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The desire to understand, simulate, and capture the computational capability of the brain is

not a new one. However, in recent years, many advances have been made towards building

better models of neurons and cortical networks. Furthermore, a number of high profile

projects have proposed, designed, and fabricated neuromorphic substrates inspired by the

structure, organization, and behavior of biological brains.

This dissertation explores both the software and hardware elements of these neuromor-

phic systems. On the software side, this dissertation begins with an exploration of the leaky

integrate-and-fire (LIF) spiking neuron, and demonstrates that a network composed of

simple LIF neurons is capable of simple object recognition and motion detecting tasks.

Furthermore, a number of complex neuronal behaviors which significantly extend the

computational power of the LIF neuron are identified. This dissertation proposes that an

extended LIF neuron model can be used to construct a large scale functional model of the

visual cortex with metastable attractor dynamics. This hierarchical metastable attractor is

capable of invariant object recognition, image reconstruction, working memory tasks, and

demonstrates functional integration across multiple modeled regions.

On the hardware side, this dissertation investigates the challenges associated with neu-



xii

romorphic hardware in the context of IBM’s Neurosynaptic Core. This neuromorphic

substrate, composed of simple digital neurons, highlights the neuromorphic semantic gap

that exists between software models such as the ones described in this dissertation, and

the hardware on which they will be deployed. This dissertation demonstrates how this

semantic gap can be effectively bridged, and proposes a number of automated techniques

for deploying large scale cortical models on the Neurosynaptic Core hardware.

Mikko H. Lipasti
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better models of neurons and cortical networks. Furthermore, a number of high profile

projects have proposed, designed, and fabricated neuromorphic substrates inspired by the

structure, organization, and behavior of biological brains.

This dissertation explores both the software and hardware elements of these neuromor-

phic systems. On the software side, this dissertation begins with an exploration of the leaky

integrate-and-fire (LIF) spiking neuron, and demonstrates that a network composed of

simple LIF neurons is capable of simple object recognition and motion detecting tasks.

Furthermore, a number of complex neuronal behaviors which significantly extend the

computational power of the LIF neuron are identified. This dissertation proposes that an

extended LIF neuron model can be used to construct a large scale functional model of the

visual cortex with metastable attractor dynamics. This hierarchical metastable attractor is

capable of invariant object recognition, image reconstruction, working memory tasks, and

demonstrates functional integration across multiple modeled regions.

On the hardware side, this dissertation investigates the challenges associated with neu-

romorphic hardware in the context of IBM’s Neurosynaptic Core. This neuromorphic

substrate, composed of simple digital neurons, highlights the neuromorphic semantic gap

that exists between software models such as the ones described in this dissertation, and

the hardware on which they will be deployed. This dissertation demonstrates how this
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for deploying large scale cortical models on the Neurosynaptic Core hardware.
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1 introduction

1.1 Motivation: Challenges Faced by the von Neumann

Architecture

Because of its multi-purpose and generic design, the von Neumann architecture has formed

the backbone of nearly every computing system created in the past several decades. How-

ever, these traditional computing systems bring with them some fundamental limitations.

The von Neumann architecture still is bounded by the von Neumann bottleneck; that is, the

separation of data (or memory) from the processing elements limits the performance of

the computing system architecture. Thus, the processor cannot execute a program faster

than it can fetch instructions and data from memory. The addition of cache hierarchies

between the processor and main memory has partially alleviated this problem, though

the improvement is often greatly affected by the cache size. Other methods have been

used to improve processor performance without addressing the von Neumann bottleneck.

For many years, simply increasing clock speeds allowed chips to improve performance

without addressing the von Neumann bottleneck, though frequency scaling has likely

reached its limit [16]. Chip multiprocessor designs have improved processor performance

in the absence of further frequency scaling, utilizing the number of resources provided by

Moore’s law to simply increase the number of cores per chip. However, simple multicore

scaling of this type will be ultimately limited by power constraints [37], as well as the

parallelizability of the applications that will run on them. Furthermore, as technology



2

scales, the reliability of devices degrades, as even a slight process variation may alter the

behavior of these transistors and limit the performance of a chip [79].

1.2 Inspiration: The Cortex as a Computing Model

While these fundamental limitations will continue to affect von Neumann architectures, it

is interesting to note that biology has created a computing system capable of harnessing a

large number of inherently faulty components, is highly parallel, energy efficient, and fault

tolerant. The brain, and more specifically the mammalian cerebral cortex, has become a

frontrunner for inspiring non von Neumann computing systems. Tasks such as learning

a new game, recognizing a face, or speech to text are almost trivial to humans, though

programming such tasks takes a massive amount of effort. For these reasons, computing

models inspired by the cortex have become a promising candidate model for future com-

puting devices. Instead of separating the memory and processing elements, this biological

system stores memory and performs computation in the same elements. Neurons perform

computation by propagating spikes, and their synapses (or connections between neurons)

store memories through particular connectivities and their relative strengths.

Towards these goals, neural networks were introduced as an alternative, biologically

inspired computing framework. Neural networks have seen a significant amount of success

in various problems, such as image recognition and data classification [78, 74, 90]. With the

introduction of recurrent connections (both feedforward information from lower levels, as

well as feedback information from higher levels), neural networks are also able to exhibit



3

many important properties observed in biological brains, such as autoassociative recall,

pattern completion, error correction, and activity retention [65].

However, to date, neural networks have fallen short of achieving the complexity and

functionality of the biological cortex. Among other limitations, over-simplified neuron

models, rigid organizations of multilayered neural networks, and over-simplified learning

and plasticity rules have been blamed for these shortcomings [96, 60]. However, as neuro-

biological and neuroscientific understanding of the brain continues to improve, and the

limitations of the von Neumann architecture continue to impact performance, researchers

again look to model the cerebral cortex at a more realistic and useful level.

1.3 Spiking Neuron Models and Neuromorphic Hardware

In recent years, research has shifted from simple artificial neuron models to more biologi-

cally realistic spiking neuron models. These spiking neuron models are not only useful

for large-scale cortical network simulation, but also demonstrate powerful computational

capabilities for engineering applications - some of which are explored in this dissertation.

This interest in spiking neurons has also inspired the development of many neuromorphic

hardware implementations, specifically designed for simulating cortical networks or exe-

cuting neurally-inspired applications. While the enthusiasm for large-scale cortical models

and neuromorphic hardware continues to grow, there is little consensus on the degree of

biological fidelity that is appropriate for these neuromorphic systems.
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1.4 Objectives and Contributions

This dissertation makes contributions on both the software and hardware sides of neuro-

morphic systems. In software, this thesis focuses on the computing capabilities of spiking

neuron models, investigates the complex behaviors exhibited by biological neurons, and

justifies their use in large scale models of the cortex. In hardware, a number of issues re-

garding the deployment of cortical models on neuromorphic hardware are explored, in

the context of IBM’s recent Neurosynaptic Core design.

1.4.1 Computing Capabilities of Simple Spiking Neurons

The first major contribution of this dissertation is an exploration of the computational

capabilities of a minimal model of a spiking neuron. Paired with a biologically-inspired

learning rule which accounts for bursting activity and global neuromodulators, it is shown

that a network composed of even the simplest spiking neuron model is capable of tasks such

as invariant object recognition, motion detection, and top-down attentional modulation.

1.4.2 Identifying Useful Complex Neuronal Dynamics

While simple spiking neuron models may demonstrate computational capabilities that

exceed traditional artificial neural network techniques, it is clear that biological neurons

leverage complex behaviors not captured by such simple models. This dissertation identifies

a number of these complex neural behaviors and justifies their inclusion in successful

models of the cerebral cortex. The minimal model of the spiking neuron is extended to use
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each of these complex neuronal behaviors.

1.4.3 Modeling the Visual Cortex as a Hierarchical Attractor Network

As will be discussed in this dissertation, a number of researchers have proposed that the

brain exhibits semi-stable attractor states. However, to date, most spiking attractor-based

networks have investigated simple decision-making or working-memory based tasks. This

dissertation demonstrates that the aforementioned complex neuronal behaviors can be

leveraged to compose a large-scale hierarchical attractor-based model of the visual cortex.

1.4.4 Visual Cortex Model Applications

When organized as a hierarchical attractor network, the Visual Cortex model demonstrates

noise resilience, pattern completion, and can leverage short-term memory for object recogni-

tion tasks. Furthermore, it is demonstrated that the attractor organization allows the model

to integrate information processed in different neural regions for a scene understanding task.

1.4.5 Addressing the Neuromorphic Semantic Gap

In designing a neurally-inspired hardware substrate, a number of approximations and

simplifications must be made, as hardware-modeled neurons are far less flexible than

software-modeled neurons. Regardless of the reason or justification, such design decisions

introduce a neuromorphic semantic gap between software models that leverage complex

neural behaviors and hardware implementations that cannot afford to realize every possible
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complex neuronal behavior. This dissertation looks at the neuromorphic semantic gap in

the context of IBM’s Neurosynaptic Core hardware, and demonstrates that complex neural

behaviors can effectively be emulated by using circuits composed of the available simple

digital primitives.

1.4.6 Automatic Approaches for Deploying Cortical Models on

Neuromorphic Substrates

Deploying a large scale cortical model on neuromorphic hardware entails challenges beyond

the neuromorphic semantic gap. As hardware cannot feasibly support all-to-all connectivity

at large scales, many neuromorphic hardwares opt instead for designs that leverage local

connectivity on spatially distributed tiles. This, however, makes it difficult for a cortical

model developer to easily deploy a software design, where the constraints of connectivity

are not an issue. This dissertation describes a compiler-like tool capable of performing the

appropriate network segmentation and routing (while maintaining functional equivalence

of the software model) of a large network across multiple Neurosynaptic Cores.

