
TECS1605s-124 ACMJATS Trim: 6.75 X 10 in August 31, 2017 13:10

124

The CURE: Cluster Communication Using Registers 1

VIGNYAN REDDY KOTHINTI NARESH, Qualcomm Technologies Incorporated 2

DIBAKAR GOPE and MIKKO H. LIPASTI, University of Wisconsin Madison 3

4
VLIW processors typically deliver high performance on limited budget making them ideal for a variety of 5
communication and signal processing solutions. These processors typically need large multi-ported register 6
files that can have side effects of increased cycle time and high power consumption. The access delay and 7
energy of these register files can also become prohibitive when increasing the register count or the access 8
ports, thus limiting the overall performance of the processor. Most prior art circumvent this problem by 9
using multiple clusters with private register files, to lower the access delay and reduce energy consumption. 10
However, clustering artifacts, like increased inter–cluster communication operations and spill-recovery code, 11
result in a performance penalty. 12

This paper proposes CURE — a novel technique to considerably reduce the negative effects of clustering. 13
CURE augments the ISA to expose the communication registers to the compilers to increase availability of 14
architectural register state to all functional units. The inter–cluster communication operations are integrated 15
into regular ALU and memory operations to improve instruction encoding efficiency. We also propose a 16
new code scheduling heuristic to handle the ISA changes, and to realize the improvements in processor’s 17
performance and energy consumption. Our quantitative analysis estimates that CURE, when compared to 18
the baseline 8–issue uni–cluster processor, boosts average performance by 61% while reducing the average 19
register dynamic energy by 77%. 20

CCS Concepts: 21

Additional Key Words and Phrases: 22

ACM Reference Format: 23
Vignyan Reddy Kothinti Naresh, Dibakar Gope, and Mikko H. Lipasti. 2017. The CURE: Cluster Communica- 24
tion Using Registers. ACM Trans. Embed. Comput. Syst. 16, 5s, Article 124 (August 2017), 19 pages. 25
https://doi.org/10.1145/3126527 26

27

1 INTRODUCTION 28

Very long instruction word (VLIW) processors are widely used, despite the sparse research activity.

Q1

Q2

29
Modern digital signal processors (DSPs), like the CEVA X series [20] or the Qualcomm Hexagon 30
DSP [10] or Tensilica’s BBE series [33], use VLIW architecture to achieve performance targets 31
within restricted area and power budgets. Many other older, yet relevant DSPs [15, 16, 18, 23] and

Q3

32
server processors [25] have been using VLIW architectures. These processors are ubiquitous in 33
modem and multimedia applications such as computer vision, augmented reality, object recogni- 34
tion, high definition audio, sensor processing, image enhancement, machine learning and baseband 35

This article was presented in the International Conference on Compilers, Architecture, and Synthesis for Embedded Sys-

tems (CASES) 2017 and appears as part of the ESWEEK-TECS special issue.

Vignyan completed this work at University of Wisconsin - Madison.

Authors’ addresses:

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2017 ACM 1539-9087/2017/08-ART124 $15.00

https://doi.org/10.1145/3126527

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 5s, Article 124. Publication date: August 2017.

https://doi.org/10.1145/3126527
mailto:permissions@acm.org
https://doi.org/10.1145/3126527

TECS1605s-124 ACMJATS Trim: 6.75 X 10 in August 31, 2017 13:10

124:2 V. R. K. Naresh et al.

Fig. 1. Increase in execution time of two and four cluster processors when compared to a uni-cluster proces-

sor; all processors are running at same frequency.

processing (wired/wireless) that require real-time performance level [10, 20]. While found in many36
other devices, a mobile phone is probably the most common device with at least one VLIW DSP.137

VLIW processors rely on compilers to extract and express instruction level parallelism (ILP) of38
a program. With most of the processor components simplified, scalability of these processors is39
limited primarily by the large multiported register file (RF) [34]. The RF needs sufficient ports to40
read and write operands of all the instructions that can be scheduled in a given cycle. Typically,41
an n-wide VLIW processor requires 2n read ports and n write ports. In this paper, an m-read, n-42
write RF is represented as mRnW. Additionally, compile time scheduling requires many architected43
registers to lower the spill-recovery code. Thus a large multiported RF, that is likely to limit the44
scalability, is an essential part of a high performance VLIW processor [39].45

In this literature, the access delay, individual access energy, and area are defined as character-46
istics of importance (COI) for a RF. For a fixed number of entries in an RF, adding access ports47
dramatically increases the COI due to (1) increased the load capacitance on the storage bit cells,48
requiring larger bit cells and sense amplifiers to achieve comparable delays. (2) increased bit and49
word lines complicate routing and quadratically increases the area of the RF [42].50

Modern VLIW processors limit the COI of the register file, and improve scalability by decen-51
tralizing execution units into clusters [5, 11, 19]. TI TMS320C6x [23], Equator MAP1000 [15],52
ADI TigerSharc [18] or HP/ST Lx [16] are some commercial implementations of such decentral-53
ized/clustered processors. These cluster processors divide the functional units and RFs amongst54
the clusters in a roughly symmetric fashion. These processors, with the divided RF, can run at55
higher frequencies and can improve performance over the uni-cluster counterparts.56

However, the functional units in these processors have limited access to the architected registers.57
Inter-cluster communication (ICC) instructions are required to communicate architected registers58
from one cluster’s RF to another cluster’s RF. These ICC operations can also lead to additional59
spill-recovery code due to increased register pressure. Scheduling of useful instructions can also60
be delayed due to these additional operations. Increasing ICC channel count can alleviate some of61
scheduling limitation but our experiments show that instruction overhead had trivial reduction.62
Note that increasing ICC channels quickly diminishes the benefits of decentralized RF, as it would63
be synonymous to implementing multiple access ports outside the RF.64

Figure 1 shows the increase in execution cycles for different clustered processors compared to65
an equivalent uni-cluster baseline. In this figure, the cycle time benefits of clustering are ignored66

1Billions of baseband VLIW DSP radios in smart phones worldwide consume up to 125MW of power at the wall plug, or

about 400K tons coal/year.

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 5s, Article 124. Publication date: August 2017.

