
Temporally Silent Stores
Kevin M. Lepak and Mikko H. Lipasti

Electrical and Computer Engineering
University of Wisconsin
1415 Engineering Drive

Madison, WI 53706
{lepak,mikko}@ece.wisc.edu

Abstract

Recent work has shown that silent stores--stores which
write a value matching the one already stored at the
memory location--occur quite frequently and can be
exploited to reduce memory traffic and improve perfor-
mance. This paper extends the definition of silent stores
to encompass sets of stores that change the value stored
at a memory location, but only temporarily, and subse-
quently return a previous value of interest to the memory
location. The stores that cause the value to revert are
called temporally silent stores. We redefine multiproces-
sor sharing to account for temporal silence and show
that in the limit, up to 45% of communication misses in
scientific and commercial applications can be eliminated
by exploiting values that change only temporarily. We
describe a practical mechanism that detects temporally
silent stores and removes the coherence traffic they cause
in conventional multiprocessors. We find that up to 42%
of communication misses can be eliminated with a sim-
ple extension to the MESI protocol. Further, we examine
application and operating system code to provide insight
into the temporal silence phenomenon and characterize
temporal silence by examining value frequencies and
dynamic instruction distances between temporally silent
pairs. These studies indicate that the operating system is
involved heavily in temporal silence, in both commercial
and scientific workloads, and that while detectable syn-
chronization primitives provide substantial contribu-
tions, significant opportunity exists outside these
references.

1 INTRODUCTION

There is widespread agreement that communication misses are
one of the most pressing performance limiters in shared-memory
multiprocessor systems running commercial workloads. For
example, both Barroso et al. [3] and Martin et al. [18] report that
about one-half of all off-chip memory references are communica-
tion misses; i.e. the references are satisfied from dirty lines in
remote processor caches. Communication misses are caused by
remote writes to shared cache lines; in single-writer or invalidate
protocols a write requires all remote copies of a shared line to be
invalidated [9]. Subsequent references to those remote copies
lead to misses that must be satisfied from the writer’s cache. Two
current trends are likely to exacerbate this problem: systems that

incorporate an increasing number of processors will likely lead to
an increased probability that a remote write to a shared line will
occur; and systems with larger and more aggressive local cache
hierarchies that eliminate most capacity and conflict misses, but
cannot reduce communication misses.

Prior work has shown that many communication misses can
be avoided by detecting false sharing [10] or silent stores [16].
These approaches attempt to extend the lifetime of a shared copy
of a cache line by monitoring remote writes and determining
whenever the remote write either changes a different word in the
line or does not change it at all. In this paper, we introduce a new
method for extending cache line lifetime that relies on the tempo-
ral behavior of writes to the same location. Specifically, we
exploit a program characteristic which we call temporal silence.
Informally, temporal silence describes the net effect of two or
more writes that change a register or memory location to an inter-
mediate value, but subsequently revert the location to a previous
value of interest. In this paper, we focus on exploiting the tempo-
ral silence of store operations in multiprocessor systems for the
purpose of eliminating communication misses.

The phenomenon of temporal silence is not unique to multi-
threaded programs running on multiprocessor systems, and has
been exploited (although not explored in depth) in earlier work
on speculative multithreading. For example, compiler-based
Thread-Level Speculation (TLS) systems optimistically parallel-
ize programs and rely on hardware support in the coherence pro-
tocol to detect memory dependence violations. In recent work,
Steffan et. al [21] and Cintra et. al [7] examine different methods
of improving memory value communication in such a system.
The load value prediction approach they describe, when used in
concert with a last-value predictor, effectively exploits temporal
silence of intervening stores to the loaded memory location: oth-
erwise predicting the last value observed for that memory loca-
tion will surely fail. In addition, architects have exploited
temporal silence of register values. As one example, Dynamic-
Multithreading [1], exploits temporal silence of register writes on
procedure calls and returns for callee saved registers by predict-
ing that register values used by a speculative thread are those val-
ues which exist at the point the speculative thread is spawned. In
other related work, Speculative Lock Elision detects and exploits
temporal silence of “silent store- pairs”[20].

In multiprocessor systems, we find that a surprising number of
writes that induce communication misses are temporally silent.
We find that an idealized scheme for exploiting temporal silence
can remove up to 45% of sharing misses in the commercial work-
loads we study. Further, we propose a realistic, non-speculative
method of exploiting temporal silence that captures nearly all of
this opportunity, eliminating up to 42% of such misses.

The remainder of this paper describes the phenomenon of tem-
porally silent write pairs in multiprocessor systems, defines tem-
poral silent sharing (Section 2), quantifies its contribution to
communication misses in a shared-memory multiprocessor (Sec-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ASPLOS X 10/02 San Jose, CA, USA
(c) 2002 ACM 1-58113-574-2/02/0010...$5.00

tion 3), and characterizes the phenomenon of temporal silence by
examining value distributions, contribution of atomic primitives,
and kernel, library, and user code (Section 4). We also discuss
and evaluate several implementation issues related to detecting
(Section 5) and exploiting this new program characteristic non-
speculatively with changes to an existing MESI coherence proto-
col (Section 6). We do not report direct performance benefit due
to the fact that the commercial workloads we study are nondeter-
ministic and hence difficult to measure precisely [2]. Rather, we
show dramatic reductions in communication misses and argue
that substantial performance benefit will result. This argument is
consistent with prior results that show the substantial perfor-
mance impact of communication misses [3,18]. Detailed evalua-
tion of performance benefit will be reported in future work.

2 DEFINITIONS

2.1 Temporally Silent Stores

In order to provide context for understanding temporally silent
stores, we need to review the definition of silent stores presented
in [16] briefly. In that work, we contributed the insight that many
memory writes do not change the value stored at a memory loca-
tion (they do not update system state) because the write value
matches the value stored at the memory location. Such writes are
called (update) silent stores.

In Section 1 we informally introduced the concept of temporal
silence; the idea that a value written matches a previous value
seen at that location. Since our focus in this work is eliminating
communication misses, we only consider temporal silence of
memory locations. Therefore, strictly speaking, we consider a
store temporally silent if it writes a value to a memory location
which has ever existed there previously. With this definition,
consider a pathological case in which the same byte in memory is
incremented repeatedly. After 256 writes of the location, all sub-
sequent stores to the location become temporally silent, just with
respect to a different previous value. Obviously such a definition
does not have much practical value. Therefore, a more useful def-
inition of temporal silence depends on the desired application.

In a multiprocessor system, arguably the most interesting tem-
porally silent stores are the ones that cause a memory location to
revert to a value that has been previously observed by a remote
processor. In this context, we consider a store temporally silent if
it writes a value matching a stale value in a remote processor

cache that is currently in invalid state. These temporally silent
stores change the location back to a value recently observed by
the other processor. We can imagine this value can be communi-
cated at low cost. It will become clear in the following sections
when discussing multiprocessor sharing why we choose such a
definition. Note that there is nothing in our subsequent defini-
tions which precludes multiple (distinct) intermediate values or
temporally silent values for a given memory location; bounding
the values is simply a matter of practicality. We use this defini-
tion of temporally silent store throughout this work.