1.5 Related Published Work

This dissertation encompasses these previously published works

• Bridging the Semantic Gap: Emulating Biological Neuronal Behaviors with Simple Dig-

ital Neurons (HPCA - 2013). This paper describes and addresses the neuromorphic
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semantic gap that exists between IBM’s Neurosynaptic Core hardware and biologi-

cally inspired models of cortical networks [101]. This paper was coauthored by Atif

Hashmi and Mikko Lipasti.

• A Neuromorphic Architecture for Object Recognition and Motion Anticipation Using

Burst-STDP (PLoS ONE - 2012). This article presents a biologically-plausible learn-

ing rule for leaky integrate-and-fire neurons and demonstrates their capability at

vision related tasks [102]. This paper was coauthored by Umberto Olcese, David

Balduzzi, and Giulio Tononi.

• Neuromorphic ISAs (ASPLOS - 2011). This paper proposes the need for an abstract level

to separate neural algorithms and models from the execution substrate (neuromorphic

or traditional computing hardware) on which they are deployed [59]. This paper was

coauthored by Atif Hashmi, James Jamal Thomas, and Mikko Lipasti.

1.6 Dissertation Structure

The rest of this dissertation is organized as: Chapter 2 provides background material

relating to artificial neuron models, recurrent neural networks, and a brief discussion on

the structure and organization of the visual cortex. Chapter 3 highlights a number of high

profile neuromorphic hardware projects, and motivates the choice to target IBM’s Neurosy-

naptic Core hardware. Chapter 4 describes an implementation of a leaky integrate-and-fire

neuron and demonstrates how it is an effective building block for neural networks capable
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of motion detection and object recognition tasks. Chapter 5 extends on the foundational

models of Chapter 4. In this Chapter, a number of useful complex neural behaviors are

identified and employed to construct a large scale attractor-based model of the visual cortex.

Chapter 6 demonstrates the usefulness of the hierarchical attractor approach for several

different tasks. Chapter 7 highlights the challenges of deploying such large scale cortical

models onto neuromorphic hardware, using the aforementioned Neurosynaptic Core as

the target substrate. Chapter 8 concludes the dissertation and discusses future extensions

to the research described herein.



9

2 artificial neuron models and neural networks

This chapter provides relevant background material for the concepts discussed in this

dissertation. First, a brief history of artificial neurons and neural networks is given. Next,

the motivation for the move to spiking neuron models is discussed, as well as several

biologically inspired learning mechanisms of spiking neurons. This chapter also discusses

the organization and behavior of the cortex, especially the visual cortex, which has been

the inspiration for many computational models built on spiking neurons (including the

models described in this dissertation). Finally, several relevant recurrent neural networks

and attractor-based networks proposed by other researchers are described.

2.1 A Brief History of Artificial Neural Networks

The ambition of capturing the structure, connectivity, and behavior of biological brains is

not a new one. The history of brain-inspired computing begins with the development of the

McCulloch-Pitts neuron [91]. In 1943, Warren McCulloch and Walter Pitts proposed that

biological neurons were simple threshold units and the inputs and outputs of the neuron

were 0’s and 1’s. The McCulloch-Pitts neuron behaves as a logical gate for linearly-separable

inputs; however, it is not capable of solving linearly-inseparable problems such as XOR.

While this step was an important milestone in the road to building models of the brain,

this model was significantly limited by its simplicity.

One of the next key milestones came about in 1949, when Donald Hebb proposed that
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the connections between neurons change over time [62]. Now known as Hebbian plasticity,

Hebb’s work proposed that the connections between neurons change as a function of their

firing behavior, stating, "When one cell repeatedly assists in firing another, the axon of the

first cell develops synaptic knobs (or enlarges them if they already exist) in contact with

the soma of the second cell" [62]. These plastic changes were identified as being essential

to learning and memory. Often, the description of Hebbian learning is abbreviated to

"neurons that fire together, wire together".

Some time later, the combination of these two fundamental discoveries (the McCulloch-

Pitts model and Hebbian learning) led to the development of probably the most widely

recognized artificial neuron model, the perceptron. Frank Rosenblatt developed the first

implementation of the perceptron in the 1960s. Like the McCulloch-Pitts neuron, percep-

trons are typically fairly simple units with multiple inputs and a single output. However,

leveraging the understanding that connectivities between neurons exhibit a broad range

of strengths, the perceptron’s inputs are weighted by some value. Furthermore, the per-

ceptron model was not limited as a simple threshold unit, but could utilize a number of

different functions, such as Gaussian, piecewise linear, or a sigmoid. The hype surrounding

artificial neurons grew, and many researchers actively explored their applications. While

these changes broadened the scope of functions the artificial neuron was able to perform,

the perceptron was still limited to linearly-separable problems. Ultimately, disappointment

in the application scope of perceptrons, paired with criticism from artificial intelligence

researchers, lead to the first demise of artificial neurons.
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Figure 2.1: A typical multi-layered perceptron (MLP) is composed of an input layer, output
layer, and one or more hidden layers.

The late 1970s and early 1980s saw a resurgence of interest in artificial neuron research.

One of the key contributors to the renewed interest was the development of the backpropa-

gation learning algorithm. The history of backpropagation is an interesting one, having

been formalized by Bryson and Ho in 1969 [20], rediscovered in 1974 by Werbos, and redis-

covered again in 1986 by Rumelhart, Hinton and Williams [116]. This supervised learning

method proved very useful for training a network composed of multiple perceptron layers

(a multi-layered perceptron, or MLP), as shown in Figure 2.1. Furthermore, the MLP, with

one or more hidden layers (that is, any of the layers between the input and output layers),

was capable of solving non-linearly separable problems, such as the XOR problem.

Another key contributor to the renewed interest in artificial neuron research was the

development of the Hopfield Network, a Recurrent Neural Network (RNN), by John Hop-

field [65]. These RNNs are capable of acting as a content-addressable memory, can perform
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pattern completion, and are applicable to optimization problems [26]. The Hopfield Net-

work is discussed in greater detail later in this chapter.

In most implementations of MLPs and RNNs, the perceptron-like neuron models are

described as rate-coded neurons. Because the output of these artificial neuron is typically a

value in the range of [0,1], the output is considered to be the average (normalized) firing

rate of the neuron (or population of neurons).

While such advancements in neural network research broadened the scope of applica-

tion, neural network research faded again in the 1990s. Several factors contributed to the

diminished enthusiasm. First, the 1990s were dominated by scientific computing; consider-

ing that neural networks (such as a backpropagation-trained MLP) provide approximations

of functions, they were too inaccurate for broad scientific computing applications. Second,

the 1990s saw an explosion in more accurate machine learning techniques, such as Support

Vector Machines [31]. Finally, as neuroscientific understanding of the brain grew, it became

quite clear that these rate-coded neurons had little in common with biological brains, so

researchers developing cortical models also lost interest.

2.2 Spiking Neuron Models

Considering the limitations of classic artificial neural network (ANN) techniques, research

has shifted towards more biologically realistic models of neurons and biological neural

networks. In particular, the focus has shifted from rate-coded perceptron-like units to a

neuron model with a higher degree of biological fidelity: the spiking neuron. Figure 2.2
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Figure 2.2: Biological neurons integrate the inputs on their dendrites. When the neuron
fires, it propagates a spike through its axon, which synapses to the dendrites of other
neurons. (Figure adapted from Wikipedia).

highlights some of the major components of a biological neuron: the dendrites (its inputs),

the axon (its output), and the cell body (which stores the neuron’s current state).

Spiking neuron models have gained interest from those in the neuroscientific community

who are interested in accurately modeling the brain, but also among engineers interested

in leveraging biological understanding to solve problems. In fact, research has suggested

that these more complex and biologically accurate models are computationally more

powerful than any of the classic ANN techniques [85].In recent years, many models of

spiking neurons have been proposed, ranging from simple integrate and fire models to

complex synaptic-conductance based models which use a large set of differential equations

to describe the behavior of the neuron and its synapses [69]. However, the commonality

between these different models is that neurons communicate via spikes (as opposed to

rates) and integrate these spikes over time, giving spiking neurons a concept of time that is
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absent from more traditional rate-coded models.

In this section, three classes of spiking neuron model are discussed: the Hodgkin-

Huxley model, the Izhikevich model, and the leaky integrate and fire model. While many

other models exist, these three are a representative sampling of the varying degrees of

biological fidelity and computational complexity associated with spiking neuron models.

2.2.1 The Hodgkin-Huxley Model

The Hodgkin-Huxley neuron model is considered to be one of the most biologically accurate.

Based on electrophysiological experiments on the squid giant axon, Hodgkin and Huxley

developed a detailed mathematical model to describe how action potentials are generated

and propagated in a neuron. The Hodgkin-Huxley model is known as a conductance-

based model since it accounts for the physical change in conductance of the neuron as a

function of its sodium (Na) and calcium (K) channels. Typically, this model consists of four

nonlinear ordinary differential equations and many parameters to describe the membrane

potential and current flow through ion channels [69]. While these equations were initially

developed to describe an entire neuron, even more complex and biologically accurate

multi-compartment models have used the same equations to detail biological neurons at

an even finer granularity [95]. From the neurobiolical perspective, the Hodgkin-Huxley

model clearly and accurately describes these biological neurons in a way that is meaningful

and measurable.