TECS1605s-124 ACMJATS Trim: 6.75 X 10 in August 31, 2017 13:10

The CURE: Cluster Communication Using Registers 124:3

to observe the overheads. Details of the evaluation for this figure are presented in Section 4. A 67
couple of interesting observations can be made from the Figure 1. First, wider VLIW processors are 68
definitely useful. If the programs were not scalable beyond 4-wide cluster, then the execution times 69
on the uni-cluster and the two-cluster processors would have been similar. Second, the overheads 70
of clustering are significant and increase with degree of clustering. 71

This paper presents CURE — a technique to improve performance of decoupled VLIW proces- 72
sors. CURE is a hardware-software technique with enhancements in hardware, instruction set 73
architecture (ISA) and compiler to increase availability of architected register values to all clus- 74
ters. Increased availability reduces ICC instructions and spill–recovery instructions resulting in a 75
more efficient code schedule. In this literature, we describe two architectural variants of CURE - 76
CURE-C and CURE-X. The hardware enhancements focus on register file organization and is dif- 77
ferent for CURE-C and CURE-X. Assuming a two cluster machine as baseline, CURE-C uses two 78
communication register banks each of which is written exclusively by one cluster and read exclu- 79
sively by the other cluster. CURE-X, on the other hand, uses a single communication register bank 80
and uses network coding concept to share access ports between the clusters. Enhanced ISA al- 81
lows specifying the use of communication registers within the instruction bundle, which reduces 82
the number of explicit communication instructions in the program. The compiler is augmented 83
with new code scheduling heuristic that enables using the hardware and ISA features to generate 84
improved program binaries. 85

The primary contributions of this paper are as follows: 86

(1) Hardware microarchitectures of CURE-C and CURE-X are presented to enable efficient 87
inter–cluster communication using explicit communication register banks. 88

(2) ISA is changed to integrate communication operations within the instruction bundles, 89
which enable efficient code generation by reducing explicit communication instructions. 90

(3) New code scheduling heuristic in the compiler generates high performance code that can 91
use the ISA and microarchitectural enhancements. 92

(4) A quantitative analysis of CURE and its comparison with uni–cluster and two–cluster 93
baselines is presented in this paper. The code for two-cluster baseline is generated by 94
CARS [26], a state-of-the-art code generation algorithm.2 95

Unlike the prior techniques where values between instructions are communicated via dupli- 96
cated register files, architectural register banks, scratch pad buffer or stack cache, communication 97
between different clusters is achieved without any explicit communication instructions. In our 98
analysis of clustering artifacts with the two-cluster baseline, we found that explicit ICC opera- 99
tions hurt performance the most. On an average, when compared to a two-cluster baseline, CURE 100
reduces these explicit ICC operations by 15.3x and boosts performance by 25% while reducing 101
the RF dynamic energy by 26%. Compared to a uni-cluster baseline, CURE runs 61% faster while 102
consuming 77% lower RF dynamic energy. The configurations of baseline and CURE designs are 103
presented in Table 2. 104

The rest of the paper is organized as follows. In Section 2, the hardware enhancements of CURE- 105
C and CURE-X are detailed. The software enhancements are explained in Section 3. Section 4 106
details the evaluation and analysis of CURE. Some of the related work is presented in Section 5. 107
Section 6 concludes the paper. 108

2The evaluation with BUG [14] code generation algorithm resulted in lower performance consistently and is excluded for

conciseness.

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 5s, Article 124. Publication date: August 2017.

TECS1605s-124 ACMJATS Trim: 6.75 X 10 in August 31, 2017 13:10

124:4 V. R. K. Naresh et al.

Fig. 2. Register file architecture of CURE-C.

Fig. 3. Register file architecture of CURE-X.

2 HARDWARE CHANGES109

Since CURE is targeted for VLIW processors, the primary objective is to achieve speedy hardware110
that can operate using low energy. While dependent on the target processor, this technique should111
be attractive in most VLIW designs. The uni-cluster baseline in this paper has eight functional units112
and a 16R8W 128-entry RF. A comparable two-cluster baseline has two 8R4W 64-entry register113
banks with an ICC network. CURE architecture is compared and contrasted against these baseline114
processors throughout this paper.115

2.1 CURE-C116

Figure 2 shows a representative architecture of the CURE-C proposed in this paper. Like the two-117
cluster baseline, CURE-C has two clusters, each with a private register bank. These private banks118
are referred to as primary banks and are marked as “even” and “odd” in the Figure 2. Each of those119
has a 64-entry 8R4W RF.120

A communication register bank (CRB), named as ECB for the even cluster and OCB for the odd121
cluster in the Figure 2, is added to each cluster and facilitate high bandwidth buffered communica-122
tion. Each CRB is 4R4W and has statically variable size. Only values generated by the other cluster123
can be written into a CRB. In the example presented in Figure 2, ECB gets values produced by the124
odd cluster and OCB gets values generated by the even cluster.125

2.2 CURE-X126

Figure 3 shows a representative architecture of CURE-X used in this paper. A coded bank (CB) is127
added in the middle and is accessible by the functional units of both clusters. This 8R4W, statically128
variable size, CB acts as an ICC channel and gets its values by storing the EXOR’ed values of129
primary bank write backs. This amplifies the write port bandwidth and effective storage space of130

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 5s, Article 124. Publication date: August 2017.

TECS1605s-124 ACMJATS Trim: 6.75 X 10 in August 31, 2017 13:10

The CURE: Cluster Communication Using Registers 124:5

Fig. 4. Instruction bundle and operation formats. Ax = ALUs, Mx = memory units, Bx = branch units.

the coded bank. These simultaneous write backs into the primary registers are now “paired” in the 131
coded bank. If an instruction requires an operand that is not present in it’s cluster, the coded bank 132
then provides an encoded value of the operand. The required operand can be decoded by EXORing 133
this encoded value with the accessible paired register value. 134

2.3 Additional Hardware Details 135

Shared architectural features of CURE-C and CURE-X are explained in this section. Figure 2 and 136
Figure 3 show that only one input of a functional unit can be provided by the CRB or the CB. This 137
places additional constraints on the code schedule generation during compilation. This limitation 138
is optional and does not affect the functionality of either techniques. While additional EXOR gates 139
and multiplexers can enable operand delivery to both ports, a more constrained design is con- 140
sidered for analysis in this paper. This makes design explanation more comprehensible, and also 141
imposes more constraints on the compiler. 142

In lieu of the ICC network, CURE-C and CURE-X add (1) Additional register banks — CRB or CB 143
add area, leakage power and dynamic access energies. However, the access delay of the RF does 144
not degrade as long as the size of CRB/CB does not exceed the size of primary bank. The size of 145
the CRB/CB is a key factor in deciding the overhead COI for these RF architectures. (2) The rank 146
of 2:1 Multiplexers in CURE-C or the rank of EXOR gates in CURE-X add to the delay, leakage 147
power, dynamic energies and area of the RF. 148

The compiler is aware of CURE RF and orchestrates the functionality, resulting in a simple and 149
attractive hardware. The software implementation also enables more sophisticated management 150
of the communication registers. If required, the compiler specifies communication registers to be 151
read to get the operands. It can also specify the output communication registers in the instructions. 152
The instruction set is augmented with these additional fields to enable CURE. 153

2.4 ISA Changes 154

CURE ISA modifications require additional ISA bits to specify the read and write indices of the 155
CRB/CB in the instruction bundle. To analyze the overhead of introducing additional ISA bits, 156
we consider the baseline instruction format similar to Intel IA-64 [25] and Figure 4(a) shows this 157
format. Each instruction bundle has eight instructions with four ALU, two memory and two branch 158
operations. With the assumption of 128 general purpose registers and 128 predication registers, 159
each register specifier takes seven bits. 160

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 5s, Article 124. Publication date: August 2017.

TECS1605s-124 ACMJATS Trim: 6.75 X 10 in August 31, 2017 13:10

124:6 V. R. K. Naresh et al.