As we have discussed, temporal silence has an important dif-
ference over update silence; namely an intermediate value which
is non-silent. Therefore, to succinctly describe specific dynamic
stores of interest, we define a temporally silent store pair to con-
sist of two parts: A non-silent store to the memory location,
called the intermediate value store, which visibly changes the
system state from a previously observed value; and a non-silent
store, called the temporally silent store, which then reverts the
state back to a previously observed value. Note that there may be
additional intervening stores to the same address; we do not con-
sider these part of a temporally silent store pair.

2.2 Reducing Multiprocessor Sharing

Communication in multiprocessor systems can be reduced by
monitoring writes to shared cache lines more closely and detect-
ing false sharing [10] or silent stores [16], thereby extending the
lifetime of a cache line in remote caches. These two methods of
extending cache line lifetime are depicted graphically in
Figure 1(a) and Figure 1(b).

Along the same lines, we can exploit temporal silence to fur-
ther increase cache line lifetime. Two scenarios of interest are
indicated in Figure 1(c) and Figure 1(d). In scenario (c), the
cache line is written with an intermediate value store, but a tem-
porally silent store follows and reverts the line to a previous
value. Memory consistency rules allow the stores to be collapsed
into a single atomic event that is now effectively silent, since the
memory location contains the same value before and after the
store pair has executed. Therefore, we refer to this temporally
silent store pair as an atomic temporally silent store pair. We find
that capturing such temporal silence by delaying writes (hence
exploiting PowerPC weak ordering) is relatively ineffective,
leading to a maximal 3% reduction in sharing misses. Speculative
techniques for ensuring atomicity, similar to [20], could improve
that result, but since this paper focuses on nonspeculative tech-

FIGURE 1. Extending the Lifetime of a Shared Cache Line. Lifetime is extended by avoiding writes to other parts of the word
(false sharing), ignoring silent writes (update silent sharing), ignoring temporally silent atomic write pairs, and reinstating a line
upon reversion due to a temporally silent write pair that is not atomic.

Cache Line Lifetime

Write to shared line

Write to shared word
Non-silent write

Reverting TS write

Temporal Silent Sharing

Update Silent Sharing

False Sharing

Invalidate Protocol

 [Dubois, ISCA 1993]

 [Lepak (UFS), ISCA 2000]

 (during which a local read experiences a cache hit)

Atomic

Non-silent write

Reverting TS write

Non-atomic

Temporal Silent Sharing

(atomic write pair)

(ideal)

} TS Pair

} TS Pair

(a)

(b)

(c)

(d)

niques, we only consider the final scenario indicated in
Figure 1(d).

In scenario (d), the cache line is written with an intermediate
value and consistency rules force this store to be ordered; hence
there is a time window when the previous copy of the cache line
is invalid. Later, a temporally silent store occurs causing the cur-
rent copy to match a previous copy, extending the cache line life-
time further. We can exploit this occurrence in many cases by
augmenting an existing MESI coherence protocol, as described in
detail in Section 6.

2.3 Temporal Silent Sharing (TSS)

Until recently (e.g. [16]), prior work in defining sharing has
focused on the address of shared data and whether or not it had
ever been written by another processor. In [16], we modified the
definition of sharing to consider the value locality of stores and
indicate that silent stores can be exploited to extend cache line
lifetimes of remote cache lines (Figure 1b) by avoiding invalida-
tion of these lines. We call this definition of sharing Update
Silent Sharing (USS).1

Having defined temporally silent stores in multiprocessors, we
can now rigorously define sharing considering these stores. We
can effectively accomplish this by simply redefining which
misses are Essential Misses in Dubois’ classification scheme
[16]; i.e. those misses which communicate meaningful, new,
information about system state. Informally, we extend the defini-
tion of Essential Miss presented in [16] to capture the case where
cache line values revert to the value previously observed by
another processor in the system (our changes are in italics):

Essential Miss: A cold miss is an essential miss. Also, if dur-
ing the lifetime of a block, the processor accesses (load or store)
a different value than the last value observed by that processor
for that block since the last essential miss to that block, it is an
essential miss.

In our new definition of Essential Miss, we establish that the
net effect of all writes to the location of interest since a proces-
sor’s last observation of the location must constitute new system
state for the miss to be essential. Note that this definition makes
no statement about how many distinct processors have written to
a specific word (with intermediate value or temporally silent
stores) or other places within the cache line--it only requires that

the value of interest be the same as the last value observed for a
given processor. The distinction will become clear as we describe
different methods of capturing temporal silence in the following
sections. Also note that our new definition of temporal silent
sharing (TSS) is a superset of USS.

3 REDUCING DATA TRAFFIC WITH TSS

We have argued in Section 2.2 that exploiting temporal silence
can extend cache line lifetime. In this section, we quantify the
potential benefit of exploiting temporal silent sharing for reduc-
tion in data traffic in snoop-based multiprocessor systems.

3.1 Experimental Setup

We study a 4 processor, snoop-based system using the
SimOS-PPC [13] full system simulator with 64B cache lines,
running AIX 4.3.1. We collected data for 128B and 256B cache
lines as well, but we do not present it for the sake of brevity and
because it does not differ materially from the 64B case. When
presenting characterizing data in subsequent sections, we assume
infinite caches unless stated otherwise so that observations about
intrinsic program characteristics are not skewed by finite cache
effects. The processor core used to drive timing for the cache
studies is similar to a single-threaded IBM RS64-III (Pulsar) [5]
used in IBM S85 server systems. It is in-order with 128KB each
split L1 instruction and data caches, and 16MB inclusive L2, with
latencies of one and seven cycles, respectively. We model a per-
fect L1 cache CPI of 1.0, which is very close to the measured CPI
on real hardware for a similar system for these workloads [6]. We
simulate four benchmarks from the SPLASH-2 [22] suite for
entire runs of reduced input sets and three, three-second snap-
shots of commercial workloads described in [6]. Table 1 summa-
rizes workload characteristics.

3.2 TSS Limit Results

In Figure 2 we present infinite and finite cache miss rates for
our new definition of sharing as compared to USS,2 and also
Dubois’ definition [10], labeled “Baseline”. The stacked bars
(normalized to baseline, infinite cache) indicate the contribution
of cold, true sharing, false sharing, and capacity/conflict misses
for finite caches of decreasing sizes (16MB, 8MB, and 4MB).
Focusing first on the infinite cache results, we see that TSS can
reduce the overall miss rate for infinite caches by up to 33% and

Program Instr. Loads Stores Silent Stores
Temporally
Silent Stores

Description

barnes 1.76B 508M 304M 117M (39%) 3.4M (1.1%) SPLASH-2 N-body simulation (8K particles)

ocean 561M 177M 36M 8.0M (22%) 1.8M (5.4%) SPLASH-2 Ocean simulation (258x258 ocean)

radiosity 2.43B 763M 326M 138M (42%) 1.1M (0.34%) SPLASH-2 Light Interaction application
(-room -ae 5000.0 -en 0.050 -bf 0.10)

raytrace 414M 254M 45M 17M (38%) 1.2M (2.6%) SPLASH-2 Raytracing application (teapot)

specweb 4.60B 1.13B 624M 233M (37%) 23M (3.7%) Commercial Web-Serving application

specjbb 3.58B 964M 431M 152M (35%) 22M (5.1%) Commercial Server-Side Java application

tpc-w 1.41B 1.40B 340M 231M (68%) 9.2M (2.7%) Commercial 3-Tier Web-Based OLTP application

Table 1: Benchmark Characteristics and Description. Instructions are measured excluding the operating system idle loop.