While the Hodgkin-Huxley model stands out as a significant neuroscientific achieve-
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ment in terms of its biological detail, its computational complexity severely limits its

applicability to large scale models and engineering applications. Furthermore, it is unclear

from a computational perspective whether the exact details of the ion channels are neces-

sary, or if they are simply artifacts of biology’s implementation. Modeling at the level of

the Hodgkin-Huxley neuron may be key to building a one-to-one corresponding model of

the brain, but the computational requirement of such a model makes it hard to justify its

use towards engineering and application specific tasks.

2.2.2 The Izhikevich Model

More recently, the Izhikevich model was developed to reduce the computational complexity

associated with conductance-based models like the Hodgkin-Huxley without sacrificing

biological fidelity [69]. The Izhikevich model uses just two differential equations and

four parameters. Furthermore, the Izhikevich model can be tuned to faithfully exhibit

many different neuron behaviors observed in biological experiments such as tonic spiking,

bursting, and spike-frequency adaptation, as shown in Figure 2.3.

Clearly, the reduction in computational complexity makes the Izhikevich model much

better suited for large simulations, as evidenced by a recent simulation of 10 million thala-

mocortical neurons [71]. However, the big picture that is still missing is the computational

function of each of these behaviors and their role in information processing in the brain.
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Figure 2.3: The Izhikevich model is capable of mimicking a number of different neuron
behaviors that have been experimentally observed. Figure adapted from [69]
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2.2.3 The Leaky Integrate and Fire Model

The leaky integrate-and-fire (LIF) neuron model attempts to capture the most basic proper-

ties of biological neurons, namely that neurons communicate through spikes and neurons

integrate spikes over time. In its simplest implementation, a single differential equation

can be used to describe the LIF neuron:

dV

dt
=

1
τm

(−V + IRm) (2.1)

Here, V is the current membrane potential of the neuron, Rm is the membrane resistance,

I is the input current to the neuron, and τm is the time constant of the membrane. If the

membrane potential reaches a firing threshold, the neuron emits a spike, and is reset to a

reset potential.

Figure 2.4 illustrates the structural and functional aspects of a LIF spiking neuron. The

inputs to a neuron are its dendrites; as shown in Figure 2.2, a neuron has dendritic branches

that span in many directions, allowing the neuron to receive many different inputs from

other neurons. As shown in Figure 2.4, the LIF neuron model also captures the synaptic

efficacy, or weight, of a particular incoming connection. The LIF neuron has three dendrites,

each of which as a synaptic weight assigned to it (W0,W1, andW2).

The neuron’s cell body, or soma, is typically regarded as the basic processing unit of the

LIF neuron. The soma maintains the neuron’s membrane potential, or current state of the

neuron. For clarity, it is helpful to think of a neuron as an electrical device; when a neuron

receives inputs, its internal voltage is changed (in the positive direction for excitatory inputs,
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Figure 2.4: LIF neuron–structure and operation.

negative direction for inhibitory inputs). This membrane potential decays as a function of

time in the absence of inputs (referred to as the membrane leak), and eventually stabilizes at

a resting voltage. However, if a neuron receives many strong excitatory inputs (at once, or

across time at a rate greater than the membrane leak), the membrane reaches a critical firing

threshold, produces a spike, and is set to a reset voltage. This spike travels down the neurons

axon (its output), which synapses with the dendrites of other neurons. It should be noted

that the communication between neurons (that is, the communication between the output

of one neuron and the input of the other) is typically considered to be a chemical, rather

than electrical, process. The axon of the presynaptic neuron releases neurotransmitters

after an output spike, which in turn, are absorbed by the neuroreceptors on the dendrites
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of the postsynaptic neuron.

LIF neuron models, such as the one shown in Figure 2.4, typically have a set of parame-

terizable variables, such as the synaptic weights corresponding to each of the dendrites, the

reset and a resting membrane potential values, the firing threshold, the leak of the membrane

potential (typically either a linear leak value or a time constant used for an exponential

leak), and other stochastic elements and transcendental operations [77]. Figure 2.4 also

highlights the role of each of these parameters during the LIF neuron’s computation. At

each time step, the soma integrates its inputs by evaluating the dot-product of the neuron’s

synaptic weights (W0,W1, andW2) and the activations on the dendrites (D0, D1, and D2).

This value is then added to the membrane potential of the LIF neuron. Next, the updated

membrane potential is compared with the threshold value, and if the membrane potential

exceeds the threshold, the neuron generates a spike that propagates down the axon to other

neurons. The membrane potential of the neuron is then set to a pre-specified reset potential.

If the neuron does not generate a spike, the membrane potential leaks, which models the

tendency of biological neurons to drift towards a resting potential.

The LIF neuron can be further extended to include other biological phenomena, such

as absolute and relative refractory periods (that is, the shortest amount of time before a

neuron can spike again). The LIF neuron can also be extended to show the various spiking

behaviors highlighted by the Izhikevich model, albeit at a possibly greater computational

complexity. Finally, as will be discussed in Chapter 5, the LIF model can be extended to

include complex neural behaviors that extend the models computational capability, such
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as voltage-dependent synapses and short-term plasticity.

The choice to target the LIF model in this dissertation stems from a bottom-up approach.

With no clear indication what is inherently necessary to a neuron model and what is

simply an artifact of biology (ion channel modeling, dozens of spiking behaviors, etc.),

beginning with the most basic building block and progressively investigating more complex

neuronal behaviors and their computational function significantly simplifies experiments

and analysis.

2.3 Biologically Inspired Learning Mechanisms

In neural network and neurobiology literature, various learning paradigms have been

hypothesized and/or measured to explain the formation of memories, a sampling of which

are presented below.

2.3.1 Hebbian Learning

As was mentioned above, one of the most fundamentally important discoveries of biological

neurons is the fact that the connections between them are plastic - that is, they change over

time. In 1949, Hebb formulated the idea that a synapse should be strengthened if the

firing of a presynaptic neuron contributes to the firing of a postsynaptic neuron. It is this

plasticity that gives biological brains the capability to adapt to new situations, form new

memories, and enhance task performance. Many models of the cortex include some form

of Hebbian learning. Furthermore, a number of task-specific engineering applications have
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Figure 2.5: Spike-timing dependent plasticity proposes that the relative strength of synaptic
change is controlled by the timing between pre and postsynaptic spikes.

also leveraged this biological learning rule. Hebbian learning has been used for object

recognition [152], speech recognition applications [39], as well as robotics [146].

2.3.2 Spike Timing Dependent Plasticity

Spike Timing Dependent Plasticity (STDP) is a type of Hebbian learning where, not only is

the temporal correlation of spiking behavior important, but also the relative timing of the

presynaptic and postsynaptic spikes. If a presynaptic spike is followed by a postsynaptic one

within a short span of time, the synapse will be potentiated. Conversely, if the postsynaptic

spike is followed by the presynaptic, the connection will be depressed. Figure 2.5 shows an

implementation of an STDP learning rule and demonstrates how the magnitude of strength

change depends on the delay between the two spikes: the smaller the delay, the greater the

change [13, 130]. As shown in the figure, typically the window for synaptic change is fairly

short, 10’s to 100ms [13].
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2.3.3 Variants of STDP

A number of experiments have demonstrated that the precise timing of presynaptic and

postsynaptic spike pairs results in synaptic change that closely follows the classic STDP

curve of Figure 2.5 [87, 13, 151]. However, other researchers have argued that there is no con-

clusive evidence that neurons use pair-wise correlations to govern all plastic changes [105].

In some simulations, it has been shown that an STDP rule which leverages triplets of spikes

better matches the synaptic changes observed in biological experiments [105]. This triplet

rule accounts for one presynaptic spike with two postsynaptic spikes, or one postsynaptic

spike with two presynaptic spikes. While such a learning rule accounts for more temporal

spiking correlations (i.e. three spikes instead of two), it can be argued that this extension

marginally increases the accuracy of the STDP learning rule, and an even more biologically

accurate model would take into account other factors such as the calcium concentration or

postsynaptic membrane potential [105].

Other STDP variants have placed less emphasis on pairs or triplets of spikes, but rather

the overall bursty behavior of the neurons [102, 32, 80]. Such burst-STDP rules place less

emphasis on the individual spike-by-spike transmissions, but instead consider that a burst

of spikes is inherently more informative, and thus should induce synaptic change. Burst-

STDP can include rules that consider presynaptic bursting behavior paired with a single

postsynaptic spike [102, 32], or a single presynaptic spike paired with a postsynaptic burst

of spikes [80].
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2.3.4 Reward Based Learning Paradigms

Classic MLP networks are trained for classification tasks via back-propagation; that is, the

correct classification of an object is known and the weights in each layer are adjusted based

on this label to minimize the classification error [117]. This form of learning, known as

supervised learning, has little biological justification. In biology, it is much more likely that

learning is accomplished via unsupervised and/or semi-supervised learning. The STDP

and Hebbian learning mechanism are forms of unsupervised learning - plasticity happens as

simply a function of the neuron’s own behaviors. Semi-supervised learning fits somewhere

between; while certainly a "correct answer" cannot be imposed on a biological network of

neurons by switching them on and off and propagating an error signal to update synaptic

weights, biology does appear to leverage semi-supervised "teacher" signals through global

neuromodulators [126].

While error-propagating learning mechanisms have little biological justification, it is

clear that neuromodulators such as dopamine and noradrenaline can be indicative of a

global reward. For example, after an animal has found food, the release of these global

neuromodulators helps strengthen recently active neural circuitry (which likely played

an active role in finding the food). Temporal Difference (TD) learning, a reinforcement

learning rule, has been compared to the dopamine system in the brain [131]. In monkey

experiments, a dopamine release was observed after the monkey received a juice reward;

over time, the dopamine release migrated to the first indication that the monkey would

receive juice [121]. In the absence of a juice reward, dopamine levels would drop below
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normal. Similarly, TD learning uses the difference between an expected and received

reward to calculate an error function. However, here the network uses a single error (the

difference between the predicted and received rewards), as opposed to backpropagation,

which requires the precise state of the outcome (i.e. which neurons should be active, which

should be inactive) to correct synaptic weights.

