.

In summary, in order to recognize a complex object, the neocortex does not utilize all

the features defining that object. Rather, a small subset of these features, that are sufficient

for recognition, are considered. Similar approaches must be considered while implementing

complex neural models. Instead of treating all the features that constitute an object equally,

a subset of these features may be given more importance. These features may be determined

based on various spatial and temporal correlations that may exist among different objects or

different features of the same object

6.2.3 Integrating Multi-modal Information

A number of neuroscience studies show that the higher neocortical regions simultaneously

integrate information from multiple sensory modalities. This integration of multi-model

information plays a very important role in that case when useful information needs to be

extracted from noise input. A typical example where this phenomenon is quite evident is the

145

the cocktail party problem. When listening to someone in a noisy environment, we are able to

make sense out of a noisy input by integration the auditory input with the lip movement of

the speaker. In such a scenario, multi-model information integration allows the human brain

to combine the information obtained from the auditory cortex and the visual cortex to better

approximate the auditory input.

We also plan to add such a capability within our hierarchical hypercolumn model. At the

lower level, two hypercolumn networks process visual and auditory information separately.

On top of these two hypercolumn networks, there is another hypercolumn network that

integrates information communicated by each of the lower hypercolumn networks. This type

of integration may improve the overall robustness and performance of the network in the

presence of noisy inputs.

6.2.4 Temporal Information Processing

Another interesting aspects of the neocortex is its ability to learn and generate temporal

sequences. Even though generation and learning of temporal sequences play critical roles

within the cortical processing, exact biological mechanisms governing these cortical attributes

are not well-understood [132].

Temporal information processing within the neocortex can be attributed to a number

of powerful cortical abilities. First, this aspect plays a key role during the auditory cortex

information processing. The ability of the auditory cortex to temporally integrate auditory

data to comprehend musical notes, musical patterns, words, sentences, etc. is attributed

146

to this temporal sequence learning mechanisms. This auditory temporal processing also

incorporates a notion of invariance to it. For example, once we learn to recognize a song

being played in a certain tempo or beat, we can recognize it no matter what tempo or beat

it is played in. Apart from the auditory cortex temporal processing also manifests itself

within the visual cortex in the form of temporal visual pattern recognition. Second, temporal

information processing allows the motor cortex to generate complex temporal response to a

stimulus. These responses can be used to implement simple tasks like muscular movements

or they can be used to realize extremely complex tasks like riding a bicycle, catching a

ball, swimming, driving a car, etc. Essentially, temporal information processing is required

for any complex tasks that involves the motor cortex. Third, temporal processing of the

input data plays an important role in modulating the information being received through

the sensory modalities according to a global context. It is well known that the neocortex

is able to predict future actions based on global context. Based on our experience in the

near or distant past, the neocortex can make several complex predictions that determine

our actions. Temporal information integration may allow the neocortex to realize complex

prediction-making mechanisms.

Temporal information processing mechanisms can be implemented within the proposed

hypercolumn network by employing delay nodes between various hierarchical levels. A

delay node replicates the activity of the minicolumn it is connected to with a delay of one

cycle/epoch. Thus, the minicoumns within the hypercolumn in the next hierarchical level can

combine the delayed information with the present input stimulus and can learn to associate

147

the two stimuli in a sequential manner. This approach can be implemented in a hierarchical

manner to learn and generate sequences of arbitrary lengths.

In summary, temporal information processing plays a key role in throughout the cortical

hierarchy. Such a mechanism needs to be implemented within any learning model in order

to robustly generate and learn temporal sequences and to make prediction based on global

context.

6.2.5 Summary

This dissertation proposes a learning model inspired by various structural and functional

properties of the neocortex. Even though this proposed learning model incorporates several

powerful biological properties, there are a number of other powerful biological aspects that

still need to be added to this model. This section discusses various cortical properties like

automatic emergence of hierarchy, identifying features sufficient for recognition, multi-model

information integration, and temporal sequence learning and highlights various mechanisms

to implement such properties within the proposed learning model.

B I B L I O G R A P H Y

148

[I] The facets project, http://facets.kip. uni-heidelberg. de, 2010. retrieved: Oct, 2011.