1. Previously (i.e. [16, 17, 4, 15]), we called this Update False Sharing
(UFS). However, since the term “False Sharing” implies unnecessary
communication due to cache block granularity [11], we choose instead to
use “Silent Sharing”; communication eliminated through store value
locality is due to properties of the data itself, not its spatial layout.

2. Note that in this work, USS corresponds to UFS-P in [16], i.e. we per-
form store squashing for cache misses with perfect knowledge of store
silence. This leads to maximal data traffic reduction for USS, providing
the best possible results for comparison.

27% over the baseline and USS, respectively (in specweb). The
harmonic mean reduction across the scientific benchmarks
(SPLASH-2) is 15% and 12%, respectively, and for the commer-
cial workloads, 25% and 21%.

In the case of finite caches, the relative reduction in overall
miss rate is smaller because of two effects: 1) Additional misses
created by pure capacity/conflict misses; 2) Creation of addi-
tional capacity/conflict misses due to fewer “invalidated” lines,
and therefore a larger working set (as explained for USS in [16]).
However, for all finite caches, we see the reduction in misses
tracking the infinite cache reductions in absolute number of
misses prevented. The only notable exception is in tpc-w for
4MB caches, where the reduction in overall miss rate drops from
over 20% to less than 6% (normalized to misses in the baseline,
infinite cache case). This data indicates that studies conducted
throughout the rest of this paper with infinite caches are reason-
able, since finite caches do not grievously affect the absolute
number of misses prevented under TSS. Therefore, we focus on
infinite cache studies in the rest of the paper.

We can see in Figure 2 that the contribution of cold misses is
substantial for many of the workloads, largely due to the limited
amount of real time that we can practically simulate. Due to this,
we expect the relative fraction of cold misses to be smaller in a
real system. Because exploiting TSS in SMPs will not affect cold
misses, we focus solely on communication misses throughout the
rest of this work.

Examining the communication miss component only in
Figure 2, we see up to 45% and 35% reductions over the baseline
and USS cases (in specweb), respectively. We see harmonic
mean reductions in the scientific benchmarks of 24% and 19%,
respectively; 42% and 32% for the commercial workloads. Most
of the improvement is in true sharing, although some false shar-
ing is also eliminated. Interestingly, TSS provides substantial
benefit over USS, particularly in the commercial workloads. We
will explore possible explanations for this throughout subsequent
sections. Given that communication misses are a limiting factor
in the performance scalability of large-scale SMPs (due to both
latency and data bandwidth [3],[18]) attacking these misses is
very important.

4 UNDERSTANDING TEMPORAL
SILENCE IN SMPs

We showed in the previous section that the potential reduction
in communication misses by exploiting TSS is large. In this sec-
tion, we focus on characterizing and understanding the temporal
silence phenomenon and its interaction with application code and
the operating system. This will allow us to develop a better
understanding of temporal silence before detailing a method of
exploiting it in the sections that follow.

4.1 Temporally Silent Program Behavior

To determine program structures and behaviors exhibiting
temporal silence, we augmented our simulator to detect instruc-
tions which contributed to TSS. This allows us to better under-
stand the occurrence of temporal silence at the program level.

In Table 2, we show the contribution of different functions
within user level code, shared library code, and kernel code. The
“% TSS Misses” column indicates the percentage of TSS avoid-
able misses the given function participates in by contributing an
intermediate value store or temporally silent store. Percentages

within this column may add to greater than 100% because multi-
ple functions may participate within a single TSS avoidable miss
(e.g. if a separate function is used for lock acquire and release, a
single miss due to this temporally silent pair will be counted in
this column for both the acquire function and release function).

The “% Dynamic TSS Stores” column indicates the percent-
age of all dynamic stores (either intermediate value store or tem-
porally silent store) contributing to TSS avoidable misses that
occur within the given function. Because this column is normal-
ized to the total number of dynamic stores contributing to TSS
avoidable misses, this column will add up to 100% (or less).
However, the total is always less than 100% when functions are
considered individually because it is only practical to present data
for an interesting subset of functions.

Because we do not have source code for the shared libraries of
interest or the AIX v4.3.1 kernel, it is difficult to discern exactly
which program semantics are causing temporal silence to occur.
However, when possible, we provide function names to allow
reasonable conjectures to be made.

Focusing first on the scientific workloads, it is interesting that
most locking-related TSS avoidable misses in ocean are not
within the application itself, but rather, in kernel support routines.
The contribution of application spin-lock acquires/releases is less
than 8%. In barnes (representative of radiosity and raytrace), the
contribution of user-level spin locks is large (over 80%). How-
ever, substantial contributes within the AIX kernel (14.5%) are
still noted. Furthermore, user-level code not directly related to
atomic primitives contributes less than 5% and 6% in each bench-
mark. This data indicates that studying temporal silence without
considering operating system and library code, even for scientific
workloads, may ignore substantial opportunity.

In the commercial workloads, most TSS avoidable misses in
specjbb occur within the Java runtime environment or JRE (lib-
java.a and libjitc.a). As shown in Figure 4, it appears that non-
trivial sharing misses related to atomic as well as data operations
occur within the JRE. In specweb, many temporally silent stores
occur within process management, TLB, and page table-related
code. This seems reasonable given the structure of this imple-
mentation of specweb which spawns a new perl process for each
incoming web request, causing frequent process creation and
destruction [6]. Results for tpc-w were qualitatively similar to
specjbb and specweb and are omitted for brevity..

FIGURE 2. Percentage of Cache Misses for Different
Definitions of Sharing. The data is normalized to the Baseline
case for 64B cache lines and infinite caches. The top three bars
show cumulative additional capacity/conflict misses for 8-way
set-associative caches of 16MB, 8MB, and 4MB.

We also note that the two metrics presented (% TSS Misses
and % Dynamic TSS Stores) do not always correlate strongly
with one another. In some cases, many dynamic stores are con-

tributing to relatively few TSS avoided misses, while in other
cases the converse is true (most notably barnes in “other user
code” and “cs”, respectively). Therefore, if our goal is eliminat-