Figure 4(b) shows the updated instruction bundle and operation formats envisioned to support161
CURE-C with 16 entry CRBs. Assuming each CRB has 16 entries, an operation requires four bits to162
specify the output CRB register. Clustering in CURE-C reduces the register index bits down to six.163
Since source registers need an additional bit to specify the CRB register when necessary, only two164
bits are available after clustering. Therefore, to support CURE-C, two additional bits are added per165
operation resulting in 16 additional bits per instruction bundle.166

Figure 4(c) shows the updated instruction bundle and operation formats envisioned to support167
CURE-X with 16 coded registers. Assuming a CB of size 16, each operation requires four bits to168
specify the source coded register. The four unused bits per operation, gained from clustering, can169
now be re-purposed for specifying the source coded register. Although specifying source coded170
register does not increase the size of an instruction bundle, we still require 12 additional bits per171
instruction bundle to specify the destination coded registers. The 12 additional bits stems from the172
requirement of accommodating three write-backs into the coded bank from six operations (four173
ALU and two memory operations) in a bundle.174

When compared to the baseline uni-cluster machine, CURE-C and CURE-X require 4.9% and175
3.7% more bits to specify an instruction. Since the total number of instructions are different for176
CURE, the uni-cluster baseline and the two-cluster baseline, this relative memory footprint of177
CURE has to be evaluated quantitatively. This evaluation is presented in Section 4.178

In addition to the ISA modification, the ISA extension includes a special XMOVE operation. An179
XMOVE operation reads the physical register from the primary bank and writes into the appro-180
priate CRB in CURE-C. In CURE-X, XMOVE operation supplies the read physical register as one181
of the XOR write inputs to the coded bank. XMOVE is an ICC operation in CURE designs. In the182
two-cluster baseline, the ICC operations copy the register values from one private register bank to183
another. Although this enables re-usability of the copied value across multiple instructions, it also184
increases register pressure and can lead to spill-recovery code. Since XMOVE only writes CRB/CB,185
increased ICC operations in CURE can not cause spill-recovery code.186

Since CURE ISA specifies communication registers to be written by an instruction bundle, ICC187
operations are embedded and limit the explicit XMOVE operations. This reduction in XMOVEs188
and the unaffected spill-recovery code due to XMOVEs gives CURE a distinct advantage over the189
two-cluster baseline.190

2.5 CURE-C Vs CURE-X191

The differences in CURE-C and CURE-X architectures results in different characteristics and trade192
offs. Since there are two CRBs, each containing half the read ports compared to the CB, the com-193
bined COI of two CRBs in CURE-C have similar COI to the CB in CURE-X. However, the architec-194
ture results in different energy characteristics.195

The CURE-X design provides several advantages over the CURE-C design due to (1) merging196
of writes imply fewer total writes, which lowers energy consumption. (2) Simpler physical layout197
as the write path wires meet at the EXOR gates and not cross each other. (3) The CURE-X ISA198
changes requires less overhead per instruction word, saving the code size.199

In CURE-X, an operand value located in remote cluster is typically obtained by reading the200
primary bank and the CB simultaneously and EXORing these two values. On the other hand,201
CURE-C architecture can supply value from either the primary bank or the CRB which can limit the202
additional read energies. However, there are energy components due to pre-charging bit lines and203
leakage currents that still contribute to the overall energy. Additionally, since the write energies of204
a register file are usually higher than the read energies, CURE-C is likely to consume more energy205
than CURE-X designs. Section 4 presents a more detailed comparison on these two architectures.206
Overall, from the hardware perspective, CURE-X is a more appealing design compared to CURE-C.207

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 5s, Article 124. Publication date: August 2017.

TECS1605s-124 ACMJATS Trim: 6.75 X 10 in August 31, 2017 13:10

The CURE: Cluster Communication Using Registers 124:7

3 SOFTWARE MODIFICATIONS 208

The CURE architecture adds an additional resources—the CRBs in CURE-C or the CB in CURE- 209
X—that the compiler must manage in addition to its traditional tasks of allocating registers and 210
scheduling code to the execution units. The interaction between these two code generation tasks 211
depends on phase ordering, and is complicated by the need to introduce spill code when the allo- 212
cator runs out of registers. The liveness range of a variable—needed to construct the conflict graph 213
and assign variables to non-conflicting register—is determined by the time interval between its def- 214
inition and its last use, both of which are dependent on code scheduling decisions, which in turn 215
are circularly dependent on spill code introduced by an insufficient number of allocable registers. 216

When generating code for CURE-X, the temptation is to treat the CB as just another RF, and 217
apply known-good heuristics (such as graph coloring [6]) to allocate coded registers. However, the 218
task of allocating coded registers is even more intimately coupled to scheduling than is the case 219
with conventional registers, as the pairwise binding of register values to CB entries is determined 220
by the co-occurrence of paired register writes in the two clusters. Hence, the coded register alloca- 221
tor must know precisely which pair of instructions are scheduled to finish in the same cycle, must 222
then bind those two register names to a single entry in the CB, and must associate the beginning 223
of the live range of that coded register with that cycle, and the end of the live range with the latter 224
of the last uses of either of the paired registers. This information, needed to populate the conflict 225
graph used for conventional register allocation approaches, is not available until the final sched- 226
ule has been created, which, when faced with a shortage of coded registers, must be modified to 227
accommodate additional copy/move operations. 228

The closely-intertwined relationship between allocating coded registers and scheduling of in- 229
structions in a given VLIW cycle motivates unification of cluster assignment, instruction schedul- 230
ing and register allocation into a single phase. This is similar to the state-of-the-art code genera- 231
tion proposal, CARS [26]. The CARS algorithm considers all resource constraints and also allocates 232
output registers on-the-fly at each cluster scheduling step. This reduces register spills and avoids 233
iterative re-scheduling steps. This state-of-the-art algorithm is implemented in our code genera- 234
tion framework and is used to generate code for the baseline processors. 235

In this work, CURE is applied to only the integer RF. So, “register”, unless explicitly character- 236
ized, implies an integer register. The basic scheduling units for CURE are a set of basic blocks or 237
hyperblocks. These scheduling units are selected for cluster scheduling strictly in topological or- 238
der. Operations within a block are scheduled in top down fashion. At the beginning of each block, 239
the CRBs in CURE-C and the CB in CURE-X are assumed to be empty to statically ensure that a 240
communication register will be available when required during dynamic execution. 241

3.1 CURE Code-Generation Algorithm 242

Algorithm 1 presents our proposed code generation algorithm at high-level. First, a list of data- 243
ready operations is formed for each cycle and an estimation of each operation’s execution on 244
program’s critical path is done. An operation’s criticality is estimated by adding it’s height and 245
depth. Here, depth is the earliest execution cycle of an operation, counting from the start of a 246
data-flow graph, whereas height is the latest execution cycle of the operation, counting from the 247
end of the data-flow graph. Both depth and height of an operation are derived under the premise 248
of an infinite resource machine. 249

In order to determine the best cluster to schedule an operation, the following set of factors are 250
used to compute the resource-constrained earliest schedule cycle for each cluster. 251

(1) When assigning a cluster, priority is given to the cluster with access to all the input 252
operands from its primary bank. If an operation requires access to a CRB (ECB or OCB) in 253

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 5s, Article 124. Publication date: August 2017.