Other modeled learning rules have simply considered the release of global neuromodu-

lators to simply bias the sign of Hebbian or STDP learning [102]. Here, a positive global

reward biases connections towards potentiation, while a negative global reward biases

towards depression. Another possibility is to use an "eligibility trace" variable, which

tracks the synapses that have exhibited the pre and postsynaptic firing pairs in recent

history [70]. In this learning model, synaptic change is only induced if there is a release of

dopamine within a critical time window of a few seconds. At present, the complete role

these neuromodulators play in synaptic plasticity is largely unknown; however, the fact

that these neuromodulatory systems exhibit such a long reach in their effects is indicative

of their importance to memory and learning [55, 126].

2.4 Introduction to the Cerebral Cortex

While the above sections highlight that many different spiking neuron models have been

proposed, the ultimate goal of many researchers is to develop scalable models and simula-

tions to better understand the cerebral cortex. The cerebral cortex (or simply - the cortex) is

the outermost sheet of neural tissue surrounding the brain of mammals. The cortex of a
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typical adult human is composed of around 11.5 billion neurons connected via 360 trillion

synapses [114], accounting for approximately 77% of the entire human brain [132]. The

cortex itself has been a major focal point of neuroscientific study, as well as the inspiration

for engineering applications based on spiking neural networks, for several key reasons.

First, it is believed that the cortex is the part of the brain that is responsible for high

level skills, such as mathematics, music, language, perception, and planning, and plays key

roles in memory formation and access, attention, and consciousness [76, 36, 35]. Reverse-

engineering such processes would fundamentally enhance the capabilities of brain-inspired

computing. Second, it has been observed that the cortex is structurally very uniform, com-

posed of millions of nearly identical functional units [98]. This means that a fundamental

biologically inspired computing unit (such as the LIF spiking neuron) may be sufficient to

perform the broad range of tasks and computations performed by the biological cortex.

Finally, the hierarchical organization of the cortex [22, 64, 98] appears to be quite impor-

tant to its functionality. It has been shown that neurons in higher cortical areas respond

with a higher degree of invariance [89], while lower level neurons are more sensitive to

particular inputs. This intriguing property shows that the cortex is capable of computing

by abstraction in a hierarchical and distributed way [56].

While the neocortex appears to be composed of a very uniform substrate, researchers

have identified different regions which process the information of a particular sensory

modality. The auditory cortex primarily processes auditory inputs, the somatosensory

cortex primarily processes the sense of touch, and the motor cortex performs the planning,
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Figure 2.6: The ventral stream, shown in purple, processes the "what", while the dorsal
stream, shown in green, processes the "where". Both streams begin in the primary (V1)
prestriate (V2) cortices (blue). (Figure from Wikipedia).

control, and execution of motor movements. The models developed in this dissertation

primarily focus on the visual cortex: the region of the brain responsible for processing

all visual data. Primarily, the focus is on the visual system because it has been studied in

greater detail than other regions of the neocortex, and the application scope for modeling

the visual cortex is quite large.

2.5 The Visual Cortex

The visual cortex is responsible for processing the sensory input received by the retina.

While one may consider vision as a single sense, there are, in fact, multiple streams of

processing in the visual cortex. Color, motion, location, and form (that is, the recognition

of objects based on shape) are all processed by the visual cortex. While it should not be

inferred that each of these information streams is completely disjoint, there is evidence that
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distinct regions are responsible for different types of vision processing. For example, as

shown in Figure 2.6, much of the processing for object recognition (the "what") is performed

by neural regions in the ventral stream, while the processing of object location and motion

information (the "where") is performed by neural regions in the dorsal stream.

Figure 2.7 shows a graphical representation of the processing of object recognition in

the ventral stream. Visual information is received by the retina, which in turn propagates

activations to a region of the thalamus known as the Lateral Geniculate Nucleus (LGN) [73].

For the most part, these LGN cells have center-surround receptive fields which are sensitive

to contrast differences. Center-on cells react most strongly to a point of illumination

surrounded by darkness, while center-off cells respond strongly to a dark point surrounded

by light.

Outputs from the LGN project to the primary visual cortex, also known as the V1.

Neurons in the V1 have relatively small receptive fields and are often though of as a tiled

set of spatio-temporal filters. In processing form, these V1 cells are thought to respond

maximally to very simple features, such as an edge of a particular orientation, and are often

modeled using a set of Gabor filter banks [111, 127].

The V1 region sends strong feedforward connections to the prestriate cortex, or the

V2. As with the V1, cells in the V2 are similarly tuned for simple spatio-temporal patterns,

however, with a larger receptive field and greater degree of pattern complexity [10]. The

V1 and V2 regions send strong feedforward connections in two directions: the ventral

stream, which is ultimately responsible for object recognition, and the dorsal stream, which
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Figure 2.7: A simplified representation of processing in the ventral stream of the visual
cortex. Each higher level of the visual cortex responds to progressively more complex
shapes and objects. Furthermore, the receptive field grows for each layer of the visual
cortex (with respect to the retinotopic input to the system).
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processes object location and motion information.

In the ventral stream, the V4 cortical region is believed to respond to objects and features

of an intermediate complexity, such as simple geometric shapes. Finally, the top of the

ventral stream is the inferior temporal cortex, or IT, where cells respond to complex visual

objects and patterns. The receptive fields of IT cells are quite large, allowing the cells to

respond to a particular object often with a high degree of invariance [113].

In the dorsal stream, where motion is processed, V1 cells appear to be sensitive to a

particular direction of motion within their receptive field [104]. V2 neurons receive feedfor-

ward activations from these V1 cells. Both the V1 and V2 cells send strong feedforward

connections to the middle temporal cortex, often referred to as the V5 or MT. This region

integrates the local motion processing of the lower visual cortex regions, and in turn,

processes the global motion of more complex objects [17].

Visual processing information from retina/LGN enters the V1 and flow up the hierarchy,

while top-down (or feedback) signals from the IT or MT project to the lower layers in the

hierarchy [148]. The full extent of these feedback signals is not yet completely understood,

but many of their roles are quite clear. Top-down signalling provides context-dependent

pattern completion as well as predictive information from higher cortical regions. Attention

is often considered to be predominately driven by top-down signalling as well.
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2.6 Recurrent Neural Networks

As was mentioned above, one of the contributing factors to the resurgence of ANN research

in the 1980s was the invention of the recurrent neural network (RNN). As any biologically-

realistic model of the cortex includes recurrent connectivity between neurons, it is worth

discussing some of the RNNs that have inspired the hierarchical attractor-based networks

proposed in this dissertation.

2.6.1 The Hopfield Attractor Neural Network

In its most basic definition, an attractor is a state towards which a dynamical system will

gravitate over time. It is often the case that many different initial points or states will evolve

towards a particular attractor state. In the realm of RNNs, such attractor states play several

integral parts. The behavior of such attractor neural networks is often thought of as being

essential to working memory in the neocortex, allowing for autoassociative memories

to recall and reconstruct from partial matches, and ultimately the ability to generalize

memories.

One of the first implementations of this type of RNN was proposed by John Hopfield [65].

In the early 1980s, the Hopfield network demonstrated how recurrent connections could

extend the behavior of the neural network, in particular, to store memories. Initially,

Hopfield was interested in this type of network to simulate certain properties in physics,

so often attractor states are described in terms of energy. Typically, Hopfield networks are

built around rate-coded neurons such as the perceptron model with a nonlinear activation
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Figure 2.8: Hopfield neural networks can retrieve and restore patterns based on partial
images and noisy inputs. The left panels show input images, center shows activity after
several iterations, and right panel shows the final convergence of the network. (Figure
adapted from [21]).

function. One of the big advantages of this network is its ability to restore or retrieve

patterns based on partial matches and corrupted input data, as seen in Figure 2.8.

The absolute memory capacity of a Hopfield network is determined by the number

of neurons and connections in the system. However, it has been proven that in a fully

connected network, the maximum number of stored pattern that can be effectively recalled is

betweenN/(2logN) andN/(4logN), whereN is the number of neurons in the network [92].

Furthermore, the Hopfield network has been shown to be useful at storing and retrieving

patterns on a discrete time basis - that is, retrieving a pattern at time T has no affect on the
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pattern that is retrieved at time T + 1. The pattern that is retrieved is simply a product of

the pattern (or partial pattern) that is presented to the trained Hopfield network. Thus, the

Hopfield network is better suited for discrete inputs, rather than continuous and real-time

inputs.

2.6.2 Transient and Metastable Attractor Networks

RNNs have further been extended to include transient state dynamics, or behaviors that

vary with the passing of time. With Hopfield-like RNNs, once an attractor state has been

reached, essentially the network must be restarted "by hand" in order to leave the current

attractor state. While it is clear from biological data that the cortex exhibits attractor state

behavior, it is also true that such biological neural systems exhibit dynamical fluctuations

between attractor states without requiring a "by hand" reset of the entire network state [43].

Claudius Gros has provided a framework for neural networks with sparse coding and

transient state dynamics [51, 52, 53]. Gros proposes that a neural network should be

constructed with clique encoding - where a clique is a set of neurons that exhibit all-to-all

excitatory links. Within the network, this clique encoding corresponds to a several-winners-

take-all competitive network, where members of the same clique excite each other, while

inhibiting or suppressing the neurons outside of the clique. Like the Hopfield network,

every neuron is connected to every other neuron in the system, though within any clique,

all connections must be excitatory, while between cliques they can be a combination of

inhibitory and excitatory. The RNN proposed by Gros also allows individual neurons to
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be members of multiple cliques.