Benchmark
% TSS
Misses

% Dynamic
TSS Stores

Function Comments

specjbb 40.0% 13.9% check_lock (K) Compare and swap with import fence (lock acquire) primitive

specjbb 36.5% 38.5% libjava.a (L) Java Runtime Environment

specjbb 22.4% 8.9% libpthreads.a (L) Thread management

specjbb 17.7% 8.5% clear_lock (K) Atomic write with export fence (lock release) primitive

specjbb 16.9% 18.5% libjitc.a (L) Java Runtime Environment--JIT

specjbb 0.0% 0.0% all user code (U) All user-level application code

specweb 40.2% 20.9% rsimple_lock (K) Recursive simple lock acquire

specweb 20.1% 3.8% simple_lock (K) Non-recursive simple lock acquire

specweb 20.0% 4.1% simple_unlock (K) Simple lock and recursive simple lock release

specweb 19.4% 1.9% p_inspte_p64 (K) Process creation/deletion, page table entry insert

specweb 14.7% 1.2% v_inspft (K) AIX kernel

specweb 13.7% 1.5% v_lookup (K) AIX kernel

specweb 13.2% 1.3% delall_pte_p64 (K) Process creation/deletion, page table entry delete

specweb 11.9% 2.6% invtlb_ppc (K) Process creation/deletion TLB manipulation/invalidation

specweb 11.8% 1.0% v_delpft (K) AIX kernel

specweb 6.2% 0.9% px_rename_p64 (K) AIX kerne)

specweb 5.9% 1.0% rsimple_unlock (K) Recursive simple lock release

specweb 4.8% 0.6% v_scoreboard (K) AIX kernel, includes v_descoreboard

specweb 3.0% 0.4% insque/remque (K) Shared queue management

specweb 0.3% 0.1% all user code (U) All user-level application code

ocean 70.6% (*)53.7% all kernel locks (K) All kernel level locks/releases, not within application code

ocean 46.8% 14.9% simple_lock (K) Kernel lock acquires, not within application code

ocean 42.6% 13.2% simple_unlock (K) Kernel lock releases, not within application code

ocean 15.2% 14.0% rsimple_lock (K) Kernel lock acquires, not within application code

ocean 11.5% 1.9% unlock_enable (K) Kernel lock releases, not within application code

ocean 9.0% 1.4% test_and_set (K) Other atomic primitives, not called directly by application code

ocean 7.7% 1.9% cs (K) Atomic compare and swap (application code lock acquire)

ocean 7.6% 1.8% user mode store (U) Application code lock release

ocean 7.0% 4.9% state_save_point (K) AIX kernel

ocean 5.6% 3.4% v_lookup (K) AIX kernel

ocean 5.5% 1.6% v_inspft (K) AIX kernel

ocean 5.3% 3.1% p_inspte_p64 (K) AIX kernel

ocean 4.5% 3.5% call_dispatch (K) Kernel thread dispatching/scheduling

ocean 4.4% 1.7% set_curthread (K) Kernel thread dispatching/scheduling

ocean 4.2% 1.0% other user code (U) All user-level application code (not lock releases)

barnes 80.9% 6.8% cs (K) Atomic compare and swap (application code lock acquire)

barnes 80.0% 6.9% user mode store (U) Application code lock release

barnes 9.8% 4.3% Kernel Locks (K) simple_lock(), simple_unlock(), disable_lock(), unlock_enable();
not within application code

barnes 4.7% 3.0% Other kernel (K) Process creation/deletion and thread management

barnes 5.7% 78.6% other user code (U) All user-level application code (not lock releases)

Table 2: Functions Actively Participating in Temporal Silence. The table indicates the percentage of dynamic intermediate value and
reversion stores contributed within the specified functions in the benchmarks indicated for cases of useful TSS. (K) Denotes kernel
functions, (L) denotes library functions, and (U) denotes user code. (*) Includes contributions from multiple functions listed individually
within the table as well, so for ocean this column adds to more than 100%.

ing communication misses, it may not be prudent to develop
mechanisms which target each dynamic temporally silent store
with equal effort and assume that a corresponding reduction in
TSS avoidable misses will occur.

4.2 Value Distribution

The values observed for both intermediate values and tempo-
rally silent values of memory words may reveal insight into tem-
poral silence. In Figure 3, we show the cumulative distribution of
temporally silent values and intermediate values for TSS avoid-
able misses. Across both the scientific and commercial applica-
tions, the graph indicates over 75% of temporally silent values
are zero, which is not surprising given similar results were
observed for update silent stores [4]. However, in the commercial
workloads, an observable fraction (over 5% in tpc-w and
specweb) of temporally silent values are non-null pointers1, a
point which we will return to shortly.

Examining the intermediate value distributions for the scien-
tific applications, we see (with the exception of ocean) the pre-
dominant intermediate value is integer one, which is caused by
user-level spin-locks and other flag values. In ocean, the largest
contribution comes from values in the range 4K-8K, which is
unexpected. We examined this benchmark further, and found

these values are actually the thread IDs used by AIX for the con-
current threads of ocean. These intermediate values still appear to
be lock-related, with AIX using the thread ID to indicate which
thread is holding the lock to thread-safe memory allocation rou-
tines and other operating system structures protected with the
simple_lock(), simple_unlock(), disable_lock(), and
unlock_enable() routines. These are higher level locks (not sim-
ple spin-locks) provided by the AIX kernel [8]. In the commer-
cial applications, the intermediate value distributions show strong
contributions throughout the range, many of which match thread
IDs of running processes (in the range 512-64K). This enlarged
contribution from high-level locks in the commercial applications
is reasonable; under a highly concurrent commercial application
load we expect fewer simple spin-locks because they can reduce
system throughput by wasting processor cycles spinning. More
noteworthy is a particularly strong contribution for intermediate
pointer values. The contribution of these values is over 40% in
specweb and 20% in specjbb. Many of these revert to null (and
therefore are counted under temporally silent value zero), but
some also revert to non-null values, indicating that temporally
silent pairs also occur in what are likely shared data structures.

4.3 Explicit Atomic Operations

Lock variables are great candidates for exhibiting temporal
silence since they revert to their unheld value when released.
Indeed, Speculative Lock Elision exploits “silent store-pairs”
(which we refer to as atomic temporally silent store pairs) to elide
transfers and execute critical sections concurrently [20]. How-
ever, we found that memory locations written with explicit ISA
atomic operations (i.e. store-conditionals) are not the only con-
tributors to TSS by measuring how much of the benefit of TSS
comes from cache lines touched with such operations, and how
much benefit is contributed by data operations.

In Figure 4 we show the contribution to sharing misses by
atomic operations for Baseline, USS, and TSS. We determine
explicit atomic operations in a very liberal manner: if any loca-
tion within a cache line has been written with a PowerPC stwcx/
stdcx (store-conditional) instruction, we denote a subsequent
miss to that cache line as related to an explicit atomic operation
(in reality, there may also be data operations within the same
line). Load-linked/store-conditional instructions can implement
various atomic primitives, including locks, atomic updates, com-

FIGURE 3. Value Cumulative Distributions for Useful TSS.
The figure indicates the cumulative distribution of observed
intermediate values and temporally silent values for TSS
avoidable misses. Only values for integer stores are shown--
contributions from floating point stores were measurable, but
negligible. Results for barnes, radiosity, and raytrace do not
differ materially and are represented by the “other_int” and
“other_ts” categories in the scientific workload graph.

1. We approximated pointer values by storing all virtual addresses
touched by each process and assuming any observed value which
matched a previously observed virtual address was in fact a pointer.

FIGURE 4. Contribution of Atomic Operations Under
Different Definitions of Sharing. The figure indicates the
contributions of cache lines written with at least one stwcx/
stdcx (store-conditional) operation to sharing misses for
Baseline, USS, and TSS. The data is normalized to sharing
misses in the Baseline case.

pare-and-swap, atomic list insertion/deletion, and others [9].
Determining which atomic primitive is implemented is non-triv-
ial without instrumenting the binary at compile time. Since most
temporally silent pairs occur within the AIX kernel and within
the various libraries which make up our commercial workloads,
we are unable to further classify atomic primitives.

