
Architectural Support for Scripting Languages

By

Dibakar Gope

A dissertation submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

(Electrical and Computer Engineering)

at the

UNIVERSITY OF WISCONSIN–MADISON

2017

Date of final oral examination: 6/7/2017

The dissertation is approved by the following members of the Final Oral Committee:
Mikko H. Lipasti, Professor, Electrical and Computer Engineering
Gurindar S. Sohi, Professor, Computer Sciences
Parameswaran Ramanathan, Professor, Electrical and Computer Engineering
Jing Li, Assistant Professor, Electrical and Computer Engineering
Aws Albarghouthi, Assistant Professor, Computer Sciences

© Copyright by Dibakar Gope 2017

All Rights Reserved

i

This thesis is dedicated to my parents, Monoranjan Gope and Sati Gope.

ii

acknowledgments
First and foremost, I would like to thank my parents, Sri Monoranjan Gope, and Smt. Sati

Gope for their unwavering support and encouragement throughout my doctoral studies

which I believe to be the single most important contribution towards achieving my goal of

receiving a Ph.D.

Second, I would like to express my deepest gratitude to my advisor Prof. Mikko Lipasti

for his mentorship and continuous support throughout the course of my graduate studies.

I am extremely grateful to him for guiding me with such dedication and consideration

and never failing to pay attention to any details of my work. His insights, encouragement,

and overall optimism have been instrumental in organizing my otherwise vague ideas

into some meaningful contributions in this thesis. This thesis would never have been

accomplished without his technical and editorial advice. I find myself fortunate to have

met and had the opportunity to work with such an all-around nice person in addition to

being a great professor. I do not know what the future awaits, but thanks to Prof. Mikko, I

feel more prepared than ever before to pursue a career in areas where I may not have a

strong expertise to begin with.

I would like to extend my appreciation to the members of my thesis committee, in-

cluding Prof. Guri Sohi, Prof. Parameswaran Ramanathan, Prof. Jing Li, and Prof. Aws

Albarghouthi, whose wealth of knowledge and insights have immensely guided me during

the transition from preliminary Ph.D. proposal to completed Ph.D. thesis. I benefited

greatly from the other excellent faculty at University of Wisconsin-Madison as well. I am

particularly grateful to Prof. Mark Hill, Prof. David Wood, and Prof. Karu Sankaralingam

iii

for their excellent computer architecture courses that benefited me greatly to understand

and appreciate the intricacies involved in designing complex systems such as processors

in the early phases of my graduate studies. I also thank the professors from compilers,

systems, and machine learning groups for all the things that I have learned from their

respective courses.

Finally, I would like to thank my graduate school friends, including Mitch Hayenga,

Arslan Zulfiqar, Vignyan Reddy, David Palframan, Sean Franey, Andrew Nere, Zhong

Zheng, Rohit Shukla, Gokul Ravi, Sooraj Puthoor, David Schlais, Joel Hestness, Tony

Nowatzki, Newsha Ardalani, Hongil Yoon, Nilay Vaish, Muhammad Shoaib bin Altaf,

Swapnil Haria, Jason Lowe-Power, Marc Orr, Somayeh Sardashti, Vinay Gangadhar, Amin

Farmahini, Hamid Reza Ghasemi, Hao Wang, Mohammad Alian, Felix Loh, Kyle Daruwalla,

and Carly Schulz for their support and camaraderie. I benefited greatly from numerous

discussions with them in various occasions. Special thanks go to David Schlais for his help

with hardware prototyping one of the hardware accelerators proposed in this thesis.

I also thank the staff in the Electrical and Computer Engineering department for making

my academic life at University of Wisconsin-Madison a great experience.

iv

contents
Contents . iv
List of Tables . vii
List of Figures . viii
Abstract . x

1 Introduction 1
1.1 Hash Map Inlining . 2
1.2 Architectural Support for Server-Side PHP Processing 5
1.3 Thesis Contributions . 7
1.4 Related Published Work . 9
1.5 Thesis Organization . 9

2 Background 11
2.1 Scripting Languages . 11
2.2 PHP Background . 13

2.2.1 Dynamic Features . 14
2.2.2 Automatic Memory Management . 15

2.3 Standard PHP Implementation . 16
2.3.1 Interpreter . 16
2.3.2 Just-in-time Compiler . 17

2.4 Hardware Support for Mitigating Overheads 19
2.4.1 Dynamic Type Checking . 19
2.4.2 Reference Counting . 21

2.5 Summary . 22

3 Hash Map Inlining 23
3.1 Overview . 23
3.2 Inline Caching for Hash Maps . 27

3.2.1 PHP Scripting Language . 27
3.2.2 Inline Caching for Dynamic Classes 28
3.2.3 Adapted to Hash Maps . 29

3.3 Hash Map Interface to SQL DBMS . 32
3.4 Why HMI Fails for DBMS Scripts . 34

3.4.1 Hidden Library Functions . 34
3.4.2 Variable Key Names . 35
3.4.3 High Polymorphism . 36

3.5 Extended HMI for SQL . 38

v

3.5.1 Multiple Call Sites . 43
3.5.2 Other DBMS Engines and Languages 43
3.5.3 Applying HMI Outside DBMS Queries 44

3.6 Related Work . 45
3.7 Summary . 48

4 Evaluation of Hash Map Inlining 49
4.1 Methodology . 49
4.2 Performance Improvement . 50
4.3 Nested Queries . 52
4.4 Breakdown of Execution Time . 54
4.5 Summary . 55

5 Architectural Support for Server-Side PHP Processing 56
5.1 Overview . 56
5.2 Microarchitectural Analysis . 60
5.3 Mitigating PHP Abstraction Overhead . 63
5.4 Specializing the General-Purpose Core . 67

5.4.1 Accelerator Design Principles . 67
5.4.2 Hash Table . 68
5.4.3 Heap Manager . 75
5.4.4 String Accelerator . 82
5.4.5 Regular Expression Accelerator . 90
5.4.6 ISA Extensions . 94

5.5 Related Work . 96
5.6 Summary . 101

6 Evaluation of PHP Accelerators 102
6.1 Experimental Workloads . 102
6.2 Simulation Infrastructure . 102

6.2.1 Trace-Driven Simulator . 103
6.2.2 Area and Power Estimation . 105

6.3 Simulator Configuration . 105
6.4 Results . 107

6.4.1 Performance and Energy Improvement 107
6.4.2 Breakdown of Execution Time . 110
6.4.3 Sensitivity to the Hash Table Size . 110
6.4.4 Sensitivity to the Heap Manager Size 113
6.4.5 Sensitivity to the String Accelerator . 118

6.5 Summary . 120

vi

7 Conclusion and Future Directions 122
7.1 Conclusion . 122
7.2 Future Work . 124
7.3 Closing Remarks . 128

Bibliography . 130

vii

list of tables
4.1 Server-side PHP benchmark suites . 50

5.1 Table comparing the hash table hit rate of the simplified hash function against
the original HHVM implementation. 70

6.1 Processor configuration . 106
6.2 Table showing the prefetch timeliness of the heap manager accelerator. 114
6.3 Table showing the string accelerator execution time of various functions based

on input string size. 119

viii

list of figures
1.1 Comparison of branch mispredictions, data cache misses and instructions count

between accessing a hash map and a class object (details in evaluation chapter). 3
1.2 Distribution of CPU cycles of SPECWeb2005 workloads and few content-rich

PHP web applications over leaf functions (details in evaluation chapter). 6

2.1 PHP code examples. 14
2.2 Bytecode ADD in C. 16
2.3 Implementation of type tag checking in parallel with cache tag checking. 20

3.1 Example PHP code (a) and inline cache to access property bar (b). 27
3.2 Example of shadow classes. 29
3.3 Code snippet of a server-side PHP script. 32
3.4 Breakdown of dynamic instructions, measured using Pin [63]. Averaged across

scripts in Table 4.1. Runtime = instructions that execute string operations, regular
expressions, and miscellaneous operations. 32

3.5 Implementation of mysql_fetch_array() function. 33
3.6 Required changes to initial HMI implementation. 36
3.7 Generate symbol table in mysql_query(*) and expose that to the JIT runtime. . . 39
3.8 Populate vector-like arrays of size mysql_num_fields(*). 41
3.9 Generated symbol table (a) and inline cache to access key max_bid (b). 43

4.1 Performance improvement with HMI normalized to unmodified HHVM. Av-
eraged across scripts in Table 4.1. Ext_HMI improves SPECWeb banking and
e-commerce throughput by 7.71% and 11.71% respectively. 50

4.2 Merging nested queries (above) to a single query (bottom). 52
4.3 Performance gain after merging nested queries into a single query. Only 11

Scripts have nested queries. 52
4.4 HMI applied to scripts after merging their nested queries. Perf. normalized to

unmodified HHVM. Avg. shown considers the improvements to 11 modified
scripts from Figure 4.3 and remaining 26 unmodified scripts with no nested
queries from Figure 4.1 using Ext_HMI. 53

4.5 Breakdown of execution time normalized to Init_HMI. I and E refer to Init_HMI
and Ext_HMI implementations respectively. Runtime = time consumed in
executing string operations, regular expressions, and miscellaneous operations. 54

5.1 Microarchitectural characterization of the content-rich PHP applications. 61
5.2 Contribution of leaf functions to the execution time of WordPress before and

after applying all optimizations. 65

ix

5.3 Categorization of leaf functions of WordPress into major categories. 65
5.4 Execution time breakdown after mitigating the abstraction overheads. 66
5.5 Hardware hash table. 69
5.6 Few characteristics of the PHP applications. 71
5.7 Hash table hit rate. 72
5.8 Memory usage pattern of the PHP applications. 76
5.9 Hardware heap manager. 76
5.10 Block diagram of string accelerator with string_find example searching for ’abc’

in a subject string ’babc’. 82
5.11 Datapath of the string accelerator with control signals. The string accelerator is

either a 2- or 3-stage pipeline based on the given string operation. 84
5.12 Code snippet from WordPress. All four regexps look for special characters –

apostrophe, double quote, newline character and opening angle bracket (high-
lighted in red). 90

5.13 Hardware content reuse table. 93
5.14 Opportunity with content sifting and content reuse. y-axis shows the percentage

of total textual content in the entire application regexps can skip processing
using content sifting or content reuse. 94

6.1 Improvement in execution time with applying prior optimizations and our
specialized hardware. Execution time is normalized to unmodified HHVM. . . 107

6.2 Improvement in energy with applying prior optimizations and our specialized
hardware. Energy is normalized to unmodified HHVM. 108

6.3 Breakdown of execution time. G refers to the execution time with applying
optimizations from prior works as discussed in Section 5.3, S refers to the
execution time with all our proposed accelerators. Execution time is normalized
to G. 109

6.4 Effect of hash table size on its hit and eviction rate. 111
6.5 Effect of hash table size on speedup. Execution time is normalized to unmodified

HHVM. 112
6.6 Effect of free list size on number of prefetch requests and overflows generated

from the heap manager accelerator. 115
6.7 Effect of varying number of size classes of the heap manager accelerator on

speedup. Execution time is normalized to unmodified HHVM. 117

x

abstract
Scripting languages like PHP and Javascript are widely used to implement application logic

for dynamically-generated web pages. Their popularity is due in large part to their flexible

syntax and dynamic type system, which enable rapid turnaround time for prototyping,

releasing, and updating web site features and capabilities. Among all scripting languages

used for server-side web development, PHP is the most commonly used. The most common

complex data structure in these languages is the hash map, which is used to store key-value

pairs. In many cases, hash maps with a fixed set of keys are used in lieu of explicitly

defined classes or structures, as would be common in compiled languages like Java or

C++. Unfortunately, the runtime overhead of key lookup and value retrieval is quite high,

especially relative to the direct offsets that compiled languages can use to access class

members. Furthermore, key lookup and value retrieval incur high microarchitectural

costs as well, since the paths they execute contain unpredictable branches and many

cache accesses, leading to substantially higher numbers of branch mispredicts and cache

misses per access to the hashmap. This thesis quantifies these overheads, describes a

compiler algorithm that discovers common use cases for hash maps and inlines them so

that keys are accessed with direct offsets, and reports measured performance benefits

on real hardware. A prototype implementation in the HipHop VM infrastructure shows

promising performance benefits for a broad array of hash map-intensive server-side PHP

applications, up to 37.6% and averaging 18.81%, while improving SPECWeb throughput

by 7.71% (banking) and 11.71% (e-commerce).

Just-in-time compilation, as implemented in Facebook’s state-of-the-art HipHopVM,

xi

helps mitigate the poor performance of PHP with the help of the Hash map Inlining al-

gorithm (introduced above) and other state-of-the-art code optimization techniques, but

substantial overheads remain, especially for realistic, large-scale, content-rich PHP applica-

tions that spend most of their time in rendering web pages. This dissertation analyzes such

applications and shows that there is little opportunity for conventional microarchitectural

enhancements. Furthermore, prior approaches for function-level hardware acceleration

present many challenges due to the extremely flat distribution of execution time across a

large number of functions in these complex applications. In-depth analysis reveals a more

promising alternative: targeted acceleration of four fine-grained PHP activities: hash table

accesses, heap management, string manipulation, and regular expression handling. We

highlight a set of guiding principles and then propose and evaluate inexpensive hardware

accelerators for these activities that accrue substantial performance and energy gains across

dozens of functions. Our results reflect an average 17.93% improvement in performance and

21.01% reduction in energy while executing these complex, content-rich PHP workloads

on a state-of-the-art software and hardware platform.

1

1 introduction
In recent years, the importance and quantity of code written in dynamic scripting languages

such as PHP, Python, Ruby and Javascript has grown considerably as they are used for

an increasing share of application software. Among all scripting languages used for

server-side web development to access databases and other middleware, PHP is the most

commonly used [115, 105], representing over 80% [99] of all web applications. In particular,

server-side PHP web applications have created an ecosystem of their own in the world of

web development. They are used to build and maintain websites and web applications

of all sizes and complexity, ranging from small websites to complex large scale enterprise

management systems. PHP powers many of the most popular web applications, such as

Facebook and Wikipedia.

Despite their considerable increase in popularity, their performance is still the main

impediment for deploying large applications. Because of their dynamic features, PHP

like scripting languages are typically interpreted by virtual machine runtimes. Usually

these interpreted implementations are one or two orders of magnitude slower compared

to their corresponding implementations in compiled languages [93]. This has spurred a

number of research to improve the performance of PHP scripts through just-in-time(JIT)

compilation [7, 30, 38, 77, 115, 1]. Since these PHP applications run on live datacenters

hosting millions of such web applications, even small improvements in performance or

utilization will translate into immense cost savings.

To this end, this dissertation first proposes a compiler optimization technique called

Hash Map Inlining to eliminate the overheads associated with populating and accessing

2

key-value pairs stored in hash maps, the most commonly occurring data structure in server-

side PHP applications. JIT compilation with the help of Hash map Inlining and other

state-of-the-art code optimization techniques helps to mitigate the poor performance of

PHP, but substantial overheads remain, especially for realistic, large-scale, content-rich PHP

applications that spend most of their time in rendering web pages. This dissertation then

analyzes such content-rich applications in detail, identifies four fine-grained PHP activities

- hash table accesses, heap management, string manipulation, and regular expression

handling in them as common building blocks across their many leaf functions that constitute

a significant fraction of total server cycles, and proposes novel, inexpensive hardware

accelerators for these activities. The contributions made in this dissertation show the

potential to improve the efficiency of web servers and thus in turn to directly influence the

throughput of data centers.

1.1 Hash Map Inlining

The most common complex data structure in PHP like scripting languages is the hash map,

which is used to store key-value pairs. Typically hash maps with a fixed set of keys are

used instead of explicitly defined classes or structures, as would be common in compiled

languages like Java or C++. Unfortunately, the runtime overhead of key lookup and value

retrieval is quite high, especially relative to the direct offsets that compiled languages can

use to access class members. Figure 1.1 demonstrates the microarchitectural behavior of a

microbenchmark that repeatedly updates and accesses a configurable number of key-value

pairs stored in a hash map. The bottom three lines illustrate the behavior with accessing

3

0

2

4

6

8

10

12

14

16

18

1

1
0

5
0

1
0

0

5
0

0

1
0

0
0

2
0

0
0

3
0

0
0

4
0

0
0

5
0

0
0N

o
rm

al
iz

e
d

 t
o

 C
++

 C
la

ss
 w

it
h

 1
 F

ie
ld

#Class Fields or #Hash Map Keys

#DCache Misses (PHP
Hash Map Keys)

#Instructions (PHP
Hash Map Keys)

#BranchMispredictions
(PHP Hash Map Keys)

#Instructions (C++
Class Fields)

#DCache Misses (C++
Class Fields)

#BranchMispredictions
(C++ Class Fields)

Figure 1.1: Comparison of branch mispredictions, data cache misses and instructions count
between accessing a hash map and a class object (details in evaluation chapter).

class objects with equivalent number of fields. Clearly key lookup and value retrieval from

a hash map incur significantly higher number branch mispredictions, cache misses and

instructions.

Recently the HipHop Virtual Machine(HHVM) [1] PHP JIT compiler from Facebook

has shown tremendous gains to close the performance gap with compiled (statically-typed)

languages. However, as observed in this dissertation, in a set of real-world, server-side

PHP applications that power many e-commerce platforms, online news forums, banking

servers, etc., hash map processing constitutes a significant fraction of the overall execution

time and failure to optimize accesses to those hash maps by HHVM causes a substantial

performance bottleneck.

In this dissertation, we propose Hash Map Inlining (HMI) to minimize the overheads

associated with populating and accessing key-value pairs stored in hash maps. HMI

dynamically converts a hash map into a vector-like data structure that is accessed with

fixed, linear offsets for each key value, and specializes the code at each access site to use

fixed offsets from the HMI base address to update and/or retrieve values corresponding to

4

each key. Our implementation of HMI is inspired by inline caching, an existing compiler

optimization technique for streamlining access to dynamically-typed objects. With our

prototype HMI implementation, the vast majority of the overhead of hash map accesses in

the microbenchmark can be elided, leading to gains of up to 40−45% (with a hash map of

10 or 50 key-value pairs).

However, we observe that our initial HMI implementation delivers only marginal gains

when applied to real-world, server-side PHP applications that utilize hash maps to retrieve

information from a back-end database management system (DBMS). The effectiveness of

HMI in these applications is limited for two reasons. First, the hash maps are populated

inside SQL runtime libraries written in C code, which are not visible to the HHVM optimizer,

effectively preventing HMI from triggering inlining and code specialization. Second, our

initial version of HMI can only specialize code for accesses where the hash map keys are

specified as literal values at the access site (e.g. myhashmap[“literalkey”]), whereas these

applications commonly specify the keys as variables (e.g. myhashmap[$myvariablekey]).

In theory, flow analysis and constant propagation may reveal that some of the latter cases

are in fact constants (literals), but this is not the case for the applications we examine.

Instead, we find that the variables at each access site sequences through a number of

different, though predictable, key names at run time.

In order to address these shortcomings, we extend our initial HMI implementation to

inline accesses to keys with variable names at an access site, whenever we can guarantee

that the variable at the access site will sequence through a number of different, though

predictable, fixed key names at run time. This condition is trivially satisfied for the SQL

runtime library functions we targeted, since the ordered set of keys is determined by the

5

database schema, which is fixed at the time a SQL query is evaluated. This results in

automatic conversion of hash maps into inlined form for these realistic, server-side PHP ap-

plications, such that subsequent accesses within the PHP code can be efficiently specialized

to take full advantage of the inlined hash map structure. The prototype implementation of

HMI in HHVM shows performance benefits for a broad array of hash map-intensive PHP

scripts, up to 37.6% and averaging 18.81%, and improves SPECWeb throughput by 7.71%

(banking) and 11.71% (e-commerce).

1.2 Architectural Support for Server-Side PHP Processing

PHP is the dominant server-side scripting language used to implement dynamic web

content. JIT compilation, as implemented in Facebook’s state-of-the-art HipHopVM [115,

1], helps to improve the performance of PHP with the help of HMI and other state-of-the-art

code optimization techniques and demonstrates a significant performance increase for a

set of server-side PHP applications. However, we observe that our HMI technique is not

very effective for an important class of large-scale, server-side PHP applications that spend

most of their time in rendering web pages or in other words, in HTML generation. Runtime

characteristics of popular, content-rich PHP web applications are found to be dramatically

different than the de-facto benchmark suites SPECWeb2005 [87], bench.php [111], and the

computer language benchmarks [93] used so far for evaluating the performance of web

servers.

Figure 1.2 depicts the distribution of CPU cycles spent in the hottest leaf functions of a

few large-scale, content-rich PHP applications compared to SPECWeb2005’s banking and

6

0

20

40

60

80

100

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

D
is

tr
ib

u
ti

o
n

 o
f

cy
cl

es
 (

C
D

F
%

)

Leaf functions

Wordpress Drupal

Mediawiki SPECWeb(Banking)

SPECWeb(E-commerce)

Hottest: JIT-compiled code: ~10%

Figure 1.2: Distribution of CPU cycles of SPECWeb2005 workloads and few content-rich
PHP web applications over leaf functions (details in evaluation chapter).

e-commerce workloads. Clearly, the SPECWeb2005 workloads contain significant hotspots

– with very few functions responsible for about 90% of their execution time. However, the

content-rich PHP web applications exhibit significant diversity, having very flat execution

profiles – the hottest single function (JIT compiled code) is responsible for only 10−12%

of cycles, and they take about 100 functions to account for about 65% of cycles. This tail-

heavy behavior presents few obvious or compelling opportunities for microarchitectural

optimizations.

In order to understand the microarchitectural implications (performance and energy-

efficiency bottlenecks) of these workloads with hundreds of leaf functions, we undertook a

detailed architectural characterization of these applications in this dissertation. Despite

our best effort, we could not find any obvious target or easy opportunity for architectural

optimization.

Failing to find any clear microarchitectural opportunities shifts our focus towards

designing domain-specific specialized hardware for these large-scale, content-rich PHP

applications. Function level specialization is not a viable solution for these applications

7

given their very flat execution profiles. However, a closer look into the leaf functions’ overall

distribution reveals that many leaf functions suffer from either the abstraction overheads

of scripting languages (such as type checking [4], hash table accesses for user-defined

types [15, 14], etc.) or the associated overhead of garbage collected languages [8]. These

observations guide us to apply several hardware and software optimization techniques

from prior works [4, 15, 14, 33] together to these PHP applications in order to minimize those

overheads. After applying these optimizations, a considerable fraction of their execution

time falls into four major categories of activities – hash map access, heap management,

string manipulation, and regular expression processing. These four categories show the

potential to improve the performance and energy efficiency of many leaf functions in their

overall distribution. This motivates us to develop specialized hardware to accelerate these

four major activities. Our results reflect an average 17.93% improvement in performance

and 21.01% reduction in energy while executing these complex, content-rich PHP workloads

on a state-of-the-art software and hardware platform.

1.3 Thesis Contributions

The research presented in this dissertation makes the following contributions:

• Proposes Hash Map Inlining to specialize accesses to hash maps in server-side

PHP applications: The overheads associated with accessing hash maps in server-side

PHP applications accessing databases and other middleware are quantified. The root

cause hampering inlining of such hash maps is identified and compiler enhancements

to inline them so that keys can be accessed with direct offsets are implemented and

8

evaluated in the HipHop VM infrastructure.

• Performs microarchitectural analysis of content-rich PHP applications: An in-depth

architectural characterization of realistic, large-scale, content-rich PHP applications

is performed to identify performance and energy-efficiency bottlenecks (if any) in

them. Microarchitectural analysis suggests that these PHP applications require far

more BTB capacity and much larger caches than server cores currently provide to

obtain even minor performance benefit.

• Proposes domain-specific accelerators for content-rich PHP applications: Four fine-

grained PHP activities - hash table accesses, heap management, string manipulation,

and regular expression handling are identified as common building blocks across

leaf functions that constitute a significant fraction of total server cycles in large-scale,

content-rich PHP applications. Novel, inexpensive hardware accelerators are pro-

posed for these activities and substantial performance and energy gains are accrued

across dozens of functions.

• Evaluation of performance benefits with Hash Map Inlining: A prototype imple-

mentation in the HipHop VM infrastructure shows promising performance benefits

on real hardware for a broad array of hash map-intensive server-side PHP applica-

tions.

• Evaluation of Domain-Specific PHP Accelerators: Simulation results reflect that

our specialized hardware offers a significant improvement in performance and a

considerable reduction in energy while executing the complex, large-scale, content-

9

rich PHP applications on a state-of-the-art software and hardware platform.

1.4 Related Published Work

This dissertation encompasses these previously published works.

• Hash Map Inlining (PACT - 2016). This paper identifies the root cause hamper-

ing specialization of hash map accesses in real-world, server-side PHP applications

and provides compiler enhancements to mitigate those in a state-of-the-art JIT com-

piler [33]. This paper was coauthored by Mikko Lipasti.

• Architectural Support for Server-Side PHP Processing (ISCA - 2017). This paper

performs an in-depth microarchitectural analysis of large-scale, content-rich PHP

applications and proposes few domain-specific hardware accelerators to improve

their execution efficiency [34]. This paper was coauthored by David Schlais, and

Mikko Lipasti.

1.5 Thesis Organization

This dissertation is organized as follows: Chapter 2 provides context and background for

the reader including a discussion of scripting languages, PHP in particular, followed by

their unique features, associated overheads and existing software and hardware solutions to

mitigate them. Chapter 3 presents the Hash Map Inlining technique for streamlining access

to dynamically-shaped hash maps, the most commonly occurring data structure in server-

side PHP applications, and Chapter 4 evaluates its efficacy. Chapter 5 introduces domain-

10

specific accelerators to improve further the execution efficiency of large-scale, content-

rich PHP applications. Chapter 6 discusses the methodology to simulate those domain-

specific accelerators and presents the simulation results. Finally, Chapter 7 concludes the

dissertation and discusses avenues for future work.

11

2 background
This chapter provides background and context for the work presented in this dissertation.

It begins with a general overview of scripting languages and discusses their prevalence in

today’s programming world. This is followed by a brief introduction to the PHP scripting

language in Section 2.2. This section presents PHP’s key language features that are more

general than C++-like compiled languages but are responsible for causing significant

obstacles to good performance. This section also provides an outline of automatic memory

management, a key feature of PHP like scripting languages. The following sections discuss

PHP’s standard implementation and few existing software and hardware solutions to

mitigate PHP’s performance bottlenecks. We adopt them in our simulation environment.

Finally, this chapter ends with outlining a hardware solution in mitigating the overhead

associated with its automatic memory management, which we adopt in our simulation

environment as well.

2.1 Scripting Languages

Scripting languages are becoming more and more important in today’s programming world

as they are used for an increasing share of application software. Their popularity is due in

large part to their flexible syntax and dynamic type system, rich built-in libraries, and ease of

use, which enable rapid turnaround time for prototyping, and developing production-grade

applications. In general, scripting languages are easier to learn, thus in turn enable high

programmer’s productivity than more structured and compiled languages such as C and

C++. Besides, in order to ensure high-productivity programming environments, popular

12

languages for large-scale scripting often provide some very appealing features, including

sophisticated pattern matching and string manipulation, automatic memory management,

object-oriented programming paradigm, and high-level data structures. More importantly,

scripting languages are typically interpreted (rather than compiled), thus providing a fast

cycle to modify, test and release application code updates in large-scale systems. Being

interpreted, scripting languages do not require an explicit compilation step. In today’s

world, people use scripting languages for variety of purposes, including Perl, Ruby, or

Python for general-purpose programming, Lua for game programming and writing plug-

ins, PHP or Javascript for web programming, and R or Matlab for mathematical or statistical

computing.

Despite their considerable increase in popularity, their performance is still the main

impediment for developing large applications. In other words, the appealing features

of scripting languages do not come for free. In order to support their dynamic features

and ensure their ease of use, as these languages are commonly interpreted at runtime,

applications implemented in scripting languages have significant runtime overheads in

comparison to their corresponding implementations using traditional compiled languages

such as C and C++.

This has triggered a number of efforts to mitigate the performance overheads of script-

ing languages through just-in-time (JIT) compilation also commonly known as dynamic

translation [7, 30, 38, 77, 92, 106, 115, 1], where the compilation is done during execution of

a program – at runtime – rather than prior to execution. Statically typed languages such as

C or C++ can leverage sophisticated analyses to perform classic and aggressive compiler

optimizations. However this is not entirely feasible for JIT-compiled scripting languages

13

where such complex analyses must happen at runtime and the overhead of applying any

such analyses may potentially outweigh the benefit gained from compilation. As a result

a JIT compiler typically continuously analyses the code being executed and compiles fre-

quently executed regions of the code where the speedup gained from compilation would

outweigh the overhead of compiling that code.

2.2 PHP Background

PHP is a server-side scripting language used primarily to implement application logic

for dynamically created web pages. PHP code may be embedded into HTML or HTML5

markup, or it can be used in combination with various web template systems, web content

management systems and web frameworks. Among general-purpose scripting languages

used for server-side web development to access databases and other middleware, PHP is

the most commonly used [115, 105], representing over 80% [99] of all web applications.

Considering the explosive growth in the scale of users and digital data volumes in the last

decade, improving PHP’s performance will play a significant role in drastically improving

the server efficiency of Internet companies, leading to significant cost reductions for both

provisioning and operating large data centers.

Although PHP syntactically resembles C++, PHP is inherently much more dynamic

in nature. The next section briefly discusses the key language features that are more

general in PHP than in C++. These PHP features typically cause significant obstacles to

good performance and their more restricted C++ implementations allow better execution

efficiency.

14

function add ($x, $y) {
return $x + $y;

}

add (1, 2); //call the function

add (1.1, 2.2); //call the function

(a) Dynamic type of variables.

class MyClass {
…

}
$obj = new MyClass;

if (…) {
$obj→foo = 10;

}
$obj→bar = 20;

(b) Dynamic addition of properties
to class objects.

Figure 2.1: PHP code examples.

2.2.1 Dynamic Features

Dynamic Typing. In PHP-like scripting languages, variables can hold values from different

types during an execution. Figure 2.1a illustrates a simple PHP example where a function

add accepts two input arguments, performs an addition operation and returns the result.