TECS1605s-124 ACMJATS Trim: 6.75 X 10 in August 31, 2017 13:10

124:8 V. R. K. Naresh et al.

ALGORITHM 1: CURE Algorithm (High level)

for all block ∈ Unscheduled_Code do

CURE-C: CRB (ECB and OCB) ← ϕ
CURE-X: CB ← ϕ
while unscheduled operations exist in block do

Ops← Prioritized list of source-ready unscheduled operations
for Op ∈ Ops do

for cluster = 0 tomax_clust_num do

sched_cycle[cluster] = Resource-Constrained-Schedule(Op, cluster)
end for

if Op schedulable in current_cycle then

Schedule Op on the cluster requiring minimum XMOVE ops
Update all machine resources
Update depth of dependent operations
Allocate output registers
CURE-C: “COPY” write-backs to CRB (ECB and OCB)
CURE-X: “PAIR” simultaneous write-backs to CB
Insert and schedule required XMOVE operations
Ops ← Ops −Op

end if

end for

CURE-C:W _CRB ← {Writes in this cycle}
R_CRB ← {Overwritten registers}
CRBocc = CRBocc +W _CRB − R_CRB
CURE-X:WPS ← {Write pairs in this cycle}
RS ← {Overwritten pairs}
CBocc = CBocc +WPS − RS
if current_cycle < min(depth of Ops) then

Move to next cycle
end if

end while

end for

CURE-C or to the CB in CURE-X, other factors affect cluster assignment and Algorithm 2254
details this process further.255

(2) If the operation cannot access a source operand located in a remote cluster through the256
CRBs or the CB, an XMOVE operation has to be inserted on the cluster with access to the257
source register. So, source readiness for the dependent operation may be delayed depend-258
ing on the earliest cycle in which this XMOVE operation can be scheduled.259

(3) If machine resources like ALU, destination register and load/store queue entries are not260
available, the operations have to wait to be scheduled in the next cycle.261

(4) When free registers are not available in the CRBs or in the CB, a simple replacement policy262
is used to reuse a communication register. This replacement policy for the communication263
registers is described later in this section.264

CURE-C and CURE-X designs primarily differ in the way the communication registers are up-265
dated in response to the write-backs into the primary banks, as illustrated in Algorithm 1.266

If an operation can be scheduled on either cluster in the same cycle, a cluster that does not re-267
quire an XMOVE operation is selected. Alternatively, the instruction can be scheduled to a cluster268

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 5s, Article 124. Publication date: August 2017.

TECS1605s-124 ACMJATS Trim: 6.75 X 10 in August 31, 2017 13:10

The CURE: Cluster Communication Using Registers 124:9

ALGORITHM 2: Source operand guided cluster assignment

for Op ∈ Ops do

if Number_o f _sources (Op) == 2 then

RB1← REG_BANK (SRC1(Op))
RB2← REG_BANK (SRC2(Op))
CBP1← Present_in_Coded_Bank (SRC1(Op))
CBP2← Present_in_Coded_Bank (SRC2(Op))
if RB1 and RB2 are same then

Assign Op to cluster with RB1

else if (CBP1 == True)&&(CBP2 == True) then

No priority to any cluster
else if CBP1 == True then

Assign Op to cluster with RB2

else if CBP2 == True then

Assign Op to cluster with RB1

else

No priority to any cluster
Record an XMOVE operation

end if

else if Number_o f _sources (Op) == 1 then

RB ← REG_BANK (SRC (Op))
CBP ← Present_in_Coded_Bank (SRC (Op))
if CBP == True then

Assign Op to the least assigned cluster
else

Assign Op to cluster RB

end if

else

No priority to any cluster
end if

end for

with lower pressure on primary register bank and machine resources. A delay in scheduling a 269
non-critical operation due to resource-constraints may cause the dependent instructions to be on 270
the critical path and may increase their scheduling priority. 271

Depending on the availability of operands in the CRBs or in the CB and cluster assignment of 272
the operation, XMOVE operations are often required to be inserted in the code schedule. These 273
XMOVE operations are inserted at appropriate slots in the schedule to ensure the availability 274
of operands to the required operation in time. For CURE-X, an ideal schedule of these XMOVE 275
operations considers a cycle that has empty instruction slots and lower coded register pressure 276
while maximizing the information density of the CB. Furthermore, an XMOVE operation does not 277
explicitly transfer operands from one cluster to the other. Instead it reads the physical register from 278
the primary bank and writes it back to the same physical register. When this register is written 279
back, it is paired into the CB. The algorithm traverses the schedule backwards from the current 280
cycle searching for a schedule cycle with a free instruction slot and a replaceable coded register. 281
If a free instruction slot was not found in this time frame, the dependent instruction is delayed. 282
Finally,CRBocc andCBocc counters are updated each cycle to account for the changes in occupied 283
registers in the CRBs and in the CB. 284

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 5s, Article 124. Publication date: August 2017.

TECS1605s-124 ACMJATS Trim: 6.75 X 10 in August 31, 2017 13:10

124:10 V. R. K. Naresh et al.

3.2 CURE Cluster Assignment285

Algorithm 2 describes in detail how the dependency of the source operands of operations guide286
their dispatch to different clusters in the same schedule cycle in CURE-X design. RB1 and RB2 find287
the primary banks of the two source operands of an operation, whereas CBP1 and CBP2 check288
their availability in the CB. The following scenarios are addressed.289

(1) If all sources are present in the same primary bank, the operation has to be scheduled on290
the cluster with access to this bank. If an operation has only one source and that is avail-291
able in the CB, then remaining factors considered in computing the resource-constrained-292
schedule cycle decides it’s cluster assignment.293

(2) If neither sources are available in the CB, record an XMOVE operation for one of the294
sources. This XMOVE operation will be scheduled such that the source will be available295
in the CB when required by the consumer.296

(3) If all the sources are not available in the CB, the operation is scheduled on a cluster with297
access to the source operand not having a copy in the CB. If all sources are available in298
the CB, then no cluster gets any priority, other factors guide it’s cluster assignment and299
scheduling.300

(4) If there are no sources to be read from the RF, then other factors drive its cluster assign-301
ment as described before.302

Similarly the presence of the source operands in the primary banks and in the CRBs in CURE-C303
and their dependency drive the assignment of operations to specific clusters. We leave the cluster-304
ing details of CURE-C design due to space constraints and similarity to the clustering algorithm305
illustrated for CURE-X in Algorithm 2.306

The CB is updated each cycle with the new pairs of physical registers overwriting old pairs.307
Two important actions during updates are as follows.308