Gros’ proposed networks also do away with the "reset-by-hand" attribute of Hopfield

networks, and instead use neural dynamics which exhibit a transiently stable activity

pattern. Once the network is perturbed into a particular attractor state, neurons within

the active clique continue to excite each other. A balance of inhibition prevents other

cliques from becoming activated at the same time. The transient states are achieved

using a slow reservoir variable associated with each neuron, where the activity level of a

neuron is dependent on the value of the reservoir. After an extended period of activity,

the neurons in the active clique deplete their reservoir and are no longer able to inhibit

other neighboring cliques. Finally, the next clique receiving excitatory inputs would be

able to enter a transient state of high activity, while the reservoir of the original clique

replenishes. Gros describes each of the cliques in the neural network as a semantic memory,

and proposes that hierarchical memory states can be achieved simply by strengthening

particular connections between various semantic memories. For instance, given semantic

memories about a person’s clothing and that one wants to recall a red shirt, the link

(red)-(shirt) would be much stronger than the link (red)-(pants) or (red)-(hat) [50].

However, Gros only considers the transient dynamics and interactions of pre-created

cliques - that is, the network defines the connections of and between cliques a priori. In an

extended experiment, a very simple artificial environment presents stimuli to the attractor

network [53]. Hebbian learning strengthens the connections between an input layer and

the presently-active clique in the network, essentially learning an association between a
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particular active clique and a particular input stimulus. While such learned connections

can help drive the next attractor state from the outside world, it does not provide any

information regarding how cliques form, how hierarchical memory states are built, or how

sequences may be stored in memory.

Lundqvist et al. have proposed a modular attractor memory using modeled cortical

columns [83, 82]. These authors, among others (including Hashmi et al. [57, 58]), have

proposed that minicolumns, rather than individual neurons, may be the basic functional

unit of computation in the neocortex. Hypercolumns contain a number of minicolumns

which exhibit a high degree of interaction. It has been proposed that local lateral inhibition

between minicolumns can promote a competitive learning paradigms and enforce soft

winner-take-all dynamics [83, 82, 57, 58]. Within a minicolumn, Lundqvist et al. set the

connectivity strengths of excitatory pyramidal neurons and inhibitory basket neurons to

replicate biological measurements. Finally, long-range excitatory connections synapse with

minicolumns in other hypercolumns, forming a very modular and distributed attractor

network.

In spiking neural network models, long-timescale neural receptors are often modeled

to allow attractor states to stabilize. [83, 82]. Such long-timescale modulation can be

thought of as a biological explanation for the reservoir variables proposed in Gros’ work.

However, Lundqvist et al. showed, as a result of their distributed attractor network, such

long-timescale neurotransmitters may not be necessary so long as short-term excitatory

synapses and recurrent connectivity are significantly increased [82]. Ultimately, Lundqvist
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et al. show this distributed modular network is able to perform the desired attractor

behaviors in a very biologically realistic model, such as stability of attractor states, pattern

completion, and pattern rivalry.

However, the limitations of Lundqvist et al.’s model are similar to those pointed out

with Gros’ attractor networks. Each clique, or attractor state, is hand-coded a priori: the

minicolumns that encode the same memory are simply hard-wired together via long

range excitatory connections. While it is easy to accept that the high level of recurrent

connectivity within in a minicolumn is simply part of the inherent structure of the cortex,

it is unclear how long range connections between minicolumns and hypercolumns are

formed. Furthermore, while Lundqvist et al. propose that each minicolumn is a distinct

feature of a particular pattern being stored by the attractor state, they fail to investigate

multiple attractor states that have some features, or minicolumns, in common. If the cortex

is truly using distributed minicolumns to store the various features of a particular memory,

it would likely re-use minicolumns to encode shared memory features efficiently.

In spite of these limitations, the modular attractor networks proposed by Lundqvist

appear to be quite robust, grounded in biological data, and effective as realistic building

blocks for large scale neural networks. Furthermore, Lundqvist’s model, while imple-

mented with highly detailed Hodgkin-Huxley neurons, shows a surprising amount in

common with the learning algorithm proposed by Hashmi et al. which models hyper-

columns and minicolumns at a much more abstract level. However, many of the basic

features are the same, including pattern completion capabilities, competitive learning, and
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distributed representations of learned patterns.

2.6.3 Liquid State Machines

In attractor networks like those described above, some number of stable states are stored

and can be retrieved by the neural network, whether the states are transiently stable or

must be reset through direct stimulus. However, Liquid State Machines (LSMs) attempt to

model the real-time computing capabilities of biological neural systems without storing

and retrieving particular attractor states. LSMs could be considered to have only one stable

attractor state - the resting state [86]. LSMs utilize recurrent connections, not to reach a

stable state, but rather to capture a fading memory about the current and previous inputs

to the system. The liquid in the name comes from the analogy of dropping a stone into

a body of water, where the result of the input (the dropped stone) is converted into a

spatio-temporal pattern observed in the liquid.

In the typical case, the recurrent connections of the LSM are randomly generated [86].

However, the statistical structure of the recurrent connections (such as the ratio of local

to distal connections, ratio of excitatory to inhibitory connections, and synaptic weight

distributions) are often based on biological structures, such as the connectivity within

a minicolumn [86]. Furthermore, it has been shown that utilizing more complex neural

behaviors and dynamics can further improve the performance of the LSM [54].

Typically training and plasticity are not used or necessary within the LSM. Rather,

in most implementations, a memoryless output (or readout) layer connects to the LSM,
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which is trained to produce a desired output at a particular time. The output layer must

be trained with a supervised learning algorithm; however this training does not need to

account for the temporal aspects of the learned task, as the LSM itself performs all temporal

processing. The output layer of the LSM is often composed of simple linear readouts, a

layer of perceptrons (in cases where the states produced by the LSM are linearly separable),

or even multi-layered perceptrons (in cases where the states produced by the LSM are not

linearly separable).

The computational capability of LSMs paired with easily-trainable readout layers have

made LSMs attractive and quite successful for speech recognition and computer vision

applications [72, 120, 141, 40]. However, several criticisms of LSMs arise. First and foremost,

LSMs don’t necessarily assist in explaining the functionality and connectivity of the brain.

At best, the LSM is a "black box" that may perform useful computations necessary for current

and previous inputs; however, there is no guaranteed or simple method to determine exactly

what is happening or what computations are being performed. Another criticism is that

LSMs are not well suited for fault tolerance. If certain neurons on the LSM become faulty,

output units must be retrained with the altered liquid machine [61].

2.6.4 Recurrent Neural Networks Summary

This section discusses several high-profile recurrent neural network architectures, though

many other networks that make use of recurrent connectivity have been proposed. However,

each of the RNNs discussed here have influenced the design of the Visual Cortex model
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of this dissertation. Specifically, the goal is to develop a model that is capable of vision

related tasks, exhibits metastable attractor states that flexibly change with new inputs, and

ultimately shows functional integration across different neural regions. These ideas will be

further explored in Chapters 5 and 6.

2.7 Summary

This chapter details and explains a number of different concepts important to the un-

derstanding of this dissertation. The desire to implement artificial neurons to represent

their biological counterpart dates back to the 1940s. Since then, artificial neurons have

evolved considerably; presently, research focuses on spiking neuron implementations and

biologically-inspired learning rules. Going forward, the simple leaky integrate-and-fire

spiking neuron model is used in this dissertation. At the level of neural networks, many

architectures have been proposed, including multi-layered perceptrons, Hopfield and

attractor networks, and liquid state machines. This dissertation particularly focuses on

modeling the structure and abilities of the visual cortex as a recurrent neural network,

which will be described in detail in later chapters.
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3 neuromorphic hardware

The computational advantages of spiking neurons, paired with the distributed and hi-

erarchical processing of the cortex, has led researchers to pursue hardware substrates

inspired by the brain. These Neuromorphic Architectures have attracted interest in recent

years, and a number of different designs have been proposed, designed, and fabricated [27,

118, 2, 11, 125, 67, 93, 128]. Despite the fact that the primitives provided by these substrates,

their implementations (analog, digital, or mixed circuits), and application scope may vary

significantly, the majority of neuromorphic architectures share some common properties.

These include modeling the basic processing elements after biological spiking neurons,

designing the functional memory store after biological synapses, and leveraging massive

amounts of fine-grained parallelism inspired by the parallel processing of biological brains.

This section briefly introduces and describes several high profile neuromorphic substrates,

and motivates the selection of IBM’s Neurosynaptic Core as the target substrate for this

dissertation.

3.1 Neurogrid

Neurogrid is a neuromorphic computing substrate that was specifically designed to simu-

late cortical networks with up to 1 million neurons and 6 billion synapses [27]. Impressively,

the Neurogrid performs this simulation on a power budget of 5W [3].

Each Neurogrid contains 16 Neurocores. These Neurocores contain 64K analog circuit
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neurons as well as an on-chip RAM for storing the cortical network’s connectivity. While

the hardware neurons themselves are implemented as analog circuits, the communication

between neurons is performed in the digital domain. The Neurogrid hardware neurons

contain two sub-cellular compartments, which allows cortical network modelers to emulate

many of the nonlinear neural behaviors observed in biological studies. One of the key

features of the Neurogrid design is the large number of user-definable parameters. These

parameters allow the Neurogrid to simulate multiple neuron behaviors (e.g. bursting or

bistable), synapse types (e.g. excitatory or inhibitory), and synaptic strengths.