The function add in the example is invoked with two input arguments $x and $y holding

either integer or floating-point values. When add is called with $x and $y as integers, it

performs an integer addition operation, whereas when the same function is called with $x

and $y as floating-point values, it performs a floating-point addition operation and prints

a floating-point value to the standard output.

Dynamic Properties. Another prominent feature of PHP like scripting languages is

their ability to add new properties to class objects on the fly without having to change

the type declaration of the native object. As shown in Figure 2.1b, the two properties foo

and bar can be added to the MyClass object at different memory offsets depending on the

intervening branch.

Another prominent features of PHP is dynamic name binding, where the mapping of

names to function declarations and classes is decided dynamically. Besides, the names of

15

variables, properties, functions, and classes may exist in variables.

Note that this is fundamentally different from C++-like statically-typed languages,

where programmers must declare the exact types of variables, and a class object can not be

extended to integrate new fields and methods or override existing ones during execution.

2.2.2 Automatic Memory Management

Automatic memory management (garbage collection) is a key feature of scripting languages

because it relieves the programmer from the error-prone task of freeing dynamically

allocated memory when memory blocks are not going to be used anymore. Without

this automatic garbage collection (GC) feature, large software systems will be susceptible

to memory leaks and dangling-pointer bugs [42]. As a result, many recent high-level

programming languages (including PHP-like scripting languages) use GC as a feature.

GC basically distinguishes memory objects reachable from a valid reference or pointer

variable (“live objects”) from unreachable objects (“dead objects”). Algorithms that de-

termine object reachability fall primarily into either of these two categories: reference

counting [16] or pointer tracing [66]. Reference counting keeps track of the number of

references (pointers) to every object. When this count goes down to zero, the object be-

comes dead. On the other hand, pointer tracing recursively follows every pointer starting

with global, stack and register variables, scanning every reachable object for pointers and

following them. Any object not reached by this exhaustive tracing then becomes considered

as dead. Once the GC identifies dead objects, it makes their memory blocks available to

the memory allocation engine for future use.

16

// load pointers of RB and RC to rb and rc
Value * rb = RB (bc); Value * rc = RC (bc);
Number nb , nc ;
// check if rb and rc is integer
// if so , calculate sum and set type
if (isInt (rb) && isInt (rc)) {

type (ra) = INTEGER ;
ival (ra) = ival (rb) + ival (rc);

// convert rb and rc to float
// if successful , caculate sum and set type
} else if (toNumber (rb ,& nb) && toNumber (rc ,& nc)){

type (ra) = FLOAT ;
fval (ra) = nb + nc ;

} else {
/* handle exception cases */

}

Figure 2.2: Bytecode ADD in C.

2.3 Standard PHP Implementation

2.3.1 Interpreter

In order to support various dynamic features of PHP as described in the previous section,

a PHP code is typically interpreted at runtime. PHP’s standard interpreter is the Zend

engine [111]. It converts PHP code into lower-level bytecode (an intermediate language)

instructions which are then interpreted and executed one at a time.

Since PHP allows a variable to hold any type of data without having to explicitly declare

its type, each Zend bytecode instruction essentially requires to first check the types of the

two operands before performing any operation on them. Figure 2.2 shows the underlying

implementation of the ADD bytecode in a Zend execution environment, where the bytecode

essentially examines the types of the two input arguments before performing any operation

on them [49].

Furthermore, as the types of objects depend on the underlying execution of a program

in PHP, accessing a given property can not be accomplished using a simple offset access

17

from the start of the object. Thus, in PHP, each property access requires a dictionary lookup

to resolve its location in memory.

Another major source of inefficiency in the Zend engine comes from PHP’s support

of dynamic name binding. The mapping of names to variables and function declarations

may change in PHP during execution. As a result, each time a PHP code executes a

function or accesses the value of a variable, the Zend engine needs to consult a lookup

table to disambiguate the declaration of the function or the dynamic name of the variable

at runtime. The dynamic name binding feature becomes more expensive for classes, as it

requires composing class methods, properties, and constants along with those from parent

classes and traits besides performing a number of semantic checks [1].

While interpreters have the benefits of simplicity and portability, they incur high CPU

overheads [1]. Usually these interpreted implementations are one or two orders of magni-

tude slower compared to their corresponding implementations in compiled languages [93].

Modern JIT compilers use specialization to mitigate these overheads from supporting the

various dynamic features.

2.3.2 Just-in-time Compiler

The HipHop Virtual Machine (HHVM) [1] is the current state-of-the-art JIT compiler and

runtime for PHP. HHVM converts PHP code into an intermediate bytecode, which is

then translated into machine code dynamically at runtime by a JIT compiler, resulting in

significant performance improvements.

When a PHP script is invoked, HHVM attempts to discover the types of the variables

18

by symbolically executing the bytecode instructions. Starting from the input variables,

symbolic execution propagates their known types (if any) through the PHP script in an

attempt to derive the types of the remaining variables in the script. Furthermore, there

exists static type checkers such as Flow [28] that can infer the static types (static in the

developer’s mind) of the variables in a dynamically-typed code automatically wherever

possible. This is based on the empirical evidence that most dynamically-typed code is

implicitly statically typed; even though types may not appear anywhere in the code, they

are in the developer’s mind as a way to reason about the correctness of the code. By adding

static typing to dynamically-typed code wherever possible, Flow-like static type checkers

can then improve developer productivity and code quality and can find type errors without

requiring any changes to the code. For any variable types that are not discovered by the

symbolic execution or by such static type checking, HHVM then observes their dynamic

types during the execution of the script. HHVM essentially depends on the empirical

evidence that, at run time, the dynamic type of a variable at a given access site tends to

stay consistent, and the type of an object tends not to change. HHVM records the most

frequently observed dynamic type and specializes accesses for that type. A runtime check

ensures that the assumptions used in the generation of specialized code hold at run time.

If the check passes, HHVM can optimize a basic block1 with all the type information

collected during symbolic execution and can perform classic compiler optimizations such

as constant propagation, dead code elimination, etc. If the check fails, the HHVM runtime

re-specializes the access for the new type observed. HHVM-like modern JIT compilers use
1A basic block is a single-entry, multiple-exit region of the source program, annotated with the types of

all input values that flow into it.

19

shadow classes to capture different types of a dynamic object. The basic idea is similar to

the notion of dynamic types in Self [15, 14]. Objects that are created in the same way are

grouped in the same shadow class. Each time a new property is added or a previously-seen

property is introduced in a different order, JIT creates a new shadow class to capture that

as a new type of the object.

In short, while emitting machine code for an access site, a modern JIT compiler guards

only on the observed types of the variables or the shadow classes of the objects before

performing any associated operations on them, instead of checking their types for every

possible permutation and combination. As a variable or an object must carry a type tag,

and a type guard must be executed before any operation is performed on them, the mere

type check amounts to a very significant overhead even in a JIT-compiled code [68, 4, 19,

48, 49]. There are many recent proposals [42, 68, 4, 48, 49] for mitigating these abstraction

overheads implicitly in hardware. The next section discusses a few of those hardware

proposals.

2.4 Hardware Support for Mitigating Overheads

2.4.1 Dynamic Type Checking

While hardware support for dynamic type checking dates back to 1970s-80s (e.g., LISP

machines), there has been extensive research in the last decade to reduce the impact of

type checking in hardware [68, 4, 48, 49].

One of the research proposals is Checked Load [4] that proposes an ISA extension

20

=

Tag Index Shift

=

Type Tag
Negation

Flag

MUX

= =

MUX

Data Tag Data Tag

Target Address Encoded Instruction

O
R

X
O

R

D
E
M

U
X

Data Output Cache Hit Flag Checked Load Hit Flag

Standard Cache Checked Load

<<

Figure 2.3: Implementation of type tag checking in parallel with cache tag checking.

(checked load instruction) to reduce the performance overhead of dynamic type checking.

The key idea of Checked Load is to retain the high-level type information for each variable

in the cache subsystem. A checked load instruction takes as operands a memory location of

the data to be loaded, a word-sized register for the destination, and a byte-sized immediate

for the type tag. When a checked load instruction is executed, the type tag field of a cache

line is checked against the tag immediate in addition to accessing the value from the cache,

thus significantly reducing the dynamic instruction count responsible for performing the

type checking in software.

Figure 2.3 shows the implementation of the Checked Load proposal in the cache sub-

system. On a cache hit, in parallel with the cache tag comparison, the type tag is compared

against the relevant portion of the cache line in the set before returning the cache value

to the application. Just as the cache tag comparison selects which way contains the target

address, it also selects which result of the type tag comparisons to use. If the stored type tag

21

does not match with the intended type tag of a checked load instruction, control transfers

to an error handler.

2.4.2 Reference Counting

The HHVM JIT compiler uses the reference counting mechanism to perform garbage

collection. As reference counting can find dead objects as soon as they become unreachable,

it eliminates the need for explicit garbage collections, which determines reachability by

periodically tracing all pointers. However, the overhead of updating the reference counts

on every pointer creation and destruction imposes significant overhead in software. The

overhead is even higher in multi-threaded systems, which require synchronization for all

reference count updates.

The Hardware-Assisted Automatic Memory Management (HAMM) proposal [42] in-

troduces minimal changes to the cache subsystem to reduce this overhead from updating

reference counts of memory objects. It essentially introduces new ISA instructions to

process the resulting reference count updates implicitly in hardware while simultaneously

accessing such memory objects from caches. These reference count updates are consoli-

dated in Reference Count Coalescing Buffers (RCCB) (which are tightly coupled to caches)

to reduce the frequency of these updates propagated to memory-resident objects. The zero

flag is raised upon reaching a value of zero of a reference count update, in which case the

code branches to a software handler to release the memory object to heap manager. The

RCCBs thus can filter most of the reference count updates, and can significantly reduce the

instructions responsible for performing this operation in software.

22

2.5 Summary

The chapter provides a brief introduction to PHP, its key dynamic features and their

associated overheads. PHP’s standard interpreter implementation and JIT compilation that

support its various dynamic features are outlined next. Though effective, JIT compilation

can not mitigate the overheads from supporting PHP’s dynamic features completely in

software. As a result we adopt an existing hardware solution – Checked Load in our

baseline simulation environment to mitigate PHP’s type checking overhead in hardware.

Additionally the chapter provides an overview of automatic memory management. As

PHP, like all garbage collected languages, suffers from the overhead of reference counting,

we present a hardware proposal from prior work and adopt it in our baseline simulation

environment.

23

3 hash map inlining
This chapter proposes Hash Map Inlining, a JIT compiler optimization technique to mini-

mize the overheads associated with accessing key-value pairs stored in hash maps, the most

commonly occurring data structure in server-side PHP applications. Section 3.1 provides

an overview of Hash Map Inlining. The remainder of this chapter is organized as follows.

Section 3.2 describes how we adapt inline caching, a technique for streamlining access to

dynamically-typed objects, to similarly improve the performance of hash maps. Section 3.3

describes how PHP uses hash maps to interface with SQL databases. Section 3.4 explains

why our initial HMI algorithm fails to work with the SQL interface, and describes how we

extend it to capture this opportunity. Section 3.5 presents details of our modifications to

HHVM. Section 3.6 discusses related work and Section 3.7 concludes the chapter.

3.1 Overview

As previously discussed, the most common complex data structure in PHP like scripting

languages is the hash map, which is used to store key-value pairs. Unfortunately, the

runtime overhead of key lookup and value retrieval is quite high, especially relative to the

direct offsets that compiled languages can use to access class members.

The HipHop Virtual Machine(HHVM) [1] PHP JIT compiler from Facebook shows

tremendous gains to close the performance gap with statically-typed languages such as

C++. Its basic design of a stack-based bytecode compiled into type-specialized machine code

provides large speedups for diverse, real-world PHP applications when compared to an

24

interpreted environment. However, as observed in this dissertation, in a set of popular real-

world PHP scripts that power many e-commerce platforms, online news forums, banking

servers, etc., hash map processing constitutes a large fraction of the overall execution

time and failure to optimize accesses to those hash maps by HHVM causes a substantial

performance bottleneck. More specifically, server-side PHP scripts will commonly retrieve

information from a back-end database management system (DBMS) engine by issuing a

SQL query [70], the results of which are communicated to the PHP script as key-value

pairs stored in a hash map. The key-value pairs are subsequently processed by application

logic in the PHP code to generate dynamic HTML content. Considering the fact that a

considerable fraction of the execution time of these scripts are spent on processing such

hash maps (as our results indicate), the cost of populating and accessing these hash maps

should be reduced in order to reduce script execution time.

In this dissertation, we propose Hash Map Inlining (HMI) to minimize the overheads

associated with populating and accessing key-value pairs stored in hash maps. HMI is a

dynamic optimization technique that is triggered whenever runtime profiling indicates that

hash maps are being populated and accessed in a hot1 region of the PHP program. HMI

dynamically converts a hot hash map into a vector-like data structure that is accessed with

fixed, linear offsets for each key value, and specializes the code at each hot access site to use

fixed offsets from the HMI base address to update and/or retrieve values corresponding to

each key.

Our implementation of HMI is inspired by inline caching, an existing approach for

specializing code that accesses members (or fields) in dynamically-typed objects. JIT
1A hot region is a region of a program where most time is spent during the program’s execution.

25

compilers for scripting languages that support dynamic type systems (e.g. Chrome V8

for Javascript [100] and HHVM for PHP [1]) rely on a shadow class system to map object

field names to offsets for each instance of a dynamic object. With inline caching, code that

accesses these fields is specialized to short-circuit expensive offset lookups by including an

efficient shadow class type check in the specialized code, followed by a direct offset-based

access to the field as long as the type matches the common case. By analogy, HMI treats

hash map keys as field names, and specializes direct-offset accesses to the corresponding

hash map values while protecting them with a type check similar to the one used for inline

caching.

We demonstrate the performance benefits of our implementation of HMI by way of the

microbenchmark (previously discussed in Figure 1.1 of Chapter 1) that repeatedly updates

and accesses a configurable number of key-value pairs stored in a hash map. We show

that the vast majority of the overhead of hash map accesses can be elided, leading to gains

of up to 40−45% (with a hash map of 10 or 50 key-value pairs) with our prototype HMI

implementation, running on real hardware. The performance gain goes up with bigger

hash map sizes.

However, we find that our initial HMI implementation delivers only marginal gains

when applied to real-world PHP applications that utilize hash maps to retrieve information

from a back-end DBMS. The effectiveness of HMI in these applications is limited for two

reasons. First, the hash maps are populated inside SQL runtime libraries written in C code,

which are not visible to the HHVM optimizer, effectively preventing HMI from triggering

inlining and code specialization. Second, our initial version of HMI can only specialize

code for accesses where the hash map keys are specified as literal values at the access site

26

(e.g. myhashmap[“literalkey”]), whereas these applications commonly specify the keys

as variables (e.g. myhashmap[$myvariablekey]). In theory, flow analysis and constant

propagation would reveal that some of the latter cases are in fact constants (literals), but

this was not the case for the applications we examined. Instead, we found that the variables

at each access site would sequence through a number of different, though predictable, key

names at run time.

In order to address these shortcomings, we extended our HMI implementation in two

ways. First, we wrote new versions of the SQL runtime library functions used to access

DBMS contents: ones that directly utilize inlined hash maps for communicating query

results to the PHP scripts. Second, we augmented the HHVM JIT to first check for the

necessary set of conditions that trigger correct use of these HMI-friendly functions, and

then to specialize any qualifying call sites to call them instead of the original functions. We

elaborate on the necessary set of conditions in Section 3.4: we can invoke HMI whenever

we can guarantee that there is a finite and ordered set of keys that are used to populate the

hash map. This condition is trivially satisfied for the SQL runtime library functions we

targeted, since the ordered set of keys is determined by the database schema, which is fixed

at the time the SQL query is evaluated. In other cases, this condition could also be satisfied

based on PHP language semantics. For example, the foreach array iterator in PHP iterates

over the key-value pairs in the hash map in a fixed order, providing the same guarantee of

a finite and ordered set of keys. These two situations allow automatic conversion of hot

hash maps into inlined form for these PHP applications, such that subsequent accesses

within the PHP code can be efficiently specialized to take full advantage of the inlined hash

map structure. Our prototype implementation in HHVM shows performance benefits for a

27

 class MyClass {

 …
 }
 $obj = new MyClass;
 if (…) {
S1 $obj→foo = 10;

 }
S2 $obj→bar = 20;

[Inline cache for $obj→bar = 20]

if (obj.shadowclass == B)
 store &Obj [1], 20;
else if (obj.shadowclass == A)
 store &Obj [0], 20;
else
 // jump to JIT runtime/interpreter;

(a) (b)

Figure 3.1: Example PHP code (a) and inline cache to access property bar (b).

broad array of hash map-intensive PHP scripts, up to 37.6% and averaging 18.81%, and

improves SPECWeb throughput by 7.71% (banking) and 11.71% (e-commerce).

3.2 Inline Caching for Hash Maps

3.2.1 PHP Scripting Language

In PHP variables can hold values from different types during an execution. One prominent

feature of PHP is its ability to add new properties to class objects on the fly without having

to change the type declaration of the native object. However, the absence of declared types

makes it very challenging for the compiler to generate code, as the types of objects depend

on the underlying execution of the program. As a result, accessing a given property can

not be accomplished using a simple offset access from the start of the object. As shown in

Figure 3.1(a), the two properties foo and bar can be added to the MyClass object at different

memory offsets depending on the intervening branch. Thus, in PHP, each property access

requires a dictionary lookup to resolve its location in memory.

28

3.2.2 Inline Caching for Dynamic Classes

Modern JIT compilers use specialization to mitigate this problem. They essentially depend

on the empirical evidence that, at run time, the dynamic type of an object at a given

access site tends to stay consistent. The JIT compiler records the most frequently observed

dynamic type and specializes accesses for that type. A runtime check ensures that the

assumptions used in the generation of specialized code hold at run time. If the check fails,

the JIT runtime re-specializes the access for the new type observed. Modern JIT compilers

use shadow classes to capture different types of a dynamic object. The basic idea is similar

to the notion of dynamic types in Self [15, 14]. Objects that are created in the same way

are grouped in the same shadow class. Each time a new property is added or a previously

seen property is introduced in a different order, JIT creates a new shadow class to capture

that as a new type of the object.

Figure 3.2 shows how a JIT compiler creates shadow classes for the code shown in

Figure 3.1(a). When the runtime enters this code section for the first time, JIT creates an

empty MyClass (not shown in Figure 3.2) pointing to an empty shadow class type A. Now

if a Not Taken(NT) branch direction is observed, the runtime adds properties foo and bar

to Obj1 and creates two more shadow classes B and C of Obj1 at access site S1 and S2

respectively. Shadow classes record the added properties and their offsets. Any future

invocation of this code with the branch observing again a NT direction will cause the

runtime to follow the same shadow class transitions at S1 and S2. Subsequently when a

Taken(T) branch direction is observed, the runtime will create a new shadow class type D

from initially empty type A. So as observed here, access site S2’s addition of property bar

29

Add foo

Add bar

Add bar

Shadow Classes Objects

Property Offset

[Type D]

0 bar

Property Offset

[Type C]

0 foo

bar 1

Property Offset

[Type B]

0 foo

Obj2

20 Offset 0

Shadow Class

Obj1

10 Offset 0

Shadow Class

Offset 1 20

Property Offset

[Type A]
Shadow Classes

Figure 3.2: Example of shadow classes.

results in an object of either shadow class C or D. This supports the common assumption

that at a given site the JIT runtime accesses objects of very few types. Modern JIT compilers

use a technique called inline caching to exploit this assumption to optimize accesses to

properties of objects at a given site. The inline caching mechanism essentially caches the

offsets of the property bar for the two object types C and D seen before at access site S2

and specializes the site S2 as shown in Figure 3.1(b). Any future invocations of the code,

regardless of the intervening branch’s behavior, will be able to exploit the cached offsets to

map bar either to type C or D.

3.2.3 Adapted to Hash Maps

In this work, we extend this inline caching approach for coping with dynamically-typed

objects to also enable specialization of accesses to hash maps. By analogy, our HMI imple-

mentation treats hash map keys as property names. Algorithm 1 and 2 describe our initial

HMI implementation inspired by inline caching. Note that similar to the inline caching

approach, Algorithm 1 and 2 can only specialize code for accesses where the hash map

key is specified as a literal value at the call site. With HMI in Algorithm 1, a call site that

has already generated specialized code can perform a direct-offset access to the Key as

30

Algorithm 1 HMI Populate based on inline caching
Input: Hash Map h, Key, Value, CallSite PC
1: if Key.IsStaticLiteral is True then
2: if Inline cache found for CallSite PC then
3: Perform inlined populate (CallSite PC, Key, Value)
4: else if h.IsInlined is True then
5: h.SymbolTable.NextKeyOffset++
6: Offset←h.SymbolTable.NextKeyOffset
7: h.SymbolTable[Offset]← (Key,Offset)
8: h.Data[Offset]←Value
9: /*Generate inlined populate for CallSite PC*/
10: JIT.generateInlineCache(CallSite PC,Key,Offset)
11: else if Is CallSite PC Hot then
12: h.IsInlined← True
13: h.SymbolTable.NextKeyOffset← 0
14: Offset←h.SymbolTable.NextKeyOffset
15: h.SymbolTable[Offset]← (Key,Offset)
16: h.Data[Offset]←Value
17: /*Generate inlined populate for CallSite PC*/
18: JIT.generateInlineCache(CallSite PC,Key,Offset)
19: else
20: Profile (CallSite PC, Key)
21: Regular hash map populate (h, Key, Value)
22: end if
23: else
24: /* Key is not a static literal */
25: Regular hash map populate (h, Key, Value)
26: end if

Algorithm 2 HMI Access based on inline caching
Input: Hash Map h, Key, CallSite PC
1: if h.IsInlined is True then
2: if Key.IsStaticLiteral is True then
3: if Inline cache found for CallSite PC then
4: Perform inlined access(CallSite PC, Key)
5: else
6: Offset←h.symbolTableLookup(Key)
7: /*Generate inlined access for CallSite PC*/
8: JIT.generateInlineCache(CallSite PC,Key,Offset)
9: return h.Data[Offset]
10: end if
11: else
12: /* Key is not a static literal */
13: Regular hash map access (h, Key)
14: end if
15: else
16: Regular hash map access (h, Key)
17: end if

long as the type of the hash map h matches with any previously observed types at the site.

When it is the first time that the hash map h is accessed in a hot region of the PHP program,

HMI converts it into a vector-like data structure, adds the Value into the first location and

records the location information or offset in a table structure, which we call the Symbol

Table. The symbol table essentially captures the type of a hash map by recording the offsets

31

of inserted keys. Before performing a direct access to a inlined hash map at a call site, the

type checking step in HMI finds the appropriate symbol table for the hash map from the

set of symbol tables cached previously at the call site. In order to retrieve values from a

inlined hash map, Algorithm 2 can look for a key in the generated symbol table of the hash

map and specialize the code at that access site to use direct fixed offsets.

In order to investigate the performance impact of our initial HMI implementation,

we apply this to a microbenchmark that repeatedly updates and accesses a configurable

number of key-value pairs stored in a hash map and observe that the vast majority of the

overhead of hash map accesses can be elided. This results in significant performance gains

of up to 40−45% with a hash map of 10 and 50 key-value pairs. This benefit primarily

comes from the substantial reduction in branch mispredictions, caches misses and overall

instructions enabled by direct-offset access from HMI.

However, we observe that our initial HMI implementation delivers marginal or no gains when

applied to real-world PHP applications (Table 4.1) that utilize hash maps to retrieve information

from a back-end DBMS. SPECWeb(E-commerce) suite shows marginal benefit of about 1.14%

when compared against the unmodified HHVM, whereas the remaining benchmark suites

do not deliver any visible performance improvement. Before we investigate the reasons

behind its poor performance with real-world applications, we study the SQL interface in the

next section that communicates with back-end DBMS and executes such PHP applications.

32

$q_result = mysql_query("SELECT id, name, initial_price,
max_bid, nb_of_bids, end_date FROM items WHERE
category=$categoryId
AND end_date >= NOW()...");

while ($q_row = mysql_fetch_array($q_result)) {
 $maxBid = $q_row["max_bid"];
 if ($maxBid == 0) $maxBid = $q_row["initial_price"];
 print("<TR><TD><a href=\"/PHP/...itemId=".$q_row["id"].
 "\">".$q_row["name"]."<TD>$maxBid".
 "<TD>".$q_row["nb_of_bids"].
 "<TD>".$q_row["end_date"].
 "<TD><a ...PutBidAuth.php?itemId=".$q_row["id"]...");
}

Figure 3.3: Code snippet of a server-side PHP script.

0

20

40

60

80

100

B
C

B
R

SI
C

SI
R

V
B

H V
I

V
U

I

A
M B
C

B
SC O

S

R
S

S-
K

1

S-
K

2

SD SS

V
C

-S

V
C

-E P
U

P
M S

P
C

G
U

L

G
M B
S

LW A
S

B
P

B
P

S

O
C T I S B

B
P

P
D C

RUBiS RUBBoS TPNS SPECWeb(Banking) SPECWeb(E-commerce) Avg.

%
 o

f
To

ta
l I

n
st

ru
ct

io
n

s SQL Query Hash Map Populate Hash Map Access Runtime

Figure 3.4: Breakdown of dynamic instructions, measured using Pin [63]. Averaged across
scripts in Table 4.1. Runtime = instructions that execute string operations, regular expres-
sions, and miscellaneous operations.

3.3 Hash Map Interface to SQL DBMS

When a client makes a HTTP request to a web server, the server usually invokes PHP scripts

to serve the request. The PHP scripts in turn formulate the necessary query plans and

dispatch those queries to the backend DBMS engine (e.g., SQL or memcached). Once the

DBMS engine produces the query result tables, the PHP scripts utilize standard SQL library

functions to iterate over the rows in the tables before sending a response with dynamic

HTML contents back to the client. Figure 3.3 illustrates a example PHP script from a

real-word benchmark suite RUBiS [80]; it follows the structure of a typical server-side PHP

script as described above.

Note that retrieving the rows from the query result table q_result and mapping their

33

Variant mysql_fetch_array (const Resource& mysql_result, ...) {

1) Array ret; /*Allocate an empty array, resize as per requirement*/
2) MYSQL_ROW mysql_row = mysql_fetch_row(mysql_result);
3) long *mysql_row_lengths=mysql_fetch_lengths(mysql_result);
4)
5) for (mysql_field = mysql_fetch_field(mysql_result), i = 0;
6) mysql_field;
7) mysql_field = mysql_fetch_field(mysql_result), i++) {
8) if (mysql_row[i]) {
9) data = mysql_makevalue(String(mysql_row[i],
10) mysql_row_lengths[i],CopyString), mysql_field);
11) }
12) ret.set(String(mysql_field->name,CopyString),data);
13)}
14)return ret;
}

Figure 3.5: Implementation of mysql_fetch_array() function.

various keys into the q_row hash map during the loop iterations in Figure 3.3 essentially

involve repeated interpretation of hash maps. Figure 3.4 illustrates that a major fraction

of the dynamic instructions of server-side PHP scripts (details in Table 4.1) are spent on

populating and accessing hash maps.

Figure 3.5 excerpts the underlying implementation of the SQL library function mysql_fetch_array(),

used in the PHP script in Figure 3.3 to retrieve rows and populate such hash maps from

the query result table. It relies on the loop (starting on line 5) to extract the various keys

of a row into the q_row hash map. Delving down into the details further, for each and

every key, the code sequence (from line 5 to line 13) retrieves a value from the row and

adds a new (key, value) pair to the hash map (line 12). Close examination of the usage

of the populated hash maps inside the while loop of Figure 3.3 in conjunction with the

underlying implementation of mysql_fetch_array() function in populating those hash maps

(Figure 3.5) reveals the following main abstraction overheads.

First, as the mysql_fetch_array() function iterates over the rows in the result table, it

allocates a hash map to hold the values associated with the different keys of a row. This

introduces a significant number of expensive memory allocations and releases on the

34

critical path. Second, the string key is run through a hashing function to index into an

entry of the hash map. The hash computation is followed by a string comparison along

a linked list of possible entries to find the appropriate entry for the current key. Finally,

the hash maps may need to be resized during runtime in order to accommodate more

data. These resizing operations also add a modest overhead, especially when these hash

maps are accessed many times during the course of parsing the entire result table. The

lookup process also incurs equally high abstraction overheads in hashing and comparison

functions when the different keys of the hash maps are retrieved inside the while loop in

Figure 3.3. Analysis using Pin [63] shows that populating such a hash map with 4 keys

inside this SQL library function requires about 2,400 instructions. Reading the hash map

key inside the while loop of Figure 3.3 requires about 90 instructions.

In the next section, we investigate the shortcomings with our initial HMI implementation

that could deliver only marginal or no gains when applied to real-world PHP applications

that utilize hash maps to retrieve information from a back-end DBMS.

3.4 Why HMI Fails for DBMS Scripts

3.4.1 Hidden Library Functions

As described in Section 3.2, a JIT compiler like HHVM collects profile information at

runtime and uses it to specialize a code section written in the scripting language (PHP

in this work) of an application. However, SQL library functions, which are implemented

in statically-typed languages such as C++, are not visible to the HHVM optimizer. As a

35

result, when hash maps are populated inside the mysql_fetch_array() SQL library function

in Figure 3.5, HMI cannot capture their shape and type. Hence, when these populated

hash maps are accessed later in the while loop in Figure 3.3, HMI cannot anticipate their

shape despite staying the same across invocations of this library function. Consequently

HMI cannot trigger inlining and code specialization to convert accesses to such DBMS hash

maps to simple direct-offset accesses.

3.4.2 Variable Key Names

Even if the SQL library function is written in PHP and visible to the JIT compiler, due to

the reasons detailed below, hash maps populated inside the function can not be efficiently

inlined using the initial HMI implementation.