(1) Selecting a coded register to write: If free coded registers are available, they are preferred309
over replacing an active coded register. Once the number of free registers falls below a310
threshold, a priority scheme based on usage of the paired physical registers is used to311
select a replacement register. If either of the paired registers is not referenced even once,312
the coded register is given the lowest replacement priority. Once both the paired registers313
are referenced, the coded register gains replacement priority quickly unless it is used in314
successive cycles. The coded register with highest replacement priority is used to write315
the new physical register pair.316

(2) Referential integrity: If a physical register, say Rx, is written multiple times in a relatively317
small window, it can be paired up with multiple physical registers. Each pair has a different318
version of Rx. Such a scenario has to be avoided to ensure Referential integrity. To ensure319
this, any coded register having an instance of either of the physical registers being written,320
are freed.321

4 EVALUATION322

Trimaran [7] infrastructure is used to implement and evaluate CURE. ELCOR module in Trimaran323
generates code schedule for a target processor. This module is extended with CARS and CURE324
algorithms for code generation. SIMU module in Trimaran simulates the target processor and gen-325
erates various event counts that are used to estimate performance and energy consumption. The326
module is enhanced to simulate CURE architecture.327

All the benchmark suites distributed with the Trimaran package were used for performance328
and energy evaluation. The benchmarks and their execution times in our baseline uni–cluster329

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 5s, Article 124. Publication date: August 2017.

TECS1605s-124 ACMJATS Trim: 6.75 X 10 in August 31, 2017 13:10

The CURE: Cluster Communication Using Registers 124:11

Table 1. Benchmarks and the Uni–Cluster Baseline

Performance

Baseline stats
Benchmark Suite # of benchmarks Average Cycles

Encryption 4 131,981,243
Integer_bench 5 10,988,051
Mediabench 16 39,553,393

Mibench 14 22,196,670
Netbench 3 291,342,168

SPECint2000 6 5,584,469,067

Table 2. Configurations of the Tested Processors

Parameter uni–cluster two–cluster CURE
Clusters 1 2 2

Integer ALUs 4 2x2 2x2
Memory ALUs 4 2x2 2x2

RF (Integer) 128 2x64 2x64
CRB/CB Size 0 0 (8 to 64)

ICC BW None 4 None
L1 I,D$ 32KB, 4-way SA, 2 cycles

L2 $ 128KB, 8-way SA, 12 cycles
off-chip mem 150 cycles

configuration are reported in Table 1. These benchmark suites comprehensively represent vari- 330
ous applications from mobile, security, network, multimedia and other real world applications. 331
All benchmarks are verified to be functionally correct for both baselines and for all CURE con- 332
figurations. A relatively fair representation of relative performance of a benchmark suite is the 333
geometric mean of the relative performance of individual benchmarks in the suite. This metric is 334
used to report the quantitative performance results for the benchmark suites. gzip, vpr, mcf, parser, 335
bzip2 and twolf with train input set, were the only functionally available SPEC2000 benchmarks 336
for Trimaran. 337

4.1 Register File Characteristics 338

Fabmem tool was used to estimate the access delay, energy and area of the RFs evaluated in this 339
paper [8]. This tool uses 45nm Nangate Technologies library to generate the configured RF netlist. 340
Fabmem runs gate level simulations using HSPICE to estimate the timing delay, read and write 341
energies, and the area of the configured RF. These estimates are used for evaluating RFs in CURE 342
and the baseline processors. The additional delay, area and energy required for EXOR gates is 343
accounted for CURE implementations. 344

A uni–cluster configuration sets the lower bound on code overhead, but is limited in the oper- 345
ating frequency due to RF restrictions. A clustered configuration, on the other hand, can operate 346
at higher frequency but with significant code overhead. For this reason, we use a uni–cluster pro- 347
cessor and a two–cluster processor to evaluate CURE’s performance. Table 2 presents the different 348
configurations used for our analysis. Performance and energy consumption were recorded with 349
CRB/CB sizes of 64, 32, 16 and 8. These configurations are presented as CURE-C64, CURE-C32, 350
CURE-C16 and CURE-C8 respectively for CURE-C configurations, and as CURE-X64, CURE-X32, 351

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 5s, Article 124. Publication date: August 2017.

TECS1605s-124 ACMJATS Trim: 6.75 X 10 in August 31, 2017 13:10

124:12 V. R. K. Naresh et al.

Fig. 5. Delay and area of different configurations relative to 128 entry 16R8W RF.

CURE-X16 and CURE-X8 for CURE-X configurations. The performance between the equivalent352
configurations of CURE-C and CURE-X are very similar across all the tested benchmarks.353

Figure 5 presents a relative comparison of the access delay and area of different RF configu-354
rations normalized against a 128 entry 16R8W RF. In this analysis, the overhead of the ICC net-355
work in the two–cluster baseline is completely ignored. The added multiplexers or EXOR gates356
in CURE-C and CURE-X configurations, results in a small increase in access time over the two–357
cluster baseline. These observed delays are used in generating graphs in Figure 8(a) and Figure 8(b).358
As discussed in Section 2, 64 entry configurations of CURE have significant area overhead over359
the two–cluster baseline, but this reduces significantly when only 16 entries are considered. In360
this paper, 16 entry CURE configurations are championed as they have optimal COI in addition to361
optimal performance.362

4.2 Power and Performance Analysis363

Table 2 presents the different configurations used for our analysis. Local, intra-cluster bypass net-364
works are assumed in CURE, similar to the conventional two cluster architecture [34]. Thus, en-365
abling equivalent cycle time benefits for CURE [34]. All ICC is achieved through the communica-366
tion registers. Any operations dependent on the values produced in the previous cycle on a differ-367
ent cluster are delayed by a cycle to get their values from the communication registers. The two368
cluster processor has an ICC bandwidth (ICC BW) set to four (four register values can be copied369
across in each cycle). Code generation for two–cluster processor is done by our implementation370
of CARS algorithm.371

The dynamic energy consumption of RF is calculated using the activity counts from Trimaran372
and the RF parameters from Fabmem. The power analysis is done using the following equations.373

ERead_CU RE−C = REPr imary_Bank × total_reд_reads + (EMU X /X OR + RECRB/CB)374
× total_CRB/CB_reads375

EW rite_CU RE−C =WEPr imary_Bank × total_reд_writes + (WECRB) × total_CRB_writes376
EW rite_CU RE−X =WEPr imary_Bank × total_reд_writes + (WEX OR +WECB)377

× total_CB_writes378

In these equations, RE and WE stand for the independent read and write energies of the379
RFs. The activity counters total_reg_reads, total_reg_writes,total_CRB_reads, total_CRB_writes,380
total_CB_reads and total_CB_writes already include the additional move operations inserted in the381
scheduled code. Figure 6 shows the RF power consumption relative to the baseline. The RF energy382
savings for the two cluster processor are between 60% to 75% depending on the benchmark suite.383

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 5s, Article 124. Publication date: August 2017.

TECS1605s-124 ACMJATS Trim: 6.75 X 10 in August 31, 2017 13:10

The CURE: Cluster Communication Using Registers 124:13

Fig. 6. Dynamic RF energy consumption relative to uni–cluster baseline.