Examining the figure, we see that a large fraction of true shar-
ing misses are due to atomic primitives across all benchmarks in
the Baseline case, ranging from 9% in barnes to 43% in tpc-w.
We also observe that over 75% of TSS avoidable misses are from
atomic primitives except in specjbb, where the fraction contrib-
uted by atomic primitives is 45%. This data indicates we may be
able to leverage explicit atomic operations to more efficiently
exploit temporal silence. However, in specjbb, a majority of TSS
avoidable misses are not due to atomic primitives, indicating a
general mechanism—one not focused on just these constructs—
is desirable. We focus on such a general mechanism throughout
the subsequent sections.

Finally, note that even for TSS avoidable misses which can be
determined to be locks with high likelihood (see Table 2,
Figure 3, Figure 4), the value distributions in Figure 3 indicate
the transfers avoided predominantly indicate the lock is free. This
implies that eliminating these misses improves synchronization
performance.

5 DETECTING TEMPORAL SILENCE

In this section, we outline methods of detecting when temporal
silence occurs within various processor structures relating to the
memory hierarchy. All of the methods for detecting temporal
silence outlined in this section can be useful, depending on the
distance between the intermediate value store and temporally
silent store which comprise a silent pair. We will return to this
point throughout Section 6.

5.1 Inside the Processor Core

If we assume a processor that implements update-silent store
squashing (i.e. issuing a load operation, a comparison of the
value to be written against the previous value, and a conditional
store depending on the silence outcome) as in [16], we can aug-
ment the load/store queue (LSQ) to keep the load data for a veri-
fied store in the LSQ [17]. Then detecting temporal silence
simply involves checking any new store data values against the
system visible value for that location (i.e. the first loaded value
for the location of interest in the LSQ). Any stores which become
temporally silent in the queue can be dropped1, while all other
stores are performed as usual.

Another method involves augmenting a traditional merging
write buffer or write cache [14, 19] to perform the same function.
An advantage to using this structure is that we need not perform
traditional update-silent store squashing to exploit temporal
silence if the structure is write-allocate. Write-allocate structures
are common because they simplify write handling into the level
behind them. In this case, when a committed store allocates an
entry in the write buffer, it can keep a copy of the system-visible
(stale) version of the buffer along with the merge (dirty) data. As
stores are retired, they can be incrementally checked against the
stale data for temporal silence. If temporal silence is detected for
the entire buffer entry (i.e. the dirty data matches the stale data),

the buffer entry can be freed with no write action. Even though
we are doubling the amount of data storage for each write buffer
entry in a naive implementation, the size of the buffer itself will
not double because tags and most of the datapath can be shared
between the dirty data and stale data. Preliminary data (presented
in Section 6.3) also indicates that only a few words per cache line
need to be tracked; however, we leave detailed exploration of this
design space to future work.

5.2 Outside the Processor Core

Once store operations have become non-speculative (i.e. leave
the processor core), they must become visible to the rest of the
system to maintain correct memory reference ordering. The
approaches described in the previous section are only capable of
capturing a short distance between the intermediate value store
and the temporally silent store due to relatively small buffering
capabilities within the core. Detecting temporal silence outside
the processor core will allow us to capture a longer dynamic pro-
gram distance between the temporally silent pair than is feasible
with the techniques presented previously. We can then use a new
coherence event (Section 6.3) to communicate non-speculatively
when it is safe to use a previously seen version of a cache line,
because it has reverted to a previous value. We will show in Sec-
tion 6.4 that in many cases there is more distance between the
temporally silent pair than may be reasonably buffered inside a
processor core, motivating this decoupled approach.

One method of detecting temporal silence outside the proces-
sor core exploits the natural behavior of inclusive cache hierar-
chies. Consider a writeback L1-D cache with an inclusive L2.
When the processor writes a cache line, the line is brought into
the L1-D and is written while the L2 updates its directory to indi-
cate the line is modified in the L1-D. Note that the L2 data is
actually a stale version of the cache line, and we can use it for
detecting temporal silence. This technique can arbitrarily delay
the detection of temporal silence; if the delay exceeds the time to
a remote read, there is no benefit. Section 6.5 shows that in most
cases, a reasonable delay is acceptable. This idea--exploiting the
natural versioning that occurs in a cache hierarchy--can be gener-
alized to lower levels in the hierarchy.

A more timely way to detect temporal silence involves aug-
menting each level in the memory hierarchy with explicit stale
value storage. Whenever a system-visible value is overwritten in
the cache, the stale value is saved, and the new value is written
into the cache. When a new write occurs, the new write value is
both written into the cache and compared against the stale value.
If the new write matches the stale value, temporal silence for that
write has occurred. If all words within the cache line match the
stale version (either because they have never been written or
because they have all become temporally silent), the entire cache
line has become temporally silent. This scheme requires extra
storage for stale values and can complicate cache write timing
paths. However, in many cache designs, to ease circuit and datap-
ath design and provide ECC protection, writes effectively
become read-modify-writes. Clearly, a RMW operation can be
modified to save the stale value (as in [17]).

6 COHERENCE SUPPORT

Whenever temporal silence is detected, it needs to be commu-
nicated to other processors to be able to avoid sharing misses. In
this section, we describe a new coherence protocol which allows
such communication without employing speculation.1. Provided memory ordering rules allow the stores to appear atomic as

described in Section 2.2.

6.1 Coherence Support for Temporal Silence

In Figure 5, we show the additional coherence support we pro-
pose which allows intermediate values to be ordered but then
reverted (as outlined in Section 2.2). We call our proposed proto-
col “MESTI”, which adds the temporally invalid state “T”. This
state is entered upon receipt of an invalidate from another proces-
sor in the system if the data was previously valid (M, E, or S
states). If another bus transaction occurs to a line in T state, it
transitions to I state, unless the transaction is a validate, in which
case it transitions to S state. Entering T state allows remote pro-
cessors to save the last globally visible copy of a cache line so it
can be reverted to later. The validate transaction allows a remote
processor to validate a remote cache line when temporal silence
against the previous globally visible value is detected. In
Figure 5, we indicate the PrWrs in bold/italic text when a glo-
bally visible version of the cache line is saved; this enables a sub-
sequent validate transaction if the line reverts to this version.1

A validate effectively places a cache line back into remote
caches with simply an address transaction, as opposed to sending
new data, as is done in update protocols. However, address traffic
may not be equal to an update protocol because a validate is trig-
gered only when the final temporally silent store occurs to the

cache line; multiple intervening stores not part of the temporally
silent pair or other temporally silent stores to different locations
within the cache line do not cause validates.

We refrain from giving a rigorous validation of the correctness
of the MESTI protocol in this work and prefer to focus on its
ability to exploit TSS. However, the protocol change we propose
is inherently simpler than other protocol changes because T state
is only used for performance optimization and not for correct-
ness. In the case of any subtle protocol races, T state can simply
be handled equivalently to I state, and we can regress to the
MESI protocol.