Note that, regardless of which control path is followed in the example in Figure 3.1(a),

the name of the properties at the two access sites S1 and S2 are static literals. But in case of

populating hash maps inside mysql_fetch_array(), as different keys are populated at the

same access site (line 12 in Figure 3.5), the HMI runtime does not observe any static literal

keys; instead it ends up observing a variety of keys at that access site. In other words, our

initial version of HMI can only specialize code for accesses where the hash map keys are

specified as literal values at the access site, such as the key values in our microbenchmark.

As a result, when we attempt to apply Algorithm 1 or 2, they fall back on the expensive

dictionary lookup.

In order to address this shortcoming, we augment the initial HMI implementation

(Algorithm 1 and 2) to handle keys with variable names. However, the HMI runtime

36

Inline cache for ret.set(…) (line 12 in Figure 6)
if (ret is a DBMS hash map &&
 ret.Type == Type_NO_Key) { /*Type_NO_Key = empty hash map*/

 if (ret.current_key == “x”) /*String comparison to check current key
 return ret[cached_x_offset]; matching against 1st key of schema */
}
else if (ret. Type == Type_K_x) { /*Type_K_x = hashmap with key "x”*/

 if (ret.current_key == “y”) /*String comparison to check current key
 return ret[cached_y_offset]; matching against 2nd key of schema */
}
...
else if (ret.Type == Type_K_x_y_...)
{...}
...
else {regular hash map access and inline cache update}

Figure 3.6: Required changes to initial HMI implementation.

now no longer observes a single static literal key when accessing the different keys at

the same access site. As a result, populating different keys at the same site requires the

HMI implementation to emit code that performs a string comparison to ensure the current

string key matches against the key seen before with the current hash map type. Hence, the

specialized code will not be able to avoid the expensive string comparison while populating

hash maps inside mysql_fetch_array() SQL library function. Figure 3.6 shows the changes

required to the initial HMI implementation to inline populating such hash maps at the

same call site inside the SQL library function with all the associated overheads as discussed

above. This example assumes the presence of key "x", followed by "y" and so on in the

database schema. Note that now in order to specialize the code that inserts keys at the

same call site, the HMI implementation needs to include an additional string comparison

(highlighted in brown) in addition to the type check in the inlined code.

3.4.3 High Polymorphism

Figure 3.6 demonstrates the specialized code that the HMI implementation will emit to

inline populating hash maps inside SQL library function at the common call site. However,

37

note that updating a key (for example, key y) at the common call site in SQL library function

now requires a traversal through a path containing branches for all the other type checks.

Hence, populating a key at this site requires performing a linear search for the correct entry

in the specialized code that matches the current input types, leading to inefficient execution.

A call site that only observes a single type is called monomorphic; if it observes multiple

types, it is polymorphic. The more polymorphic a site becomes in specialized code, the more

overhead it adds to the overall execution. Considering the fact that such hash maps inside

the SQL library function in our experimental suite typically populate in the range of 6 to

18 keys, the HMI implementation will in turn make the access site highly polymorphic.

Although it will avoid the hashing function to index into the hash map while populating

keys, the presence of the highly polymorphic access site along with the necessary string

comparison to find a cached offset will still accrue substantial overheads. Furthermore,

unlike regular PHP code sections, since the SQL library functions are more likely to be

called from many places in the application to satisfy various queries, the access site that

populates hash maps may end up being highly polymorphic.

However, note that the HMI runtime can avoid the string comparison imposed by

variable key names, and can achieve similar benefit to that of inlining accesses to static

literal keys, if either of the following conditions are met:

(1) the application (or programmer) ensures a statically ordered set of keys being inserted

at a call site or

(2) the runtime guarantees a dynamically ordered set of keys being inserted at a call site.

In other words, our extended HMI implementation is invoked whenever we can guaran-

tee that the variable at an access site will sequence through a number of different, though

38

Algorithm 3 HMI (Handling keys with variable names)
Input: Hash Map h, Key, Value, CallSite PC
1: if Key.IsStaticLiteral is True then
2: Same as line 2-22 in Algorithm 1
3: else
4: /* Key is not a static literal */
5: if Either application can guarantee statically or runtime can guarantee dynamically that Key belongs to ordered set of keys being

inserted at CallSite PC then
6: JIT.invokeExtendedHMI (section 3.5 for SQL)
7: else
8: /* Regular hash map populate/access */
9: end if
10: end if

predictable, fixed key names at run time. Algorithm 3 describes the algorithm that triggers

extended HMI implementation to inline accesses to keys with variable names at a common

call site. Note that this condition is trivially satisfied for the SQL runtime library functions

we targeted, since the ordered set of keys is determined by the database schema, which is

fixed at the time the SQL query is evaluated.

3.5 Extended HMI for SQL

In order to address the shortcomings, we extended our HMI implementation in two ways.

First, we wrote new versions of the SQL runtime library functions used to access DBMS

contents: ones that directly utilize inlined hash maps for communicating query results to

the PHP scripts. Second, we augmented the HHVM JIT to first check for the necessary set

of conditions that trigger correct use of these HMI-friendly functions, and then to specialize

any qualifying call sites to call them instead of the original functions. In case of SQL library

function, since the application statically guarantees ordered set of keys being inserted at

the call site (line 12 of Figure 3.5), HMI can redirect the JIT runtime to use the symbol

table-generating version of mysql_query (step 1) and vector arrays-generating version of

mysql_fetch_array thus inlining populating of hash maps (step 2). Once the symbol table is

39

Variant mysql_query (const String& query, ...) {

 std::vector<StringData *> mysql_key_names;
 for (mysql_field = mysql_fetch_field(mysql_result);
 mysql_field; mysql_field =
 mysql_fetch_field(mysql_result)) {

 /* Collect name of keys */
 mysql_key_names.push_back(makeStaticString
 (String(mysql_field->name, CopyString)));
 }
 /* Generate symbol table at runtime */
 define_MySQL_SymbolTable(mysql_key_names);
}

Figure 3.7: Generate symbol table in mysql_query(*) and expose that to the JIT runtime.

generated and exposed to the JIT runtime in step 1, HMI can use that to inline all future

lookups or accesses to hash maps within the PHP script (step 3). The following three steps

describe this in detail.

(a) Generate symbol table in SQL query function. When a database query is exe-

cuted, the runtime accesses the associated meta-data about the relation, such as the name

of the relation, the number of keys, their names, types, etc. and builds a symbol table

that records different keys of the relation and their corresponding offsets. So as shown

in the underlying implementation of the SQL query execution function in Figure 3.7, it is

modified to collect information about the keys of the associated database schema at the end

of its execution. It thus builds a symbol table, associates that with the current query plan

and attaches that to the pool of symbol tables. Note that the keys are mapped to the symbol

table in order of their appearance in the query result table. Before defining a new symbol

table, the runtime checks if it has already declared a symbol table for the current query

plan. If it finds a table with an identical set of keys inserted into it in the same order as that

of the current plan in the pool of symbol tables, then it does not create a new symbol table

across invocations of the query execution function and returns the old table only. When

40

the database query function subsequently finishes execution, it exposes this populated

symbol table to the JIT runtime and returns a pointer to it along with the regular result

table. The generated symbol table later is used to inline any subsequent accesses to hash

maps populated from the query result table.

(b) Populate vector-like arrays in SQL fetch_array function. When a DBMS engine

produces a query result table, mysql_fetch_array() extracts the rows from the table into

hash maps. However, instead of retrieving rows into hash maps, HMI specializes the

mysql_fetch_array() function to map the keys into vector-like arrays. Furthermore, each

key is made to update the slot in that array in the order of its appearance in the query result

table. That way it entirely eliminates the abstraction overheads associated with populating

hash maps inside this library function.

Any subsequent accesses to these populated vector-like arrays within the PHP script

can then determine the mapping of the keys of the extracted rows into these arrays using

the symbol table generated in mysql_query() function above. Thus the extended HMI im-

plementation can inline accesses to such hash maps populated inside the SQL fetch_array()

function. This becomes possible since the symbol table maps the keys of the relational

schema in the mysql_query() function in the same order as the values of different keys from

the extracted rows are inserted to form vector-like arrays in mysql_fetch_array() function.

HMI essentially decouples hash map accesses from populating vector-like arrays inside

the library function. Considering the fact that these hash maps are populated many times

during the course of parsing the entire query result table, this decoupling will eliminate

the overheads associated with populating those hash maps entirely. Generating a symbol

41

Variant mysql_fetch_array (const Resource& mysql_result, ...) {

 /*Allocate vector-like array of size mysql_num_fields()*/
 ret.init_mysql_array (mysql_num_fields(mysql_result));

 for (mysql_field = mysql_fetch_field(mysql_result), i = 0;
 mysql_field;
 mysql_field = mysql_fetch_field(mysql_result), i++) {
 if (mysql_row[i])
 data = mysql_makevalue(String(mysql_row[i],
 mysql_row_lengths[i],CopyString), mysql_field);
 }
 ret.set(i, data); /*Populate vector-like array locations*/
 }
 return ret;
}

Figure 3.8: Populate vector-like arrays of size mysql_num_fields(*).

table should add insignificant overhead to a query’s execution time.

So, as shown in the underlying implementation of mysql_fetch_array() function in

Figure 3.8, the hash map of Figure 3.5 has been replaced by a vector-like array with size

equal to the number of keys in the query relation. As a result, the arrays are no longer

required to be resized during runtime in order to accommodate all the keys of the rows

and hence they can avoid the resizing and its associated overhead. However, populating

any keys not present in the symbol table into vector-like arrays requires falling back to the

runtime and using expensive hash map lookups.

(c) Use symbol table to inline accesses to hash maps. As discussed before, a pointer

to the symbol table generated during the execution of a SQL query plan is attached to the

vector-like arrays populated from the query result table. As a result, HMI can later use that

symbol table to inline accesses to hash maps within the PHP script. It is commonly observed

that the shape of hash maps generated inside the mysql_fetch_array() library function

tends to be always consistent at a given access site. This holds true for our experimental

workloads also. However, if the query plan is designed in such a way that it depends on

42

the schema of the connected database (a database query such as, SELECT * From a Table),

then the mysql_query() execution might return symbol tables with different shapes and

different sets of keys across invocations. As a result, before performing an inlined access to

the hash map, an access site must check the shape of the symbol table to determine if it

has changed from the last time the query was executed. Any change in the shape of the

symbol table (set of keys associated with the symbol table or their order of insertion into

it) from the last time will necessitate HMI to re-specialize for the new shape and find the

offset of the key using the new symbol table.

As a result, while specializing an access site that retrieves values from hash maps

populated inside a database library function, HMI first checks the shape of the symbol

table attached to the vector-like array. HMI checks if the symbol table matches the cached

symbol table seen earlier at this site. If so, the key-value in the hash map can be accessed

using a simple cached offset at this site. Figure 3.9(a) shows the symbol table generated

with executing the query in Figure 3.3 and Figure 3.9(b) illustrates the specialized code

to access the "max_bid" key. Reading "max_bid" from the hash map row in Figure 3.3 is

now guarded by the cached symbol table. If it succeeds, "max_bid" is accessed with simple

offset-access. However, if the runtime encounters a symbol table it has not seen before,

HMI re-specializes the access on the new symbol table observed.

In summary, in case of accessing hash maps with literal keys, traditional inline caching

and HMI inline key accesses in the same way as shown in the example of Figure 3.2.

However, for accessing hash maps with variable key names as in Figure 3.3, HHVM will

invoke the HMI-friendly version of SQL library functions to populate vector-like arrays

instead of hash maps and thus will inline inserting keys to hash maps. The symbol table

43

Inline cache for $q_row[“max_bid”]

if (q_row is a DBMS hash map &&
 q_row.symboltable ==
 cached_symboltable)

return q_row[cached_max_bid_offset];

else
 // jump to JIT runtime;

(a) (b)

key offset

id

name

max_bid

nb_of_bids

end_date

initial_price 2

3

4

5

1

0

Symbol Table

Figure 3.9: Generated symbol table (a) and inline cache to access key max_bid (b).

generated (Figure 3.9(a)) while executing the SQL library functions will then be used to

specialize accesses to keys such as "max_bid" (Figure 3.9(b)).

3.5.1 Multiple Call Sites

Since the SQL query function can be called from many call sites in a program to satisfy

various queries, HMI must generate different symbol tables to capture various database

schemas. When updating a symbol table in the SQL query function, the HMI implemen-

tation ensures that each query execution points to a distinct symbol table dictated by the

program counter of the call site in the bytecode. Note that HMI does not need any extra

provisions to handle multiple call sites for the mysql_fetch_array() function. Each of the

instantiations of this function receives a distinct symbol table from their corresponding

SQL query function, which they attach to the vector-like arrays populated inside them.

3.5.2 Other DBMS Engines and Languages

There exist popular DBMS engines other than MySQL such as MongoDB [69], Oracle DB [71]

etc. They have similar methods for accessing database results. For example, MongoDB

uses a collection method (find()) in conjunction with cursor methods (forEach() or hasNext())

44

(analogous to mysql_query() and mysql_fetch_array() methods from MySQL) to collect hash

maps from database results. Hence these PHP applications accessing MongoDB servers

instead will face similar hash map overheads and can benefit from HMI.

In this work we primarily target server-side PHP applications. However, server-side

workloads developed in any other scripting languages may have similar hash maps with

variable key names and thus can benefit from HMI. Creating HMI-friendly versions of

DBMS library functions in Figure 3.7 and 3.8 introduce minor changes to the HHVM’s

C++ library. Furthermore, we added about 150 lines of code in HHVM to capture the

opportunity for HMI and generate hash map-inlined code. Hence our proposed changes

can be easily applied to other DBMS engines and JIT compilers.

3.5.3 Applying HMI Outside DBMS Queries

HMI is a general technique that can provide significant performance benefit whenever hash

maps are accessed repeatedly with a fixed set of key values. To obtain this benefit, the PHP

VM must first identify hash map access sites that are suitable, either via straightforward

profiling of their key set behavior, or by taking advantage of API semantics (as we describe

above). Second, the VM must guarantee that all subsequent access at each access site

conform to the same shape, or set of key values. In many cases, this check is rare and/or

inexpensive, as outlined above, leading to significant benefit. However, in the most general

case, when the set of key values is determined outside the scope of the VM or DBMS

interface library (e.g. by reading the key values from an external file, or prompting the

user to type them in), the cost of checking the shape of the hash map could equal or even

45

exceed the cost of relying on a standard hash map. Here, the VM should profile the relative

frequency of execution of the sites where the hash map shape is set (and the check must be

performed) vs. the sites where the hash maps are accessed (where performance benefit is

obtained), and should only enable HMI if the former is less frequent than the latter. Such

an evaluation is beyond the scope of this thesis, as we could not find any workloads where

this tradeoff has to be made.

3.6 Related Work

This Hash Map Inlining technique touches on topics across a broad spectrum of computer

systems related topics, including, but not limited to: database query optimization, effective

data structure selection, and type specialization in dynamic languages. We briefly discuss

these areas below.

DBMS-specific intra-operator optimizations. There has recently been extensive re-

search on how to specialize the code of a query execution by using an approach called

Micro-Specialization [112, 114, 113]. In this line of work, the authors propose a framework

to encode DBMS-specific intra-operator optimizations, like unrolling loops and removing

unnecessary branching conditions by exploiting invariants present during a query execu-

tion. Another recent work is the query execution engine of LegoBase [50] that develops

a compilation framework to achieve the same. All these works aim to improve database

systems by removing unnecessary abstraction overheads during a query execution. Fur-

thermore, there are many works [65, 72, 76, 86] that aim to speed-up query execution by

focusing mostly on improving the way data are processed, rather than individual database

46

operators. In contrast, our work eliminates the abstraction overheads associated with

post-processing the result table of a database query in context of its usage in real-world

PHP scripts in a jitted environment. All these software query optimizers and recent works

on database hardware accelerators [51, 109] will bring the spotlight on the performance

of the post-processing phase and the PHP scripts even more in the future than what our

work focuses on.

Effective selection of data structures. There has been plenty of research [43, 44, 84] in

optimizing the usage of data structures in applications written in statically-typed languages.

Recent work [43, 44] by Jung et al. proposes a program analysis tool that automatically

identifies the data structures used within an application and selects an alternative data

structure better suited for the particular application input and the underlying architecture.

In contrast to that, our work does not seek to identify optimal data structures for real-world

PHP applications.

Type specialization in dynamic languages. There is a large body of research in

type specialization of dynamic scripting languages. SELF [15, 14] and Smalltalk [17] are

the early pioneers. They introduced the inline caching and polymorphic inline caching

[37] techniques to specialize a code section with any previously observed types and thus

optimize access to dynamically typed objects. We have already summarized inline caching

and discussed its adaptation to the hash maps in section 3.2.2 and 3.2.3. There are many

recent research proposals in JavaScript specialization [30, 106, 36, 82, 47, 3]. All these works

exploit type inference in conjunction with type feedback in different ways to generate

efficient native code. One of the most recent works is [3] by Ahn et al. that examines the

way the Chrome V8 compiler defines types, and identifies the key design decisions behind

47

its poor type predictability of class objects in Javascript code from real websites. However

all these type specialization techniques do not address the issues with type unpredictability

of hash maps in server-side PHP scripts, which our work focuses on.

Note that the adaptation of the well-known inline caching idea to the realm of hash

maps is not our primary contribution. Rather, the key contribution here is identifying issues

with adaptation of polymorphic inline caching to hash maps in real-world applications and

providing enhancements to the JIT engine to mitigate those. Furthermore, there are many

recent proposals [68, 4, 2] for providing architectural support to optimize the execution of

scripting languages. Mehrara et al. [68], and Anderson et al. [4] propose microarchitectural

changes to avoid the runtime checks associated with jitted execution, whereas Agrawal et

al. [2] improves the energy efficiency of PHP servers by aligning the execution of similar

requests together. They are orthogonal to our compiler modifications and their associated

benefits.

Note that the well-known perfect hashing or dynamic perfect hashing techniques [29,

18] provide hash functions that can map keys to a hash map with no collisions. Thus they

can avoid any potential overhead from traversing a collision chain in case two keys map

to the same entry in a hash map. However they cannot avoid the overheads associated

with hash map allocation, release, resizing, hash computation etc., which HMI completely

eliminates and gets most of its benefit from.

48

3.7 Summary

In this chapter, we propose Hash Map Inlining to eliminate the overheads associated with

accessing hash maps, the most commonly occurring data structure in scripting languages.

This chapter describes compiler enhancements to achieve that for PHP in HHVM compiler.

HMI opens up the opportunity of parallelizing HTML generation within a single request

(for example, loops in our workloads) and across multiple client requests as [2] envisions.

Thus HMI can improve the efficiency of web servers and in turn can directly influence the

throughput of data centers.

49

4 evaluation of hash map inlining
This chapter evaluates HMI on real hardware and discusses the results. Section 4.1 describes

the methodology in detail. Section 4.2 presents the impact on performance of benchmark

suites with Extended HMI for SQL (Ext_HMI) implementation and compares it against

our initial HMI (Init_HMI) (section 3.2.3) implementation. Section 4.3 investigates the

performance bottlenecks in a few benchmark scripts and provides solution to mitigate

them. Section 4.4 illustrates the detailed breakdown of execution time of the benchmark

scripts. Finally, Section 4.5 summarizes the chapter.

4.1 Methodology

We evaluate our enhancements on five real-world, server-side PHP benchmark suites

(Table 4.1). We are showing the results for a subset of scripts that spend noticeable time

accessing hash maps. The remaining scripts from each suite spend little or no time accessing

hash maps leaving no opportunity for HMI. Note that for the SPECWeb2005 benchmark

suite we replace its Besim emulator with an actual SQL server interface in order to account

for the overall activity of a PHP script’s execution. BeSim emulates a back-end database

server that PHP scripts in the SPECWeb2005 suite communicate with to retrieve required

database results. We used the latest release of HHVM [1] at the time of this writing

with its Repo.Authoritative mode turned on for all our evaluations. It activates all the

member instruction optimizations present in HHVM. We measure the performance of

the benchmarks natively on a 3.6 GHz AMD FX(tm)-8150 eight core machine with 8MB

50

Table 4.1: Server-side PHP benchmark suites
Benchmark Description Hash map-intensive PHP scripts
RUBiS [80] An auction site prototype modeled after eBay.com, BrowseCategories(BC), BrowseRegions(BR) SearchItemsByCategory(SIC),

implements core functionality of an auction site: SearchItemsByRegion(SIR), ViewBidHistory(VBH), ViewItem(VI),
selling, browsing, bidding for different items. ViewUserInfo(VUI), AboutMe(AM)

RUBBoS [79] An online news forum benchmark modeled after Slashdot.org, BrowseCategories(BC), BrowseStoriesByCategory(BSC), OlderStories(OS),
provides essential bulletin board features such as featuring ReviewStories(RS), Search-keyword1(S-K1), Search-keyword2(S-K2),

news stories (associated comments) on various topics. StoriesOfTheDay(SD), SubmitStory(SS), ViewComment-small/expanded(VC-S/E)
Tiger Php Mimics a typical news site such as displaying news with Printnews(User)(PU), Printnews(Moderator)(PM), Search(S),

News System [96] options for browsing, searching for a specific news etc. PrintComments(PC), GetUserList(GUL), GetMenu(GM), BrowserStat(BS)
SPECWeb2005 [87] Simulates typical requests to an on-line bank login_welcome(LW), account_summary(AS), bill_pay(BP),

(Banking) bill_pay_status_output(BPS), order_check(OC), transfer(T)
SPECWeb2005 [87] Simulates a web store that sells computer systems; allows index(I), search(S), browse(B), browse_productline(BP),

(E-commerce) users to search, browse, customize, and purchase products. productdetail(PD), customize(C)

0
10
20
30
40
50
60
70
80
90

100

B
C

B
R

SI
C

SI
R

V
B

H V
I

V
U

I

A
M B
C

B
SC O

S

R
S

S-
K

1

S-
K

2

SD SS

V
C

-S

V
C

-E P
U

P
M S

P
C

G
U

L

G
M B
S

LW A
S

B
P

B
P

S

O
C T I S B

B
P

P
D C

RUBiS RUBBoS TPNS SPECWeb(Banking) SPECWeb(E-commerce) Avg.

N
o

rm
al

iz
e

d
 E

xe
cu

ti
o

n
 T

im
e Initial HMI Extended HMI for SQL

Figure 4.1: Performance improvement with HMI normalized to unmodified HHVM. Aver-
aged across scripts in Table 4.1. Ext_HMI improves SPECWeb banking and e-commerce
throughput by 7.71% and 11.71% respectively.

last-level cache, running the 64-bit version of Ubuntu 12.04. The PHP benchmark scripts

interact with a MySQL database server installed on the native machine. We used the

available test harness to generate client requests. This setup should closely imitate the

environment of commercial servers.

4.2 Performance Improvement

Figure 4.1 shows the improvement in performance with Ext_HMI. Init_HMI brings down

the average execution time to only 99.8% of the time obtained with unmodified HHVM,

whereas Ext_HMI brings down the execution time to 86.63%. This results in throughput1

1Throughput for SPECWeb is measured using an available test harness that generates requests for all the
scripts (6 hash map-intensive scripts from Banking and E-commerce each as shown in Figure 4.1 along with
the remaining non-hash map-intensive scripts) from SPECWeb.

51

improvement of 7.71% and 11.71% for SPECWeb(Banking) and SPECWeb(E-commerce)

suites respectively. The SearchItemsByRegion script from RUBiS obtains maximum benefit of

37.6% with Ext_HMI implementation. Note that Init_HMI provides marginal benefits for a

few scripts such as index, search and browse from SPECWeb(E-commerce) suite. The subset

of scripts such as BuyNow, RegisterItem, RegisterUser, StoreBid etc. from RUBiS, PostCom-

ment,StoreStory etc. from RUBBoS, add_payee, change_profile etc. from SPECWeb(Banking)

and cart, login, shipping etc. from SPECWeb(E-commerce) suites are omitted since they

spend little or no time accessing hash maps. Instead, they spend most of their time exe-

cuting a database query to retrieve or save a single record; they spend little or no time in

PHP scripts, leaving no opportunity for any JIT optimization. Hence, those scripts show

no improvements, as expected, so we omit them from our results. However, we note that

our modifications did not cause overhead either.

Note that several scripts, such as SearchItemsByCategory from RUBiS and printnews from

TPNS, show substantial improvement with Ext_HMI, whereas for scripts like ViewItem from

RUBiS, bill_pay from SPECWeb(Banking) in Figure 4.1, performance improves modestly. In

addition to that, there are a subset of scripts such as BrowseStoriesByCategory, OlderStories

for which Ext_HMI shows little or no improvement. The reasons behind this uneven

improvement in performance will be discussed in the next two subsections.

Note that as the number of fields in class objects changes in Figure 1.1, the branch

and cache MPKI (mispredictions or misses per 1000 instructions) with accessing class

objects reduce from 6.84 to 3.72 and from 9.31 to 8.56 respectively. However the branch and

cache MPKI with accessing hash maps stays around 4.2 and 16 respectively as the absolute

number of mispredictions or misses change almost in the same proportion as the number

52

$result=mysql_query("SELECT story_id, writer FROM comments WHERE …");

while ($row = mysql_fetch_array($result)) {
 $user_query=mysql_query("SELECT nickname FROM users WHERE
 id=$row["writer"]);
 ...
}

$result = mysql_query("SELECT comments.story_id, users.nickname
 FROM comments, users WHERE comments.writer = users.id AND …");

while ($row = mysql_fetch_array($result)) {
 ...
}

Figure 4.2: Merging nested queries (above) to a single query (bottom).

0

20

40

60

80

100

VBH VUI AM BSC OS RS S-K1 S-K2 SD VC-S VC-E

RUBiS RUBBoSN
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e
 Nested Queries Single Query

Figure 4.3: Performance gain after merging nested queries into a single query. Only 11
Scripts have nested queries.

of instructions. As we apply HMI to our workloads in Figure 4.1, the branch mispredictions

and data cache misses in those workloads are reduced to the level of equivalent C++ objects.

4.3 Nested Queries

Careful examination of the subset of scripts such as BrowseStoriesByCategory, OlderStories

that do not benefit from our Ext_HMI implementation reveals that they contain nested

queries in them that require repeated SQL query invocations for each of the rows extracted

from the result tables of parent queries. Not surprisingly, these scripts spend most of their

execution time within the SQL query execution function, leaving little or no opportunity for

dynamic optimization of PHP code. When a database query is invoked, the DBMS engine

begins with building hash tables of the records before performing any further operations

53

0

20

40

60

80

100

VBH VUI AM BSC OS RS S-K1 S-K2 SD VC-S VC-E

RUBiS RUBBoS Avg.N
o

rm
al

iz
e

d
 E

xe
cu

ti
o

n
 T

im
e

 Initial HMI Extended HMI for SQL

Figure 4.4: HMI applied to scripts after merging their nested queries. Perf. normalized to
unmodified HHVM. Avg. shown considers the improvements to 11 modified scripts from
Figure 4.3 and remaining 26 unmodified scripts with no nested queries from Figure 4.1
using Ext_HMI.

such as scan, join and sort on them. In the case of nested queries, the child query requires

building these expensive hash tables for the entire set of database records in order to simply

look for a single record from them, in spite of the fact that the shape of those hash tables

stays the same across invocations. This is an unfortunate yet common performance bug in

PHP/SQL scripts, and reflects a lack of experience and expertise in SQL on the part of the

programmer.

To better evaluate the impact of HMI on code that has already been re-factored to avoid

such basic mistakes, we rewrote these scripts to eliminate the unnecessary nested queries

by merging the nested queries in them into a single top-level query, as shown in Figure 4.2.

Once the nested queries were merged, these scripts no longer spent virtually all of their

time executing redundant SQL, and the performance benefits of the HMI technique were

realized for them as well. Figure 4.3 demonstrates the substantial improvement in execution

time due to merging the nested queries for the eleven scripts that contain nested queries.

As shown, the unmodified scripts spend most of their time in database query execution.

Merging the nested queries improves their execution time to just 8−10% of their original

execution time.

54

0
10
20
30
40
50
60
70
80
90

100

I E I E

RUBiS RUBBoS TPNS SPECWeb(Banking) SPECWeb(E-commerce) Avg.

N
o

rm
al

iz
e

d
 E

xe
cu

ti
o

n
 T

im
e SQL Query Hash Map Populate Hash Map Access + Runtime

 BC BR SIC SIR VBH VI VUI AM BC BSC OS RS S-K1 S-K2 SD SS VC-S VC-E PU PM S PC GUL GM BS LW AS BP BPS OC T I S B BP PD C

Figure 4.5: Breakdown of execution time normalized to Init_HMI. I and E refer to Init_HMI
and Ext_HMI implementations respectively. Runtime = time consumed in executing string
operations, regular expressions, and miscellaneous operations.

Furthermore, after merging nested queries, scripts such as BrowseStoriesByCategory,

Search-keyword etc. become amenable to the benefits of Ext_HMI (Figure 4.4). So, with

applying Ext_HMI to scripts in Figure 4.3 after merging their nested queries, the average

execution time across all hash map-intensive scripts comes down to 81.18% in Figure 4.4

from 86.63% obtained before merging nested queries in Figure 4.1. Note that 10−12% of

the overhead in populating hash maps comes from resizing and consequently only 2.6%

performance benefit, instead of the 18.81% shown, can be obtained with optimized initial

sizing.

4.4 Breakdown of Execution Time

Figure 4.5 shows the breakdown of execution time for the benchmark scripts. mysql_query

represents the time taken in executing the SQL queries. Hash Map Populate and Hash Map

Access denote the times consumed in populating and accessing hash maps in those scripts.

We observe that the majority of the improvement in execution time comes from the lower

overhead in populating vector-like arrays inside the DBMS library function enabled by our

55

Ext_HMI. This breakdown essentially validates our initial motivation and confirms the

fact that hash map processing consumes a significant portion of the overall execution time.

Scripts that require retrieval of many rows (and hence populate hash maps many times)

from the query result table observe major improvement in execution time. Scripts that are

showing only marginal improvement require retrieval of the fewer rows. The ViewItem

script retrieves only 2 rows and hence does not find any improvement with Ext_HMI.