Compared to that, both CURE-C16 and CURE-X16 design points consistently save more than 75% 384
of the RF energy in all the benchmarks. Reducing the communication register count from 32 to 16 385
causes a significant dip in read and write energies. This results in a very power-efficient spot for 386
CURE16 with almost similar number of XMOVEs as CURE with 32 communication registers. The 387
RF power due to additional XMOVE instructions is included in this evaluation. 388

Two anomalies of the Figure 6 are the 64 entry CURE configurations in Encryption suite and 389
8 entry CURE configurations in netbench. Encryption suite has considerable number of CRB/CB 390
reads. This coupled with higher read energy of the 64 entry CRB/CB causes higher energy con- 391
sumption of the CURE-C64 and the CURE-X64 designs when compared to the two-cluster baseline. 392
In netbench, unlike in other benchmarks, number of XMOVE operations increase significantly for 393
CURE with eight entry CRB/CB, thus leading to higher energy than CURE with 16 entry CRB/CB. 394

The performance of CURE-C and CURE-X at comparable configurations was very similar. This is 395
due to the fact that most XMOVE operations in CURE are due to the conservative static assumption 396
on the dynamic availability of correct register values in the communication registers. To improve 397
readability, the rest of this paper uses CURE to refer to CURE-C and CURE-X configurations. 398

Comparison of execution times and energy delay products of benchmarks for different configu- 399
rations is done for two cases. (1) Assume RF is not the critical path: The cycle time of the processor 400
does not improve if the RF is not on the critical path. The RF energy benefits still exist in the two 401
cluster and CURE designs in both cases. (2) Assume RF is the critical path: If the RF is on the critical 402
path, the access delay benefits of the RF directly benefit the cycle time of the processor. 403

In a practical scenario, RF is the critical path, but decentralizing makes other components, like 404
the bypass networks, as the critical path. The intention of presenting these two scenarios is to 405
show that CURE out-performs both baselines in both these scenarios. 406

In case the RF is not on the critical path, Figure 7(a) shows the relative execution time for the 407
tested configurations. All CURE configurations have less than 3.5% increase in execution time 408
relative to the uni–cluster baseline. In comparison, the two cluster processor suffers a 16% or higher 409
increase in average execution time, while using the state-of-the art scheduling mechanism. 410

CURE suffers from performance loss in high ILP applications with long register lifetimes. Reg- 411
isters with long lifetimes get evicted from the communication bank due to size limitations. When 412
they are accessed again in the program, additional XMOVE operations have to be inserted. The 413
high amount of available ILP reduces the number of free slots available to insert the additional 414
XMOVE operations, thus increasing the total schedule cycles of a block. 415

Except for CURE8 in netbench, the performance differences are trivial for different CURE con- 416
figurations. However, the communication bank activity counts vary a lot and can be derived from 417

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 5s, Article 124. Publication date: August 2017.

TECS1605s-124 ACMJATS Trim: 6.75 X 10 in August 31, 2017 13:10

124:14 V. R. K. Naresh et al.

Fig. 7. Execution time and ED2 relative to uni–cluster baseline; assuming RF is not the critical path.

the Figure 6. The performance of CURE starts to degrade at CURE8 as the number of communi-418
cation bank replacements trigger new XMOVE instructions and delay the code schedule. In this419
evaluation, CURE16 was the optimal configuration with best performance at lowest energy for all420
the benchmark suites.421

Though the energy of the RF decreases significantly for two cluster and CURE configurations,422
it is only part of the processor energy. The energy benefits can be quickly offset by decreased per-423
formance. Figure 7(b) shows the energy delay product (ED2) of different configurations assuming424
the energy consumed by CURE-X designs. Given the high activity of RF, we assume about 20% of425
the processor energy can be attributed to RF energy. If the RF is not on the critical path, the two426
cluster processor is a bad choice compared to the uni–cluster. CURE on the other hand is still a427
viable option with its relative energy delay product around 0.9 for the CURE16 design.428

If we assume that RF access is the sole critical delay path in all the considered designs, a faster429
banked design like CURE enables higher frequency and improved performance. The relative exe-430
cution times for different benchmark suites are presented in the Figure 8(a). CURE and the two-431
cluster design derive similar propagation delay benefits from their RF and bypass networks over432
the uni–cluster baseline. Considering the cycle time benefits, the ED2 of different configurations is433
shown in Figure 8(b). The cycle time benefits are required for the two cluster processor to be favor-434
able compared to a uni–cluster. However, CURE16 still has the best overall power and performance435
benefits in all the compared configurations.436

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 5s, Article 124. Publication date: August 2017.

TECS1605s-124 ACMJATS Trim: 6.75 X 10 in August 31, 2017 13:10

The CURE: Cluster Communication Using Registers 124:15

Fig. 8. Execution time and ED2 relative to uni–cluster baseline; assuming that RF is the critical path.

Fig. 9. Geometric mean of spill–recovery and ICC Move (ICM) instructions as percent of total dynamic

instructions.

Clustering artifact reduction: Figure 9 shows the XMOVE and the spill–recovery code as 437
a percent of the total dynamic instructions for the two–cluster and CURE16 configurations. As 438
noted in Section 2, the implicit ICC operations in CURE reduce the number of explicit ICC op- 439
erations from an average of 13% in two–cluster baseline to 1% in CURE. Note that two–cluster 440
configuration has about 18% more overall instructions than CURE, which translates to a humon- 441
gous 15.3x reduction in number of ICC operations from two–cluster baseline to CURE. In CURE, 442

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 5s, Article 124. Publication date: August 2017.

TECS1605s-124 ACMJATS Trim: 6.75 X 10 in August 31, 2017 13:10

124:16 V. R. K. Naresh et al.

the number of the explicit ICC operations, XMOVEs, indicate the communication bank pressure.443
Spill–recovery code is reduced from an average of 2.5% in the two–cluster configuration down to444
1.6% in CURE. This translates to 84% lower spill–recovery instructions in CURE compared to the445
two–cluster baseline. High availability of registers, low ICC operations, lower spill–recovery code446
all result in a better code schedule that executes faster. These benefits were clearly highlighted in447
the Rijndael benchmark from Mibench where the two–cluster processor takes 150% more execution448
cycles than the uni-cluster baseline, while CURE16 takes only 7.3% more.449

Instruction memory footprint: CURE-C and CURE-X have 4.9% and 3.7% respective increases450
in the instruction size than the baseline. However, CURE has 18% lesser average instructions than451
the two–cluster baseline, resulting in 14% and 15% reduction in average instruction memory foot-452
print for CURE-C and CURE-X respectively. The effective impact of instruction size increase should453
be in the instruction-holding-caches, where less than 5% typically has trivial impact on the pro-454
cessor’s performance and power.455

Leakage power analysis: Leakage power was not reported by Fabmem. Assuming that leakage456
power is proportional to area, CURE16 RF has a small increase in leakage power over the two–457
cluster baseline. The area and leakage power increase of CURE16 RF is very small relative to the458
area and leakage power of the entire chip. Higher performance of CURE is likely to reduce the459
overall leakage energy of the chip.460