[2] A universal spiking neural network architecture (spinnaker), http://apt.cs.man.ac.uk/
projects/ SpiNNaker/, 2010. retrieved: Oct, 2011.

[3] M. Aiken and M. Bsat. Forecasting market trends with neural networks. Information
Systems Management, 16(4): 1-7, 1999.

[4] M. Albert, A. Schnabel, and D. Field. Innate visual learning through spontaneous
activity patterns. PLoS Computational Biology, 4(8):el000137, 2008.

[5] R. Ananthanarayanan and D. Modha. Anatomy of a cortical simulator. In Proceedings
of Supercomputing, 2007.

[6] A. Bakhoda, G. Yuan, W. Fung, H. Wong, and T. Aamondt. Analyzing cuda workloads
using a detailed gpu simulator. In Proceedings of IEEE International Symposium on
Performance Analysis of Systems and Software, pages 163-174, 2009.

[7] R. Baumann. Soft errors in advanced computer systems. IEEE Design Test of
Computers, 22(3):258 - 266, 2005.

[8] J. Le Be and H. Markram. A new mechanism for memory: neuronal networks rewiring
in the young rat neocortex. Medical Science, 22(12): 1031-1033, 2006.

[9] S. Berg. Neurology, h t tp : / /wi l l i s tonberg .pbworks .com, 2010. retrieved: Sep, 2011.

[10] H. Berry and O. Temam. Modeling self-developping biological neural network. Neuro-
computing, 70(16-18):2723-2734, 2007.

[II] T. Binzegger, R.J. Douglas, and K.A.C. Martin. A quantitative map of the circuit of
cat primary visual cortex. J. Neurosci, 24(39):8441-8453, Sep 2004.

[12] G. Blasdel and G. Salama. Voltage sensitive dyes reveal a modular organization in
monkey striate cortex. Nature, 321:579-585, 1986.

[13] J. Blome, S. Gupta, S. Feng, and S. Mahlke. Cost-efficient soft error protection for
embedded microprocessors. In Proceedings of the international conference on Compilers,
architecture and synthesis for embedded systems, pages 421-431, 2006.

[14] S. Borkar. Design challenges of technology scaling. In Proceedings of International
Symposium on Microarchitecture (MICRO), volume 19, pages 23 -29, jul-aug 1999.

[15] R. Brown and P. Milner. The legacy of Donald O. Hebb: more than the Hebb synapse.
Nature Neuroscience, 4(12):1013-1019, 2003.

http://facets.kip
http://apt.cs.man.ac.uk/
http://willistonberg.pbworks.com

149

[16] J. Bullier, J. Hupe, A. James, and P. Girard. The role of feedback connections in shaping
the responses of visual cortical neurons. Progress in Brain Research, 134:193-204, 2001.

[17] W. Calvin. Cortical columns, modules, and hebbian cell assemblies. In Michael A.
Arbib, editor, The Handbook of Brain Theory and Neural Networks, pages 269-272.
MIT Press, Cambridge, MA, 1998.

[18] J. Cang, R. Renteria, M. Kaneko, X. Liu, D. Copenhagen, and M. Stryker. Development
of precise maps in visual cortex requires patterned spontaneous activity in retina. Neuron,
48(5):797-809, 2005.

[19] G. Carpenter and S. Grossberg. Art 2: Self-organization of stable category recognition
codes for analog input patterns. Applied Optics, 26(23):4919-4930, 1987.

[20] G. Carpenter and S. Grossberg. Fuzzy art: Fast stable learning and categorization of
analog patterns by an adaptive resonance system. Neural Networks, 4:759-771, 1991.

[21] G. Carpenter and S. Grossberg. Adaptive Resonance Theory. MIT Press, 2003.

[22] G. Carpenter, S. Grossberg, N. Markuzon, J. Reynolds, and D. Rosen. Fuzzy artmap:
A neural network architecture for incremental supervised learning of analog multidi­
mensional maps. IEEE Transactions on Neural Networks, 4:698-713, 1992.

[23] NVIDIA Corporation. CUDA Programming Guide. NVIDIA Corporation, 2701 San
Toman Expressway, Santa Clara, CA 95050, USA, 2007.