6.2 Temporal Silence Captured

In order to show the maximal data traffic reduction possible
with our MESTI implementation, we model enough stale storage
throughout the processor core and memory hierarchy to detect all
cases of TSS which MESTI can exploit. Principally, this means
augmenting traditional cache structures with stale storage of 64B
per cache line, matching the cache line length. This implies a
doubling of the data storage capacity of the cache. Also, as soon
as a cache line has become temporally silent due to a temporally
silent store, we broadcast a validate transaction to all other pro-
cessors in the system.

In Figure 6, we show the reduction in communication data
traffic possible with MESTI. We see harmonic mean reductions
in the scientific benchmarks of 21% and 15% over the Baseline

FIGURE 5. State Machine for the MESTI Protocol. We
augment MESI (using the notation from [9]) with temporal
silence support by adding a “temporally invalid” (T) state. “Val”
denotes the added validate transaction required for MESTI to
communicate the occurrence of temporal silence against the
previous globally visible value for a cache line, and the
italicized/bold PrWrs indicate where a stale version which can
be reverted to is saved. To simplify this diagram, we assume a
processor performing USS-P silent store squashing as described
in Section 3.2 and [16] will issue PrRd/Read transactions for
silent store misses.

1. We assume a write-allocate cache to save the previous globally visible
version for the I to M and T to M transitions. Note that the version saved
here is the data arriving from the system before the line is modified.

FIGURE 6. Percentage of Communication Misses for
Different Definitions of Sharing. The data indicates the
number of communication misses normalized to the Baseline
case for 64B cache lines and infinite caches, including the
reduction in sharing with our MESTI protocol.

CPU 0 CPU 1

Time Instruction Cmd/Txn Instruction Cmd/Txn

T0 LD [A] Read/Miss LD [A] Read/Miss

T1 ST [A], 1 Invalidate

T2 MEMBAR

T3 ST [A], 0 Validate

T4 MEMBAR MEMBAR

T5 LD [A] Read/Miss

Table 3: Code Example for MESTI. Coherence transactions for
a core with USS store squashing and weak ordering are shown
(LD [A] at T0 returns 0). The LD miss at T5 can be eliminated
with MESTI.

and USS cases; and 40% and 32% for the commercial workloads.
Note that MESTI is within 4% of the TSS limit in communica-
tion misses for all workloads except raytrace (6%) Also note that
the relative ability of MESTI to approach the TSS limit is slightly
larger in the commercial workloads versus the scientific work-
loads, indicating that available opportunities for exploiting tem-
poral silence are different between workload types. We have
already discussed this extensively in Section 4.

To illustrate why MESTI is incapable of exploiting all cases of
TSS, we show two sample load/store sequences, one that can be
exploited (in Table 3) and one that cannot (in Table 4). In
Table 3, the Read/Miss at T5 can be eliminated because the data
it requires is validated at T3. However, Table 4 shows a more
complicated scenario in which the load misses at T6, T9, and T12
are all TSS (because the values read at those points by respective
CPUs do match the value seen previously by that particular
CPU), but are not exploitable with MESTI. In short, MESTI is
not able to exploit all cases of TSS because it only allows rever-
sion to the immediately previous globally visible version of a
cache line. Depending on sharing patterns, multiple versions
which differ between CPUs may be required. Augmenting
MESTI and investigating other system enhancements to further
approach the TSS limit is a subject of continuing work. However,
the relatively simple, non-speculative, protocol seems promising.

6.3 Stale Storage Considerations

Stale storage of an entire cache line allows the best possible
performance of MESTI. However, this implies a doubling of
cache storage. In Figure 7, we show the effect of limiting stale
storage to a subset of an entire cache line--either two separate 8
byte blocks (16B case) or one 8 byte block (8B case)--for both
MESTI and TSS1. We see that for all benchmarks, limiting stale
storage to 16B (1/4 of a cache line) achieves nearly the ideal
reduction in communication misses versus full cache line stale
storage. The only exception is in tpc-w for TSS, where the differ-
ence is 5%. When stale storage is limited to 8B (1/8 of a cache

line), barnes and specweb also show a non-trivial lost opportu-
nity of 8% and 5%, respectively. However, in all cases, the reduc-
tion in sharing misses is substantial even with limited stale
storage. Since most of the reduction with TSS is in true sharing
misses, this implies that for sharing patterns which exhibit tem-
poral silence, relatively few locations within the cache line are
participating in the sharing. This observation may aid us in devel-
oping cost-effective methods for exploiting temporal silence in
the future.

We also found that for 16MB caches, using nearly equivalent
overall storage (i.e. a 16MB conventional cache vs. a 14MB, 7-
way associative cache with ~1.8MB stale storage organized as
8B/cache line), the overall miss rate of the 14MB cache with
either MESTI or TSS was better than a conventional 16MB cache
with USS store squashing. We leave detailed exploration of effi-
ciently implementing limited stale storage to future work, espe-
cially exploiting inclusive cache hierarchies to obtain stale
storage at no extra cost.

CPU 0 CPU 1 CPU 2

Time Instruction Cmd/Txn Instruction Cmd/Txn Instruction Cmd/Txn

T0 LD [A] Read/Miss LD [A] Read/Miss LD [A] Read/Miss

T1 ST [A], 1 Invalidate

T2 MEMBAR MEMBAR

T3 LD [A] Read/Miss

T4 ST [A], 0 Invalidate

T5 MEMBAR MEMBAR

T6 LD [A] Read/Miss

T7 ST [A], 1 Invalidate

T8 MEMBAR MEMBAR

T9 LD [A] Read/Miss

T10 ST [A], 0 Invalidate

T11 MEMBAR MEMBAR

T12 LD [A] Read/Miss

Table 4: Code Example for TSS. Coherence transactions for a core with USS store squashing are shown (LD [A] at T0 returns
0). The LD misses at T6, T9, and T12 can be eliminated with ideal TSS.

1. Limiting stale storage for general TSS does not correspond directly to
an implementation in some sense (consider the example in Table 4). How-
ever, we still present characterizing data for this case for completeness.

FIGURE 7. Effect of Limiting Stale Storage on Exploiting
Temporal Silence. The reduction in communication misses
normalized to the Baseline case (see Figure 6) for 64B cache
lines and infinite cache lines for MESTI and TSS with limited
stale storage (16B/cache line, 8B/cache line) is shown.

6.4 Temporally Silent Pair Distance

To efficiently exploit temporal silence, we need to understand
the distance between the intermediate value store and the tempo-
rally silent store which make up a temporally silent pair. To first
order, the distance determines the difficulty of exploiting TSS
with finite buffering, since stores that are far apart require a
deeper memory for tracking the original value.

In Figure 8, we show the cumulative distribution of store pair
distance measured in terms of both dynamic non-silent stores and
instructions executed for “useful” temporally silent pairs. We call
a pair useful if we can exploit it to prevent a communication miss
under MESTI. Focusing first on dynamic store distance, in the
scientific workloads we see that over 80% of useful silent pairs
can be captured within a distance of 64 dynamic stores. However,
in the commercial workloads this same distance will only capture
50% of useful silent pairs, with the 80% level not passed until
distances of 8K and 64K in specweb and tpc-w, respectively.
Examining dynamic instruction distance, the trends are similar,
but we observe greater separation between benchmarks. In the
scientific workloads, a short distance of 32 instructions captures
almost 70% of opportunity in radiosity and raytrace, but the
same level is not reached for barnes and ocean until distances of
128 and 2K, respectively. In the commercial workloads, tpc-w
reaches 55% of opportunity within distance 64, but for specjbb
and specweb, the vast majority of opportunity is not reached until
distances of 1K and 16K instructions or more, respectively.