In all, 18 binary and 61 graded parameters per hardware neuron cover a broad range of

cortical neuron models. The Neurogrid is programmed via a Python script which defines

the neuron connectivity and various parameters, and an interactive GUI allows researchers

to visualize the behavior of their cortical models.

3.2 The BrainScaleS Neuromorphic Processor

The BrainScaleS Project (formerly the Fast Analog Computing with Emergent Transient

States, or FACETS project) is driven by the goal to understand information processing in

the brain at both the individual neuron level and the level of functional brain areas [4]. This

research includes in vivo biological experiments, neural simulation on supercomputers,

and the development of a novel mixed-circuit neuromorphic processor.

The BrainScaleS hardware implements a leaky integrate-and-fire neuron with conduc-

tance based synapses using analog circuits. Analog circuits allow the neuron hardware to
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operate in the continuous-time domain. Furthermore, a number of analog neuron imple-

mentations have been shown to accurately mimic many of the behaviors observed in their

biological counterparts [67, 93, 128]. The synaptic weights and the network interconnect of

the BrainScaleS hardware are digital designs [118]. These neurons can be configured to

exhibit both short-term and long-term plastic changes [119].

The basic building block of BrainScaleS neuromorphic hardware is the High Input

Count Analog Neural Network (HICANN) chip [118]. Each HICANN chip has a total of

512 neuron membrane circuits and 128,000 synapses. The hardware can be configured to

operate as 8 analog neurons with 16,000 input synapses each, or 512 analog neurons with

256 input synapses each. To scale to large network simulations, the BrainScaleS hardware

is optimized for wafer-scale integration. Each wafer contains 384 HICANN chips, meaning

a system of 196,608 neurons and 49,152,000 synapses can be deployed on a single wafer

(assuming a defect-free fabrication of the wafer).

This project has developed the PyNN programming model to provide researchers with a

common API that runs on various neuronal simulators such as NEST and NEURON, as well

as the BrainScaleS/FACETS neuromorphic hardware [19]. A highly detailed model of the

early visual system (retina, LGN, and primary visual cortex) which matches a large amount

of biological data and recording has been implemented for the BrainScaleS project [1].

By taking an analog approach to neuron implementation, the BrainScaleS hardware

operates at timescales thousands of times faster than biological neurons. Biological neurons

exhibit slow firing behavior (typically 10’s to 100 Hz) as well as a slow membrane time
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constants (typically in the 10’s of milliseconds). These timescales require capacitive devices

too large for an integrated circuit design; hence, the BrainScaleS hardware targets operating

frequencies many times greater than biological neurons. As such, the BrainScaleS hardware

appears to be a best suited studying the brain through accelerated simulation, as opposed

to performing real-time computation at biological timescales.

3.3 SpiNNaker

SpiNNaker (which stands for Spiking Neural Network Architecture) is a novel computer

architecture specifically designed for simulating neurons. The SpiNNaker project has

targeted applications in neuroscientific simulation, robotics, and nondeterministic (and

massively parallel) computing. Rather than building hardware neurons, this architecture

simulates the neurons on traditional von Neumann processors, but focuses on a system

organization and interconnect that is optimized for the communication patterns displayed

by biological brains.

The target SpiNNaker system will contain a million ARM9 cores and a total of 7Tbytes

of RAM. 18 cores plus 128Mbytes of off-die SDRAM are grouped into a node called a

System-in-Package (SiP). While the cores have a variety of ways to communicate, the

predominant form of communication in the SpiNNaker architecture is through a packet-

switched network. Because biological neurons and brains are largely asynchronous and

stochastic in their behavior, the SpiNNaker architecture is able to maximize communication

bandwidth by doing away with memory coherence, synchronization, and determinism
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- principles that are considered essential for the correct behavior of traditional parallel

von Neumann machines [45]. When operating, the SpiNNaker system consumes 90kW of

electrical power, several orders of magnitude below simulation on a modern supercomputer.

One of the key goals of the SpiNNaker project is to simulate large-scale cortical models

at biological timescales. To target such an ambitious goal, the SpiNNaker hardware is

optimized for simulating the simplified point neuron model. This neuron model fits under

the broader category of leaky integrate-and-fire neurons, but explicitly ignores any detail

of the dendritic structure. Rather, input spikes are simply weighed by the synaptic strength

and added to the membrane potential. While the ARM9 cores lack support for division and

transcendental functions, the point neuron model can be expressed as a simple polynomial

equation compatible with the available primitives of the processor [108]. In the debate

over biological fidelity (what neural behaviors and dynamics are essential, and which

are artifacts?), the SpiNNaker project is biased towards a simpler solution of artificial

neurons [45].

3.4 IBM’s Neurosynaptic Core

In the context of this dissertation, IBM’s recent Neurosynaptic Core design is chosen as

the neuromorphic substrate [94, 11, 106]. The goal of the Neurosynaptic Core is to create a

system capable of interpreting real-time inputs at a biologically realistic clock rate. The

final neuromorphic design seeks to model 10 billion neurons and 100 trillion synapses [147],

and seeks to rival the brain in terms of area and power consumption. In this section, the
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choice to target the Neurosynaptic Core is motivated, and the functional behavior of the

Neurosynaptic Core is described in detail.

3.4.1 Why Target the Neurosynaptic Core?

The broad range of neuromorphic hardware implementations, several of which have been

described above, may make it difficult to select an appropriate substrate on which to deploy

software models of the cortex. Each neuromorphic hardware design has a unique set of

advantages, such as power consumption, degree of biological fidelity, or flexibility of the

neuron and synapse models.

From an initial glance, the choice of IBM’s Neurosynaptic Core is not an obvious one.

While the Neurosynaptic Core is optimized for dynamic power consumption on the same

order as biological neurons [94], characteristics such as binary-only synapses, reliance

on conventional CMOS digital logic and memory, and lack of transcendental functions

(such as an exponential decay membrane leak), at first, appear questionable. However,

the arguments below justify that each of these choices is both sensible and attractive for a

neuromorphic design that targets areal and power efficiency at biological timescales.

First of all, avoiding exotic device, fabrication, or design technologies dramatically

improves the odds of success, since the design team is able to leverage existing tools and

design flows, ongoing improvements in digital CMOS technology, and existing design

expertise carried over from prior projects. Second, this expertise in digital CMOS design

contributes significantly towards the key goals of areal efficiency and low power operation.



45

Third, prior theoretical work shows that neurons with binary synapses are fundamentally

no less powerful than real-valued synapses [124]. This final design point allows synaptic

connectivity to be captured by a space-efficient SRAM, where each row represents the

output of a neuron, each column represents the input of a neuron, and a set bit indicates a

connection between two neurons. These design choices are clear and easy to justify in the

context of this work.

The final choice–reliance on fixed-point arithmetic with no support for transcendental

functions–is a bit harder to justify. Considering the design goals of areal efficiency and

low power consumption, support for floating point computation, division, and nonlinear

operation is quite difficult, as realizing many of the inherent nonlinearities of biological

components requires highly complicated digital circuits [97]. However, there is no clear

evidence from the neuroscientific literature that a lack of complex neuronal behaviors will

(or will not) compromise the computational capability of the neuromorphic hardware.

Therefore, the Neurosynaptic Core design appears to side with the SpiNNaker project on

the debate of biological fidelity; that is, simpler spiking neuron models are valid until it

is proven that more complex neuronal behaviors are more than artifacts of biology. In

this dissertation (Chapters 5 and 6) , it is argued that a number of these more complex

neuronal behaviors provide significantly enhanced computational and signalling abilities,

a contradiction to the design philosophy of the Neurosynaptic Core hardware. However,

as will be discussed in Chapter 7, many of these important behaviors can be effectively

emulated on the Neurosynaptic Core hardware. Therefore, it can be argued that the design
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decision for simple linear-operation-only neurons is a good one, assuming that the majority

of the applications and models deployed on the hardware make sparing use of these more

complex neuronal behaviors and nonlinear functions.

3.4.2 Description and Operation of the Neurosynaptic Core

The Neurosynaptic Core is composed of simple linear leaky integrate-and-fire (LLIF)

neurons. Rather than modeling the leak mechanism using an exponential decay, a LLIF

processing element simply subtracts a linear leak value from its membrane potential at

each time step. IBM has developed two Neurosynaptic Core designs based around the

LLIF neuron: one with [125], and one without online learning [94, 11]. This dissertation

focuses in particular on the Neurosynaptic Core which does not feature online learning,

but rather, targets low dynamic energy consumption.

The Neurosynaptic Core design incorporates a number of configurable components

and parameters. Earlier publications regarding the Neurosynaptic Core [94] indicated 1024

input axons per core, while later sources [106] have indicated only 256 input axons. In this

dissertation, it is assumed that each Neurosynaptic Core is composed of 256 LLIF processing

elements, 256 axons, and a 256x256 SRAM crossbar memory for synapses, as shown in

Figure 3.1. This chip does not incorporate online learning capabilities. To distinguish these

hardware-implemented LLIF processing elements from the general concept of LIF neurons,

they will subsequently be referred to as Neurosynaptic Core Neurons, or NCNs. Each of

the 256 axons is responsible for propagating the input spikes to the system. In terms of
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Figure 3.1: IBM’s Neurosynaptic Core [11].

these digital neurons, one can think of a spike to simply mean that the axon is held to a

value of ’1’, while a non-spike means the axon is held to ’0’. These axons can be configured

to route in spikes from off-core elements or to other NCN’s residing on the same core,

allowing recurrent connectivity. Here, it is assumed that each NCN is assigned a single

output axon; therefore, an NCN can be parameterized to either route its axon recurrently

back to the same Neurosynaptic Core, or it can project its axon off core. The SRAM crossbar

is a configurable set of binary synapses between the incoming axons (horizontal lines) and

the digital neuron’s dendrites (vertical lines), as shown in Figure 3.1. A set bit (shown as

a circle in the figure) indicates that a particular NCN must integrate the spikes arriving

on the corresponding axon, while an unset bit (no circle) means that this particular NCN

should ignore that axon’s behavior.
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One of the primary power-saving design points of the Neurosynaptic Core is its event-

driven operation, where the propagation of spikes drive the operation of the system [68].