[24] DARPA. Systems of neuromorphic adaptive plastic scalable electronics.
http://www.darpa.mil/dso/solicitations/baa08-28.html, 2008. retrieved: Sep, 2011.

[25] A. Dehon. Nanowire-based programmable architectures. Journal of Emerging Technology
and Computing System, 1(2): 109-162, 2005.

[26] H. Deogun, D. Sylvester, and D. Blaauw. Gate-level mitigation techniques for neutron-
induced soft error rate. In Proceedings of the Sixth International Symposium on Quality
of Electronic Design, pages 175 - 180, 2005.

[27] M. Dittenbach, D. Merkl, and A. Rauber. The growing hierarchical self-organizing map.
In Proceedings of the IEEE International Joint Conference on Neural Networks, pages
15-19, 2000.

[28] M. Emmerson and R. Damper. Determining and improving the fault tolerance of of
multilayer perceptrons in a pattern-recognition application. In IEEE Transactions on
Neural Networks, volume 4, pages 788-793, 1993.

[29] FACETS, h t t p : / / f a c e t s . k i p . u n i - l i e i d e l b e r g . d e / i n d e x . h t m l , 2011. retrieved:
Sep, 2011.

http://www.darpa.mil/dso/solicitations/baa08-28.html
http://facets.kip.uni-lieidelberg.de/index.html

150

[30] B. Farley, H. Yu, D. Jin, and M. Sur. Alteration of visual input results in a coordinated
reorganization of multiple visual cortex maps. Journal of Neuroscience, 27(38):10299
-10310, 2007.

[31] D. Felleman and D. Van Essen. Distributed hierarchical processing in the primate
cerebral cortex. Cerebral Cortex, 1:1-47, 1991.

[32] K. Flautner, N. Kim, S. Martin, D. Blaauw, and T. Mudge. Drowsy caches: simple
techniques for reducing leakage power. In Proceedings of the 29th Annual International
Symposium, on Computer Architecture, pages 148 -157, 2002.

[33] W.J. Freeman. Random activity at the microscopic neural level in cortex ("noise")
sustains and is regulated by low-dimensional dynamics of macroscopic activity ("chaos").
International Journal of Neural Systems, 7(4):473-480, 1996.

[34] D. George and J. Hawkins. A hierarchical bayesian model of invariant pattern recognition
in the visual cortex. In Proceedings of International Joint Conference on Neural
Networks, volume 3, pages 1812-1817. IEEE International Joint Conference on Neural
Network, 2005.

[35] G. Gielen, E. Maricau, and P. De Wit. Design automation towards reliable analog
integrated circuits. In IEEE International Conference on Computer-Aided Design,
pages 248 -251, 2010.'

[36] J. Gonzaga, L. Meleiro, C. Kiang, and R. Filho. Ann-based soft-sensor for real-time
process monitoring and control of an industrial polymerization process. Computers and
Chemical Engineering, 33(l):43-49, 2009.

[37] M. Gori and A. Tesi. On the problem of local minima in backpropagation. IEEE
Transactions on Pattern Analysis and Machine Learning, 14(l):76-86, 1992.

[38] GravitySpa. Three brain, ht tp: / /www.gravityspa.com, 2010. retrieved: Sep, 2011.

[39] Richard L. Gregory. Eye and Brain: the Psychology of Seeing. Princeton University
Press, fifth edition, 1997.

[40] S. Grillner. Bridging the gap from ion channels to networks and behavior. Current
Opinion in Neuroscience, 9:663-669, 1999.

[41] S. Grossberg. Competitive learning: From interactive activation to adaptive resonance,
pages 213-250. Massachusetts Institute of Technology, Cambridge, MA, USA, 1988.

[42] S. Haeusler and W. Maass. A statistical analysis of information-processing properties
of lamina-specific cortical microcircuit models. Cereb. Cortex, 17(1):149-162, Jan 2007.

[43] A. Hashmi, H. Berry, O. Temam, and M. Lipasti. Automatic abstraction and fault
tolerance in cortical microarchitectures. In Proceedings of the ACM/IEEE International
Symposium on Computer Architecture, pages 1-12, 2011.

http://www.gravityspa.com

151

A. Hashmi and M. Lipasti. Discovering cortical algorithms. In Proceedings of the
International Conference on Neural Computation (ICNC), October 2010.