Scripts from the SPECWeb(Banking) suite retrieve few rows (5 rows on average) and hence

observe marginal benefit with Ext_HMI. On the other hand, SearchItemsByCategory-like

scripts pull out hundreds of rows from the result table and show a substantial improvement.

All the scripts observe expected improvement (5.09% on average from Figure 4.5) from

inlined lookups to the populated hash maps.

4.5 Summary

This chapter presents an evaluation of the HMI technique. Results show that HMI delivers

performance benefits up to 37.6% and averaging 18.81% over a set of hash map-intensive

server-side PHP scripts. This results in modest throughput improvement for SPECWeb

banking and e-commerce workloads.

56

5 architectural support for
server-side php processing
Server-side, content-rich PHP applications occupy a huge footprint in the world of web

development. This chapter performs an in-depth analysis of such large-scale, content-rich

PHP applications and demonstrates potential for specialized hardware to accelerate these

PHP applications in a future server SoC. Section 5.1 provides an overview of our proposed

specialized hardware . The remainder of this chapter is organized as follows. Section 5.2

performs an in-depth microarchitectural analysis of these content-rich PHP applications.

Failing to find any clear microarchitectural opportunities shifts our focus towards designing

specialized hardware. We discover the potential candidates for specialization in Section 5.3.

In Section 5.4 we design specialized hardware accelerators for them. Section 5.5 discusses

related work and Section 5.6 summarizes the chapter.

5.1 Overview

PHP is the dominant scripting language used for server-side web development in today’s

programming world. In particular, server-side, content-rich PHP web applications have

created an ecosystem of their own in the world of web development. PHP powers many of

the most popular web applications that run on live datacenters. Despite its considerable

increase in popularity, its performance is still the main impediment for building large,

CPU-intensive applications.

The desire to reduce datacenter load inspired the design of the HipHop JIT compiler

(HHVM) [115, 1], which translates PHP to native code. HHVM demonstrates a significant

57

performance increase for a set of server-side PHP applications with the help of our Hash

Map Inlining technique and other state-of-the-art code optimization techniques. However,

runtime characteristics of an important class of large-scale, server-side PHP web applica-

tions that spend most of their time in rendering web pages are found to be dramatically

different than the de-facto benchmark suites SPECWeb2005 [87], bench.php [111], and the

computer language benchmarks [93] used so far for evaluating the performance of web

servers. These micro-benchmark suites have been the primary focus for most architectural

optimizations of web servers [2]. Furthermore, these micro-benchmarks spend most of

their time in JIT-generated compiled code, contrary to the real-world, content-rich PHP

applications that tend to spend most of their time in various library routines of the VM.

As shown in Figure 1.2 of Chapter 1, the SPECWeb2005 workloads contain significant

hotspots in their distribution of CPU cycles, with very few functions responsible for about

90% of their execution time. However, the realistic, content-rich PHP applications instead

exhibit very flat execution profiles, having significant diversity – the hottest single function

(JIT compiled code) is responsible for only 10−12% of cycles, and they require about 100

functions to account for about 65% of cycles. This tail-heavy behavior presents few obvious

or compelling opportunities for microarchitectural optimizations.

In order to understand the microarchitectural implications of these large-scale, content-

rich PHP applications, we performed an in-depth architectural characterization of them

and found that there is little opportunity for traditional microarchitectural enhancements.

As the processor industry continues to lean towards customization and heterogene-

ity [101, 35, 57, 88] to improve performance and energy efficiency, we seek to embrace

domain-specific specializations for these content-rich PHP applications. We note that

58

function level specialization is not a viable solution for these applications given their very

flat execution profiles. However, a closer look into the leaf functions’ overall distribution

reveals that many leaf functions suffer from either the abstraction overheads of scripting

languages (such as type checking [4], hash table accesses for user-defined types [15, 14], etc.)

or the associated overhead of garbage collected languages [8]. These observations guide

us to apply several hardware and software optimization techniques from prior works [4,

15, 14, 33] together to these PHP applications in order to minimize those overheads. After

applying these optimizations, a considerable fraction of their execution time falls into four

major categories of activities – hash map access, heap management, string manipulation,

and regular expression processing. These four categories show the potential to improve

the performance and energy efficiency of many leaf functions in their overall distribution.

This motivates us to develop specialized hardware to accelerate these four major activities.

Hash Table Access. Unlike micro-benchmarks that mostly accesses hash maps with

static literal names, these content-rich applications often tend to exercise hash maps in their

execution environment with dynamic key names. These accesses cannot be converted to

regular offset accesses by software methods [15, 14, 33]. Programmability and flexibility in

writing code are two of several reasons to use dynamic key names. In order to reduce the

overhead and inherent sources of energy inefficiency from hash map accesses in these PHP

applications, we propose to deploy a hash table in hardware. This hash table processes

both GET and SET requests entirely in hardware to satisfy the unique access patterns of

these PHP applications, contrary to prior works deploying a hash table that supports only

GET requests in a memcached environment [58]. Furthermore, supporting such a hash

table in the PHP environment presents a new set of challenges in order to support a rich set

59

of PHP features communicating with hash maps that these real-world PHP applications

tend to exercise often.

Heap Management. A significant fraction of execution time in these applications comes

from memory allocation and deallocation, despite significant efforts to optimize them in

software [27, 54]. Current software implementations mostly rely on recursive data struc-

tures and interact with the operating system, which makes them non-trivial to implement

in hardware. However, these applications exhibit an unique memory usage pattern that

allows us to develop a heap manager with its most frequently accessed components in

hardware. It can respond to most of the memory allocation and deallocation requests from

this small and simple hardware structure.

String Functions. These PHP applications exercise a variety of string copying, matching,

and modifying functions to turn large volumes of unstructured textual data (such as social

media updates, web documents, blog posts, news articles, and system logs) into appropriate

HTML format. Prior works [103] have realized the potential of hardware specialization

for string matching, but do not support all the necessary string functions frequently used

in these PHP applications. Nevertheless, designing separate accelerators to support all

the necessary string functions will deter their commercial deployment. Surprisingly, all

the necessary string functions can be supported with a few common sub-operations. We

propose a string accelerator that supports these string functions by accelerating the common

sub-operations rather than accelerating each function. It processes multiple bytes per

cycle for concurrency to outperform the state-of-the-art software with SSE-optimized

implementation.

Regular Expressions. These PHP applications also use regular expressions (regexps) to

60

dynamically generate HTML content from the unstructured textual data described above.

Software-based regexp engines [73, 60] or recent hardware regexp accelerators [64, 23,

91, 32] are overly generic in nature for these PHP applications as they do not take into

consideration the inherent characteristics of the regular expressions in them. We introduce

two novel techniques – Content Sifting and Content Reuse – to accelerate the execution of

regexp processing in these PHP applications and achieve high performance and energy

efficiency. These two techniques significantly reduce the repetitive processing of textual

data during regular expression matching. They essentially exploit the content locality

across a particular or a series of consecutive regular expressions in these PHP applications.

5.2 Microarchitectural Analysis

We begin by performing an in-depth architectural characterization of the content-rich

PHP applications to identify performance and energy-efficiency bottlenecks (if any) in

them. We use gem5 [94] for our architectural simulation. Surprisingly, the most significant

bottlenecks lie in the processor front-end, with poor branch predictor and branch target

buffer performance. Neither increased memory bandwidth, nor larger instruction or data

caches show significant opportunity for improving performance.

Branch predictor bottlenecks. We experimented with the state-of-the-art TAGE branch

predictor [83]1 with 32KB storage budget. The branch mispredictions per kilo-instructions

(MPKI) for the three content-rich PHP applications considered in this dissertation are 17.26,

14.48, and 15.14. Compared to the 2.9 MPKI average for the SPEC CPU2006 benchmarks,
1The branch prediction accuracy observed on Intel server processors and TAGE are in the same range [78]

61

0.85

0.87

0.89

0.91

0.93

0.95

0.97

0.99

32KB 64KB 128KB 512KB

N
o

rm
al

iz
ed

 e
xe

cu
ti

o
n

 t
im

e

ICache size

WordPress

4K BTB 8K BTB 16K BTB
32K BTB 64K BTB

(a) Sensitivity to BTB and ICache
sizes, normalized to 4K BTB 32KB
ICache. Other PHP applications
show similar behavior.

0

5

10

15

20

25

ICache
MPKI

DCache
MPKI

L2 MPKIM
is

se
s

p
er

 k
ilo

-i
n

st
ru

ct
io

n
s

(M
P

K
I)

WordPress Drupal MediaWiki

(b) Cache analysis

0

0.2

0.4

0.6

0.8

1

WordPress Druapl MediaWiki

N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e

InOrder(2 wide) OoO(2 wide)
OoO(4 wide) OoO(8 wide)

(c) In-order vs. out-of-order behavior

Figure 5.1: Microarchitectural characterization of the content-rich PHP applications.

these applications clearly suffer from high misprediction rates. The poor predictor per-

formance is primarily due to the presence of a large number of data-dependent branches

in the PHP applications. The outcomes of data-dependent branches depend solely on

unpredictable data that the PHP applications process during most of their execution time.

Prior work on predicting data-dependent branches [24] may improve the MPKI of the PHP

applications.

Branch target buffer bottlenecks. Large-scale, content-rich PHP applications suffer

significantly from the poor performance of branch target buffers (BTBs) in server cores. We

simulate a BTB that resembles the BTB found in modern Intel server cores with 4K entries

and 2-way set associativity. Such behavior stems from the large number of branches in

the PHP applications. Around 12% of all dynamic instructions are branches in the SPEC

62

CPU2006 workloads [116], whereas in the PHP applications about 22% of all instructions

are branches, thus adding more pressure on BTB. Figure 5.1(a) shows the execution time of

one of the content-rich PHP applications, as the BTB size is progressively increased from

4K entries to 64K entries for different sizes of I-cache. However even with 64K entries, the

PHP application obtains a modest BTB hit rate of 95.85%. Deploying such large BTBs is not

currently feasible in server cores due to power constraints.

Cache analysis. Figure 5.1(b) presents the cache performance. L1 instruction and data

cache behavior are more typical of SPEC CPU-like workloads contrary to the instruction

cache behavior observed in prior works with other server-side applications (servers-side

Javascript applications [116] or memcached workloads [58]). Note that we simulate an

aggressive memory system with prefetchers at every cache level. Although there are

hundreds of leaf functions in the execution time distribution of these PHP applications,

they are compact enough that most of the hot leaf functions can be effectively cached in

the L1. Besides, the numerous data structures in these PHP applications do not appear to

stress the data cache heavily. The L2 cache has very low MPKI, as the L1 filters out most of

the cache references. Figure 5.1(a) shows the potential of minor performance gain with

very large instruction caches.

In-order vs. out-of-order. Figure 5.1c shows the impact four different architectures (2-

wide in-order, 2-wide out-of-order (OoO), 4-wide OoO, and 8-wide OoO) had on workload

execution time. Changing from in-order to OoO cores shows a significant increase in

performance. We also note that the 4-wide OoO shows fairly significant performance

gains over the 2-wide OoO architecture, hinting that some ILP exists in these workloads.

However, increasing to an 8-wide OoO machine shows very little (< 3%) performance

63

increase, hinting that ILP cannot be exploited for large performance benefits beyond 4-wide

OoO cores.

Overall, our analysis suggests that content-rich PHP applications require far more BTB

capacity and much larger caches than server cores currently provide to obtain even minor

performance benefit. In short, our analysis does not present any obvious potential target

for microarchitectural optimizations.

5.3 Mitigating PHP Abstraction Overhead

As microarchitectural analysis fails to reveal any clear opportunities for improvement,

we shift our focus towards augmenting the base processor with specialized hardware

accelerators. However, function-level acceleration is not an appealing solution for these

applications given their very flat execution profiles. Nevertheless, it is commonly known

that PHP-like scripting languages suffer from the high abstraction overheads of managed

languages. Overhead examples include dynamic type checks for primitive types, and

hash table accesses for user-defined types. Furthermore PHP, like all garbage collected

languages, suffers from the overhead of reference counting.

While there are many research proposals [4, 15, 14, 33] from the academic community

in mitigating each of these abstraction overheads separately, most of them have not been

adopted so far by the industry into commercial server processors. Considering the fact

that these abstraction overheads constitute a significant source of performance and energy

overhead in these PHP applications (as our results indicate), we believe the industry is more

likely to embrace these proposals sooner than later. So in order to mitigate the abstraction

64

overheads and get a clear view of what other fundamental activities are going to dominate

the execution time of these PHP applications in near future, we apply several hardware and

software optimizations from prior research together to these applications in our simulated

environment. Note that the objective of this exercise is not only to move the abstraction

overheads towards the tail of the distribution of these applications, but also to determine

the fundamental dominant activities in many of the leaf functions which were obscured by

these overheads that have known solutions. Next, we describe briefly those optimizations

from prior research proposals.

Inline Caching [15, 14] and Hash Map Inlining [33]. Modern JIT compilers [1, 100]

use inline caching (IC) to specialize code that accesses members in dynamically-typed objects.

With IC, access to a dynamically-typed object is specialized to a simple offset access from

the start of the object. A type check around that offset access ensures that the assumptions

used in the generation of specialized code hold at runtime. We extend the IC technique to

specialize these PHP applications’ accesses to hash maps as done in [33]. Further, we adopt

the recent proposal on hash map inlining [33] (HMI) (see Chapter 3) to specialize hash map

accesses with variable though predictable key names.

Type Checking. As discussed above, specialized code for accessing variables of

primitive or user-defined types now requires run-time type checks. We adopted a technique

from prior work [4] to mitigate this overhead in hardware. With this technique, the cache

subsystem performs the required type check for a variable before returning its value (see

Chapter 2).

Reference Counting. Reference counting constitutes a major source of overhead in

these PHP applications as it is spread across compiled code and many library functions.

65

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9
1

0
1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
2

0
2

1
2

2
2

3
2

4
2

5
2

6
2

7
2

8
2

9
3

0
3

1
3

2
3

3
3

4
3

5

%
 o

f
Ex

ec
u

ti
o

n
 T

im
e

Leaf functions

Baseline HipHop Baseline HipHop + Prior Optimizations

Compiled Code

Type Checking + Reference Counting

Inline Caching

Malloc Tuning

Reference Counting

WordPress

Figure 5.2: Contribution of leaf functions to the execution time of WordPress before and
after applying all optimizations.

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9
1

0
1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
2

0
2

1
2

2
2

3
2

4
2

5
2

6
2

7
2

8
2

9
3

0
3

1
3

2
3

3
3

4
3

5

%
 o

f
Ex

ec
u

ti
o

n
 T

im
e

Leaf functions

Regular Expression

String Function

Heap Management

Hash Map Access

Heap Management

String Function

Regular Expression

Others

Hash Map Access

Figure 5.3: Categorization of leaf functions of WordPress into major categories.

We adopted a hardware proposal from prior work that introduces minimal changes to the

cache subsystem to mitigate this overhead [42] (see Chapter 2).

In addition to applying the above four optimizations, we tuned the software heap

manager of the baseline HHVM infrastructure to reduce the overhead from expensive

memory allocation and deallocation calls to the kernel in these PHP applications.

Figure 5.2 demonstrates the effect of applying these above optimizations to the leaf

functions of one of the PHP applications, WordPress [107]. The left bar shows the contribu-

tion of the leaf functions to the overall execution time before applying the optimizations,

66

Hash map
access

Heap
management

String
manipulation

Regular
exp.

Others

(a) WordPress

Hash map
access

Heap
management

String
manipulation

Regular
exp.

Others

(b) Drupal

Hash map
access

Heap
management

String
manipulation

Regular
exp.

Others

(c) MediaWiki

Figure 5.4: Execution time breakdown after mitigating the abstraction overheads.

whereas the right bar shows their corresponding contribution after applying the optimiza-

tions. Clearly, the contribution of many leaf functions diminishes with these optimizations

(indicated by arrows), and as a result, the contributions of the remaining functions in the

overall distribution have gone up. More interestingly, many of the leaf functions in the

overall distribution now fall into four major categories – hash map access, heap manage-

ment, string manipulation, and regular expression processing, as shown by the different

color coding in Figure 5.3. This consequently presents opportunities to accelerate them in

hardware to obtain performance and energy efficiency. Figure 5.4 shows the execution time

breakdown of a few content-rich PHP applications after applying the above optimizations.

If a function contained aspects of one of the four categories, we grouped it into execution

time for that category.2 Since these four categories show the potential to improve the

execution efficiency of many leaf functions, we propose specialized hardware to accelerate

these activities.
2For the few functions containing aspects of multiple categories, it was placed in the category where it

spent more of its execution time.

67

5.4 Specializing the General-Purpose Core

In this section, we propose accelerators for the four major hot spots observed in the content-

rich PHP applications. We first describe the design principles that we followed while

developing these accelerators and then describe their hardware design.

5.4.1 Accelerator Design Principles

Recent explorations in cache-friendly accelerator design demonstrate the criticality and

feasibility of balancing the efficiency of application specific specializations with general-

purpose programmability using tightly-coupled accelerators [85]. We espouse a similar

accelerator design philosophy, and propose accelerators that adhere to the following design

principles so that they fit naturally into multi-core server SoCs.

a) They are VM and OS agnostic. The VM still observes the same view of software data

structures in memory.

b) They have cache interfaces and participate in the cache coherence mechanism.

c) They only accelerate the frequently-executed common path through each function.

Any unusual or unexpected condition is relegated to a software handler.

d) They are tightly coupled and are invoked via a small set of single-cycle instruction

extensions to the general-purpose ISA.

e) They rely on a shared virtual address space and maintain a coherent view of memory

to avoid the need for explicitly managed scratchpad memories.

Our evaluation shows that most memory references from these accelerators are small

68

and fall within the boundaries of a single 4KB page, so a single TLB lookup performed by

the invoking instruction is sufficient. The hardware for managing coherence is necessarily

somewhat complex, but, in our view, well worth the effort since it dramatically simplifies

deployment of these accelerators in a realistic multicore system.

5.4.2 Hash Table

In order to reduce the overhead from hash map accesses, we deploy a hash table in hard-

ware.

Overview. Content-rich PHP applications frequently access hash maps with dynamic

key names; such accesses cannot be converted to efficient offset references by software

methods [15, 14, 33]. Typically, these applications use many PHP commands that access

short-lived hash maps using dynamic key names. For example, the PHP extract command

is commonly used to import key-value pairs from a hash map into a local symbol table3

in order to communicate their values later to an appropriate application template that is

responsible for generating some dynamic content. Populating such a symbol table always

occurs using dynamic key names. Furthermore, these PHP applications often store key-

value pairs in a global or local symbol table to communicate their values to other functions

in the appropriate scope. For example, the regular expression manager shares a search

pattern (key) and its FSM table (value) with other appropriate functions through a hash

map. Accesses to all such hash maps occur using dynamic key names. More importantly,

such accesses to hash maps ease programming while developing large applications.

Proposed design. Figure 5.5 shows the hash table accelerator design. A critical
3A symbol table is implemented using a hash map.

69

Hash

Key Base address
(Hashmap DS)

Base
Address

Key
Value

pointer
Flags

Pointer to
Memory

Pointer to
Hash map

entry

Reverse Translation Table

Figure 5.5: Hardware hash table.

requirement with hardware-traversable hash tables is to bound the number of hash table

entries accessed per lookup. Thus, when a key is looked up in the hash table in our design,

several consecutive entries are accessed in parallel, starting from the first indexed entry, to

find a match. A hash table lookup in hardware thus reduces control-flow divergence and

exploits parallelism with hash map accesses. Note that it is not easy to extract parallelism

from a serial hash map walk in software because of the complex control flow, memory

aliasing, and numerous loop-carried dependencies.

Each hash table entry contains a string field to store a key, an 8-byte address (base

address of a hash map structure in memory), a pointer to the memory location of the value,

a dirty bit to indicate if the hash map structure in memory is required to be updated with

the corresponding key, and a valid bit. The valid and dirty bits assist in replacing entries

and making space for new incoming keys. The 8-byte address field contains the base

address of a hash map data structure, accesses to which for a key-value pair the hash table

attempts to provide a fast lookup. Thus, in response to a request, the hash table performs a

hash on the combined value of the key and the base address of the requested hash map to

index into an entry and begin the lookup process. Starting with the entry, when a hash

70

Table 5.1: Table comparing the hash table hit rate of the simplified hash function against
the original HHVM implementation.

Hash table size (#entries and associativity)
Hash Function 1(1) 4(1) 16(1) 64(1) 128(4) 256(4) 512(4) 1024(4)
HHVM (WordPress) 28.25 46.53 60.54 72.31 80.99 85.29 88.1 89.89
Simplified (WordPress) 28.25 44.08 61.52 71.9 80.68 84.6 87.59 89.39
HHVM (Drupal) 36.19 54.3 66.10 74.59 80.14 82.2 84.06 85.99
Simplified (Drupal) 36.19 53.13 66.70 73.44 79.9 81.96 83.77 85.72
HHVM (MediaWiki) 27.7 41.34 55.73 67.76 75.53 81.49 87.17 89.48
Simplified (MediaWiki) 27.7 40.96 56.02 64.22 75.42 81.64 86.34 88.68

table lookup is performed, each entry has its key and 8-byte base address compared with

the key and the base address of the request. Upon a match, the hash table updates the

entry’s last-access time stamp (for LRU replacement) and sends the response to the request.

If no match is found, control falls back to the software to perform the regular hash map

access in memory.

Design considerations. The HHVM JIT compiler [1] already uses an efficient hash

computation function that can operate on variable length strings (in our case the combi-

nation of a hash map base address and a key in it). However, we used a simplified hash

function for the hash table without compromising its hit rate. This is because the HHVM

hash function is overly complex to map into an efficient hardware module and it requires

many processor cycles to compute a hash. Table 5.1 compares the hit rate of the simplified

hash function against the original HHVM implementation and demonstrates negligible

loss in performance. Our design leverages several inherent characteristics of these PHP

applications.

First, in contrast to most large-scale memcached deployments [5, 58] where GET re-

quests vastly outnumber SET and other request types, these PHP applications observe a

relatively higher percentage of SET requests (ranging from 15− 25%) when generating

71

0%

5%

10%

15%

20%

25%

Fi
xe

d
Si

ze

M
ic

ro
B

lo
g

W
ik

i

Im
gP

re
vi

ew

Fr
ie

n
d

Fe
ed

W
o

rd
p

re
ss

D
ru

p
al

M
ed

ia
w

ik
i%

 R
eq

u
es

ts
 t

o
 H

as
h

 T
ab

le

% SET Requests

(a) Comparison of the percentage of SET
requests.

0

20

40

60

80

100

1
-4

 B

5
-8

 B

9
-1

2
 B

1
3

-1
6

 B

1
7

-2
4

 B

2
5

-3
2

 B

>
3

2
 B

C
D

F
%

Key Size

WordPress Drupal MediaWiki

(b) Cumulative distribution of hash table
key sizes.

Figure 5.6: Few characteristics of the PHP applications.

dynamic contents for web pages. As a result, a hash table deployed for such applications

should respond to both GET and SET requests in order to take full advantage of the hard-

ware hash table and offload most operations associated with hash map accesses from the

core. Figure 5.6a compares the percentage of SETs from the memcached workloads [58]

against the PHP applications. The first five workloads are memcached workloads. The

percentage of SETs is negligible for all but one of the memcached workloads whereas the

PHP applications observe high percentage of SETs ranging from 15−25%.

Second, the majority (about 95%) of the hash map keys accessed in these PHP applica-

tions are at most 24 bytes in length. Figure 5.6b shows the cumulative distribution of key

sizes. As a result, we store the keys in the hash table itself, unlike the hash table designed

for memcached deployments [58]. Storing the keys directly in the hash table eases the

traversal of the hash table in hardware.

We next discuss typical operations offloaded from a traditional software hash map

to our hardware hash table. Note that the allocation or the deallocation of a hash map

structure in memory is still handled by software.

GET. A GET request attempts to retrieve a key-value pair of the requested hash map

72

0

20

40

60

80

100

1
(1

)

2
(1

)

4
(1

)

3
2

(1
)

6
4

(1
)

1
2

8
(1

)

1
2

8
(4

)

2
5

6
(4

)

5
1

2
(4

)

1
0

2
4

(4
)

H
it

 R
at

e
%

Entries (Associativity)

WordPress Drupal MediaWiki

Figure 5.7: Hash table hit rate.

from the hash table without any software interaction. Upon a match, the hash table updates

the entry’s last-access time stamp. If the key is not found for the requested hash map,

control transfers to the software to retrieve the key-value pair from memory and places it

into the hash table. In order to make space for the retrieved key, if an invalid entry is not

found, then a clean entry (dirty bit not set) is given more priority for replacement. This

avoids any costly software involvement associated with replacing a dirty entry from the

hardware hash table. The hash map of a dirty entry is not up-to-date in memory with the

key-value pair and therefore requires software intervention in our design to be updated

when the entry is evicted. If none is found, the LRU dirty entry is replaced with incurring

the associated software cost.

SET. A SET request attempts to insert a key-value pair of the requested hash map into

the hash table without any software interaction. Upon finding a match, SET simply updates

the value pointer and the entry’s last-access time stamp. If the key is not found, then the

key-value is inserted into the hash table and the entry’s dirty bit is set. If an eviction is

necessary (due to hash table overflow), the same replacement policy as described for GET

is followed. Note that a SET operation silently updates the hash table in our design without

updating the memory. Figure 5.7 demonstrates the hit rate of such a hash table. Even a

73

hash table with only 256 entries observes a high hit rate of about 80%. Since SET operations

never miss in our design, a hash table with very few entries (1, 2 or 4) shows such a decent

hit rate. Having support of a SET operation in hardware helps in serving a major fraction

of the short-lived hash map accesses from the hash table.

Free. In response to deallocating a hash map from the memory, the hardware hash

table would (in a naive implementation) need to scan the entire table to determine the

set of entries belonging to the requested hash map. The reverse translation table (RTT) in

Figure 5.5 assists the hash table during this seemingly expensive operation. The RTT is

indexed by the base address of a requested hash map. Each RTT entry stores back pointers

to the set of hash table entries containing key-value pairs of a hash map. Each RTT entry

also has a write pointer. The write pointer assists in adding these back-pointers associated

with different key-value pairs of a hash map into the RTT entry in the same order as they

are inserted into the hash table. As a result, a SET operation adds a back pointer in a RTT

entry using the associated write pointer and increments it to point to the next available

position in the RTT entry. Consequently, each entry in the RTT is implemented using a

circular buffer. When an entry is evicted from the hash table, its back pointer in the RTT is

invalidated. Hence in response to a Free request, the RTT invalidates the hash table entries

of the requested hash map. This way, short-lived hash maps mostly stay in the hash table

throughout their lifetime without ever being written back to the memory.

foreach. The foreach array iterator in PHP iterates over the key-value pairs of a hash

map in their order of insertion. The RTT assists in performing this operation. It captures

the order of insertion and later updates the memory of the hash map using it in response

to a foreach command. Even if an inserted key-value pair is evicted from the hash table

74

and re-inserted later, the RTT can still guarantee the required insertion order invariant.

Ensure coherence. Each hash map in the hardware hash table has an equivalent

software hash map laid out in the conventional address space. The two are kept coherent

by enforcing a writeback policy from the hardware hash map, and by requiring inclusion of

the software equivalent at the L2 level. When a hash map is first inserted into the hardware

hash table, the accelerator acquires exclusive coherence permission to the entire address

range (depending on the size of the hash map, this could be several cache lines). If remote

coherence requests arrive for any hardware hash map entries, they are forwarded via

the RTT to the accelerator, which flushes out any entries corresponding to the address

range of the hash map (the same thing happens for L2 evictions to enforce inclusion). In

practice, the hash maps we target are small (requiring a handful of cache lines), process

private, and exhibit a lot of temporal locality (small hash maps are freed and reallocated

from the process-local heap), so there is virtually no coherence activity due to the hash

map accelerator. The software hash map stores each key/value pair in a table ordered

based on insertion, and also stores a pointer to that table in a hash table for fast lookup.

The hardware hash table only writes back to the former table while flushing out entries,

and marks a flag in the software hash map to indicate that the hash table of the software

hash map is now stale. Subsequent software accesses to the software hash map check this

flag and reconstruct the hash table if the flag is set. This is exceedingly rare in practice

(triggered only by process migration), so the reconstruction mechanism is necessary only

for correctness.

75

5.4.3 Heap Manager

Memory allocations and deallocations are ubiquitous in content-rich PHP applications.

They consume a substantial fraction of the execution time and are spread across many leaf

functions. To handle dynamic memory management, the VM typically uses the well-known

slab allocation technique. In slab allocation, the VM allocates a large chunk of memory and

breaks it up into smaller segments of a fixed size according to the slab class’s size and stores

the pointer to those segments in the associated singly-linked free list – list with addresses

to free chunks of memory of the same size.

Overview. We propose a heap manager with its most frequently accessed components

in hardware to improve its performance and energy-efficiency. Our hardware heap manager

is motivated by the unique memory usage pattern of these PHP applications.

First, a majority of the allocation and deallocation requests retrieve at most 128 bytes,

which reflects heavy usage of small memory objects. Figure 5.8a shows the cumulative

distribution of memory usage with different memory allocation slabs.

Second, these applications exhibit strong memory reuse. Such strong memory reuse

is due to the following reasons: (a) these applications insert many HTML tags while

generating dynamic contents for web pages. HTML tags are the keywords within a web

page that define how the browser must format and display the content. Generating and

formatting these HTML tags often require retrieving many attribute values from the

database, storing them in string objects and later concatenating those values to form the

overall formatted tag. Once a HTML tag is produced with all its required attributes, the

memory associated with these strings is recycled. (b) These applications typically process

76

0

20

40

60

80

100

0
-3

2
 B

3
2

-6
4

 B

6
4

-9
6

 B

9
6

-1
2

8
 B

1
2

8
-2

5
6

 B

2
5

6
-5

1
2

 B

>
5

1
2

B

C
D

F
%

Allocation Slabs

WordPress Drupal MediaWiki

(a) Cumulative memory usage with different
allocation slabs.