However, each Neurosynaptic Core receives a clock tick at 1kHz to discretize the neuron

dynamics in 1 millisecond time steps. Not only does the slow clock rate contribute to the

low power consumption of the hardware design, but it also ensures that the Neurosynaptic

Core operates on biologically-realistic timescales. Incoming spikes are decoded and routed

to their appropriate axon buffer Aj. At each time step t, a NCN cycles through all of its

input axons buffers. If the axon buffer contains an incoming spike for this particular time

step, the axon j is held at a value of ’1’, causing a readout of the appropriate SRAM row.

When the chip is initially configured, each axon j is assigned an axon type Gj which

can be parameterized to one of three values (0, 1, 2). Likewise, each NCN i has three

parameterizable synaptic weight values (S0
i, S1

i, S2
i) which correspond to each of the three

axon types. In this way, each NCN in the system can be configured to have both excitatory

and inhibitory connections of different strengths, but the overall crossbar can be a dense

256x256 bit SRAM. This binary connectivity, between axon j and NCN i, is defined asWij.

Each NCN also has a parameterized linear leak term L, which models the tendency

of neurons to drift to a resting potential. This linear leak term may include stochastic

behavior [106], allowing for a more diverse range of neural behaviors. Finally, the present

state of the neuron, its membrane potential, is captured by the variable Vi (t). Taken all

together, at each time step, the membrane potential of NCN i is updated by:
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Vi (t+ 1) = Vi (t) + Li +

K∑
j=1

AjWjiS
Gj

i (3.1)

Here, K = 256, the total number of axon inputs of the Neurosynaptic Core. When Vi (t)

exceeds a parameterizable firing threshold θ, the NCN produces a spike output, and its

membrane potential Vi is reset to 0.

Figure 3.1 also demonstrates the operation of the Neurosynaptic Core for a single time

step. Prior to time step t, an incoming spikeA3 arrives at the Neurosynaptic Core (indicated

by the yellow "1" in Figure 3.1). At the time step t, the NCN cycles through each of its

incoming axons (indicated by the yellow "2" in Figure 3.1). An incoming spike in the buffer

of axon 3 is detected (i.e. A3 is set to 1, due to the aforementioned arrival of the spike). As

a results, axon 3 is pulled to a value of 1 (as indicated by the red horizontal line), which

causes a readout of line 3 from the synapse SRAM. At the same time, the axon’s assigned

type (as defined by G3) is read (indicated by the yellow "3" in Figure 3.1). In the figure, the

SRAM has been configured so that NCNs N1, N2, and NM synapse with axon 3, and thus,

receive values of ’1’ from the SRAM, while NCNN2 receives a value of ’0’. Next, each of the

neurons which receives a value of ’1’ from the SRAM increments its membrane potential

by the appropriate synaptic weight value, SG3
1 , SG3

2 , and SG3
M respectively (indicated by the

yellow "4" in Figure 3.1). It should be noted that SG3
1 , SG3

2 , and SG3
M may all be configured to

different values (e.g. 100, -2, and 15). Recent publications have also indicated that these

synaptic weights can also be configured as stochastic [106]. After the NCNs have integrated

all the spikes in this time step, NCNN1 has crossed the firing threshold θ and has produced
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an output spike that will become an input spike to the chip at time step t+ 1 (indicated by

the yellow "5" in Figure 3.1).

3.4.3 The Neurosynaptic Core with Online Learning

IBM has also implemented a second Neurosynaptic Core design which includes two

simple forms of stochastic online learning [125]. Most of the neuron parameters for the

online-learning hardware are the same as for the non-learning hardware described above.

However, this alternative design features all-to-all synaptic plasticity, which allows each bit

cell of the SRAM to be not only read during operation, but written as well, thus emulating

online-learning by altering synaptic connectivity.

For the rest of this dissertation, the choice to target the non-learning Neurosynaptic

Core is based on two primary reasons. First, depending on the cortical network model

of interest, the all-to-all synaptic plasticity provided by the learning Neurosynaptic Core

may be significantly underutilized. Here, one must consider that to support all-to-all

online learning, every neuron and axon must incur additional area and power overheads to

support transposable SRAMs, spike-time counters, and linear feedback shift registers [125].

Second, the learning Neurosynaptic Core implements only four simple learning schemes

(Hebbian, anti-Hebbian, STDP, and anti-STDP) which modify a single binary synapse [125].

As will be shown in Chapter 7, using circuits composed of multiple NCNs, each of these

learning rules can be emulated. Furthermore, using the composable NCN circuit approach,

many more aspects of the STDP and Hebbian learning schemes can be parameterized and
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novel learning mechanisms can be developed.

3.5 Summary

This chapter presents four very different neuromorphic substrates. While each design is

motivated by the same goal of emulating the brain, the focus and approach of each neuro-

morphic design is quite different. As evidenced by the different hardware methodologies

of the Neurogrid, FACETS, SpiNNaker, and SyNAPSE projects, it is still unclear what future

neuromorphic hardwares will look like, but it is clear they will be significantly different

from the the traditional von Neumann architecture. However, considering the scope and

the impact of the projects mentioned here, it is likely just a matter of time before these

types of neuromorphic systems become commodity components as well. The rest of the

dissertation considers IBM’s Neurosynaptic Core as the targeted neuromorphic substrate.
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4 modeling spiking neurons and biologically inspired

learning mechanisms

This chapter describes in detail the linear leaky integrate-and-fire (LLIF) spiking neuron

model which serves as the basic functional unit for the networks described in this disserta-

tion. Furthermore, it also elucidates the biologically inspired learning and homeostatic

renormalization mechanisms believed to govern plasticity in the brain. The LLIF neuron,

paired with the aforementioned learning mechanisms, is used to construct a minimal

neural network architecture based on several regions of the visual cortex. Finally, the

computational capability of this minimal spiking neuron model is explored in several

experiments relating to object recognition and motion detection.

4.1 Leaky Integrate-and-Fire Spiking Neuron Model

As was discussed in Chapter 2, many models of spiking neurons have been proposed,

ranging significantly in their biological fidelity and computational complexity. However,

this work begins with a minimal model of a biological spiking neuron, a choice that has

a few key motivations. First, by starting with a minimal model, the behavior, structure,

and dynamics of the spiking neuron (and populations of spiking neurons) can be better

understood, which simplifies analysis and discussion. Second, by taking a bottom-up

approach, the computational usefulness of more complex neuronal behaviors (such as short-

term plasticity, discussed in detail in Chapter 5) can be better understood in a step-by-step
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process. Finally, choosing a minimal neuron model improves its viability for deployment

on first generation neuromorphic substrates, which, as was discussed in Chapter 3, must

make a number of approximations and simplifications over biological neurons and brains.

To further simplify the LIF neuron implementation, a linear leak factor is applied at each

time step, as opposed to the more traditional exponentially decaying membrane potential.

The following equations describe the basic operation of the LLIF model:

Vi (t) = Vi (t− 1) +
K∑
j=1

Aj (t− 1)Wji − Li (4.1)

Ai =


1, if Vi (t) >= θi

0, otherwise
(4.2)

Vi (t) =


Vreset
i , if Ai == 1

Vi (t) , otherwise
(4.3)

Here, Vi(t) is the neuron’s membrane potential. On each simulated time step, the

neuron integrates its inputs by taking the dot-product of the spikes that were produced at

the previous time step (Aj (t− 1)) with the synaptic weight of the connection (Wji). The

total input is added to the membrane potential from the previous time step (Vi (t− 1)),

and the linear leak is applied (Li). After the updates to the membrane potential have been
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completed, the membrane is compared to the neuron’s firing threshold (θi), as shown in

equation 4.2. If the neuron fires, its membrane potential is reset to its reset voltage (Vreset
i )

- otherwise the membrane potential remains unchanged (equation 4.3).

In this simple implementation, the membrane potential Vi(t) is kept to a value of 0 or

above. In the absence of input spikes, the leak parameter Li drifts the membrane potential

of the neuron to a resting voltage, Vrest
i . When Vrest

i is nonzero, the linear leak factor must

also support leak reversal; that is, if a strong inhibitory input or the reset voltage Vreset
i set

the membrane potential below Vrest
i , the sign of the leak parameter is inverted until the

membrane potential reaches (or crosses) the resting membrane potential.

4.2 Learning with Bursts of Spikes

Biological neurons communicate through spikes. Therefore, it can be assumed that the

only way for a neuron to communicate the importance of its output is to modulate its firing

rate over time. However, spikes do not come for free; it has been proposed that the largest

component of a neuron’s energy consumption is devoted to spiking [12]. Considering

metabolic and energy constraints, it is reasonable to assume that the brain as a whole

should minimize the number of spikes needed to convey information, and save more

"bursty" behavior for truly important events.

In this model, the plasticity mechanism exploits the idea that burst events are expensive

and therefore important. This simply means that synaptic potentiating events are weighted

by the relative burstiness of the input. In detail, the level of presynaptic burstiness of each
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connection is modeled as:

burstpre (t+ 1) = burstpre (t) + λinc · spikepre (t) − λdec (4.4)

Here burstpre is a trace buffer which captures the inputs burstiness, where spikepre (t)

is 1 if the presynaptic neuron fired and 0 otherwise. λinc defines the increment of the burst

trace on every spike and λdec defines the decay in the burst trace at every time step.