A. Hashmi, A. Nere, and M. Lipasti. Learning through spatially localized and temporally
correlated spontaneous activations. In International Conference on Cognitive and Neural
Systems, pages 21-28, 2011.

A. Hashmi, A. Nere, J. Thomas, and M. Lipasti. A case for neuromorphic isas. In
Proceedings of the International conference on Architectural support for programming
languages and operating systems, pages 145-158, 2011.

J. Hawkins and S. Blakeslee. On Intelligence. Henry Holt & Company, Inc., 2005.

Simon Haykin. Neural Networks: A Comprehensive Foundation (2nd Edition). Prentice
Hall, 1998.

D. Heckerman, D. Geiger, and D. Chickering. Learning bayesian networks: The
combination of knowledge and statistical data. MACHINE LEARNING, 20(3): 197-243,
1995.

S. Heo, K. Barr, M. Hampton, and K. Asanovic. Dynamic fine-grain leakage reduction
using leakage-biased bitlines. In Proceedings of the 29th Annual International Symposium
on Computer Architecture, pages 137 -147, 2002.

E. Hill, M. Lipasti, and K. Saluja. An accurate flip-flop selection technique for reducing
logic ser. In Proceedings of the IEEE International Conference on Dependable Systems
and Networks With FTCS and DCC, pages 128 -136, 2008.

G. Hinton, S. Osindero, and Y. Teh. A fast learning algorithm for deep belief nets.
Neural Computation, 18(7):1527-1554, 2006.

J. Hirsch and L. Martinez. Laminar processing in the visual cortical column. Current
Opinion in Neurobiology, 16:377-384, 2006.

A. Hodgkin and A. Huxley. The components of membrane conductance in the giant
axon of loligo. Journal of Physiology, 116(4):473-496, 1952.

A. Hodgkin and A. Huxley. Currents carried by sodium and potassium ions through
the membrane of the giant axon of loligo. Journal of Physiology, 116(4):449-472, 1952.

A. Hodgkin, A. Huxley, and B. Katz. Measurement of current-voltage relations in the
membrane of the giant axon of loligo. Journal of Physiology, 116(4):424-448, 1952.

M. Holler, S. Tarn, H. Castro, and R. Benson. An electrically trainable artificial
neural network (ETANN) with 10240 'floating gate' synapses. In Proceedings of the
International Joint Conference on Neural Networks, pages 191-196, 1989.

152

[58] Z. Hu, A. Buyuktosunoglu, V. Srinivasan, V. Zyuban, H. Jacobson, and P. Bose.
Microarchitectural techniques for power gating of execution units. In Proceedings of the
2004 international symposium on Low power electronics and design, pages 32-37, 2004.

[59] D. Hubel and T. Wiesel. Receptive fields, binocular interactions and functional archi­
tecture in cat's visual cortex. Journal of Physiology, 160:106-154, 1962.

[60] D. Hubel and T. Wiesel. Receptive fields and functional architecture of monkey striate
cortex. Journal of Physiology, 195:215-243, 1968.

[61] J. Hupe, A. James, P. Girard, S. Lomber, B. Payne, and J. Bullier. Feedback con­
nections act on the early part of the responses in monkey visual cortex. Journal of
Neurophysiology, 85:134-145, 2001.

[62] J. Hupe, A. James, B. Payne, S. Lomber, P. Girard, and J. Bullier. Cortical feedback
improves discrimination between figure and background by v l , v2 and v3 neurons.
Nature, 394:784-787, 1998.

[63] K. Ibata, Q. Sun, and G.G. Turrigiano. Rapid Synaptic Scaling Induced by Changes in
Postsynaptic Firing. Neuron, 57(6):819-826, 2008.

[64] Numenta Inc. Hierarchical temporal memory. http://www. numenta.com, 2007. re­
trieved: Apr, 2011.

[65] E. Izhikevich. Simple model of spiking neurons. IEEE Transactions on Neural Networks,
14:1569-1572, 2003.