In summary, for many cases the temporally silent pair distance
can be substantial, especially in commercial workloads. Again,
this implies that in-core techniques with limited buffering are
unlikely to be effective.

6.5 Address Traffic Effects

We have focused on data traffic exclusively thus far. How-
ever, with the addition of coherence states and transactions to
exploit temporal silence, the increase in address traffic must be
examined. In Figure 9 we present the best possible performance
of MESTI and TSS with respect to observed address traffic in the
system. The stacked bars indicate the percentage of address traf-
fic in the system, normalized to Baseline, due to data requests
(Read/ReadX), additional requests due to temporal silence
exploitation (Validate), and finally ownership (Upgrade)
requests. In the figure, we assume an oracle predictor for “useful”
validates, i.e. a validate is only broadcast if at least one remote
processor is able to avoid a data transaction due to it. For all
benchmarks, overall address traffic remains essentially constant
or decreases slightly. This result is reasonable, as a single vali-
date can avoid multiple demand data transactions.

Examining a more realistic scenario, in Table 5 we show the
measured increase in address traffic over Baseline when broad-
casting a validate at each temporal silence detection (Naive Vali-
date) for differing cache configurations. In most cases the address
traffic increases considerably over the ideal case in Figure 9,
motivating attempts at reduction. A simple way to reduce the
traffic is to collect snoop responses to ReadX/Upgrade transac-
tions indicating whether or not the cache line was present in a
remote cache at the time. If the responses indicate it was not
present in any remote cache, we are certain that any validate for
this line is useless and we can avoid it. We call this policy Snoop-
Aware Validate, with its performance indicated in the table1. The
reduction in address traffic due to this simple optimization is non-
trivial in ocean, radiosity, raytrace, and specjbb in the case of
infinite caches.

In the case of finite caches, we see that the address traffic
increases for Naive Validate are significantly less than the infi-
nite case, primarily due to two factors: 1) Absolute increase in
baseline address traffic due to added capacity/conflict misses; 2)
Fewer Validates because lines which have been replaced from the
cache between the intermediate value store and the temporally

FIGURE 8. Dynamic Instruction/Store Distances Between
Useful Temporally Silent Pairs. The figure shows the
cumulative distribution of distance (in dynamic instructions and
dynamic stores) between the intermediate value store and the
temporally silent store in a silent pair for cases in which MESTI
prevents a remote miss.

FIGURE 9. Best Case Address Traffic Exploiting Temporal
Silence. Address traffic increases for MESTI and TSS are
shown for an oracle predictor of useful temporal silence.

1. Figure 5 does not show support for this optimization to reduce clutter.

silent store do not lead to a Validate (or prevent a remote miss)
because stale storage is not added in memory. More noteworthy
is the relative effectiveness of the Snoop-Aware Validate policy
in the case of finite caches. All benchmarks show a non-trivial
reduction in additional address transactions due to due to Snoop-
Aware Validate; in all workloads except barnes and tpc-w (for
the 16MB case) the reduction is at least 7%.

The substantial increase in address traffic can be understood
by examining how often a temporally silent write is the last write
to the cache line of interest, where the last write is the final write
to the cache line before it is requested by another processor [12].

It is clear that if many temporally silent writes are not last writes,
many validates and invalidates not present in the baseline case
will be broadcast because the current owning processor will write
the cache line again before a remote processor requests it. We
refer to this as address thrashing. Given that the last write accu-
racy of temporal silence is always less than 26%, address thrash-
ing will occur often if we do not actively try to prevent it.

One possible way of reducing this occurrence is to place any
outbound validate into a queue with a fixed delay. The validate
remains in the queue until the delay time expires and the validate
is broadcast; until a demand transaction occurs for the line and
temporal silence is communicated to the requestor; or until a non-
silent write occurs to the cache line and the validate is dropped.
Delaying validates in this manner filters validates when we detect
a non-silent store to the cache line in the queue, but timeliness of
the validates will also be affected. Figure 10 characterizes the
effectiveness of this delay queue approach. For each benchmark,
the monotonically increasing curves indicate the distance, in pro-
cessor cycles, from the final temporally silent store to the cache
line to a subsequent (non-silent) write for cases in which the tem-
porally silent write is not the last write. This cumulative distribu-
tion indicates how many useless validates we can avoid by
delaying them by a fixed number of cycles. The monotonically
decreasing curves indicate the cumulative distribution of the dis-
tance, in processor cycles, from the final temporally silent store
to a cache line to a subsequent MESTI avoidable miss to the
cache line. This cumulative distribution indicates how long we
can wait before propagating a validate and still avoid a communi-
cation miss.

Ideally, the overall distribution would be bi-modal, i.e. the
“not last write” distance would be short and the “MESTI avoid-
able miss” distance would be long. In this case, we could simply
build a delay queue long enough to capture most of the “not last
write” distance, and we would trade relatively few useful vali-
dates for this while still allowing useful validates plenty of time
to propagate to remote processors. For the scientific workloads,
the figure indicates a short queue (27 cycles) can eliminate
approximately 15% of address thrashing, with approximately 5%
of temporal silence opportunity lost in ocean, radiosity, and ray-
trace. However, the distribution is not sufficiently bimodal for
this approach to eliminate the majority of address thrashing with-
out sacrificing most of the opportunity. For the commercial
workloads a short queue (27 cycles) removes 30%-35% of
address thrashing in specjbb and tpc-w with less than 1% of
opportunity lost. The distribution is sufficiently bimodal in
specweb and tpc-w (at 213 cycles) to allow at least 60% of thrash-
ing to be removed with lost opportunities of only 25% and 5%,

Benchmark
Naive Validate Snoop-Aware Validate Last Write

AccuracyInf. 16MB 8MB 4MB Inf. 16MB 8MB 4MB

barnes 15.3% 15.3% 15.3% 15.3% 15.3% 12.6% 12.6% 12.6% 5.80%

ocean 45.3% 31.5% 30.0% 17.6% 38.7% 24.0% 22.2% 9.01% 15.4%

radiosity 52.4% 35.1% 32.3% 31.0% 43.8% 27.7% 25.5% 24.3% 14.3%

raytrace 70.2% 32.8% 32.8% 31.5% 57.9% 20.0% 20.0% 19.2% 24.9%

specweb 92.2% 52.7% 47.7% 41.2% 88.8% 45.4% 39.2% 32.0% 24.1%

specjbb 107.7% 53.9% 49.2% 44.9% 97.3% 40.6% 36.5% 32.0% 20.0%

tpc-w 80.6% 55.8% 39.9% 25.6% 77.6% 52.2% 34.7% 17.9% 26.0%

Table 5: Address Traffic Increase by Exploiting Temporal Silence and Last Write Statistics. Results are shown for MESTI with
infinite, 16MB, 8MB, and 4MB (8-way associative) caches. Last Write Accuracy is measured for an infinite cache.