0

50

100

150

200

250

300

M
em

o
ry

 U
sa

ge
 (

B
yt

es
)

Th
o

u
sa

n
d

s

Program Execution

0-32 B 32-64 B 64-96 B 96-128 B

128-256 B 256-512 B > 512 B

Smaller Slabs

(b) Memory usage of WordPress.

0

50

100

150

200

250

M
em

o
ry

 U
sa

ge
 (

B
yt

es
)

Th
o

u
sa

n
d

s

Program Execution
0-32 B 32-64 B 64-96 B 96-128 B

128-256 B 256-512 B > 512 B

Smaller Slabs

(c) Memory usage of Drupal.

0

500

1000

1500

2000

2500

3000

3500

4000

M
e

m
o

ry
 U

sa
ge

 (
B

yt
e

s)

Th
o

u
sa

n
d

s

Program Execution
0-32 B 32-64 B 64-96 B 96-128 B

128-256 B 256-512 B > 512 B

Smaller Slabs

(d) Memory usage of MediaWiki.

Figure 5.8: Memory usage pattern of the PHP applications.

Comparator >>
Size
Class
Table

Update
Zero Flag

HW-Managed
Free List

Pointer-Based
Prefetching Table

Next Block
Pointer

Prefetch Address

State
Next

Address

Figure 5.9: Hardware heap manager.

large volumes of textual data, URL etc. Such processing commonly parses the content

through many string functions and regular expressions with frequent memory allocations

and deallocations to hold the string contents. To illustrate this, Figure 5.8b, Figure 5.8c,

and Figure 5.8d show memory usage pattern of three workloads during the course of their

execution. We see that memory usage mostly stays flat for the four smallest slabs of 0−32,

32−64, 64−96, and 96−128 bytes, demonstrating their strong memory reuse for the slabs

that dominate the total memory usage.

77

Proposed design. We deploy a heap manager with only its size class table and a few

free lists in hardware to capture the heavy memory usage of small objects and their strong

memory reuse. Figure 5.9 shows the high-level block diagram. The comparator limits the

maximum size of a memory allocation request that the hardware heap manager can satisfy.

The size class table chooses an appropriate hardware-managed free list for an incoming

request depending on its request size. Typically, a memory allocation request accesses the

size class table and retrieves an available memory block from the chosen hardware free list

without any software involvement. Upon finding a miss in the hardware free list, control

transfers to software to satisfy the memory allocation request from the software heap

manager. The hardware-managed free list for each size class has head and tail pointers to

orchestrate allocation and deallocation of memory blocks. Each free list has a next block

pointer also, the requirement of it is discussed later. Memory deallocation follows a similar

path. When an allocated memory block is being freed, the size class table identifies an

appropriate free list for the freed object and pushes the object to the top of the free list. If

adding the deallocated memory block overflows the maximum number of entries for the

given size class, the software handler returns the evicted block back to the software heap

manager.

At the start of a program, upon finding a miss for an available memory block in the

hardware-managed free list, the software handler retrieves a memory block from the

software heap manager and returns it to the caller. Additionally, it stores a copy of the

current head pointer (associated with the free list of the software heap manager it retrieved

the current memory block from) in the next block pointer field of the corresponding

hardware-managed free list. A prefetcher retrieves available memory blocks from the

78

software heap manager and keeps the hardware-managed free lists populated with them so

that a request for memory allocation can hide the latency of software involvement whenever

possible. We use a pointer-based prefetcher to prefetch the next available memory blocks

from the software heap manager structure. Since modern memory allocators provide the

location of the next available block when dereferencing the current block pointer4, the

pointer-based prefetcher uses the value returned by the current load to determine the next

iteration’s prefetch address. The core uses the size-class head pointer for push and pop

requests to/from a hardware-managed free list, and the prefetcher pushes to the location

of the tail pointer.

When a hardware free list is empty, the next block pointer field (populated by the

software handler upon finding a miss in the hardware heap manager accelerator) helps

the prefetcher to initiate prefetching available blocks from the software heap manager. As

the prefetcher prefetches blocks to the heap manager accelerator, it updates the next block

pointer field of the associated hardware-managed free list so that the field always points

to next available block of the corresponding free list in the software heap manager. Later,

upon finding a miss for an available block in the heap manager accelerator, the software

handler can consult this next block pointer field (if it is non-empty) to retrieve blocks from

memory. As long as the heap manager accelerator can satisfy a memory allocation or a

deallocation request, the head pointer of a free list in the software heap manager can stay

stale until an overflow from the hardware heap manager table or a context switch occurs
4The software free lists of modern memory allocators (TCMalloc [31] and jemalloc [22]) store the location

of the next available block at the address of the current memory block it is about to return, instead of allocating
a separate field in a struct for it. In addition to saving memory taken up by the free lists, dereferencing the
current head to get the next pointer has the side effect of prefetching the returned memory block itself, which
can likely help the caller.

79

or another process attempts to “steal” memory from the current process. So in summary,

upon finding a miss if the software handler finds the next block pointer field in the heap

manager accelerator as non-empty, it considers that as the up-to-date head pointer of the

associated free list of the memory-resident software heap manager structure and uses

that to retrieve a block from memory. Otherwise it relies on the head pointer field of the

software heap manager to retrieve blocks from memory.

When a hardware-managed free list in the heap manager accelerator overflows, the

software handler returns the evicted block back to the software heap manager and updates

the corresponding next block pointer field in the heap manager accelerator. In this case,

the software handler essentially updates the content of the second-to-last block (which

becomes the last block for the given free list post-eviction) in memory to point to the evicted

block (which can be done using a single str instruction). This essentially preserves the

linked list invariant of a software-managed free list in the heap manager data structure,

where the free list stores the location of the next available block at the address of the

current memory block it is going to return. Note that a memory allocation request from the

software handler may race with an inflight prefetch request to the same size class. The heap

manager accelerator keeps track of such prefetch requests. In the case when the response

to such a prefetch request reaches the heap manager accelerator, it is ignored to maintain

consistency with the software heap manager data structure.

Design considerations. Since a major fraction of the requests attempt to retrieve at

most 128 bytes, the hardware heap manager is restricted to serve requests that are at most

128 bytes in size. It uses only 8 memory allocation slabs to perform this, resulting in a

very small, power-efficient hardware heap manager. Furthermore, frequent memory reuse

80

means that in the common case it satisfies the requests from the hardware-managed free

list, resulting in very infrequent fall-backs to the software routine that handles any complex

cases. Concurrent research work on accelerating memory allocation [45] eagerly updates

head pointer and linked list of software heap manager on all malloc and free requests

to keep coherency of hardware heap manager accelerator with software heap manager.

However, due to the high memory reuse of these workloads, we instead lazily update the

software heap manager data structure only on overflow or during context switches. This

avoids the overheads of constantly updating memory to be coherent with the heap manager

accelerator during periods that the heap manager accelerator is servicing the common case

requests, while not causing any correctness errors or memory leaks.

Ideally, a large number of entries in a hardware-managed free list should help the heap

manager accelerator in the following ways. First, it will result in fewer prefetch requests

and overflows from the hardware free lists. This is especially true for applications that

allocate and deallocate at similar rates, since their memory requests can mostly be satisfied

from the hardware free lists without any software involvement. Second, If an application

generates bursts of memory allocation or deallocation requests in a short span of time,

having more entries in a hardware free list will allow the heap manager accelerator to

service the requests mostly from the free list. This is due to the fact that a wider free list will

provide the prefetcher enough time to prefetch available blocks from the memory-resident

software heap manager data structure while free blocks are being meanwhile served to the

bursty application from the head of the list.

At context switches, a software handler can flush the entries from the hardware-

managed free lists and reconstruct the free lists (while meeting the linked list invariant)

81

of the software heap manager in memory using a series of str instructions5. However

performing this in software will require many str instructions to execute and thus will

incur many processor cycles. Instead, a hardware state machine in our design performs

this seemingly expensive operation and flushes the hardware-managed free list entries to

memory while meeting the necessary linked list invariant of them. Once the hardware heap

manager accelerator is flushed, the head pointers (possibly stale) of the software-managed

free lists in the heap manager data structure are updated to point to the available memory

blocks.

Each hardware-managed free list has a corresponding prefetcher entry in the Pointer-

Based Prefetching Table (PPT) in our design (Figure 5.9). The PPT table contains fields for

the next address to be accessed, and state of the given PPT entry. For a given free list the

prefetcher entry can be in one of two primary states: untrained, or trained. Initially untrained,

upon satisfying a miss by the software handler, the address recorded in the next block

pointer field of a hardware free list is copied to the associated prefetcher entry and the state

transitions to trained. Once a prefetcher entry transitions to the trained state, it is allowed to

prefetch memory blocks to its associated hardware free list without restriction up to a high

watermark. The high watermark is enforced on a per free list basis and limits the number of

entries in the hardware list that can be occupied at any given time with prefetched blocks.

Upon satisfying memory allocation requests from a hardware list, whenever the number

of available blocks in the list drops below the high watermark, the prefetcher uses the next

address field to initiate prefetching blocks from memory. The high watermark threshold is
5A str instruction here updates the contents of the flushed blocks in a similar way as it does in case of

an overflow from the hardware heap manager table.

82

b a b c

a 0 1 0 0

b 1 0 1 0

c 0 0 0 1

0 0 1 0String

Op

Control
logic

p
a
t
t
e
r
n

Subject String

ASCII Compare

Matching
Matrix

+
Glue logic

Result String

Priority encoder /
Shifter

Output logic

Figure 5.10: Block diagram of string accelerator with string_find example searching for
’abc’ in a subject string ’babc’.

set to half the size of a free list in our design. This ensures that future memory deallocation

requests can push freed blocks to the top of a free list without excessively overflowing it.

5.4.4 String Accelerator

In order to reduce the cost of searching, modifying, or otherwise processing text in PHP

applications, we propose a generalized string accelerator. Although a significant portion

of execution time comes from this category of functions, the execution time is spread out

through numerous different string operations. These tasks include string finding, matching,

replacing, trimming, comparing, etc. Previous work, such as [103], propose methods for

string matching in hardware. However, the hardware proposed processes a single character

every cycle, leaving large opportunities for parallelism and higher throughput. Prior

designs also do not support the large variety of string operations we wish to accelerate.

Proposed design. We note that although string processing is an aggregation of many

functions, their overall operation can be broken down into common hardware sub-blocks.

By sharing hardware resources, we propose a single string accelerator that can perform

several of these operations, as opposed to creating a separate accelerator for every string

83

function.

In addition to matching, our accelerator can substitute characters, perform priority

encoding of matches, and determine ranges of character types (useful for detecting lower

case, upper case, alphanumeric, etc. characters). We also design our accelerator to process

multiple bytes per cycle to exploit concurrency that is not utilized in sequential (single-byte)

string accelerators. Figure 5.10 shows a high-level block diagram of our string accelerator.

It uses combinational logic to find the presence of pattern characters within the subject

string to populate a matrix (matching matrix in Figure 5.10). The matching matrix in turn

makes use of a glue logic to perform a string operation. For example, a string operation that

attempts to find the presence of a given pattern withing a subject string and thus requires

matching of multiple characters of the pattern uses AND gates of diagonal entries within

the matrix to find the position of consecutive character matches. Figure 5.10 shows the

subject string ’babc’ doing a string_find for ’abc.’

In the next paragraphs, we will present our accelerator with the example of six PHP

string manipulation functions, and explain our choice of these functions.

• memchr - Gives the position of the first instance of a character within a string.

• string_find - Gives the position of the first instance of a sub-string within a string.

• string_to_lower - Replaces all upper-case characters to lower-case characters.

• string_translate - Replaces all instances of character(s) with given character(s) within

a string.

84

Subject String

Matching
Matrix

Glue Logic

8*n

8*m

m*n
n

n
1

Priority
Encoder

2

Character
Replace

3

Shift Logic

4

P
ip

e
lin

e
 L

at
ch

Result / Done

glue_ctrl

8*n

Controls
opcode

O
u

tp
u

t
M

U
X

8*n

8*n

p1
p3p2 mux_selshift_ctrlreplace_ctrl

m-1

m-1

log(n)

P
ip

e
lin

e
 L

at
ch

P
ip

el
in

e
La

tc
h

p
a
t
t
e
r
n

Figure 5.11: Datapath of the string accelerator with control signals. The string accelerator
is either a 2- or 3-stage pipeline based on the given string operation.

• string_replace - Replaces all instances of a matching sub-string with a given sub-string

within a string.

• string_trim - Removes all consecutive instances of specified character(s) (typically

whitespace) from the beginning and end of a string.

Datapath and control. Figure 5.11 shows the more detailed datapath of the subblocks

and control used within our accelerator design. The numbers following each subblock

name corresponds with their number as shown in Figure 5.11. n andm correspond to the

input string width (in bytes) and number of pattern characters (in bytes), respectively. The

datapath numbers from Figure 5.11 are measured in number of bits.

ASCII compare (Matching Matrix) uses combinational logic to find the presence of pattern

characters within the subject string to populate a matching matrix. This operation is done

in parallel, and can process as many characters per cycle as is supported by the table width

and the width of subject string reads. The matching matrix is populated either by <, >, or

85

= comparisons set by the accelerator configuration. This component is used in all string

manipulation functions.

Glue Logic (1) uses combinational logic to populate the matching bitvector based on the

operation provided. The term “matching bitvector” is synonymous to the output of the

glue logic block of width n. For single character matching such as memchr, the matching

bitvector is simply the matching matrix’s vector for the character’s row. Operations that

require multiple conditions being met (such as string_to_lower) calculate the matching

bitvector by using an AND gate over multiple matching matrix rows (for example, >’A’-

1 and <’Z’+1) for the same input character (vertical AND). Operations may look for a

match of any number of characters (as in string_trim), and use a logical OR for the same

input character (vertical OR) to populate the matching bitvector. Operations that require

matching of consecutive characters use AND gates of diagonal entries within the matching

matrix to find the position of consecutive character matches. For example, Figure 5.10 shows

the subject string ’babc’ doing a string_find for ’abc.’ In order to support wrap-around, a

partial-match bitvector of size m− 1 is used the next cycle in order to calculate the full

matching bitvector.

The Priority Encoder (2) is used for string operations that require index calculation of

pattern/character matches. It takes the output from (1) (the matching bitvector) as its input,

and outputs the binary encoding of the position of the first logical ’1’. There is also a valid

bit for when there is a hit (the input bitvector is non-zero). For the string_trim operation, it

also has the capability of outputting the reverse priority encoding.

Character Replace (3) is used for string operations that require modification of the input

string. It takes the matching bitvector and input string as input, and replaces matching

86

input characters with the replacement character(s) as designated by the string function

opcode and source operands. If a string_replace operation has a replacement string larger

than the pattern string, a buffer contains the overflow characters (if any) to output the

following cycle.

Shift Logic (4) aligns the subject string to the correct address offset for string manipulation

that requires (re-)writing a resulting string to memory. It is also used for aligning characters

to the correct position for operations such as string_trim (where the positional shifting is

dependent on the output of (3)). The shifting logic block also contains output bitmasks.

The datapath is organized in such a way that control logic determines the correct combi-

nation of subblocks enabled based on the incoming string operation. Our string accelerator

engine supports several PHP string functions. However, all possible datapath flows of these

functions can be expressed with the above-mentioned six PHP string functions. We chose

these six functions because all additional string functions are slight variations from these

six operations, and can be mapped to the hardware using the same datapath structure.

Below we discuss how these six representative string functions use the different subblocks

of our string accelerator to perform their respective operations. Note that any block not

used by a function can be completely power-gated, since it is purely based on the string

function opcode. Multi-byte character sets (Unicode) can be handled by grouping the

single-byte characters comparisons in the simplified ASCII example shown. For the six

string functions, the (#) items refer to the hardware blocks that they use in Figure 5.11. For

example, "string_trim - (1), (2), and (4)" means that function string_trim uses the glue logic,

priority encoder, and shifting logic subblocks.

87

• memchr - (1) and (2). The glue logic control is set to directly copy the matching matrix

pattern row to be the matching bitvector. This is fed into the priority encoder, its

result being the final output. Pipeline stages p1 and p3 are clocked. The output MUX

selects the bypassed PE output.

• string_find - (1) and (2). Same as memchr, except the glue logic control is set to

use AND gates of diagonal entries to calculate the matching bitvector and partial-

matching bitvector. Note that partial match bitvectors at the end of the input string

are fed back into the glue logic to find potential matches next cycle.

• string_to_lower - (1) and (3). The glue logic uses vertical AND gates (satisfying multi-

ple conditions) to populate the matching bitvector for characters that are lowercase.

All bitvector hits replace their character with its complimentary uppercase character.

Pipeline stages p1 and p3 are clocked. The output MUX selects the bypassed (3)

output.

• string_translate - (1) and (3). This operation is slightly more complicated than the

other operations listed from a datapath perspective, since the position of replaced

characters is dynamic. The matching matrix output is passed to the second stage,

which means it has a larger glue logic output. From there, a crossbar is needed to

route the correct character to the correct bitvector matches. (3) uses the output of the

crossbar to replace the correct characters. Pipeline stages p1 and p3 are clocked. The

output MUX selects the bypassed (3) output.

• string_replace - (1), (3), and (4). The glue logic uses diagonal AND gates to calculate

88

the matching bitvector and partial-matching bitvector. Positive matches (of the full

matching bitvector) are replaced by the given substring from the operation. Note that

the order of replaced characters is known by the function call, and the position is

known by a single bitvector, so the crossbar logic from string_translate is not needed.

Ideally, the character replacement would occur in the second cycle. In order to support

wrap-around, if the partial bitvector becomes a positive match the following cycle, the

character replacement occurs on the third cycle, and the input string is buffered. Any

overflow characters are placed into a buffer to output next cycle. Shift logic aligns the

output string to write back to memory. Pipeline stages p1, p2, and p3 are clocked.

The output MUX selects the output of the shift logic.

• string_trim - (1), (2), and (4). The glue logic looks to see if the input string matches any

of the function trimmed characters. This is done through a vertical OR operation of

the characters of interest. However, since the function looks for the first NON-match,

we invert this result so the priority encoder does not have to be modified from other

string functions. The priority encoder finds the first (and/or last) non-matching

character for the input string. The input string can be directly fed into the shift logic

without using any of the character replace (3) logic. The shift logic uses these results

to align and mask the final output string accordingly. Pipeline stages p1, p2, and p3

are clocked. The output MUX selects the output of the shift logic.

Our accelerator design extracts concurrency by processing many bytes of the subject

string in parallel. Our design is not limited to sequential text processing, and therefore

can significantly increase string processing throughput. This is because each element in

89

the matching matrix does not require any other element’s output for correct calculation.

Additionally, due to the commonalities between the string manipulation functions, our

generalized accelerator supports many different operations with low overheads.

Design considerations.6 There are several important implementation details that are

required for correct operation. First, it is important to support wrap-around in string

matching operation, since a match is possible between read text-block boundaries. We

support this by buffering a partial-matching bitvector from the glue logic output and

feeding them back into the next-cycle glue logic sub-block. For example, in Figure 5.10,

the right-most diagonal AND of 2 elements would be the first bit in the partial-matching

bitvector. Second, since a few string functions such as string_to_upper and string_to_lower

are dependent on a range of many ASCII characters, we allow 6 of our matching matrix

rows to also support inequality comparisons, as opposed to exclusively equal comparisons.

We also allow our pattern length (rows in the matching matrix) and size of subject string

processed per cycle (columns in the matching matrix) to be configurable. Entries within

the ASCII compare matrix that are unused during a given operation can be clock-gated

to further reduce energy consumption. Coherence for writes to destination strings are

handled by standard coherence mechanisms, while ordering of memory writes with respect

to trailing loads is handled with a hardware interlock similar to a store queue in an out-of-

order processor. Since PHP strings are of known length (rather than null-terminated), this

coherence and consistency logic is straightforward to implement.
6I thank my lab colleague David Schlais for his help with designing and implementing the string acceler-

ator in Verilog-like hardware description language.

90

// Replace plain text characters into formatted HTML entities

(?<![\r\n\t]|\xC2\xA0|)'(…) sieve regexp

(?<=\A|[([{\-]|<|[\r\n\t]|\xC2\xA0|)"(…)
shadow regexp

...

// Find double \n\n

\n\n shadow regexp

// Find HTML block-level opening tags

<table|caption|..[\s/>] shadow regexp

Figure 5.12: Code snippet from WordPress. All four regexps look for special characters –
apostrophe, double quote, newline character and opening angle bracket (highlighted in
red).

5.4.5 Regular Expression Accelerator

Traditional regular expression (regexp) processing engines [73] are built around a character-

at-a-time sequential processing model that introduces high microarchitectural costs. Straight-

forward parallelization to multi-character inputs leads to exponential growth in the state

space [40]. Recent software-based solutions [9, 60, 81] use SIMD parallelism to mitigate that

and accelerate regexp processing, but they fail to exploit the regexp-intrinsic characteristics

in content-rich PHP applications. On the other hand, the high hardware cost associated

with parallel regexp accelerators [64, 91, 32] may deter their commercial deployment in the

near future. Instead, we exploit the inherent characteristics of the regexps in the content-

rich PHP applications to skip regexp processing of large volumes of textual data and thus

improve the overall execution efficiency. We exploit the following two key insights to

achieve that. We believe the two key observations exploited here are generic enough to

apply across a wide range of large-scale, content-rich PHP applications.

Content Sifting. These content-rich PHP applications process the same unstructured

textual content through a series of several regexps during their execution. Furthermore,

91

it is common for most of the regexps among them to seek the presence of some special

characters in the source content to convert them into appropriate HTML format or tags. In

this work, we classify the following characters {A-Za-z0-9_.,- } as regular characters and the

remaining ASCII characters as special characters. Figure 5.12 illustrates a set of consecutive

regexps from an example function of one of the PHP applications. First, all four regexps in

the example function process the same content one after another and second, they all look

for special characters – apostrophe, double quote, newline character and opening angle

bracket character in the source content7. For the sake of simplicity, we assume now that

these four regexps do not change the content, and relax this restriction later. We name the

first regexp in the set as the sieve regexp and the following ones as shadow regexps.

Now if the sieve regexp can confirm the presence of no special character in the incoming

content, the following shadow regexps can effectively skip scanning the content regardless

of the different special characters they look for. Although the sieve regexp must sift (hence

the name sieve) the incoming content to observe such a case, this approach can dramatically

improve the overall execution efficiency by preventing the shadow regexps from processing

the entire source content. In order to exploit this key observation, we use our proposed

string accelerator to sift the incoming source content in search of special characters during

the course of executing the sieve regexp. This outputs a bit vector indicating segments (of

some granularity) in the incoming content that may have some special characters. We name

these bit vectors as hint vectors, or HVs. Later, the shadow regexps can solely examine the

HV to orchestrate skipping the content. The X86 ISA’s count leading zeros instruction is used
7The first two regexps look for an apostrophe or double quote before they look behind [97] to find a match

for the first segment inside the parenthesis.

92

to find the next segment in the HV that requires regexp processing. This way the shadow

regexps can skip repeated processing of the similar content and thus can avoid character-

at-a-time sequential processing. The VM performs function level data flow analysis to

determine the dependency relationships between a set of consecutive regexps inside a

function and reveals this opportunity for content sifting. However, if the shadow regexps

update the initial content, it can change the segment boundaries in the content for which

the sieve regexp has generated the HV. This poses a problem because it thwarts content

sifting’s strategy of processing the source content once during the sieve regexp and leverage

the generated HV for all of the following regexps to improve execution efficiency.

Whitespace padding in HTML content. Fortunately, we can exploit the HTML spec-

ification, which allows an arbitrary number of linear white spaces in the response body,

to embed the appropriate number of whitespace characters in the updated content to

realign the segment boundaries to the existing HV. This ensures the seamless use of the

once generated HVs without reprocessing the updated content. For example, when an

HTML tag or new characters are inserted into a given text segment, (SEGMENT_SIZE−

inserted_text.length()) whitespace characters will be added to the text segment so that

subsequent hint vectors remain aligned within the segment boundaries.

Content Reuse. There exist regexps in the content-rich PHP applications that often

process almost similar content over and over during their execution. For example, they

sometimes scan URLs (https://locahost/?author=abc) of two author names with only

the name field (last field) in them changing from ’abc’ to ’xyz’. Furthermore, in these

PHP applications, HTML tags often observe similar attribute values, leading to generating

almost the same content for the regexps that process them.

93

PC ASID Content Size Next Valid
FSM State

...

PC X ASID X https://localhost/?author= 26 State Y

...

...

Content reuseFigure 5.13: Hardware content reuse table.

As a result, during the course of scanning the second URL, if the regexp can remember

observing the almost same content before, it can effectively skip parsing the content up

to which it has not changed from last time. Note that with content reuse, the regexps

can skip processing content even in the presence of special characters, which the content

sifting technique can not. We use a reuse table to capture this opportunity (Figure 5.13).

The reuse table is indexed by a regexp PC value, and address space identifier (ASID).

Each entry in the table has three fields – the first stores the matching content seen last

time when the regexp was executed, the second captures the content size, and the third

captures the state in the FSM table that the regexp can advance to if the incoming content

finds a match with the first field. When accessing the content reuse table, there are three

possible scenarios. First, there could be a PC, ASID, and content match. In this case, the

software can automatically jumpto the FSM state located in the hardware table. Second,

if there is a PC miss, ASID miss, or the first byte of content doesn’t match, we consider

that an invalid-miss. In this case, the new content is placed in the table (or overwriting

the previous entry if a PC + ASID hit), and the size and FSM fields in the table are cleared.

The software handler then traverses the FSM normally. In the last case, if there is a PC +

ASID hit, and a non-zero matching size differs from the size listed in the table (or size is

currently cleared), then the content and size fields are updated, and the software handler

94

0

20

40

60

80

100

WordPress Drupal MediaWiki

%
 T

o
ta

l C
o

n
te

n
t

Content Sifting Content Reuse

Figure 5.14: Opportunity with content sifting and content reuse. y-axis shows the per-
centage of total textual content in the entire application regexps can skip processing using
content sifting or content reuse.

will traverse the FSM to determine the new FSM state to jumpto in future hits of that size.

Once this state is determined, the software handler writes the FSM state in the table for

future accesses. Figure 5.13 shows the appearance of the content reuse table from the

example listed above. The ’Content’ field in the reuse table is limited to a maximum of

32 bytes for efficiency reasons. Figure 5.14 shows the percentage of textual content that

regexps can avoid processing using either content sifting or content reuse.

5.4.6 ISA Extensions

In order to invoke our tightly-coupled accelerators, we add ISA extensions. We added

hashtableget and hashtableset instructions to invoke GET and SET requests to the hash

table. The zero flag is raised upon a miss of a GET, or hash table overflow of a SET, in

which case the code branches to the software handler fallback. The state of the hash table

is hardware coherent, so no cleanup operations are required during context switches.

We also added hmmalloc and hmfree instructions in order to invoke malloc and free

requests through our hardware. Similar to the hash table, the zero flag is used to con-

ditionally branch to the software handler fallback. For hmmalloc, the flag is set if the

95

hardware’s requested size class is empty and requires involvement of the software handler

to gain the next free block. For hmfree, the flag is set if adding the new block overflows

the maximum number of entries for the given size class and requires involvement of the

software handler to return the evicted block back to the software heap manager. At context

switches, the hardware heap manager must flush its entries to the software heap manager

data structure. We do this by adding the instruction hmflush. hmflush invokes a hardware

state machine (as discussed in Section 5.4.3) in our heap manager accelerator to perform

the flush. hmflush is resumable in order to guarantee forward progress in the case that

multiple page faults occur during the flush.

We create the stringop[op] instruction to invoke our string accelerator. Six bits are

used as an extra opcode to specify which function (eg. trim, find, translate, etc. – denoted

[op]) the accelerator should perform, in addition to the source and destination registers.

For most of the string functions, the accelerator has a straightforward invocation based on

the source register passed. For complex string functions8, we create the strreadconfig

instruction, which populates the string accelerator’s matching matrix rows if it is not already

configured. Additionally, the string accelerator should return to its previous configuration

after a context switch. For this reason, we create a strwriteconfig instruction to store the

string accelerator’s current configuration. strreadconfig is also used to reinitialize the

string accelerator after a context switch.

To perform any regular expression matching, we replace the Perl Compatible Regular
8We denote complex string functions to require multiple row initializations of the string accelerator’s

matching matrix that are not determined by source operands (eg. string_to_upper and creating the HVs for the
regexp accelerator). These configurations can be large and may not be practical or feasible to pass as a source
operand, and therefore require the matching matrix to be loaded from memory using a separate instruction,
strreadconfig. strreadconfig is invoked at the start of the program and after context switches.

96

Expression (PCRE) library calls with our own APIs. We separate regular expression match-

ing into regexp_sieve and regexp_shadow. regexp_sieve is called on the first regular expression

for a set of data. It does the traditional regexp matching, in addition to populating the

HV (stored in memory) by invoking our string accelerator. Future calls are made with

regexp_shadow in order to optimize regexp searching in light of the populated HV. In order

to make use of the content reuse table, we create a regexlookup instruction. It searches the

table for a PC, ASID, and content match. In order to update the FSM state value, we create

a regexset instruction, which the software handler invokes after a duplicate substring is

found. The details of how and when the hardware is updated are explained in Section

5.4.5.

5.5 Related Work

This chapter touches on topics across a broad spectrum of computer systems related topics,

including, but not limited to: server core design, scripting language optimizations, and

domain-specific accelerators. We briefly discuss these areas below.

Server core design. In recent years, numerous research efforts have been devoted to

optimizing warehouse-scale(WSC) and big data workloads [46, 59, 58, 26, 6, 104] developed

in C++-like compiled languages. [46] has demonstrated in-depth microarchitectural char-

acterization of WSC workloads and provided several possible directions for architects to

accelerate them. Specialized interconnects [62] and customized hardware accelerators [75]

have been developed to optimize datacenters. Recently, distributed in-memory key-value

stores, such as memcached, have become a critical data serving layer for large scale Internet-

97

oriented datacenters. [58, 55] have identified microarchitectural inefficiencies with running

memcached workloads and proposed specialized hardware to mitigate them. Further,

there have been multiple recent efforts to address instruction cache bottlenecks [52, 41]

in datacenter workloads. [52] exploits the return (return from function calls) address

history to design much accurate instruction cache prefetchers, whereas [41] modifies cache

replacement policies to mitigate overheads from cache misses.