[66] X. Jin and G. Zhang. Modelling optimal risk allocation in ppp projects using artificial
neural networks. International Journal of Project Management, 29(5):591-603, 2011.

[67] J.Tu. Advantages and disadvantages of using artificial neural networks versus lo­
gistic regression for predicting medical outcomes. Journal of Clinical Epidemiology,
49(11):1225-1231, 1996.

[68] N. Kalisman, G. Silberberg, and H. Markram. The neocortical microcircuit as a tabula
rasa. Proceedings of the National Academy of Science, 102:880-885, 2005.

[69] E.R. Kandel, J.H. Schwartz, and T.M. Jessell. Principles of Neural Science. McGraw-
Hill, 4 edition, 2000.

[70] A. Khashman. Neural networks for credit risk evaluation: Investigation of different
neural models and learning schemes. Expert Systems with Applications, 37(9):6233-6239,
2010.

[71] J. Kim and H. Ahn. A new perspective for neural networks: Application to a marketing
management problem. Journal of Information Science and Engineering, 25(1): 1605-
1616, 209.

http://www
http://numenta.com

153

N. Kim, T. Austin, D. Baauw, T. Mudge, K. Flautner, J. Hu, M. Irwin, M. Kandemir,
and V. Narayanan. Leakage current: Moore's law meets static power. Computer,
36(12):68 - 75, 2003.

P. Kittisupakorna, P. Thitiyasooka, M. Hussain, and W. Daosud. Neural network
based model predictive control for a steel pickling process. Journal of Process Control,
19(4):579-590, 2009.

T. Kohonen. The self-organizing map. Proceedings of the IEEE, 78(9): 1464 -1480, 1990.

T. Kohonen and P. Somervuo. Self-organizing maps of symbol strings. Neurocomputing,
21(l):19-30, 1998.

G. Kreiman, C. Koch, and I. Fried. Category-specific visual responses of single neurons
in the human medial temporal lobe. Nature Neuroscience, 3:946-953, 2000.

A. Krizhevsky. Convolutional deep belief networks on cifar-10. Technical report, UOFT,
2010.

P. Lapuerta, S. Azen, and L. Labree. Use of neural networks in predicting the risk of
coronary artery disease. Computers and Biomedical Research, 20(l):38-52, 1995.

Y. LeCun, B. Boser, J. Denker, D. Henderson, R. Howard, W. Hubbard, and L. Jackel.
Backpropagation applied to handwritten zip code recognition. Neural Computation,
1(4):541-551, 1989.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(ll):2278-2324, 1998.

Y. Lecun and C. Cortes. The mnist database of handwritten digits.
http://yann.lecun.com/exdb/mnist/, 1998. retrieved: Sep, 2007.

T. Lee, D. Mumford, R. Romero, and V. Lamme. The role of primary visual cortex in
higher level vision. Vision Research, 38:2429-2454, 1998.

H. Li, S. Bhunia, Y. Chen, T. Vijaykumar, and K. Roy. Deterministic clock gating for
microprocessor power reduction. In Proceedings of the Ninth International Symposium
on High-Performance Computer Architecture, pages 113 - 122, 2003.

N. Logothetis, J. Pauls, and T. Poggio. Shape representation in the inferior temporal
cortex of monkeys. Current Biology, 5(5):552-563, 1995.

A. Losonczy and J.C. Magee. Integrative properties of radial oblique dendrites in
hippocampal cal pyramidal neurons. Neuron, 50:291-307, 2006.

C. Lu and C. Tsai. Generalized predictive control using recurrent fuzzy neural networks
for industrial processes. Journal of Process Control, 17(l):83-92, 2007.

http://yann.lecun.com/exdb/mnist/

154

H. Markram. The blue brain project. Nature Reviews Neuroscience, 1:153-160, 2006.

M. Matthias and J. Born. Hippocampus whispering in deep sleep to prefrontal cortex
for good memories? Neuron, 61:496-498, 2009.

N. Maw and M. Pomplun. Studying human face recognition with the gaze-contingent
window technique. In Proceedings of the Twenty-Sixth Annual Meeting of Cognitive
Science Society, pages 927-932, 2004.