Increasing two–cluster RF size: If the area overhead of CURE16 RF is allocated to the two–461
cluster baseline’s RF, its configuration changes from 2× 64 to 2× 72. Ignoring the timing effects of462
bigger RF, the 2× 72 RF provides a trivial, 0.02%, gain in performance over the 2× 64 RF. Increasing463
the RF size has little impact on ICC operations count, resulting in this trivial performance gain with464
bigger RF.465

ICC bandwidth scaling: In an experiment with two–cluster baseline, an increase in ICC band-466
width showed trivial performance benefits. This is attributed to the fact that increased ICC band-467
width although allows more registers to be communicated across clusters in a cycle, however it468
has little impact on the ICC instructions and spill–recovery code. Generally, ICC complexity has469
to be engineered so that the benefits of clustering (improved cycle time, power and area) are not470
lost.471

5 PREVIOUS WORK472

There are decades of research on addressing the problems of large multiported RFs in both su-473
perscalar and VLIW processors. While the solutions for superscalar processors are predominantly474
hardware-only, solutions for VLIW processors additionally rely on compiler in order to simplify475
hardware.476

Clustered architectures: Clustering of the processor resources and dividing the RF into477
smaller, lower ported banks lowers the RF access time and power. In superscalar processors, the478
problem of bank conflicts was addressed by various techniques implemented in the hardware [13,479
17, 22, 36, 37]. VLIW processors [23, 24] that use clustering are also referred to as limited connec-480
tivity VLIW architectures, implying availability of only a subset of architected registers to each481
cluster [5]. An extensive study on performance and scalability of various ICC networks has shown482
that performance of clustered processors is significantly lower than the uni-cluster processor when483
cycle time benefits are ignored [19, 28, 35]. However, the improved RF access delay and the by-484
pass path delay can increase the processor frequency and lower the execution time [34]. A recent485
research by Zhao et al. [41] also explores using non-uniform size register partitions to save on RF486
energy.487

RF caching or hierarchical RFs use lower ported full RF in conjunction with a smaller fully488
ported RF cache to improve cycle time and to limit RF power [4, 12, 38, 39]. A major challenge489

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 5s, Article 124. Publication date: August 2017.

TECS1605s-124 ACMJATS Trim: 6.75 X 10 in August 31, 2017 13:10

The CURE: Cluster Communication Using Registers 124:17

with RF caching is the increased latency of memory operations that always interact with second 490
level RF, and typically need another cycle to get the value into the first RF. 491

Bypass networks [4, 21] use the spatial locality of values to lower RF access ports in uni–cluster 492
processors [31] or to solve bank conflicts in clustered processors [36]. 493

Code generation for clustered processors has extensive research, and we only present a sub- 494
set of the algorithms we tried in our evaluations. Bottom-up Greedy (BUG) algorithm [14] recur- 495
sively traverses from the exit nodes to entry nodes of the input data precedence graph and assigns 496
estimate of the functional unit and operand availability for each operation. A list scheduler inserts 497
the communication operations where necessary and generates the final code schedule. Multi-flow 498
TRACE compiler [27] extends BUG to assign independent dependence chains to different clus- 499
ters. Restricted interconnect could result in sub-optimal usage of the clusters or over insertion of 500
communication operations. Percolation Scheduling Compiler [32] for clustered VLIW processors 501
generates code assuming a fully connected VLIW and then partitions the code across clusters while 502
inserting necessary copy operations. Addressing the phase ordering effects, UAS [30] integrates 503
phases of cluster assignment with code scheduling, while CARS [26] integrates register phase al- 504
location also. An alternate scheme in [40], like CARS, integrates all phases of code generation and 505
results in efficient code with benefits similar to that of CARS. 506

There are a number of modulo scheduling approaches, targeting loop-intensive codes for clus- 507
tered VLIW architectures [1–3, 9]. URACAM [9] also performs clustering, scheduling, and regis- 508
ter allocation in an unified stage, similar to that of CARS, and allows trading ICCs for memory 509
pressure. [2, 3] builds on URACAM and improves the cluster assignment phase further through 510
graph-partitioning techniques, resulting in more balanced workloads among the clusters and less 511
ICCs. However, for two-cluster configurations, these techniques show marginal improvement in 512
performance when compared to URACAM and CARS. So, in this research, CARS [26] is used to 513
generate code for the two-cluster baseline. However, these acyclic code generation techniques can 514
benefit further by using these graph-partitioning [2] and instruction replication [1] based modulo 515
scheduling heuristics. 516

Coded Register File use is first advocated in CRAM [29] to address RF issues in superscalar 517
processors. CRAM, while useful in superscalar processors, is ill suited for VLIW processors due to 518
hardware complexities in coded bank management, and in scheduler changes. 519

6 CONCLUSIONS 520

In this paper, we present the CURE, a new design to address the problems associated with large 521
multiported register files in VLIW processors. We propose use of communication registers in a 522
clustered architecture to increase the availability of the registers to all the clusters. Communication 523
registers act as an inter-cluster communication path to ease up the bypass networks as well. Two 524
variants of CURE architecture are presented and their merits were evaluated. The hardware and 525
software changes required to make the CURE work are detailed. We show that the performance and 526
power benefits of the CURE make it desirable over uni-cluster and conventional multi-clustered 527
VLIW processors. 528

REFERENCES

[1] Alex Aletà, Josep M. Codina, Antonio González, and David Kaeli. 2003. Instruction replication for clustered microar- 529
chitectures. In MICRO-36. 530

[2] Alex Aletà, Josep M. Codina, Jesús Sánchez, and Antonio González. 2001. Graph-partitioning based instruction sched- 531
uling for clustered processors. In MICRO-34. 532

[3] Alex Aletà, Josep M. Codina, Jesús Sánchez, Antonio González, and David Kaeli. 2002. Exploiting pseudo-schedules 533
to guide data dependence graph partitioning. In PACT. 534

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 5s, Article 124. Publication date: August 2017.

TECS1605s-124 ACMJATS Trim: 6.75 X 10 in August 31, 2017 13:10

124:18 V. R. K. Naresh et al.