However, the software community is increasingly leaning towards scripting languages

due to their high programmer productivity [10]. As these live datacenters host millions of

web applications developed primarily in scripting languages (typically PHP and Javascript),

even small improvements in performance or utilization will translate into immense cost sav-

ings. Prior work [116] concentrated on server-side Javascript applications. However, PHP is

most commonly used [115, 105], representing over 80% [99] of all web applications. In this

context, our work is the first to present a comprehensive analysis of the microarchitectural

bottlenecks of large-scale, content-rich, server-side PHP applications.

Scripting language optimizations. There is a large body of research in optimizing the

performance of scripting languages from the software side. Prior works [17, 15, 14, 37, 30,

106, 36, 82, 47, 3, 33] attempt to mitigate abstraction overheads (see Section 5.3) associated

with these languages.

In recent years, research interest in developing new architectural support for server-side

and client-side scripting applications has gone up significantly. In the client side, Javascript

is used predominantly whereas PHP is the language of choice for server-side web devel-

opment [99]. [68, 4] propose microarchitectural changes to avoid runtime checks in jitted

execution of Javascript programs. [10] demonstrates the potential of asymmetric multi-

98

processors in mitigating the abstraction overheads even further. Front-end bottlenecks,

more specifically instruction cache misses are observed to be a major source of perfor-

mance bottlenecks in real-world Javascript applications. Prior works propose instruction

prefetching [12], pre-execution techniques [11] and modifying cache insertion policy [116]

to mitigate this. However, surprisingly the content-rich PHP applications in our work do

not observe instruction cache misses causing a performance bottleneck despite having the

presence of hundreds of leaf functions in their distribution. There are very few works in

exploring architectural support for PHP applications and they mainly experiment with

micro-benchmarks[2]. [2] improves the energy efficiency of SPECWeb2005 workloads by

aligning the execution of similar requests together. Instead our work focuses on large-scale,

content-rich PHP web applications and studies its implications on general-purpose server

cores that host those.

Specialization alternatives. A hash table that supports only GET operation has been

deployed in hardware before for memcached workloads [58]. Furthermore, [13] deployed

the entire memcached algorithm (supporting both GET and SET) in an FPGA platform.

However in addition to the two operations, the PHP applications require support for other

important PHP operations (for example, foreach) on hash maps. Without these features,

such a hash table in PHP environment will be highly inefficient and not safe to operate on.

Our hash table design supports these features, ensures CMP coherence of such table in a

multicore server platform and obtains efficiency by exploiting the inherent characteristics

(for example, short-lived hash maps) of PHP applications.

Dynamic heap management in its entirety is non-trivial to implement in hardware [46].

Our heap manager on the other hand relies on hardware only for the common case, allowing

99

software to provide full-featured dynamic heap management. It achieves that goal by

capturing the application-intrinsic characteristics: the strong memory reuse of the principal

data structures observed in the PHP applications.

Accelerating regular expression processing. Regular expression matches are tradi-

tionally found using deterministic finite automaton (DFAs) or non-deterministic finite

automaton (NFAs). DFAs use finite state machines and transition to different states based

on the input character and current state pairs. It is considered deterministic because the

output state for a given state/input-character combination will always be the same. How-

ever, the memory footprint of DFAs can be extremely large due to the “state explosion” or

“exponential blowup” in creating a deterministic output for each state. Alternatively, NFAs

allow multiple state transitions per input, and therefore are non-deterministic. In other

words, the NFA can simultaneously be in multiple states at the same time. NFAs solve the

exponential state space problem of DFAs, but is harder to implement the non-deterministic

nature, and can also be slower to reach the desired output. Both of these methods tradi-

tionally process a single character at a time. If attempting to process multiple characters at

once, the number of transitions grows exponentially when processing multiple characters

per cycle. More specifically,the number of possible transitions is αn, where α is the number

of characters in the automaton language, and n is the number of characters processed per

byte. For regular expression matching of typical text (natural language), this becomes

quickly infeasible to implement. However, due to the increasing demand to keep improving

performance, researchers have attempted to create accelerators to process multiple bytes

per cycle without these state explosions or exponential transitions.

In 2012, IBM released the RegX accelerator [64], a regular expression accelerator using

100

multiple parallel Balanced Routing Table based Finite State Machines (B-FSMs). It allows

separate patterns to update a general-purpose register for partial pattern matches. RegX

handles the exponential DFA state explosion problem by splitting multiple patterns to

different B-FSM machines and combined in a later reduction stage. It maintains high pattern

matching scanning rates even when searching thousands of patterns. In 2016, Tandon et al.

presented HAWK [91], a hardware accelerator for pattern matching. HAWK is based on the

Aho-Corasick algorithm to search for multiple regexp patterns simultaneously. It captures

concurrency by processing multiple characters per byte while using a bit-split automata [90]

to reduce transitions per state and number of states. In order to process multiple bytes per

cycle, it searches for all potential alignments of the designated pattern for the input text.

The patterns were limited to exact string matches of characters and fixed-length wildcards.

HAWK was later expanded to HARE (Hardware Accelerator for Regular Expressions) [32]

to also support character classes and partially support Kleene operators (+,*). A character

class unit (CCU) determined which classes each ASCII character belonged to through

populating a bitvector at compile-time of what character belonged to the given class.

We can see that these previous methods [9, 60, 81, 64, 91, 32] are very generic in nature,

and still require the entire text to be processed. However, the generic nature of these

optimizations has inherent overheads. Our regexp accelerator approaches the PHP regexps

from a different angle. Instead of optimizing generic regexps and generic input data, we take

advantage of known characteristics of the input text and regular expressions to skip large

portions of FA processing. Only when the input data cannot be skipped (either through

content sifting or at the end of content reuse), we fall back to traditional FA processing.

In summary, this work is orthogonal to the previous optimizations listed above. In other

101

words, our regexp accelerator can benefit further by adopting these prior proposals.

5.6 Summary

Server-side, content-rich PHP applications occupy a huge footprint in the world of web

development. By performing an in-depth analysis, we found potential for specialized

hardware to accelerate these PHP applications in a future server SoC. We believe the

behavioral characteristics that we found for three popular, large-scale, content-rich PHP

applications in this dissertation exist across a wide-range of other PHP web applications

such as Laravel [53], Symfony [89], Yii [110], Phalcon [74] etc. and hence will all gain

execution efficiency when using our proposed accelerators.

102

6 evaluation of php accelerators
This chapter evaluates our proposed domain-specific PHP accelerators and presents the

simulation results. Section 6.1 describes the large-scale, content-rich, server-side PHP

applications that we study. Section 6.2 describes the simulation infrastructure and approach.

Section 6.3 details the configurations of baseline processor and proposed accelerators.

Section 6.4 evaluates our propsed accelerators. Finally, Section 6.5 summarizes the chapter.

6.1 Experimental Workloads

We study three popular large-scale, content-rich PHP web applications – WordPress [107],

Drupal [20], and MediaWiki [67] from the oss-performance suite [39]. WordPress is report-

edly the easiest and most popular blogging platform in use today supporting more than 60

million websites [108], capturing 59% of the market share of PHP web frameworks [98].

Drupal powers at least 2.3% of all web sites worldwide (captures 4.7% of the market

share [98]), including some of the busiest sites on the web, ranging from discussion forums

and personal blogs to corporate sites [21]. MediaWiki serves as the platform for Wikipedia

and many other wikis, including some of the largest and most popular ones.

6.2 Simulation Infrastructure

In order to understand the characteristics of the PHP applications and guide the subsequent

architectural simulations, we conduct a system-level performance analysis using the linux

perf command on an Intel Xeon processor running 64-bit Ubuntu 12.04. We used the

103

load generator available with the oss-performance suite to generate client requests. The

load generator emulates load from a large pool of client clusters, closely imitating the

environment of commercial servers. It generates 300 warmup requests, then as many

requests as possible in next one minute. These experiments use the nginx web server [95],

configured to use the HHVM (with all its optimizations turned on) via FastCGI [25].

We use gem5 [94] for microarchitectural characterization of the PHP applications. We

evaluate our proposal using an in-house trace-driven simulator, which is described next.

6.2.1 Trace-Driven Simulator

All experiments are run using a trace-driven simulator, configured for an aggressive out-of-

order core modeled after an Intel Xeon-based (4 wide out-of-order) server microarchitecture.

The trace captures committed (completed) instructions along with their operand values

and simulation time stamps (commit time during execution). The instruction traces thus

recorded are used to simulate the performance benefits and energy savings from using our

proposed accelerators. In order to model the execution of our accelerators, we identified the

potential sites in the HHVM object code that can be offloaded to our proposed accelerators.

Later, when the simulator exercises a potential accelerator site in the recorded trace, it

replaces the elapsed time of the accelerated code in our baseline core with the access latency

(provided by CACTI and Verilog synthesis) of an accelerator (where it is offloaded to) in

case the accelerator satisfies the request.

Note that the simulator assumes that incorporating these accelerators in the baseline

core does not change the data cache access pattern as broadly observed in previous studies

104

on accelerators. As a result, memory references from these accelerators are assumed

to incur the same latencies as they do observe in the baseline server processor without

accelerators. Hence, while estimating the execution time of an offloaded code in our

specialized architecture, the simulator considers the access latency of the appropriate

accelerator in conjunction with the additional latencies (the same corresponding latencies

as in baseline core) in retrieving the “necessary” memory references from the accelerator.

However, since the hardware heap manager in our specialized architecture stores a small

size class table along with corresponding free list entries in hardware, it does not access the

data cache to retrieve these components from the software heap manager data structure

while satisfying a request from the hardware table. Hence, in case of a hardware heap

manager hit, the accelerated core does not incur any additional latencies from accessing the

software heap manager structure, which the simulator does model. In case of deallocating

a memory block to the hardware heap manager, if adding the new block overflows the

maximum number of entries for a given size class, then the software handler updates the

software heap manager structure with the evicted block (using a single str instruction).

The simulator accounts for this extra instruction.

When the hash table in our specialized core is invoked with the pointer (physical

memory address in our design) to a key and the base address of a requested hash map,

it retrieves the bytes corresponding to the requested key from memory and incurs the

same latencies as it would in our baseline core in retrieving that key from memory. Other

than that, the accelerated hash map access site does not experience any overhead from

traversing the memory-resident software hash map structure. Furthermore, when a dirty

entry is evicted from the hash table accelerator to make space for an incoming key-value

105

pair, a software handler requires to update the software hash map data structure with the

evicted key-value pair. The simulator takes into account the cycle costs associated with the

eviction.

The string accelerator and the regular expression accelerator are invoked with the

pointers of the various required string operands (subject string, pattern string and/or

replacement string) rather than the data itself. Hence, memory references from the string

accelerator and the regular expression accelerator do incur the same latencies as they would

in our baseline processor in accessing the data from memory. Our simulator models these

latencies in detail.

6.2.2 Area and Power Estimation

We use McPAT [56] to collect core power and energy. We use CACTI 6.5+ [56] to estimate

energy and area of three accelerators – hash table, heap manager, and regular expression

accelerator. We implement the string accelerator in Verilog and synthesize using TMSC

45nm standard cell library operating at 2GHz to estimate its area and energy per access.

6.3 Simulator Configuration

Our simulated server processor is configured similarly to the Intel Xeon-based (4 wide

out-of-order) server. Table 6.1 details the processor configuration. Among the proposed

accelerators, we implement the string accelerator in Verilog and synthesize using TMSC

45nm standard cell library operating at 2GHz. At 2GHz, the string accelerator requires

a maximum of 3 cycles to process up to 64 character blocks. We use CACTI 6.5+ [56] to

106

Table 6.1: Processor configuration

Category Configuration
Out-of-Order Core 2GHz, 4-wide fetch/commit, 5-wide issue

Reorder buffer: 168 entries
Instruction queue: 54 entries
Physical registers: 160 INT/144 FP
Load queue: 64 entries, Store queue: 36 entries
Branch Predictor: 32KB LTAGE
Branch target buffer: 4K entries

Execution Units Integer ALUs: 3 (1 cycle, 3 cycle multiply)
Memory: 2 (1 cycle AGU)
FP adder/multiplier: 2 (5 cycles)
FP div/square-root: 1 (10 cycles)

Memory/Caches L1 instruction: 32 KB, 4-way, 4 MSHRs, 1 cycle, 2-ahead tagged
prefetcher
L1 data: 32 KB, 4-way, 16 MSHRs, 3 cycles, 2-ahead stride prefetcher
L2: 2 MB, 8-way, 16 MSHRs, 12 cycles, 2-ahead stride prefetcher
Off-Chip Memory: 2GB DDR3-1600

estimate the access latency, energy and area of the remaining proposed accelerators. The

combined area overhead of the specialized hardware accelerators is 0.22 mm2. The hash

table, the heap manager, the string accelerator, and the regular expression accelerator take

about 0.12 mm2, 0.03 mm2, 0.05 mm2, and 0.02 mm2 of area respectively. An Intel Nehalem

core (precursor to the Xeon core with same fetch and issue width) measures 24.7 mm2

including private L1 and L2 caches. If integrated into a Nehalem or Xeon-based core, our

proposed specialized hardware is merely 0.89% of the core area. The hardware hash table

has 512 entries in our design. In response to a hash table access request, only 4 consecutive

entries are accessed (and in parallel) with the computed hash. This restricts the hash table

access latency to a constant 1 cycle after performing the initial hash computation. If no

match is found, control falls back to the software to perform the regular hash map access

in memory. The hardware heap manager has 8 size classes, each having 32 entries in its

corresponding free list. 32 entries provides enough flexibility to the prefetcher in hiding the

prefetch latency. The heap manager requires 1 cycle to satisfy a request from a hardware

free list. The content reuse table has 32 entries.

107

0

10

20

30

40

50

60

70

80

90

100

W
o

rd
P

re
ss

D
ru

p
al

M
ed

ia
W

ik
i

A
vg

.

N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e

Baseline HHVM

Baseline HHVM +
Prior Optimizations

Baseline HHVM +
Prior Optimizations
+ Accelerators

Figure 6.1: Improvement in execution time with applying prior optimizations and our
specialized hardware. Execution time is normalized to unmodified HHVM.

6.4 Results

Our evaluation is divided into five subsections. Section 6.4.1 presents the performance and

energy benefits obtained with deploying our specialized hardware. Section 6.4.2 illustrates

the detailed breakdown of performance benefits. Section 6.4.3 demonstrates the sensitivity

of the hash table’s hit rate, eviction rate and the resultant benefit to its size. Section 6.4.4

presents in detail the heap manager accelerator’s sensitivity to its free list size and number

of size classes. Finally, Section 6.4.5 details the string accelerator’s sensitivity to various

string functions and different input string sizes.

6.4.1 Performance and Energy Improvement

Figure 6.1 shows the improvement in execution from our specialized architecture. Applying

the prior research proposals as discussed in Section 5.3 brings down the average execution

time to about 88.15% of the time obtained with unmodified HHVM, whereas our specialized

core brings down the execution time further to 70.22%. Behind the 11.85% improvement

108

0

10

20

30

40

50

60

70

80

90

100

W
o

rd
P

re
ss

D
ru

p
al

M
ed

ia
W

ik
i

A
vg

.

N
o

rm
al

iz
ed

 E
n

er
gy

Baseline HHVM

Baseline HHVM +
Prior Optimizations

Baseline HHVM +
Prior Optimizations
+ Accelerators

Figure 6.2: Improvement in energy with applying prior optimizations and our specialized
hardware. Energy is normalized to unmodified HHVM.

in execution time from mitigating abstraction overheads, reducing the overheads of the

frequent reference counting mechanism contributes the most (on average 4.42%). Among

the three applications, Drupal shows the least opportunity (Figure 5.4), and consequently

benefits least from our proposed accelerators. Note that the performance benefit from our

accelerators will be even more prominent (19.79% on average) as future server processors

incorporate the prior optimizations.

We consider the reduction of dynamic CPU instructions (after using our accelerators) as

a simple proxy for estimating the CPU energy savings. Figure 6.2 shows the improvement

in energy from our specialized architecture. We calculate total energy consumption of

our accelerators by using simulation counters of the cycles offloaded to each accelerator,

multiplied by the accelerator energy numbers provided by CACTI and Verilog synthesis.

Applying the prior research proposals as discussed in Section 5.3 brings down the average

energy to about 89.3% of the energy observed in baseline unmodified HHVM. On average,

our specialized hardware delivers about 21.01% energy savings on top of the energy savings

obtained from deploying the prior proposals. Among the three PHP applications, the

109

0

10

20

30

40

50

60

70

80

90

100

G S G S G S G S

WordPress Drupal MediaWiki Avg.

N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e Regexp Processing

String Manipulation

Heap Management

Hash Map Access

Others

Figure 6.3: Breakdown of execution time. G refers to the execution time with applying
optimizations from prior works as discussed in Section 5.3, S refers to the execution time
with all our proposed accelerators. Execution time is normalized to G.

energy consumption for WordPress, Drupal, and MediaWiki drops by 26.06%, 16.75%,

and 19.81% respectively. Most of the energy savings are attributed to the reduction in the

execution of instructions. Note that the specialized architecture may also gain additional

energy benefit from fewer data cache accesses, since it now traverses hash table and heap

manager data structures in hardware.

Memory allocation requests (malloc and free) require on average 69 and 37 x86 micro-ops,

respectively, in software to execute (assuming cache hits). Hash map walks in software

require on average 90.66 x86 micro-ops. Our specialized architecture saves energy from

accelerating the frequently executed paths of these operations in hardware. The string

accelerator reduces instruction count by exploiting concurrency, whereas our regular

expression accelerator processes less content and thus performs less work by leveraging

the two content filtering techniques.

110

6.4.2 Breakdown of Execution Time

Figure 6.3 shows the breakdown of execution time for the PHP applications. The different

entries in the legend denote the time consumed in corresponding activities. We observe

that in general, the hardware heap manager delivers the biggest benefit (7.29% on average)

among all four accelerators. First, it is spread across many leaf functions, and second, the

hardware traversal of the size class table and the free lists not only reduces contention

in memory system, but also sometimes helps in avoiding cache misses otherwise occur-

ring with accessing those structures in memory. The hardware hash table also delivers

significant benefit of 6.45% on average across applications. The string accelerator and the

regular expression accelerator deliver 4.51% and 1.96% performance benefit, respectively.

WordPress observes considerable benefit from the regexp accelerator, whereas MediaWiki

obtains modest benefit. Although Drupal demonstrates significant opportunity in Fig-

ure 5.14 from the two regexp acceleration techniques, it does not translate into performance

gain, as it does not spend much time either in regexp processing or in string functions.

6.4.3 Sensitivity to the Hash Table Size

In order to observe the effects of hash table sizing on its hit and eviction rate and the

resultant speedup from the hash table accelerator, we sweep the size of the hardware hash

table from very small to very high number of entries with varying associativity. The results

of this sweep are shown in Figure 6.4. Since SET operations never miss in our design, a

hash table with very few entries (1, 2 or 4) exhibits such modest hit rates for WordPress and

MediaWiki in Figure 6.4a and Figure 6.4b respectively. Having support of a SET operation

111

0
10
20
30
40
50
60
70
80
90

100

1
(1

)

2
(1

)

4
(1

)

8
(1

)

1
6

(1
)

3
2

(1
)

6
4

(1
)

1
2

8
(1

)

1
2

8
(4

)

2
5

6
(4

)

5
1

2
(4

)

1
0

2
4

(4
)

2
0

4
8

(4
)

8
1

9
2

(1
6

)

3
2

7
6

8
(1

6
)

1
3

1
0

72
(1

6
)%

 o
f

H
as

h
 T

ab
le

 R
eq

u
es

ts

Entries (Associativity)

Hash Table Hits Entries Evicted

(a) Hash table hit and eviction rate (WordPress).

0
10
20
30
40
50
60
70
80
90

100

1
(1

)

2
(1

)

4
(1

)

8
(1

)

1
6

(1
)

3
2

(1
)

6
4

(1
)

1
2

8
(1

)

1
2

8
(4

)

2
5

6
(4

)

5
1

2
(4

)

1
0

2
4

(4
)

2
0

4
8

(4
)

8
1

9
2

(1
6

)

3
2

7
6

8
(1

6
)

1
3

1
0

72
(1

6
)%

 o
f

H
as

h
 T

ab
le

 R
eq

u
es

ts

Entries (Associativity)

Hash Table Hits Entries Evicted

(b) Hash table hit and eviction rate (MediaWiki).

Figure 6.4: Effect of hash table size on its hit and eviction rate.

in hardware helps in serving a major fraction of the short-lived hash map accesses from the

hash table. In order to make space for incoming key-value pairs in the hardware hash table,

a software handler writes back (evicts) dirty key-value pairs to memory-resident software

hash maps. As the eviction process must be performed in software, a low eviction rate is

desired to maximize the performance benefit obtained from using a hash table accelerator

with high hit rate. The eviction rate drops modestly with increase in the size of the hash

table for WordPress, whereas it decreases sharply for MediaWiki. A larger hash table

offers more time to a dirty key-value pair to reside in the hash table without being ever

written back before getting invalidated by a subsequent hash map Free request. The hit rate

improves promptly with increase in size of the hash table. However, once the hash table is

sized to 512 entries, the hit rate does not improve significantly with adding more entries.

With 512 entries, the eviction rate drops to 9.1% and 6.64% for WordPress and MediaWiki,

respectively. It drops to very low values of 0.2% and 1.6% with using much larger hash

tables (131072 entries). A hash table with 512 entries is close to achieve a high enough hit

rate and low enough eviction rate that matches an idealized design with unlimited hash

table entries.

112

-1

0

1

2

3

4

5

6

7

8

WordPress MediaWiki

N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e

1(1)

4(1)

16(1)

64(1)

128(4)

256(4)

512(4)

1024(4)

8192(16)

131072(16)

Figure 6.5: Effect of hash table size on speedup. Execution time is normalized to unmodified
HHVM.

Unsurprisingly, Figure 6.5 demonstrates that too small of a hash table results in almost

no speedup. With a 1 entry hash table, WordPress in fact observes slowdown rather than

speedup despite experiencing a modest hit rate of 28.25% (Figure 6.4a). The performance

benefit numbers in Figure 6.5 is normalized to the execution time of the PHP applications

obtained with unmodified HHVM framework. At a low hit rate with few hash table

entries, not only control frequently falls back to the software to perform regular hash map

access (the same instructions that we intended to optimize away) in memory but also the

additional cycles spent on performing hardware hash table lookups to determine a hit

or miss add significantly to the total cycle count. Besides, high enough eviction rates of

dirty key-value pairs from smaller hash tables (up to 64 entries) contribute significantly to

the total instruction count, overshadowing the modest hit rates of smaller tables and thus

causing only marginal benefit from deploying them. As the performance benefit does not

not change significantly beyond 512 entries, we choose a hash table accelerator with 512

entries in our design.

113

6.4.4 Sensitivity to the Heap Manager Size

Sensitivity to the size of free lists. Table 6.2 shows the distribution of time typically

provided to the pointer-based prefetcher to prefetch a block from the software heap manager

structure as the size of the hardware free list varies in our heap manager accelerator. A

hardware free list with fewer entries will provide its prefetcher less time and flexibility for

retrieving a block from memory, whereas a list with large number of entries will offer more

time to its prefetcher and will help it to be more timely. For example, for a hardware free

list of four entries, as the high watermark is set to two, typically in steady state the free list

will contain two available blocks and generate a prefetch request upon servicing a memory

allocation request. In this case, as long as the prefetch request can retrieve an available

block from memory before the third consecutive allocation request to the same hardware

list (assuming no intervening deallocation), it is capable of hiding the latency of the third

allocation request (which would have found a miss otherwise in the associated hardware

free list). The larger the size of a free list, the longer the difference between when a prefetch

request is generated and when it is likely to be used by an application.

As these PHP applications put less pressure on the cache hierarchy (Figure 5.1b), the

software free lists of the heap manager data structure are very likely to reside in the caches

during the course of a PHP script’s execution, if not in the private L1 cache all the time.

Hence, chances of prefetch requests experiencing more than a last level cache access latency

in retrieving available blocks from software free lists are very low. As shown in Table 6.2a,

even for a free list of size 2, WordPress only requires 0.45% of prefetch requests to retrieve

blocks within 15 cycles, whereas it offers 15−30, 30−60, 60−120, 120−240, 240−480, and

114

Table 6.2: Table showing the prefetch timeliness of the heap manager accelerator.

(a) Prefetch Timeliness (WordPress).
Free List Size (Number of Entries)

Time-to-use (cycles) 2 4 8 16 32 64
0-15 0.45 0 0 0 0 0
15-30 0.21 0 0 0 0 0
30-60 0.7 0 0 0 0 0
60-120 0.6 0 0 0 0 0
120-240 17.97 0 0 0 0 0
240-480 7.26 15.06 0 0 0 0
> 480 72.81 84.94 100 100 100 100

(b) Prefetch Timeliness (Drupal).
Free List Size (Number of Entries)

Time-to-use (cycles) 2 4 8 16 32 64
0-15 0 0 0 0 0 0
15-30 0 0 0 0 0 0
30-60 0.68 0 0 0 0 0
60-120 1.34 0 0 0 0 0
120-240 2.54 0 0 0 0 0
240-480 6.59 1.46 0.07 0 0 0
> 480 88.85 98.44 99.93 100 100 100

(c) Prefetch Timeliness (MediaWiki).
Free List Size (Number of Entries)

Time-to-use (cycles) 2 4 8 16 32 64
0-15 0.02 0 0 0 0 0
15-30 0.08 0 0 0 0 0
30-60 1.04 0 0 0 0 0
60-120 4.66 0.05 0 0 0 0
120-240 7.17 0.68 0 0 0 0
240-480 7.03 4.19 0 0 0 0
> 480 80.01 95.08 100 100 100 100

at least 480 cycles of latencies to 0.21%, 0.7%, 0.6%, 17.97%, 7.26%, and 72.81% of its prefetch

requests respectively to prefetch blocks from memory before they are used. A hardware

free list with more than 4 entries always offers its prefetch requests at least 480 cycles of

latency to retrieve blocks from software free lists and place it into the hardware table while

meanwhile servicing memory allocation requests from the top of the hardware free list.

Free lists of bigger sizes should provide more flexibility to the associated prefetchers in

hiding latencies and Table 6.2a confirms that. The same trend holds true for the other

two applications as well as shown in Table 6.2b and Table 6.2c for Drupal and MediaWiki

respectively. In short, smaller free lists do not in general affect the timeliness of prefetch

115

0

5

10

15

20

25

30

2 4 8 16 32 64 128 256 512%
 o

f
To

ta
l M

al
lo

c/
Fr

ee
 R

eq
u

es
ts

Size of free list

Prefetch Requests Overflows

(a) Prefetch requests and overflows from the heap
manager accelerator (WordPress).

0

10

20

30

40

50

60

70

2 4 8 16 32 64 128 256 512%
 o

f
To

ta
l M

al
lo

c/
Fr

ee
 R

eq
u

es
ts

Size of free list

Prefetch Requests Overflows

(b) Prefetch requests and overflows from the heap
manager accelerator (Drupal).

0

10

20

30

40

50

60

2 4 8 16 32 64 128 256 512%
 o

f
To

ta
l M

al
lo

c/
Fr

ee
 R

eq
u

es
ts

Size of free list

Prefetch Requests Overflows

(c) Prefetch requests and overflows from the heap
manager accelerator (MediaWiki).

Figure 6.6: Effect of free list size on number of prefetch requests and overflows generated
from the heap manager accelerator.

requests generated from them. Hence, the sensitivity study to free list size establishes

the fact that even a hardware list with fewer entries is capable of hiding the latencies of

prefetching blocks from memory. However, this comes at the expense of generating higher

number of prefetch requests and overflows from the hardware lists as discussed next.

Hence, a wider hardware free list primarily assists in saving energy for our experimental

workloads rather than improving their performance.

Since a memory allocation or a deallocation request typically requires on average only

a few tens of cycles1 in software, and our heap manager accelerator is tightly coupled to

a core, a high latency in accessing it will erase any gains from its deployment. This in
1A malloc and a free request typically require on average 38.83 and 19.94 cycles, respectively, in software

to execute (assuming hits in software free lists).

116

turn restricts the number of size classes and the length of their corresponding free lists in

hardware. In order to find the effects of free list sizing (with fixed number of size classes)

on the number of prefetch requests and overflows and subsequently on performance, we

sweep the sizes of free lists (with fixed number of size classes, for example, 8 in this case) to

contain from 2 to 512 entries. The results of this sweep are shown in Figure 6.6. It shows the

percentage of times a memory allocation request triggers a prefetch request or a memory

deallocation request overflows the hardware table as the number of entries in a free list is

varied.

Note that the amount of prefetch requests generated by the hardware free lists is nor-

malized to the number of memory allocation requests observed by the heap manager

accelerator whereas the number of overflows from them is normalized to the number of

memory blocks an application releases to the hardware table. A larger free list provides

enough flexibility to the applications to release memory blocks to the hardware heap

manager without necessarily overflowing it. As expected, as the size of the hardware free

lists increases in Figure 6.6, the number of generated prefetch requests and overflows from

them gradually goes down. An important point to note here is that Drupal generates a

much higher number of prefetch requests than the other two applications. As shown in

Figure 6.6b, on average in 65.18% cases, a memory allocation request in Drupal triggers a

prefetch request (upon the number of available blocks falling below the high watermark level)

for free lists with 2 entries in contrast to 28.52% and 54.85% cases for allocation requests in

WordPress and MediaWiki respectively, as shown in Figure 6.6a and Figure 6.6c. This is

attributed to the fact that Drupal generates memory allocation requests at a much higher

rate than it releases blocks to the free lists. This causes fewer reuse of memory blocks and

117

0

1

2

3

4

5

6

7

8

WordPress Drupal MediaWiki
N

o
rm

al
iz

ed
 E

xe
cu

ti
o

n
 T

im
e

1 (16 bytes)

2 (32 bytes)

3 (48 bytes)

4 (64 bytes)

5 (80 bytes)

6 (96 bytes)

7 (112 bytes)

8 (128 bytes)

> 8 (> 128 bytes)

Figure 6.7: Effect of varying number of size classes of the heap manager accelerator on
speedup. Execution time is normalized to unmodified HHVM.

results in generating more prefetch requests from the hardware list. The memory usage

of the smaller memory slabs in Drupal (Figure 5.8c) confirms this fact where its memory

usage never plateaus completely during its execution, as opposed to the memory usage

shown for the other two applications (Figure 5.8b and Figure 5.8d). Nevertheless, Drupal

offers enough time to the prefetcher to refill the hardware lists in a timely manner and thus

exploits the heap manager accelerator to achieve speedup even with smaller free lists, as

confirmed in Table 6.2b.