P. Merolla, J. Arthur, F. Akopyan, N. Imam, R. Manohar, and D. Modha. A digital
neurosynaptic core using embedded crossbar memory with 45pj per spike in 45nm. In
Proceeding of the IEEE Custom Integrated Circuits Conference, 2011.

S. Mitra, M. Zhang, S. Waqas, N. Seifert, B. Gill, and K. Kim. Combinational logic
soft error correction. In Proceedings of the IEEE International Test Conference, pages
1 -9 , 2006.

D. Modha. Synapse, http://www.ibm.com/, 2011. retrieved: Sep, 2011.

G. Moore. Cramming more components onto integrated circuits. Electronics, 38(8) :237-
285, 1965.

V. Mountcastle. Modality and topographic properties of single neurons of cat's somatic
sensory cortex. Journal of Neurophysiology, 20(4):408-434, 1957.

V. Mountcastle. The columnar organization of the neocortex. Brain, 120:701-722, 1997.

T. Mudge. Power: a first-class architectural design constraint. Computer, 34(4):52-58,
2001.

S. Mukherjee, J. Emer, and S. Reinhardt. The soft error problem: an architectural
perspective. In Proceedings of the 11th International Symposium on High-Performance
Computer Architecture, pages 243 - 247, 2005.

A. Nere and M. Lipasti. Cortical architectures on a gpgpu. In GPGPU '10: Proceedings
of the 3rd Workshop on General-Purpose Computation on Graphics Processing Units,
pages 12-18, New York, NY, USA, 2010. ACM.

D. Nguyen and B. Widrow. Improving the learning speed of 2-layer neural networks
by choosing initial values of the adaptive weights. In Proceedings of the International
Joint Conference on Neural Networks, pages 21-26, 1990.

[100] J. Nickolls and W. Dally. The gpu computing era. IEEE, Micro, 30(2):56-69, 2010.

[101] M. O'Neil. Neural network for recognition of handwritten digits. http://www. codepro-
ject. com/ KB/ library/ NeuralNetRecognition.aspx, 2010. retrieved: Apr, 2011.

http://www.ibm.com/
http://www

155

J. Ott. Neural networks and disease association studies. American Journal of Medical
Genetics, 105(1):60-61, 2001.

J.J. Peissig and M.J. Tarr. Visual object recognition: do we know more now than we
did 20 years ago? Annu. Rev. Psychol, 58:75-96, 2007.

R. A. Peters. On the computation of discrete log-polar transform. Technical report,
Department of Electrical and Computer Engineering, Vanderbilt University, 2007.

C. Peterson, R. Malenka, R. Nicoll, and J. Hopfield. All-or-none potentiation at ca3-cal
synapses. Proceedings of the National Academy of Sciecne, 95:4732-4737, 1998.

N. Pinto, D.D. Cox, and J.J DiCarlo. Why is real-world visual object recognition hard?
PLoS Comput. Biol, 4(l):e27, Jan 2008.

M. Ranzato, F. Huang, Y. Boureau, and Y. LeCun. Unsupervised learning of invariant
feature hierarchies with applications to object recognition. In Proceedings of IEEE
International Conference on Computer Vision and Pattern Recognition, pages 1-8,
2007.

M. Riesenhuber and T. Poggio. Hierarchical models of object recognition in cortex.
Nature Neuroscience, 2:1019-1025, 1999.

D.L. Ringach. Haphazard wiring of simple receptive fields and orientation columns in
visual cortex. J. Neurophysiol, 92(l):468-476, Jul 2004.

U. Rokni, A. Richardson, E. Bizzi, and H. Seung. Motor learning with unstable neural
representations. Neuron, 64:653-666, 2007.

G. Roth and U. Dicke. Evolution of brain and intelligence. TRENDS in Cognitive
Sciences, 5:250-257, 2005.

D. Rumelhart and D. Zipser. Feature discovery by competitive learning, volume 1, pages
151-193. MIT Press, Cambridge, MA, USA, 1986.