[4] R. Balasubramonian, S. Dwarkadas, and D. H. Albonesi. 2001. Reducing the complexity of the register file in dynamic535
superscalar processors. In MICRO-34.536

[5] A. Capitanio, N. Dutt, and A. Nicolau. 1992. Partitioned Register Files For VLIWs: A preliminary analysis of tradeoffs.537
In MICRO-25.538

[6] Gregory Chaitin. Register allocation and spilling via graph coloring. SIGPLAN Not. 39, 4.539
[7] Lakshmi N. Chakrapani, John Gyllenhaal, Wenmei W. Hwu, Scott A. Mahlke, Krishna V. Palem, and Rodric M.540

Rabbah. 2004. Trimaran: An infrastructure for research in instruction-level parallelism. In In Instruction-level Par-541
allelism. Lecture Notes in Computer Science. Springer-Verlag, www.trimaran.org.542

[8] N. K. Choudhary, S. V. Wadhavkar, T. A. Shah, H. Mayukh, J. Gandhi, B. H. Dwiel, S. Navada, H. H. Najaf-abadi, and E.543
Rotenberg. 2011. FabScalar: Composing synthesizable RTL designs of arbitrary cores within a canonical superscalar544
template. In ISCA-38.545

[9] Josep M. Codina, Jesús Sánchez, and Antonio González. 2001. A unified modulo scheduling and register allocation546
technique for clustered processors. In PACT.547

[10] L. Codrescu, W. Anderson, S. Venkumanhanti, M. Zeng, E. Plondke, C. Koob, A. Ingle, R. Maule, and R. Talluri. 2013.548
Qualcomm Hexagon DSP: An architecture optimized for mobile multimedia and communications. In Hot Chips.549

[11] Osvaldo Colavin and Davide Rizzo. 2003. A scalable wide-issue clustered VLIW with a reconfigurable interconnect.550
In CASES.551

[12] J.-L. Cruz, A. Gonzalez, M. Valero, and N. P. Topham. 2000. Multiple-banked register file architectures. In ISCA-27.552
[13] Nam Duong and R. Kumar. 2009. Register Multimapping: A technique for reducing register bank conflicts in proces-553

sors with large register files. In SASP-7.554
[14] John R. Ellis. 1985. Bulldog: a compiler for vliw architectures (parallel computing, reduced-instruction-set, trace sched-555

uling, scientific). Ph.D. thesis.556
[15] Equator. 1998. MAP1000 unfolds at Equator. In Microprocessor Report.557
[16] Paolo Faraboschi, Geoffrey Brown, Joseph A. Fisher, Giuseppe Desoli, and Fred Homewood. 2000. Lx: a technology558

platform for customizable VLIW embedded processing. In ISCA-27.559
[17] K. I. Farkas, P. Chow, N. P. Jouppi, and Z. Vranesic. 1997. The multicluster architecture: reducing cycle time through560

partitioning. In MICRO-30.561
[18] Jose Fridman and Zvi Greenfield. 2000. The TigerSHARC DSP Architecture. IEEE Micro.562
[19] A. Gangwar, M. Balakrishnan, P. R. Panda, and A. Kumar. 2005. Evaluation of bus based interconnect mechanisms in563

clustered VLIW architectures. In DATE.564
[20] J. S. Gardner. 2012. CEVA Exposes DSP Six Pack. In Microprocessor Report.565
[21] N. Goel, A. Kumar, and P. R. Panda. 2007. Power Reduction in VLIW Processor with Compiler Driven Bypass Network.566

In VLSID-20.567
[22] A. Gonzalez, J. Gonzalez, and M. Valero. 1998. Virtual-physical registers. In HPCA-4.568
[23] Texas Instrucments Inc. 1998. TMS320C62x/67x CPU and instruction set reference guide.569
[24] Texas Instruments. 2010. TMS320C6745/C6747 Fixed/Floating- point digital signal processors (Rev.D).570
[25] Intel. Intel Itanium Architecture Software Develorer‘s Manual: Intel Itanium Instruction Set. www.intel.com 3,571

293–370.572
[26] Krishnan Kailas and Ashok Agrawala. 2001. CARS: A new code generation framework for clustered ILP processors.573

In HPCA.574
[27] P. Geoffrey Lowney, Stefan M. Freudenberger, Thomas J. Karzes, W. D. Lichtenstein, Robert P. Nix, John S. O’Donnell,575

and John C. Ruttenberg. 1993. The multiflow trace scheduling compiler. The Journal of Supercomputing 7 (1993), 51–576
142.577

[28] R. Nagpal and Y. N. Srikant. 2007. Register file energy optimization for snooping based clustered VLIW architectures.578
In SBAC-PAD-19.579

[29] V. R. K. Naresh, D. J. Palframan, and M. H. Lipasti. 2011. CRAM: Coded registers for amplified multiporting. In MICRO-580
44.581

[30] Emre Özer, Sanjeev Banerjia, and Thomas M. Conte. 1998. Unified assign and schedule: a new approach to scheduling582
for clustered register file microarchitectures. In MICRO-31.583

[31] I. Park, M. D. Powell, and T. N. Vijaykumar. 2002. Reducing register ports for higher speed and lower energy. In584
MICRO-35.585

[32] Roni Potasman. 1992. Percolation based compiling for evaluation of parallelism and hardware design trade-offs. Ph.D.586
[33] C. Rowen, D. Nicolaescu, R. Ravindran, D. Heine, G. Martin, J. Kim, D. Maydan, N. Andrews, B. Huffman, V. Papa-587

paraskeva, S. Gal-On, P. Nuth, P. Patwardhan, and M. Paradkar. 2011. The World’s Fastest DSP Core: Breaking the588
100 GMAC/s Barrier. In Hot Chips.589

[34] A. Terechko, M. Garg, and H. Corporaal. 2005. Evaluation of speed and area of clustered VLIW processors. In VLSID-590
18.591

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 5s, Article 124. Publication date: August 2017.

TECS1605s-124 ACMJATS Trim: 6.75 X 10 in August 31, 2017 13:10

The CURE: Cluster Communication Using Registers 124:19

[35] A. Terechko, E. Le Thenaff, M. Garg, J. van Eijndhoven, and H. Corporaal. 2003. Inter-cluster communication models 592
for clustered VLIW processors. In HPCA-9 2003. 593

[36] J. H. Tseng and K. Asanovic. 2003. Banked multiported register files for high-frequency superscalar microprocessors. 594
In ISCA-30. 595

[37] S. Wallace and N. Bagherzadeh. 1996. A scalable register file architecture for dynamically scheduled processors. In 596
PACT. 597

[38] R. Yung and N. C. Wilhelm. 1995. Caching processor general registers. In ICCD. 598
[39] J. Zalamea, J. Llosa, E. Ayguade, and M. Valero. 2000. Two-level hierarchical register file organization for VLIW 599

processors. In MICRO-33. 600
[40] Javier Zalamea, Josep Llosa, Eduard Ayguad, and Mateo Valero. 2001. Modulo scheduling with integrated register 601

spilling for clustered VLIW architectures. In Micro-34. 602
[41] Yingchao Zhao, C. J. Xue, Minming Li, and B. Hu. 2009. Energy-aware register file re-partitioning for clustered VLIW 603

architectures. In ASP-DAC. 604
[42] V. Zyuban and P. Kogge. 1998. The energy complexity of register files. In ISLPED.

Q4

605

Received xxx; revised xxx; accepted xxx 606

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 5s, Article 124. Publication date: August 2017.

TECS1605s-124 ACMJATS Trim: 6.75 X 10 in August 31, 2017 13:10

Author Queries

Q1: AU: Please provide CCS 2012 Concepts per author guidelines and provide XML codes as well.

Q2: AU: Please provide Additional Key Words and Phrases.

Q3: AU: Please provide complete mailing and email addresses for all authors.

Q4: AU: Please provide article history dates.