FIGURE 10. Temporally Silent Write to Fetch/Next Write
Histograms. The monotonically increasing curves indicate the
cumulative distance (in cycles) from a temporally silent write to
a subsequent non-silent write for useless cases of temporal
silence. The monotonically decreasing curves indicate the
cumulative distance (in cycles) from a temporally silent store to
a subsequent MESTI avoidable miss.

respectively. We leave detailed exploration of the delay queue
design space to future work.

Finally, we note that the “MESTI avoidable miss” distribution
indicates that neglecting address bus contention in these limit
study results does not affect timeliness of useful validates signifi-
cantly. The vast majority of useful validates (if sent immediately)
will have plenty of time to reach a remote processor.

7 CONCLUSION

Communication misses are a pressing problem in modern
multiprocessor systems. Previous work [16] has shown that silent
stores can be exploited to reduce communication misses. This
work extends the definition of silent stores to include the set of
stores that change the value at a given memory location, but only
temporarily, and subsequently return a previous value of interest
to the memory location. We examine the occurrence of dynamic
stores which contribute to temporal silence in user code, the oper-
ating system, and shared libraries, and also provide quantitative
characterizing data indicating that temporal silence exists in
many forms and arises under many program constructs. These
analyses also reveal that studying temporal silence using full-sys-
tem simulation (including operating system and library code) is
worthwhile in scientific workloads and necessary in commercial
workloads. We redefine sharing to account for temporal silence
and show that up to 45% of communication misses can be elimi-
nated by exploiting this property. We also describe a non-specu-
lative, system-level mechanism which captures up to 42% of
temporal silent sharing (TSS) by detecting when temporal silence
occurs and communicating it to remote processors with new
coherence support. We provide measurement and characteriza-
tion data concerning temporal silence to guide methods of effi-
ciently exploiting it and include methods and insight into limiting
additional address traffic necessary for temporal silence exploita-
tion. This work examines further aspects of store value locality
and illuminates how it can be exploited to improve multiproces-
sor performance, as well as providing fundamental insight into
value communication in multiprocessor systems.

In future work, we will continue to enhance methods of detect-
ing and exploiting temporal silence to further approach the TSS
limit introduced in this work, and will explore implementation
trade-offs necessary for a practical realization. Results presented
in this work indicate this is a promising area of future research for
eliminating communication misses in multiprocessor systems.

Acknowledgements

This work was supported in part by the National Science
Foundation with grants CCR-0073440, CCR-0083126, EIA-
0103670, and CCR-0133437, and generous equipment donations
and Fellowship support from IBM and Intel. We would like to
thank Jim Goodman and Mark Hill for valuable feedback on both
terminology and presentation, as well as Gordie Bell, Ilhyun
Kim, and Trey Cain for fruitful discussions, suggestions, and
contributions to earlier versions of this work. We also thank the
anonymous reviewers for their many helpful comments.

References

[1] H. Akkary and M. A. Driscoll. A dynamic multithreading pro-
cessor. In Proceedings of the 31st Annual International Sym-
posium on Microarchitecture, pages 226–236, Dallas, TX,
USA, 30 November–2 December 1998. ACM Press.

[2] A. Alameldeen, C. Mauer, M. Xu, P. Harper, M. Martin,

D. Sorin, M. Hill, and D. Wood. Evaluating non-deterministic
multi-threaded commercial workloads. In Proceedings of
Computer Architecture Evaluation using Commercial Work-
loads (CAECW-02), February 2002.

[3] L. Barroso, K. Gharachorloo, and F. Bugnion. Memory sys-
tem characterization of commercial workloads. In Proceed-
ings of the 25th Annual International Symposium on
Computer Architecture, pages 3–14, June 1998.

[4] G. B. Bell, K. M. Lepak, and M. H. Lipasti. A characteriza-
tion of silent stores. In Proceedings of PACT-2000, Philadel-
phia, PA, October 2000.

[5] J. Borkenhagen and S. Storino. 5th Generation 64-bit Power-
PC-Compatible Commercial Processor Design. IBM White-
paper available from http://www.rs6000.ibm.com, 1999.

[6] H. W. Cain, R. Rajwar, M. Marden, and M. H. Lipasti. An ar-
chitectural characterization of java tpc-w. In Proc. of HPCA-
7, January 2001.

[7] M. Cintra and J. Torrellas. Eliminating squashes through
learning cross-thread violations in speculative parallelization
for multiprocessors. In HPCA, 2002.

[8] IBM Corporation. AIX v4.3 online documentation. http://nc-
sp.upenn.edu/aix4.3html/, 2002.

[9] D. Culler and J.P. Singh. Parallel Computer Architecture: A
Hardware/Software Approach. Morgan Kaufmann Publish-
ers, Inc., San Mateo, CA, 1999.

[10] M. Dubois, J. Skeppstedt, L. Ricciulli, K. Ramamurthy, and
P. Stenström. The Detection and Elimination of Useless Miss-
es in Multiprocessors. In 20th Annual International Sympo-
sium on Computer Architecture, May 1993.

[11] J. R. Goodman and P. J. Woest. The wisconsin multicube: A
new large-scale cache coherent multiprocessor. In Proceed-
ings of the 15th Annual International Symposium on Comput-
er Architecture, June 1988.

[12] S. Kaxiras and J. R. Goodman. Improving CC-NUMA per-
formance using instruction-based prediction. In Proceedings
of HPCA-5, Orlando, January 1999.

[13] T. Keller, A. M. Maynard, R. Simpson, and P. Bohrer. Si-
mos-ppc full system simulator. http://www.cs.utexas.edu/us-
ers/cart/simOS.

[14] G. Lauterbach and T. Horel. UltraSPARC-III: designing
third generation 64-bit performance. IEEE Micro, 19(3):56–
66, 1999.

[15] K. M. Lepak, G. B. Bell, and M. H. Lipasti. Silent stores and
store value locality. IEEE Transactions on Computers,
50(11), November 2001.

[16] K. M. Lepak and M. H. Lipasti. On the value locality of store
instructions. In Proceedings of ISCA-2000, Vancouver, B.C.,
Canada, June 2000.

[17] K. M. Lepak and M. H. Lipasti. Silent stores for free. In Pro-
ceedings of MICRO-2000, Monterrey, CA, November 2000.

[18] M. M. K. Martin, D. J. Sorin, A. Ailamaki, A. R.
Alameldeen, R. M. Dickson, C. J. Mauer, K. E. Moore,
M. Plakal, M. D. Hill, and D. A. Wood. Timestamp snooping:
An approach for extending SMPs. ACM SIG-PLAN Notices,
35(11):25–36, November 2000.

[19] C. Moore. POWER4 system microarchitecture. In Proceed-
ings of the Microprocessor Forum, October 2000.

[20] R. Rajwar and J. R. Goodman. Speculative lock elision: En-
abling highly concurrent multithreaded execution. In MICRO-
34, December 2001.

[21] J. G. Steffan, C. B. Colohan, A. Zhai, and T. C. Mowry. Im-
proving value communication for thread-level speculation. In
HPCA, 2002.

[22] S. Woo, M. Ohara, E. Torrie, J.P. Singh, and A. Gupta. The
SPLASH-2 programs: Characterization and methodological
considerations. In Proceedings of the 22th International Sym-
posium on Computer Architecture, June 1995.