D. Rumelhart and D. Zisper. Feature discovery by competitive learning. Cognitive
Science, 9:75-112, 1985.

S. Ryoo, C. Rodrigues, S. Babhsorkhi, S. Stone, D. Kirk, and W. Hwu. Optimization
principles and application performance evaluation of a multithreaded gpu using cuda. In
Proceesings Symposium on principles and practices of parallel programming, SIGPLAN,
pages 73 -82, 2008.

[115] Anders Sandberg and Nick Bostrom. Whole brain emulation: A roadmap. Technical
Report 2008-3, Future of Humanity Institute, Oxford University, 2008.

156

J. Schemmel, J. Fieres, and K. Meier. Wafer-scale integration of analog neural networks.
In Proceedings of the IEEE International Joint Conference on Neural Networks, IJCNN,
pages 431-438, June 2008.

E. Schwartz. Spatial mapping in the primate sensory projection: Analytic structure
and relevance to perception. Biology Cybernetics, 25:181-194, 1977.

E. Schwartz. Computational anatomy and functional architecture of striate cortex: A
spatial mapping approach to perceptual coding. Vision Research, 20:645-669, 1980.

T. Serre, A. Oliva, and T. Poggio. A feedforward architecture accounts for rapid
categorization. Proc. Natl. Acad. Sci. USA, 104(15):6424-6429, Apr 2007.

T. Serre, L. Wolf, S. Bileschi, M. Riesenhuber, and T. Poggio. Robust object recognition
with cortex-like mechanisms. IEEE Trans. Pattern Anal. Mach. Intell, 29(3):411-426,
Mar 2007.

H. Seung. Learning in spiking neural networks by reinforcement of stochastic synaptic
transmission. Neuron, 40:1063-1073, 2003.

SIA. Semiconductor industry association 2007 roadmap. http://www.sia-online.org/,
2007.

N. Sigala and N. Logothetis. Visual categorization shapes feature selectivity in the
primate temporal cortex. Nature, 415:318-320, 2002.

A.M. Sillito, J. Cudeiro, and H.E. Jones. Always returning: feedback and sensory
processing in visual cortex and thalamus. Trends in Neuroscience, 29(6):307-316, 2006.

P. Snow, S. Smith, and W. Catalona. Artificial neural networks in the diagnosis and
prognosis of prostate cancer: a pilot study. The journal of urology, 152(2) :1923-1926,
1994.

M. Spratling. Presynaptic lateral inhibition provides a better architecture for self-
organising neural networks. Network: Computation in Neural Systems,, 10(4):285-301,
1999.

I. Sutskever and G. Hinton. Learning multilevel distributed representations for high-
dimensional sequences. In Proceedings of International Conference on Artificial Intelli­
gence and Statistics, pages 544-551, 2007.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction.
MIT Press, 1998.

L.W. Swanson. Mapping the human brain: past, present, and future. Trends in
Neurosciences, 18(11):471 -474, 1995.

http://www.sia-online.org/

157

[130] G. Taylor, G. Hinton, and S. Roweis. Modeling human motion using binary latent
variables. In Proceedings of Advances in Neural Information Processing Systems, pages
1345-1352, 2007.

[131] B. Tjan, V. Lestou, and Z. Kourtzi. Uncertainty and invariance in the human visual
cortex. Journal of Neuropsychology, 96(3): 1556-1568, 2006.

[132] S. Verduzco-Flores, M. Bodner, and B. Ermentrout. Learning and generation of
temporal sequences in the neocortex. BMC Neuroscience, 11:101, 2010.

[133] B. Wandell, S. Dumoulin, and A. Brewer. Visual field maps in human cortex. Neuron,
56:366-383, 2007.

[134] G. Weckman, S. Lakshminarayanan, J. Marvel, and A. Snow. An integrated stock
market forecasting model using neural networks. International Journal of Business
Forecasting and Marketing Intelligence, l(l):30-49, 2008.

[135] R. Williams. How we found the missing memristor. IEEE, Spectrum, 45(12) :28-35,
2008.

[136] D. Zheng, J. Zhao, and A. Saddik. Rst-invariant digital image watermarking based on
log-polar mapping and phase correlation. IEEE Transactions on Circuits and Systems
for Video Technology, 13(8):753 - 765, 2003.