As shown in Figure 6.6, the free lists of 32 entries (with 8 size classes) generate fewer

prefetch requests and overflows (within 10-20% of prefetch requests and overflows gen-

erated by free lists with 512 entries) without increasing the access latency of the heap

manager accelerator. As a result, we choose a size class in our heap manager accelerator to

contain 32 entries in its corresponding free list.

Sensitivity to the number of size classes. Figure 6.7 shows how varying the number

of size classes, between 1 to more than 8 in the heap manager accelerator changes its

performance benefit. Note that the size of each size class is fixed to 32 free list entries as

decided from the sensitivity study to free list size. The addition of a size class increases

118

the maximum size of a memory allocation (or deallocation) request that the hardware

heap manager can satisfy by 16 bytes. For example, the heap manager accelerator with 1

size class can only service memory allocation requests of size up to 16 bytes. Similarly 2

size classes can service requests of size up to 32 bytes. Thus the heap manager accelerator

with 8 size classes in Figure 6.7 can serve requests that are at most 128 bytes in size. More

than 8 size classes in Figure 6.7 refers to caching all the size classes from the conventional

software heap manager to the hardware heap manager accelerator. The performance

benefit from varying size classes in Figure 6.7 is normalized to the execution time of the

PHP applications obtained with unmodified HHVM framework. Since a majority of the

allocation and deallocation requests in these PHP applications retrieve at most 128 bytes

(Figure 5.8a), a heap manager accelerator with first 8 size classes can capture most of the

performance benefit that can be achieved by caching all the size classes from the software

heap manager. As a result we consider to deploy a heap manager accelerator with first

8 size classes in our design. The first 4 size classes satisfy a substantial fraction of the

allocation requests for Drupal and MediaWiki. Later, when the number of size classes is

increased from 7 to 8, these two applications exhibit a sharp jump in speedup.

6.4.5 Sensitivity to the String Accelerator

Table 6.3 displays the number of execution cycles required to execute the following string

operations.2 Each of the other string functions not listed in the chart can be mapped to
2string_replace execution time has a data dependence on the size of the replacing substring, replaced

substring, and number of replacements made. These numbers [(a)-(b)] designate [(the execution time if the
replacing substring is 6 the size of the replaced substring with no wrap-around hits)] - [(execution time if
replacing substring is greater than the replaced substring and the total string length is 6 32 additional bytes
with wrap-around hits)]. Each additional 32 bytes greater than the original string takes an extra cycle of
execution time and buffering space in the accelerator.

119

Subject String Length (Bytes)
Function 32 64 96 128 256 512
memchr 2 2-3 2-4 2-5 2-9 2-17
string_find 2 2-3 2-4 2-5 2-9 2-17
string_replace 3-4 4-6 5-7 6-8 10-12 18-20
string_translate 2 3 4 5 9 17
string_to_lower 2 3 4 5 9 17
string_trim 3 4 5 5-6 5-10 5-18

Table 6.3: Table showing the string accelerator execution time of various functions based
on input string size.

one of the string functions in the chart to determine total execution time. For example,

string_find takes the same number of cycles as the memchr function. The numbers listed are

for a string engine accelerator having 32 columns (which means that it can insert 32 bytes

of subject string into the accelerator per cycle), and 32 rows (which means it can support a

pattern string of up to 32 bytes). However, most operations in these applications search

for significantly smaller patterns, so unused rows can be power-gated. The number of

columns and rows desired is configurable, and can be easily modified for other workloads

with different characteristics without breaking its functionality. The string engine can be

thought of as a variable-length pipeline. In this configuration, 32 bytes can be fed into the

pipeline every cycle, and the total latency to flow through the pipeline depends on the

current string operation being performed. Since pointers to the string are passed to the

string engine rather than the data itself, the execution time in this chart assumes data is

immediately available (L1 cache hits).

Some of the operations such as string_translate and string_to_lower have constant execu-

tion time based on the size of the subject string. This is because the entire subject string

must be read, the character replacement is well-defined, and no corner cases varies its

execution path.

Alternatively, some of the operations have variable execution time based on data-

120

dependencies. For these functions, the full range of possible execution time is shown.

In some cases of these functions, the hardware can preemptively return the result before

reading through the entire subject string. For example, memchr and string_find return the

position of the first match of the pattern character or substring, respectively. Regardless of

the subject string length, if the match is found in the first 32 bytes, the result is known and

the completed/ready bit can be set two cycles after invocation. However, if the match is

not found until the end of the subject string, the completed/ready bit will be set later. Trim

is the most complicated of the variable latency functions. It searches to remove leading and

trailing instances of a character (typically whitespace) in a given string. The pipeline latency

of the string_trim operation is 3 cycles. If the first non-matching character is detected in the

first 32 bytes, the accelerator can start searching from the end of the string (assuming string

size is known). The detection occurs within 2 cycles. For strings larger than 96 bytes, there

is potential to skip reading all of the input string. For these large strings, the execution

time could be completed in 5 cycles if a non-trimmed character exists in the first and last

block. (2 cycles for initial detection (pipeline fill) and 3 cycles for trim latency for the end

block processing). In the worst case, every 32-byte block must be read.

6.5 Summary

This chapter presents an evaluation of our proposed domain-specific accelerators for

realistic, content-rich, server-side PHP applications. Results show an average 17.93%

improvement in performance and 21.01% savings in energy while executing these large-

scale, content-rich PHP workloads on our simulation environment. The chapter includes

121

several sensitivity studies and contains a design-space exploration of the accelerators and

illustrates various design tradeoffs with their use.

122

7 conclusion and future directions

7.1 Conclusion

The explosive growth in the scale of users and digital data volumes in the last decade has

necessitated a corresponding increase in compute resources to extract and serve informa-

tion from the raw data. This has created a huge demand to expand existing data centers

and build more data centers. For example, Facebook utilizes more than 100,000 servers to

provide approximately one trillion page views per month (about 350K per second) and

1.2 million photo views per second [2]. The multi-megawatt power budgets of Internet

companies to drive those data centers have brought the spotlight on the performance of

PHP scripts in order to improve the energy economics of their web services. Considering

the fact that a web page access is typically dominated by the network latency, improving

the execution time of PHP scripts will matter very little from the perspective of an end user.

However, improving PHP’s execution time will play a significant role in drastically improv-

ing the server efficiency of Internet companies, leading to significant cost reductions for

both provisioning and operating large data centers. In this regard, this dissertation makes

two key contributions to improve the execution efficiency of server-side PHP applications.

We first propose a compiler optimization technique called Hash Map Inlining to elimi-

nate the overheads associated with accessing hash maps with variable key names, one of

the dominant overheads in server-side PHP applications. This is achieved by specializing

accesses to hash maps with variable key names at an access site, as long as the variable

at the access site sequences through a number of different, though predictable, fixed key

123

names at run time. This condition is trivially satisfied for the SQL runtime library functions

responsible for populating hash maps with variable key names and causing significant ob-

stacles to good performance in our experimental workloads. A prototype implementation

of HMI in the HipHop VM infrastructure shows promising performance benefits on real

hardware for a broad array of hash map-intensive server-side PHP applications.

However, we observe that our HMI technique is not very effective for large-scale, content-

rich PHP applications that spend most of their time in rendering web pages. In an attempt to

improve the execution efficiency of such server-side, content-rich PHP applications, we shift

our focus towards designing specialized hardware, as we could not find easy opportunity

for conventional microarchitectural enhancements while characterizing them. Four fine-

grained PHP activities - hash table accesses, heap management, string manipulation, and

regular expression handling are then identified as common building blocks across leaf

functions that constitute a significant fraction of total server cycles in these realistic, large-

scale PHP applications. Novel, inexpensive hardware accelerators are proposed for these

activities that accrue substantial performance and energy gains across dozens of functions.

Simulation results reflect that our specialized hardware offers a significant improvement

in performance and a considerable reduction in energy while executing the complex,

content-rich PHP applications on a state-of-the-art software and hardware platform.

The contributions made in this dissertation should significantly improve the efficiency

of web servers and thus in turn directly influence the throughput of data centers.

124

7.2 Future Work

This section discusses a number of potential avenues for future work that extend the

research conducted in this dissertation.

Explore the design space of tightly-coupled accelerators. Through our exploration

of tightly-coupled accelerators, we see many future directions that have previously been

unexplored for generic tightly-coupled accelerator analysis. Designing tightly-coupled

accelerators gave us many different implementation considerations that were difficult us-

ing existing design methods. Design considerations may include issue/dispatch logic,

data forwarding, interrupts, coherency, consistency models, memory arbitration, memory

hierarchy integration, pipeline integration, power/clock-gating, etc. We can see that all the

possible combinations of accelerator design choices can grow exponentially, making it dif-

ficult to choose the optimal design. For example, looking specifically at the issue/dispatch

logic, there are many design choices. There is a tradeoff between performance and hard-

ware complexity based on dispatch/issue logic implementation for speculative execution.

For non-speculative execution, the accelerator design is simpler, since there is no need for

recovery logic or checkpointing. Speculative execution increases hardware complexity, but

can increase performance.

One non-speculative dispatch policy is to make the accelerator instructions in-order

by stalling any future instructions after decoding an accelerator invocation instruction.

This requires the lowest accelerator hardware complexity since they do not have to worry

about data dependencies, checkpointing, branch mispredictions, or reordering between

125

accelerator invocations. Another non-speculative method could allow for instructions to

fill the reorder buffer, which requires register renaming logic as well as support for out of

order memory accesses (store queue), but captures ILP around the accelerator invocation.

Alternatively, to support speculative execution, there is a potential performance gain, but

at the cost of added hardware complexity to support squashes after branch mispredictions.

A speculative policy could require accelerator invocations to be in-order, while another

could allow reordering of accelerator invocations at the cost of complex checkpointing

recovery. As one can imagine, some accelerators may gain no benefit from allowing

reordering between accelerator invocations (if each invocation is dependent on the result

of the previous), and would use unnecessary power and area to support that functionality.

We can quickly see how the design choice is not obvious for a single characteristic, let alone

for combining all characteristics.

There are a few examples of added hardware (such as floating-point units, encryption

blocks, etc.) that have been integrated into cores over the years which can be thought of

as tightly-coupled accelerators. Currently, these accelerators appear to be individually

analyzed accelerator by accelerator, since we do not currently know of any prior work

which proposes an analytical model to predict which features to support for a given tightly-

coupled accelerator.

Since accelerators are currently a very hot topic in the computer architecture com-

munity and ever increasing in order to keep up with expected performance increases

every computer generation, we expect accelerators to become more and more common

for smaller and smaller groups of instructions (motivating tightly-coupled accelerators).

We expect analyzing accelerator designs individually to eventually become impractical,

126

motivating the need for an analytical model for quick design-space exploration. We also

expect speculative, out of order designs with frequent accelerator invocations to benefit not

only from the instruction acceleration, but also gain a significant benefit from ILP previ-

ously unexploited. This is because reducing instruction count increases the effective ROB

size. More specifically, ILP can be exploited by instructions before and after the accelerator

invocation that previously would not have fit in the same ROB window. We imagine that

ROB size, accelerated instruction length, acceleration factor, workload ILP, and other factors

could all be used together to create this analytical model for quickly modeling acceler-

ator design optimizations. We see lots of potential in analyzing the many design-space

choices of tightly-coupled accelerators and finding relations and analytical models for them.

Investigate the applicability of hash table accelerator in SpGEMM computation.

General sparse matrix-matrix multiplication (SpGEMM) is a fundamental building block

in various applications such as machine learning algorithms, algebraic multigrid method,

breadth first search and shortest path problem. In order to deal with the irregularity of

sparse matrices, a parallel SpGEMM algorithm requires to perform updates at random

positions in the output sparse matrix, which dominates the execution time [61]. Prior

works [61] attempt to mitigate this dominant overhead by parallel merge algorithms. In-

stead we would to like to explore the potential of our tightly-coupled hash table accelerator

to perform the parallel insert operations in hardware without incurring the associated soft-

ware overheads. Needless to say, deployment of such hash table accelerators will require

ensuring load balance of computation and coherency of generated data.

127

Explore the true potential of Content Sifting technique. Our regexp accelerator

takes advantage of known characteristics of the input text and regular expressions to

skip large portions of regexp processing in server-side PHP applications. In future, we

would like to investigate the true potential of this approach for a diverse set of regexp

workloads especially beyond the domain of scripting languages. ANMLZoo [102] is one

such diverse benchmark suite of regular expressions that we would like to experiment on

in near future. We would also like to see how our Content Sifting technique (used in our

regexp accelerator) embraces other prior works on parallelizing regexp processing [64, 91,

32] to further improve the execution efficiency of regexp processing.

Explore the potential of considering strings as primitive data types. In this thesis,

we observe that the large-scale, content-rich PHP applications spend significant fraction

of their execution time in string functions and a major percentage of the string functions

often process few characters (bytes) that can easily fit in CPU registers. However, since

string values in general may contain any number of characters, they are allocated from

or deallocated to heap memory in modern PHP VM infrastructures. Instead if strings are

considered as primitive data types like integers and floating-point numbers, most of the

overheads in managing heap-resident strings may be avoided, as they will then be stored

in and operated from (if possible) CPU register file across operations without necessarily

accessing them from heap memory.

128

7.3 Closing Remarks

While the performance overheads associated with scripting languages have been signifi-

cantly mitigated by a commendable growth in JIT compiler performance in recent years,

this source of mitigation is gradually drying up just as scripting languages are becoming

ubiquitous in today’s programming world. This will in turn not only require perform-

ing synergistic hardware/software cross-layer optimizations to sustain such significant

improvement in execution efficiency, but also will add more burden on the hardware

community to design future server processor architecture well-suited for running such

scripting language applications. Modern web services combine scripting languages, such

as PHP on the server side and JavaScript on the client side. Besides PHP and Javascript,

other scripting languages such as Python, Ruby, Lua, Perl, and MATLAB are being widely

used in various important domains across the computing industry.

Recent works have demonstrated significant improvement in Javascript’s execution

efficiency by proposing changes either to the underlying microarchitecture [11] or to

the cache subsystem [12, 116]. In this thesis, we follow a hardware/software co-design

approach to improve the execution efficiency of realistic, large-scale PHP applications.

Two primary features of the research presented in this thesis make me optimistic as

to its future relevancy: (1) it is based on observing characteristics in real-world, large-

scale applications, as opposed to characteristics observed in micro-benchmark suites, and

(2) domain-specific accelerators have a relatively high probability of seeing widespread

adoption in the years to come to sustain the improvement in execution efficiency of scripting

129

language applications. It would be exceptionally gratifying if at some point hindsight

indicates that the insights and the design philosophy presented in this thesis performed a

meaningful contribution to improving the execution efficiency of other important real-world

applications developed in either scripting or compiled languages beyond the boundary of

PHP scripting language.

130

bibliography
[1] K. Adams et al. “The Hiphop Virtual Machine”. In: Proceedings of the 2014 ACM

International Conference on Object Oriented Programming Systems Languages and Ap-
plications. OOPSLA ’14. Portland, Oregon, USA, 2014, pp. 777–790. doi: 10.1145/
2660193.2660199.

[2] S. R. Agrawal et al. “Rhythm: Harnessing Data Parallel Hardware for Server Work-
loads”. In: Proceedings of the 19th International Conference on Architectural Support for
Programming Languages and Operating Systems. ASPLOS ’14. Salt Lake City, Utah,
USA, 2014, pp. 19–34. doi: 10.1145/2541940.2541956.

[3] W. Ahn et al. “Improving JavaScript Performance by Deconstructing the Type Sys-
tem”. In: Proceedings of the 35th ACM SIGPLAN Conference on Programming Language
Design and Implementation. PLDI ’14. Edinburgh, United Kingdom, 2014, pp. 496–
507. doi: 10.1145/2594291.2594332.

[4] O. Anderson et al. “Checked Load: Architectural Support for JavaScript Type-
checking on Mobile Processors”. In: Proceedings of the 2011 IEEE 17th International
Symposium on High Performance Computer Architecture. HPCA ’11. Washington, DC,
USA, 2011, pp. 419–430.

[5] B. Atikoglu et al. “Workload Analysis of a Large-scale Key-value Store”. In: Proceed-
ings of the 12th ACM SIGMETRICS/PERFORMANCE Joint International Conference on
Measurement and Modeling of Computer Systems. SIGMETRICS ’12. London, England,
UK: ACM, 2012, pp. 53–64. isbn: 978-1-4503-1097-0. doi: 10.1145/2254756.2254766.
url: http://doi.acm.org/10.1145/2254756.2254766.

[6] I. Atta et al. “SLICC: Self-Assembly of Instruction Cache Collectives for OLTP Work-
loads”. In: Proceedings of the 2012 45th Annual IEEE/ACM International Symposium
on Microarchitecture. MICRO-45. Vancouver, B.C., CANADA: IEEE Computer Soci-
ety, 2012, pp. 188–198. isbn: 978-0-7695-4924-8. doi: 10.1109/MICRO.2012.26. url:
http://dx.doi.org/10.1109/MICRO.2012.26.

[7] P. Biggar, E. de Vries, and D. Gregg. “A Practical Solution for Scripting Language
Compilers”. In: Proceedings of the 2009 ACM Symposium on Applied Computing. SAC
’09. Honolulu, Hawaii, 2009, pp. 1916–1923. doi: 10.1145/1529282.1529709.

[8] S. M. Blackburn, P. Cheng, and K. S. McKinley. “Myths and Realities: The Per-
formance Impact of Garbage Collection”. In: Proceedings of the Joint International
Conference on Measurement and Modeling of Computer Systems. SIGMETRICS ’04/Per-
formance ’04. New York, NY, USA: ACM, 2004, pp. 25–36. isbn: 1-58113-873-3. doi:
10.1145/1005686.1005693. url: http://doi.acm.org/10.1145/1005686.1005693.

[9] R. D. Cameron and D. Lin. “Architectural Support for SWAR Text Processing with
Parallel Bit Streams: The Inductive Doubling Principle”. In: Proceedings of the 14th
International Conference on Architectural Support for Programming Languages and Op-
erating Systems. ASPLOS XIV. Washington, DC, USA: ACM, 2009, pp. 337–348. isbn:
978-1-60558-406-5. doi: 10.1145/1508244.1508283. url: http://doi.acm.org/10.
1145/1508244.1508283.

http://dx.doi.org/10.1145/2660193.2660199
http://dx.doi.org/10.1145/2660193.2660199
http://dx.doi.org/10.1145/2541940.2541956
http://dx.doi.org/10.1145/2594291.2594332
http://dx.doi.org/10.1145/2254756.2254766
http://doi.acm.org/10.1145/2254756.2254766
http://dx.doi.org/10.1109/MICRO.2012.26
http://dx.doi.org/10.1109/MICRO.2012.26
http://dx.doi.org/10.1145/1529282.1529709
http://dx.doi.org/10.1145/1005686.1005693
http://doi.acm.org/10.1145/1005686.1005693
http://dx.doi.org/10.1145/1508244.1508283
http://doi.acm.org/10.1145/1508244.1508283
http://doi.acm.org/10.1145/1508244.1508283

131

[10] T. Cao et al. “The Yin and Yang of Power and Performance for Asymmetric Hardware
and Managed Software”. In: Proceedings of the 39th Annual International Symposium
on Computer Architecture. ISCA ’12. Portland, Oregon: IEEE Computer Society, 2012,
pp. 225–236. isbn: 978-1-4503-1642-2. url: http://dl.acm.org/citation.cfm?id=
2337159.2337185.

[11] G. Chadha, S. Mahlke, and S. Narayanasamy. “Accelerating Asynchronous Programs
Through Event Sneak Peek”. In: Proceedings of the 42Nd Annual International Sympo-
sium on Computer Architecture. ISCA ’15. Portland, Oregon: ACM, 2015, pp. 642–654.
isbn: 978-1-4503-3402-0. doi: 10.1145/2749469.2750373. url: http://doi.acm.
org/10.1145/2749469.2750373.

[12] G. Chadha, S. Mahlke, and S. Narayanasamy. “EFetch: Optimizing Instruction Fetch
for Event-driven Webapplications”. In: Proceedings of the 23rd International Conference
on Parallel Architectures and Compilation. PACT ’14. Edmonton, AB, Canada: ACM,
2014, pp. 75–86. isbn: 978-1-4503-2809-8. doi: 10.1145/2628071.2628103. url: http:
//doi.acm.org/10.1145/2628071.2628103.

[13] S. R. Chalamalasetti et al. “An FPGA Memcached Appliance”. In: Proceedings of the
ACM/SIGDA International Symposium on Field Programmable Gate Arrays. FPGA ’13.
Monterey, California, USA: ACM, 2013, pp. 245–254. isbn: 978-1-4503-1887-7. doi:
10.1145/2435264.2435306. url: http://doi.acm.org/10.1145/2435264.2435306.

[14] C. Chambers and D. Ungar. “Customization: Optimizing Compiler Technology
for SELF, a Dynamically-typed Object-oriented Programming Language”. In: Pro-
ceedings of the ACM SIGPLAN 1989 Conference on Programming Language Design and
Implementation. PLDI ’89. Portland, Oregon, USA: ACM, 1989, pp. 146–160. isbn:
0-89791-306-X. doi: 10.1145/73141.74831. url: http://doi.acm.org/10.1145/
73141.74831.

[15] C. Chambers, D. Ungar, and E. Lee. “An Efficient Implementation of SELF a Dynamically-
typed Object-oriented Language Based on Prototypes”. In: Conference Proceedings on
Object-oriented Programming Systems, Languages and Applications. OOPSLA ’89. New
Orleans, Louisiana, USA, 1989, pp. 49–70. doi: 10.1145/74877.74884.

[16] G. E. Collins. “A Method for Overlapping and Erasure of Lists”. In: Commun. ACM
3.12 (Dec. 1960), pp. 655–657. issn: 0001-0782. doi: 10.1145/367487.367501. url:
http://doi.acm.org/10.1145/367487.367501.

[17] L. P. Deutsch and A. M. Schiffman. “Efficient Implementation of the Smalltalk-80
System”. In: Proceedings of the 11th ACM SIGACT-SIGPLAN Symposium on Principles
of Programming Languages. POPL ’84. Salt Lake City, Utah, USA: ACM, 1984, pp. 297–
302. isbn: 0-89791-125-3. doi: 10.1145/800017.800542. url: http://doi.acm.org/
10.1145/800017.800542.

[18] M. Dietzfelbinger et al. “Dynamic Perfect Hashing: Upper and Lower Bounds”.
In: SIAM J. Comput. 23.4 (Aug. 1994), pp. 738–761. issn: 0097-5397. doi: 10.1137/
S0097539791194094. url: http://dx.doi.org/10.1137/S0097539791194094.

http://dl.acm.org/citation.cfm?id=2337159.2337185
http://dl.acm.org/citation.cfm?id=2337159.2337185
http://dx.doi.org/10.1145/2749469.2750373
http://doi.acm.org/10.1145/2749469.2750373
http://doi.acm.org/10.1145/2749469.2750373
http://dx.doi.org/10.1145/2628071.2628103
http://doi.acm.org/10.1145/2628071.2628103
http://doi.acm.org/10.1145/2628071.2628103
http://dx.doi.org/10.1145/2435264.2435306
http://doi.acm.org/10.1145/2435264.2435306
http://dx.doi.org/10.1145/73141.74831
http://doi.acm.org/10.1145/73141.74831
http://doi.acm.org/10.1145/73141.74831
http://dx.doi.org/10.1145/74877.74884
http://dx.doi.org/10.1145/367487.367501
http://doi.acm.org/10.1145/367487.367501
http://dx.doi.org/10.1145/800017.800542
http://doi.acm.org/10.1145/800017.800542
http://doi.acm.org/10.1145/800017.800542
http://dx.doi.org/10.1137/S0097539791194094
http://dx.doi.org/10.1137/S0097539791194094
http://dx.doi.org/10.1137/S0097539791194094

132

[19] G. Dot, A. Martínez, and A. González. “Analysis and optimization of engines for
dynamically typed languages”. In: 27th International Symposium on Computer Archi-
tecture and High Performance Computing (SBAC-PAD), 2015. IEEE. 2015, pp. 41–48.

[20] “Drupal. https://www.drupal.org/”. In:
[21] “Drupal wikipedia. https://en.wikipedia.org/wiki/Drupal”. In:
[22] J. Evans. “Scalable memory allocation using jemalloc, https://goo.gl/rvl2oK”. In:

2011.
[23] Y. Fang et al. “Fast Support for Unstructured Data Processing: The Unified Automata

Processor”. In: Proceedings of the 48th International Symposium on Microarchitecture.
MICRO-48. Waikiki, Hawaii: ACM, 2015, pp. 533–545. isbn: 978-1-4503-4034-2. doi:
10.1145/2830772.2830809. url: http://doi.acm.org/10.1145/2830772.2830809.

[24] M. U. Farooq, Khubaib, and L. K. John. “Store-Load-Branch (SLB) Predictor: A
Compiler Assisted Branch Prediction for Data Dependent Branches”. In: Proceedings
of the 2013 IEEE 19th International Symposium on High Performance Computer Archi-
tecture (HPCA). HPCA ’13. Washington, DC, USA: IEEE Computer Society, 2013,
pp. 59–70. isbn: 978-1-4673-5585-8. doi: 10.1109/HPCA.2013.6522307. url: http:
//dx.doi.org/10.1109/HPCA.2013.6522307.

[25] “FastCGI. https://en.wikipedia.org/wiki/FastCGI”. In:
[26] M. Ferdman et al. “Clearing the Clouds: A Study of Emerging Scale-out Workloads

on Modern Hardware”. In: Proceedings of the Seventeenth International Conference
on Architectural Support for Programming Languages and Operating Systems. ASPLOS
XVII. London, England, UK: ACM, 2012, pp. 37–48. isbn: 978-1-4503-0759-8. doi:
10.1145/2150976.2150982. url: http://doi.acm.org/10.1145/2150976.2150982.

[27] T. B. Ferreira et al. “An experimental study on memory allocators in multicore
and multithreaded applications”. In: 2011 12th international conference on parallel and
distributed computing, applications and technologies (pdcat). IEEE. 2011, pp. 92–98.

[28] “Flow – a static type checker for JavaScript. https://github.com/facebook/flow”.
In:

[29] M. L. Fredman, J. Komlós, and E. Szemerédi. “Storing a Sparse Table with 0(1) Worst
Case Access Time”. In: J. ACM 31.3 (June 1984), pp. 538–544. issn: 0004-5411. doi:
10.1145/828.1884. url: http://doi.acm.org/10.1145/828.1884.

[30] A. Gal et al. “Trace-based Just-in-time Type Specialization for Dynamic Languages”.
In: Proceedings of the 2009 ACM SIGPLAN Conference on Programming Language De-
sign and Implementation. PLDI ’09. Dublin, Ireland, 2009, pp. 465–478. doi: 10.1145/
1542476.1542528.

[31] S. Ghemawat and P. Menage. “TCMalloc : Thread-Caching Malloc, http://goog-
perftools.sourceforge.net/doc/tcmalloc.html”. In: 2007.

[32] V. Gogte et al. “HARE: Hardware Accelerator for Regular Expressions”. In: Proceed-
ings of the 2016 49th Annual IEEE/ACM International Symposium on Microarchitecture.
MICRO-49. Taipei, Taiwan: IEEE Computer Society, 2016.

http://dx.doi.org/10.1145/2830772.2830809
http://doi.acm.org/10.1145/2830772.2830809
http://dx.doi.org/10.1109/HPCA.2013.6522307
http://dx.doi.org/10.1109/HPCA.2013.6522307
http://dx.doi.org/10.1109/HPCA.2013.6522307
http://dx.doi.org/10.1145/2150976.2150982
http://doi.acm.org/10.1145/2150976.2150982
http://dx.doi.org/10.1145/828.1884
http://doi.acm.org/10.1145/828.1884
http://dx.doi.org/10.1145/1542476.1542528
http://dx.doi.org/10.1145/1542476.1542528

133

[33] D. Gope and M. H. Lipasti. “Hash Map Inlining”. In: Proceedings of the 2016 Inter-
national Conference on Parallel Architectures and Compilation. PACT ’16. Haifa, Israel:
ACM, 2016, pp. 235–246. isbn: 978-1-4503-4121-9. doi: 10.1145/2967938.2967949.
url: http://doi.acm.org/10.1145/2967938.2967949.

[34] D. Gope, D. J. Schlais, and M. H. Lipasti. “Architectural Support for Server-Side
PHP Processing”. In: Proceedings of the 44th International Symposium on Computer
Architecture. ISCA ’17. Toronto, Canada, 2017.

[35] N. Goulding-Hotta et al. “The GreenDroid Mobile Application Processor: An Archi-
tecture for Silicon’s Dark Future”. In: IEEE Micro 31.2 (Mar. 2011), pp. 86–95. issn:
0272-1732. doi: 10.1109/MM.2011.18. url: http://dx.doi.org/10.1109/MM.2011.
18.

[36] B. Hackett and S.-y. Guo. “Fast and Precise Hybrid Type Inference for JavaScript”. In:
Proceedings of the 33rd ACM SIGPLAN Conference on Programming Language Design
and Implementation. PLDI ’12. Beijing, China: ACM, 2012, pp. 239–250. isbn: 978-1-
4503-1205-9. doi: 10.1145/2254064.2254094. url: http://doi.acm.org/10.1145/
2254064.2254094.

[37] U. Hölzle, C. Chambers, and D. Ungar. “Optimizing Dynamically-Typed Object-
Oriented Languages With Polymorphic Inline Caches”. In: Proceedings of the Eu-
ropean Conference on Object-Oriented Programming. ECOOP ’91. London, UK, UK:
Springer-Verlag, 1991, pp. 21–38. isbn: 3-540-54262-0. url: http://dl.acm.org/
citation.cfm?id=646149.679193.

[38] A. Homescu and A. Şuhan. “HappyJIT: A Tracing JIT Compiler for PHP”. In: Pro-
ceedings of the 7th Symposium on Dynamic Languages. DLS ’11. Portland, Oregon, USA,
2011, pp. 25–36. doi: 10.1145/2047849.2047854.

[39] “https://github.com/hhvm/oss-performance”. In:
[40] N. Hua, H. Song, and T. Lakshman. “Variable-stride multi-pattern matching for

scalable deep packet inspection”. In: INFOCOM 2009, IEEE. IEEE. 2009, pp. 415–423.
[41] A. Jaleel et al. “High performing cache hierarchies for server workloads: Relaxing

inclusion to capture the latency benefits of exclusive caches”. In: 2015 IEEE 21st
International Symposium on High Performance Computer Architecture (HPCA). IEEE.
2015, pp. 343–353.

[42] J. A. Joao, O. Mutlu, and Y. N. Patt. “Flexible Reference-counting-based Hardware
Acceleration for Garbage Collection”. In: Proceedings of the 36th Annual International
Symposium on Computer Architecture. ISCA ’09. Austin, TX, USA: ACM, 2009, pp. 418–
428. isbn: 978-1-60558-526-0. doi: 10.1145/1555754.1555806. url: http://doi.acm.
org/10.1145/1555754.1555806.

[43] C. Jung and N. Clark. “DDT: Design and Evaluation of a Dynamic Program Analysis
for Optimizing Data Structure Usage”. In: Proceedings of the 42Nd Annual IEEE/ACM
International Symposium on Microarchitecture. MICRO 42. New York, New York, 2009,
pp. 56–66. doi: 10.1145/1669112.1669122.

http://dx.doi.org/10.1145/2967938.2967949
http://doi.acm.org/10.1145/2967938.2967949
http://dx.doi.org/10.1109/MM.2011.18
http://dx.doi.org/10.1109/MM.2011.18
http://dx.doi.org/10.1109/MM.2011.18
http://dx.doi.org/10.1145/2254064.2254094
http://doi.acm.org/10.1145/2254064.2254094
http://doi.acm.org/10.1145/2254064.2254094
http://dl.acm.org/citation.cfm?id=646149.679193
http://dl.acm.org/citation.cfm?id=646149.679193
http://dx.doi.org/10.1145/2047849.2047854
http://dx.doi.org/10.1145/1555754.1555806
http://doi.acm.org/10.1145/1555754.1555806
http://doi.acm.org/10.1145/1555754.1555806
http://dx.doi.org/10.1145/1669112.1669122

134

[44] C. Jung et al. “Brainy: Effective Selection of Data Structures”. In: Proceedings of the
32Nd ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion. PLDI ’11. San Jose, California, USA, 2011, pp. 86–97. doi: 10.1145/1993498.
1993509.

[45] S. Kanev et al. “Mallacc: Accelerating Memory Allocation”. In: Proceedings of the
Twenty-Second International Conference on Architectural Support for Programming Lan-
guages and Operating Systems. ASPLOS ’17. Xi’an, China: ACM, 2017, pp. 33–45. isbn:
978-1-4503-4465-4. doi: 10.1145/3037697.3037736. url: http://doi.acm.org/10.
1145/3037697.3037736.

[46] S. Kanev et al. “Profiling a Warehouse-scale Computer”. In: Proceedings of the 42Nd
Annual International Symposium on Computer Architecture. ISCA ’15. Portland, Ore-
gon: ACM, 2015, pp. 158–169. isbn: 978-1-4503-3402-0. doi: 10 . 1145 / 2749469 .
2750392. url: http://doi.acm.org/10.1145/2749469.2750392.

[47] M. N. Kedlaya et al. “Improved Type Specialization for Dynamic Scripting Lan-
guages”. In: Proceedings of the 9th Symposium on Dynamic Languages. DLS ’13. Indi-
anapolis, Indiana, USA, 2013, pp. 37–48. doi: 10.1145/2508168.2508177.

[48] C. Kim et al. “Short-circuit Dispatch: Accelerating Virtual Machine Interpreters
on Embedded Processors”. In: Proceedings of the 43rd International Symposium on
Computer Architecture. ISCA ’16. Seoul, Republic of Korea: IEEE Press, 2016, pp. 291–
303. isbn: 978-1-4673-8947-1. doi: 10.1109/ISCA.2016.34. url: http://dx.doi.org/
10.1109/ISCA.2016.34.

[49] C. Kim et al. “Typed Architectures: Architectural Support for Lightweight Scripting”.
In: Proceedings of the Twenty-Second International Conference on Architectural Support
for Programming Languages and Operating Systems. ASPLOS ’17. Xi’an, China: ACM,
2017, pp. 77–90. isbn: 978-1-4503-4465-4. doi: 10.1145/3037697.3037726. url: http:
//doi.acm.org/10.1145/3037697.3037726.

[50] Y. Klonatos et al. “Building Efficient Query Engines in a High-level Language”. In:
Proc. VLDB Endow. 7.10 (June 2014), pp. 853–864. issn: 2150-8097. doi: 10.14778/
2732951.2732959.

[51] O. Kocberber et al. “Meet the Walkers: Accelerating Index Traversals for In-memory
Databases”. In: Proceedings of the 46th Annual IEEE/ACM International Symposium
on Microarchitecture. MICRO-46. Davis, California: ACM, 2013, pp. 468–479. isbn:
978-1-4503-2638-4. doi: 10.1145/2540708.2540748. url: http://doi.acm.org/10.
1145/2540708.2540748.

[52] A. Kolli, A. Saidi, and T. F. Wenisch. “RDIP: Return-address-stack Directed In-
struction Prefetching”. In: Proceedings of the 46th Annual IEEE/ACM International
Symposium on Microarchitecture. MICRO-46. Davis, California: ACM, 2013, pp. 260–
271. isbn: 978-1-4503-2638-4. doi: 10.1145/2540708.2540731. url: http://doi.acm.
org/10.1145/2540708.2540731.

[53] “Laravel. https://laravel.com/”. In:

http://dx.doi.org/10.1145/1993498.1993509
http://dx.doi.org/10.1145/1993498.1993509
http://dx.doi.org/10.1145/3037697.3037736
http://doi.acm.org/10.1145/3037697.3037736
http://doi.acm.org/10.1145/3037697.3037736
http://dx.doi.org/10.1145/2749469.2750392
http://dx.doi.org/10.1145/2749469.2750392
http://doi.acm.org/10.1145/2749469.2750392
http://dx.doi.org/10.1145/2508168.2508177
http://dx.doi.org/10.1109/ISCA.2016.34
http://dx.doi.org/10.1109/ISCA.2016.34
http://dx.doi.org/10.1109/ISCA.2016.34
http://dx.doi.org/10.1145/3037697.3037726
http://doi.acm.org/10.1145/3037697.3037726
http://doi.acm.org/10.1145/3037697.3037726
http://dx.doi.org/10.14778/2732951.2732959
http://dx.doi.org/10.14778/2732951.2732959
http://dx.doi.org/10.1145/2540708.2540748
http://doi.acm.org/10.1145/2540708.2540748
http://doi.acm.org/10.1145/2540708.2540748
http://dx.doi.org/10.1145/2540708.2540731
http://doi.acm.org/10.1145/2540708.2540731
http://doi.acm.org/10.1145/2540708.2540731

135

[54] S. Lee, T. Johnson, and E. Raman. “Feedback Directed Optimization of TCMalloc”.
In: Proceedings of the Workshop on Memory Systems Performance and Correctness. MSPC
’14. Edinburgh, United Kingdom: ACM, 2014, 3:1–3:8. isbn: 978-1-4503-2917-0. doi:
10.1145/2618128.2618131. url: http://doi.acm.org/10.1145/2618128.2618131.

[55] S. Li et al. “Architecting to Achieve a Billion Requests Per Second Throughput
on a Single Key-value Store Server Platform”. In: Proceedings of the 42Nd Annual
International Symposium on Computer Architecture. ISCA ’15. Portland, Oregon: ACM,
2015, pp. 476–488. isbn: 978-1-4503-3402-0. doi: 10.1145/2749469.2750416. url:
http://doi.acm.org/10.1145/2749469.2750416.

[56] S. Li et al. “McPAT: An Integrated Power, Area, and Timing Modeling Frame-
work for Multicore and Manycore Architectures”. In: Proceedings of the 42Nd Annual
IEEE/ACM International Symposium on Microarchitecture. MICRO 42. New York, New
York: ACM, 2009, pp. 469–480. isbn: 978-1-60558-798-1. doi: 10 . 1145 / 1669112 .
1669172. url: http://doi.acm.org/10.1145/1669112.1669172.

[57] T. Li et al. “Operating system support for overlapping-ISA heterogeneous multi-
core architectures”. In: 2010 IEEE 16th International Symposium on High Performance
Computer Architecture (HPCA). IEEE. 2010, pp. 1–12.

[58] K. Lim et al. “Thin Servers with Smart Pipes: Designing SoC Accelerators for Mem-
cached”. In: Proceedings of the 40th Annual International Symposium on Computer Ar-
chitecture. ISCA ’13. Tel-Aviv, Israel: ACM, 2013, pp. 36–47. isbn: 978-1-4503-2079-5.
doi: 10.1145/2485922.2485926. url: http://doi.acm.org/10.1145/2485922.
2485926.

[59] K. Lim et al. “Understanding and Designing New Server Architectures for Emerging
Warehouse-Computing Environments”. In: Proceedings of the 35th Annual Interna-
tional Symposium on Computer Architecture. ISCA ’08. Washington, DC, USA: IEEE
Computer Society, 2008, pp. 315–326. isbn: 978-0-7695-3174-8. doi: 10.1109/ISCA.
2008.37. url: http://dx.doi.org/10.1109/ISCA.2008.37.

[60] D. Lin et al. “Parabix: Boosting the efficiency of text processing on commodity
processors”. In: 18th IEEE International Symposium on High Performance Computer
Architecture, HPCA 2012, New Orleans, LA, USA, 25-29 February, 2012. 2012, pp. 373–
384. doi: 10.1109/HPCA.2012.6169041. url: http://dx.doi.org/10.1109/HPCA.
2012.6169041.

[61] W. Liu and B. Vinter. “An efficient GPU general sparse matrix-matrix multiplica-
tion for irregular data”. In: IEEE 28th International Parallel and Distributed Processing
Symposium, 2014. IEEE. 2014, pp. 370–381.

[62] P. Lotfi-Kamran et al. “Scale-out Processors”. In: Proceedings of the 39th Annual In-
ternational Symposium on Computer Architecture. ISCA ’12. Portland, Oregon: IEEE
Computer Society, 2012, pp. 500–511. isbn: 978-1-4503-1642-2. url: http://dl.acm.
org/citation.cfm?id=2337159.2337217.

http://dx.doi.org/10.1145/2618128.2618131
http://doi.acm.org/10.1145/2618128.2618131
http://dx.doi.org/10.1145/2749469.2750416
http://doi.acm.org/10.1145/2749469.2750416
http://dx.doi.org/10.1145/1669112.1669172
http://dx.doi.org/10.1145/1669112.1669172
http://doi.acm.org/10.1145/1669112.1669172
http://dx.doi.org/10.1145/2485922.2485926
http://doi.acm.org/10.1145/2485922.2485926
http://doi.acm.org/10.1145/2485922.2485926
http://dx.doi.org/10.1109/ISCA.2008.37
http://dx.doi.org/10.1109/ISCA.2008.37
http://dx.doi.org/10.1109/ISCA.2008.37
http://dx.doi.org/10.1109/HPCA.2012.6169041
http://dx.doi.org/10.1109/HPCA.2012.6169041
http://dx.doi.org/10.1109/HPCA.2012.6169041
http://dl.acm.org/citation.cfm?id=2337159.2337217
http://dl.acm.org/citation.cfm?id=2337159.2337217

136

[63] C.-K. Luk et al. “Pin: Building Customized Program Analysis Tools with Dynamic
Instrumentation”. In: Proceedings of the 2005 ACM SIGPLAN Conference on Program-
ming Language Design and Implementation. PLDI ’05. Chicago, IL, USA: ACM, 2005,
pp. 190–200. isbn: 1-59593-056-6. doi: 10.1145/1065010.1065034. url: http://doi.
acm.org/10.1145/1065010.1065034.

[64] J. V. Lunteren et al. “Designing a Programmable Wire-Speed Regular-Expression
Matching Accelerator”. In: Proceedings of the 2012 45th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture. MICRO-45. Vancouver, B.C., CANADA: IEEE
Computer Society, 2012, pp. 461–472. isbn: 978-0-7695-4924-8. doi: 10.1109/MICRO.
2012.49. url: http://dx.doi.org/10.1109/MICRO.2012.49.

[65] S. Manegold, M. L. Kersten, and P. Boncz. “Database Architecture Evolution: Mam-
mals Flourished Long Before Dinosaurs Became Extinct”. In: Proc. VLDB Endow. 2.2
(Aug. 2009), pp. 1648–1653. issn: 2150-8097. doi: 10.14778/1687553.1687618. url:
http://dx.doi.org/10.14778/1687553.1687618.

[66] J. McCarthy. “Recursive Functions of Symbolic Expressions and Their Computation
by Machine, Part I”. In: Commun. ACM 3.4 (Apr. 1960), pp. 184–195. issn: 0001-0782.
doi: 10.1145/367177.367199. url: http://doi.acm.org/10.1145/367177.367199.

[67] “MediaWiki. https://www.mediawiki.org/wiki/MediaWiki”. In:
[68] M. Mehrara and S. Mahlke. “Dynamically Accelerating Client-side Web Applica-

tions Through Decoupled Execution”. In: Proceedings of the 9th Annual IEEE/ACM
International Symposium on Code Generation and Optimization. CGO ’11. Washington,
DC, USA, 2011, pp. 74–84.

[69] “MongoDB. https://www.mongodb.org/”. In:
[70] “MySQL DBMS. https://www.mysql.com/”. In:
[71] “Oracle Database. https://www.oracle.com/database/index.html”. In:
[72] S. Padmanabhan et al. “Block Oriented Processing of Relational Database Operations

in Modern Computer Architectures”. In: Proceedings of the 17th International Con-
ference on Data Engineering. Washington, DC, USA: IEEE Computer Society, 2001,
pp. 567–574. isbn: 0-7695-1001-9. url: http://dl.acm.org/citation.cfm?id=
645484.656552.

[73] “PCRE - Perl Compatible Regular Expressions. http://www.pcre.org/”. In:
[74] “Phalcon. https://phalconphp.com/en/”. In:
[75] A. Putnam et al. “A Reconfigurable Fabric for Accelerating Large-scale Datacenter

Services”. In: Proceeding of the 41st Annual International Symposium on Computer Ar-
chitecuture. ISCA ’14. Minneapolis, Minnesota, USA: IEEE Press, 2014, pp. 13–24. isbn:
978-1-4799-4394-4. url: http://dl.acm.org/citation.cfm?id=2665671.2665678.

[76] V. Raman et al. “Constant-Time Query Processing”. In: Proceedings of the 2008 IEEE
24th International Conference on Data Engineering. ICDE ’08. Washington, DC, USA:
IEEE Computer Society, 2008, pp. 60–69. isbn: 978-1-4244-1836-7. doi: 10.1109/ICDE.
2008.4497414. url: http://dx.doi.org/10.1109/ICDE.2008.4497414.

http://dx.doi.org/10.1145/1065010.1065034
http://doi.acm.org/10.1145/1065010.1065034
http://doi.acm.org/10.1145/1065010.1065034
http://dx.doi.org/10.1109/MICRO.2012.49
http://dx.doi.org/10.1109/MICRO.2012.49
http://dx.doi.org/10.1109/MICRO.2012.49
http://dx.doi.org/10.14778/1687553.1687618
http://dx.doi.org/10.14778/1687553.1687618
http://dx.doi.org/10.1145/367177.367199
http://doi.acm.org/10.1145/367177.367199
http://dl.acm.org/citation.cfm?id=645484.656552
http://dl.acm.org/citation.cfm?id=645484.656552
http://dl.acm.org/citation.cfm?id=2665671.2665678
http://dx.doi.org/10.1109/ICDE.2008.4497414
http://dx.doi.org/10.1109/ICDE.2008.4497414
http://dx.doi.org/10.1109/ICDE.2008.4497414

137

[77] A. Rigo and S. Pedroni. “PyPy’s Approach to Virtual Machine Construction”. In:
Companion to the 21st ACM SIGPLAN Symposium on Object-oriented Programming
Systems, Languages, and Applications. OOPSLA ’06. Portland, Oregon, USA, 2006,
pp. 944–953. doi: 10.1145/1176617.1176753.

[78] E. Rohou, B. N. Swamy, and A. Seznec. “Branch Prediction and the Performance
of Interpreters: Don’T Trust Folklore”. In: Proceedings of the 13th Annual IEEE/ACM
International Symposium on Code Generation and Optimization. CGO ’15. San Francisco,
California: IEEE Computer Society, 2015, pp. 103–114. isbn: 978-1-4799-8161-8. url:
http://dl.acm.org/citation.cfm?id=2738600.2738614.

[79] “RUBBoS: Bulletin Board Benchmark. http://jmob.ow2.org/rubbos.html”. In:
[80] “RUBiS: Rice University Bidding System. http://rubis.ow2.org/”. In:
[81] V. Salapura et al. “Accelerating Business Analytics Applications”. In: Proceedings of

the 2012 IEEE 18th International Symposium on High-Performance Computer Architec-
ture. HPCA ’12. Washington, DC, USA: IEEE Computer Society, 2012, pp. 1–10. isbn:
978-1-4673-0827-4. doi: 10.1109/HPCA.2012.6169044. url: http://dx.doi.org/10.
1109/HPCA.2012.6169044.

[82] H. N. Santos et al. “Just-in-time Value Specialization”. In: Proceedings of the 2013
IEEE/ACM International Symposium on Code Generation and Optimization (CGO). CGO
’13. Washington, DC, USA: IEEE Computer Society, 2013, pp. 1–11. isbn: 978-1-4673-
5524-7. doi: 10.1109/CGO.2013.6495006. url: http://dx.doi.org/10.1109/CGO.
2013.6495006.

[83] A. Seznec. “A New Case for the TAGE Branch Predictor”. In: Proceedings of the 44th
Annual IEEE/ACM International Symposium on Microarchitecture. MICRO-44. Porto
Alegre, Brazil: ACM, 2011, pp. 117–127. isbn: 978-1-4503-1053-6. doi: 10.1145/
2155620.2155635. url: http://doi.acm.org/10.1145/2155620.2155635.

[84] O. Shacham, M. Vechev, and E. Yahav. “Chameleon: Adaptive Selection of Collec-
tions”. In: Proceedings of the 2009 ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation. PLDI ’09. Dublin, Ireland, 2009, pp. 408–418. doi:
10.1145/1542476.1542522.

[85] Y. S. Shao et al. “Toward cache-friendly hardware accelerators”. In:
[86] J. Sompolski, M. Zukowski, and P. Boncz. “Vectorization vs. Compilation in Query

Execution”. In: Proceedings of the Seventh International Workshop on Data Management
on New Hardware. DaMoN ’11. Athens, Greece: ACM, 2011, pp. 33–40. isbn: 978-1-
4503-0658-4. doi: 10.1145/1995441.1995446. url: http://doi.acm.org/10.1145/
1995441.1995446.

[87] “Standard Performance Evaluation Corporation. SPECweb2005. https://www.spec.org/web2005/”.
In:

[88] M. A. Suleman et al. “Accelerating Critical Section Execution with Asymmetric
Multi-core Architectures”. In: Proceedings of the 14th International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems. ASPLOS XIV.
Washington, DC, USA: ACM, 2009, pp. 253–264. isbn: 978-1-60558-406-5. doi: 10.
1145/1508244.1508274. url: http://doi.acm.org/10.1145/1508244.1508274.

http://dx.doi.org/10.1145/1176617.1176753
http://dl.acm.org/citation.cfm?id=2738600.2738614
http://dx.doi.org/10.1109/HPCA.2012.6169044
http://dx.doi.org/10.1109/HPCA.2012.6169044
http://dx.doi.org/10.1109/HPCA.2012.6169044
http://dx.doi.org/10.1109/CGO.2013.6495006
http://dx.doi.org/10.1109/CGO.2013.6495006
http://dx.doi.org/10.1109/CGO.2013.6495006
http://dx.doi.org/10.1145/2155620.2155635
http://dx.doi.org/10.1145/2155620.2155635
http://doi.acm.org/10.1145/2155620.2155635
http://dx.doi.org/10.1145/1542476.1542522
http://dx.doi.org/10.1145/1995441.1995446
http://doi.acm.org/10.1145/1995441.1995446
http://doi.acm.org/10.1145/1995441.1995446
http://dx.doi.org/10.1145/1508244.1508274
http://dx.doi.org/10.1145/1508244.1508274
http://doi.acm.org/10.1145/1508244.1508274

138

[89] “Symfony. https://symfony.com/”. In:
[90] L. Tan and T. Sherwood. “A High Throughput String Matching Architecture for

Intrusion Detection and Prevention”. In: Proceedings of the 32Nd Annual International
Symposium on Computer Architecture. ISCA ’05. Washington, DC, USA: IEEE Com-
puter Society, 2005, pp. 112–122. isbn: 0-7695-2270-X. doi: 10.1109/ISCA.2005.5.
url: https://doi.org/10.1109/ISCA.2005.5.

[91] P. Tandon et al. “Hawk: Hardware support for unstructured log processing”. In: 2016
IEEE 32nd International Conference on Data Engineering (ICDE). IEEE. 2016, pp. 469–
480.

[92] M. Tatsubori et al. “Evaluation of a Just-in-time Compiler Retrofitted for PHP”.
In: Proceedings of the 6th ACM SIGPLAN/SIGOPS International Conference on Virtual
Execution Environments. VEE ’10. Pittsburgh, Pennsylvania, USA, 2010, pp. 121–132.
doi: 10.1145/1735997.1736015.

[93] “The Computer Language Benchmarks Game, http://shootout.alioth.debian.org/.”
In:

[94] “The Gem5 simulator: http://gem5.org/”. In:
[95] “The nginx web server. https://www.nginx.com/”. In:
[96] “The Tiger Php News System Benchmark Suite. http://sourceforge.net/projects/tpns/”.

In:
[97] “Tutorial on Regular Expressions. http://www.regular-expressions.info/lookaround.html”.

In:
[98] “Usage of content management systems for websites. https://w3techs.com/technologies/overview/content_management/all”.

In:
[99] “Usage of server-side programming languages for websites. https://w3techs.com/technologies/overview/programming_language/all”.

In:
[100] “V8 JavaScript Engine. https://developers.google.com/v8/”. In:
[101] G. Venkatesh et al. “Conservation Cores: Reducing the Energy of Mature Computa-

tions”. In: Proceedings of the Fifteenth Edition of ASPLOS on Architectural Support for
Programming Languages and Operating Systems. ASPLOS XV. Pittsburgh, Pennsylva-
nia, USA: ACM, 2010, pp. 205–218. isbn: 978-1-60558-839-1. doi: 10.1145/1736020.
1736044. url: http://doi.acm.org/10.1145/1736020.1736044.

[102] J. Wadden et al. “ANMLzoo: a benchmark suite for exploring bottlenecks in au-
tomata processing engines and architectures”. In: IEEE International Symposium on
Workload Characterization (IISWC), 2016. IEEE. 2016, pp. 1–12.

[103] S. Wakabayashi et al. “Hardware Accelerators for Regular Expression Matching and
Approximate String Matching”. In: Proceedings: APSIPA ASC 2009: Asia-Pacific Sig-
nal and Information Processing Association, 2009 Annual Summit and Conference. Asia-
Pacific Signal, Information Processing Association, 2009 Annual Summit, and Con-
ference, International Organizing Committee. 2009.

http://dx.doi.org/10.1109/ISCA.2005.5
https://doi.org/10.1109/ISCA.2005.5
http://dx.doi.org/10.1145/1735997.1736015
http://dx.doi.org/10.1145/1736020.1736044
http://dx.doi.org/10.1145/1736020.1736044
http://doi.acm.org/10.1145/1736020.1736044

139

[104] L. Wang et al. “Bigdatabench: A big data benchmark suite from internet services”.
In: 2014 IEEE 20th International Symposium on High Performance Computer Architecture
(HPCA). IEEE. 2014, pp. 488–499.

[105] S. R. Warner and J. S. Worley. “SPECweb2005 in the real world: Using IIS and PHP”.
In: Proceedings of SPEC Benchmark Workshop. 2008.

[106] K. Williams, J. McCandless, and D. Gregg. “Dynamic Interpretation for Dynamic
Scripting Languages”. In: Proceedings of the 8th Annual IEEE/ACM International Sym-
posium on Code Generation and Optimization. CGO ’10. Toronto, Ontario, Canada,
2010, pp. 278–287. doi: 10.1145/1772954.1772993.

[107] “WordPress. https://wordpress.com/”. In:
[108] “WordPress wikipedia. https://en.wikipedia.org/wiki/WordPress”. In:
[109] L. Wu et al. “Q100: The Architecture and Design of a Database Processing Unit”.

In: Proceedings of the 19th International Conference on Architectural Support for Program-
ming Languages and Operating Systems. ASPLOS ’14. Salt Lake City, Utah, USA: ACM,
2014, pp. 255–268. isbn: 978-1-4503-2305-5. doi: 10.1145/2541940.2541961. url:
http://doi.acm.org/10.1145/2541940.2541961.

[110] “Yii. http://www.yiiframework.com/”. In:
[111] “Zend PHP, http://php.net/”. In:
[112] R. Zhang, S. Debray, and R. T. Snodgrass. “Micro-specialization: Dynamic Code

Specialization of Database Management Systems”. In: Proceedings of the Tenth Interna-
tional Symposium on Code Generation and Optimization. CGO ’12. San Jose, California,
2012, pp. 63–73. doi: 10.1145/2259016.2259025.

[113] R. Zhang, R. T. Snodgrass, and S. Debray. “Application of Micro-specialization
to Query Evaluation Operators”. In: Workshops Proceedings of the 28th International
Conference on Data Engineering. 2012, pp. 315–321. doi: 10.1109/ICDEW.2012.43.

[114] R. Zhang, R. T. Snodgrass, and S. Debray. “Micro-Specialization in DBMSes”. In:
Proceedings of the 28th International Conference on Data Engineering. 2012, pp. 690–701.
doi: 10.1109/ICDE.2012.110.

[115] H. Zhao et al. “The HipHop Compiler for PHP”. In: Proceedings of the ACM Interna-
tional Conference on Object Oriented Programming Systems Languages and Applications.
OOPSLA ’12. Tucson, Arizona, USA, 2012, pp. 575–586. doi: 10.1145/2384616.
2384658.

[116] Y. Zhu et al. “Microarchitectural Implications of Event-driven Server-side Web
Applications”. In: Proceedings of the 48th International Symposium on Microarchitecture.
MICRO-48. Waikiki, Hawaii: ACM, 2015, pp. 762–774. isbn: 978-1-4503-4034-2. doi:
10.1145/2830772.2830792. url: http://doi.acm.org/10.1145/2830772.2830792.

http://dx.doi.org/10.1145/1772954.1772993
http://dx.doi.org/10.1145/2541940.2541961
http://doi.acm.org/10.1145/2541940.2541961
http://dx.doi.org/10.1145/2259016.2259025
http://dx.doi.org/10.1109/ICDEW.2012.43
http://dx.doi.org/10.1109/ICDE.2012.110
http://dx.doi.org/10.1145/2384616.2384658
http://dx.doi.org/10.1145/2384616.2384658
http://dx.doi.org/10.1145/2830772.2830792
http://doi.acm.org/10.1145/2830772.2830792

	Contents
	List of Tables
	List of Figures
	Abstract
	Introduction
	Hash Map Inlining
	Architectural Support for Server-Side PHP Processing
	Thesis Contributions
	Related Published Work
	Thesis Organization

	Background
	Scripting Languages
	PHP Background
	Dynamic Features
	Automatic Memory Management

	Standard PHP Implementation
	Interpreter
	Just-in-time Compiler

	Hardware Support for Mitigating Overheads
	Dynamic Type Checking
	Reference Counting

	Summary

	Hash Map Inlining
	Overview
	Inline Caching for Hash Maps
	PHP Scripting Language
	Inline Caching for Dynamic Classes
	Adapted to Hash Maps

	Hash Map Interface to SQL DBMS
	Why HMI Fails for DBMS Scripts
	Hidden Library Functions
	Variable Key Names
	High Polymorphism

	Extended HMI for SQL
	Multiple Call Sites
	Other DBMS Engines and Languages
	Applying HMI Outside DBMS Queries

	Related Work
	Summary

	Evaluation of Hash Map Inlining
	Methodology
	Performance Improvement
	Nested Queries
	Breakdown of Execution Time
	Summary

	Architectural Support for Server-Side PHP Processing
	Overview
	Microarchitectural Analysis
	Mitigating PHP Abstraction Overhead
	Specializing the General-Purpose Core
	Accelerator Design Principles
	Hash Table
	Heap Manager
	String Accelerator
	Regular Expression Accelerator
	ISA Extensions

	Related Work
	Summary

	Evaluation of PHP Accelerators
	Experimental Workloads
	Simulation Infrastructure
	Trace-Driven Simulator
	Area and Power Estimation

	Simulator Configuration
	Results
	Performance and Energy Improvement
	Breakdown of Execution Time
	Sensitivity to the Hash Table Size
	Sensitivity to the Heap Manager Size
	Sensitivity to the String Accelerator

	Summary

	Conclusion and Future Directions
	Conclusion
	Future Work
	Closing Remarks

	Bibliography