The burst-STDP learning rule is applied each time the postsynaptic neuron spikes.

Therefore, each synaptic weight is updated according to the following equation:

w (t+ 1) = w (t) + k · spikepost (t) · burstpre (t) (4.5)

Here k represents the learning rate.

It should be noted that the learning rule, as described above, results only in the poten-

tiation (i.e. strengthening) and never the depression (i.e. weakening) of synapses. The

choice of a potentiation-based learning rule is two-fold. First, in keeping with the goal of a

minimal neuronal model, it simplifies the learning rule. Second, a growing body of litera-

ture has demonstrated that learning during wake is dominated by long-term potentiation

(LTP) [30, 142, 49, 29]. While a potentiation-dominated learning rule can destabilize net-

work activity and lead to a saturation of connections, this potentiation is counterbalanced

by a homeostatic renormalization mechanism described below.
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4.3 Value Dependent Learning

While biological studies have demonstrated that synaptic potentiation is driven by pre and

postsynaptic neuron spiking, the brain also uses neuromodulators such as dopamine and

noradrenaline to influence plasticity [126, 55, 70, 102]. These types of neuromodulatory

systems can be considered much more global in nature, as their effect reaches across

multiple brain regions [121]. Since these types of neurotransmitters typically indicate an

important event with a broad reach, it is likely that they are a key component of the learning

mechanisms in the brain.

The learning mechanisms of this model are extended to include the role of neuro-

modulators for value dependent learning. Similar to other simulation studies, modeling

these neuromodulators allows for signalling reward and punishment during learning

tasks [129, 102]. In this model, a global reward system evaluates only whether the network

has correctly (or incorrectly) responded to the learning task at hand. In turn, a global

reward (or possibly a punishment) mechanism is invoked to modulate the appropriate

synaptic connections contributing to the response. This type of reward learning is much

more biologically plausible than traditional back-propagation learning methods, as it only

requires a single reward signal such as dopamine or noradrenaline for correct behaviors.

A correct response is rewarded by multiplying the burst-STDP plastic change calculated

in Equation 4.5 by a positive constant, while an incorrect response is multiplied by zero -

allowing the value dependent learning to be implemented with minimal change over the

proposed plasticity mechanisms described above. Subsequently, the synapses which are
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modulated by value dependent learning are updated according to:

k = g (r, t) k0 (4.6)

Here k0 is the predetermined value of the learning rate (see the previous section) and

g (r, t) is the modulation performed by value-gating, which depends on both rewards r

and time t. In summary, when the network responds correctly to a stimulus, k is positive,

otherwise k is zero, resulting in no synaptic change.

4.4 Homeostatic Renormalization

A growing body of literature has indicated that the average strength of synapses, as well

as neural activity, increase during wake and decrease during sleep [107, 49, 143, 144, 81]

in a self-regulatory fashion [15]. The burst-STDP learning rule described above captures

the average gain in synaptic strength - which in turn increases neural activity. While a

global punishment signal like the one described above can be modified to also include

long-term depression (LTD), this model instead utilizes another mechanism to ensure that

synaptic potentiation is kept in balance. Homeostatic Renormalization of synaptic strength

has been hypothesized to take place during sleep [136, 137] and may be responsible for

counterbalancing the predominance of potentiation occurring during waking time.

Beyond simply preventing runaway synaptic potentiation (that is, uncontrolled all-to-

all strong connectivity), studies have shown its importance to memory and performance
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related tasks. Hill et al. showed with a simple linear rescaling of synaptic strength, the

signal-to-noise ratio was significantly improved for a simple motor-memory task, in both hu-

man subjects and a simulated neural network [63]. Furthermore, Olcese et al. demonstrated

with an activity-dependent homeostatic renormalization mechanism an improvement in

sequence learning and memory consolidation in a large scale model of the thalamocortical

system [103]. The renormalization implemented for this model follows the method pro-

posed by Hill, where the synaptic strengths are linearly rescaled offline so the strongest

connection is set to ’1’. The ith connection wi is therefore changed according to:

wrenormalized
i = wi/wmax (4.7)

Renormalization promotes memory consolidation by setting strengthened connections

to a value of one and progressively weakening unused ones, until they become negligible.

Under these plasticity rules, the plastic synapses of a neural network are renormalized

simultaneously after a predetermined number of simulation steps - comparable to a period

of sleep after a long period of waking.

In the context of porting a trained neural network to digital hardware, this type of

normalization process can be quite useful. Important synapses will often be used, so their

connection strength will be high, while other synapses will gradually move towards zero.

Since over time the synapse strengths will gravitate towards very strong or very weak, a

simple threshold function can be used to binarize the synapse values. The major benefit

to this binarization is that such simple synaptic weights are much more easily realized in
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actual hardware like the Neurosynaptic Core.

4.5 Preliminary Spiking Model of the Visual System

This section describes a foundational model of the visual cortex composed of LLIF spiking

neurons. Using the neuron model and learning mechanisms described above, this model

demonstrates how a simple LLIF spiking neurons can achieve motion detection, simple

invariant pattern recognition, noise resilience, and top-down attentional modulation.

Figure 4.1 details the organization of this foundational model of the visual cortex,

inspired by the anatomical and functional connectivity of several different brain areas.

Through these modeled processing streams of the visual cortex, this neural network is

able to learn translation invariant representations of simple shapes, as well as different

trajectories of motion, and ultimately produces learned motor outputs for each particular

stimulus. The following subsections describe the modeled processing streams and network

capabilities in greater detail.

4.5.1 Shape Categorization Module

It is well understood that the brain uses automatic abstraction to create robust and invariant

representations of objects, people, and places [56]. As was described in Chapter 2, object

recognition in the visual cortex primarily occurs in the V1, V2, V4 and IT regions. The Shape

Categorization Module uses simple spiking LLIF neurons for the same task: translation-

invariant recognition of simple objects in the environment.
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Figure 4.1: The architecture the foundational model of the visual cortex. Each layer is
depicted as a grid of cells (dimensions do not correspond to actual layer sizes). Parallel or
converging connections represent topographic connectivity without or with dimensionality
reduction; overlapping connections represent random connectivity. Subsystems consisting
of multiple neural layers are grouped with dashed lines. All hard wired synaptic con-
nections are black, and burst-STDP/homeostatic renormalization learned connections are
colored.



61

The general organization of the Shape Categorization Module borrows from Poggio’s

HMAX [111, 127] algorithm as well as Masquelier’s STDP implementation of HMAX [90].

Like these visual system models, the Shape Categorization Module alternates simple cells

(S) which elicit a spiking response for their preferred input and complex cells (C) which

provide translation invariance by using a max-pooling operation over a population of

simple cells. The overall architecture of the Shape Categorization Module utilizes multiple

layers of hierarchical processing, with the top level of the hierarchy being a classifier (see

Figure 4.1).

As in the V1 area of the visual cortex, neurons in the first layer (S1 − ver and S1 − hor)

have small receptive fields and respond maximally to simple features, such as an edge of a

particular orientation [112]. Neurons which find a preferred edge will spike in response,

and these activations propagate to the second layer (C1). The C1 layer (in both the vertical

and horizontal edge processing streams) uses three neuron populations to perform the

max-pooling operation over the S1 cells. The first layer of excitatory neurons (C1− ver− ex

and C1 − hor − ex) are connected 1-to-1 with the S1 cells below them, firing whenever

their corresponding S1 cell has fired. This population is recurrently connected with an

inhibitory cell population (C1−ver−inh,C1−hor−inh) which imposes a weakly-enforced

winner-take-all (WTA) competition among the excitatory C1 cells. This is not considered a

strictly-enforced WTA, since nothing prevents two (or more)C1 cells from firing at the exact

same time; however, the recurrent inhibition puts the first neurons that fire at an advantage.

Finally, the excitatory C1 cells propagate converging connections to the C1 − ver−max
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and C1 − hor −max populations. This simple circuitry allows the most distinguishing

lower level features to propagate spikes up to progressively more invariant regions (due to

converging connectivity).

The S2 layer (S2 − shape− ex), in turn, has an even broader receptive field, and uses

online learning to recognize simple combinations of features. That is, when a particular

stimulus is presented to the network, composed of many edges of different orientations,

the S2 uses the burst-STDP and homeostatic renormalization rules to learn the conjunction

of different edges. Similarly to the C1 neuron layer, the S2 is composed of multiple types

of neurons, using inhibitory cells to create a weakly-enforced WTA competitive network to

encourage different S2 cells to learn different features. In this way, the S2 cells that first

respond to the activations of the C1 neurons will reinforce their connectivity via the burst-

STDP learning rule. Again, it is not a strictly-enforced WTA, since nothing prevents two

(or more) S2 cells from learning the same feature when initialized from random synaptic

weight strengths. Because of the initial random connectivity of this neural layer, the S2

neurons’ receptive fields are not topographically organized as in the lower level neural

layers. While this connectivity means that a certain level of detail is lost to the upper levels

of the shape categorization module, the examples below show that for smaller scale neural

networks, performance is not affected.

Finally, the uppermost layer of the shape categorization module is the classifier (Cla−

shape), which learns to invariantly recognize a particular object anywhere in the visual

environment, similar to the Inferior Temporal (IT) region of the visual cortex. A pool of
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ten neurons are dedicated to each of the classes to be learned. The connections between

the S2 layer and Cla − Shape layer are learned using the value dependent burst-STDP

mechanism described above, as opposed to the C1 to S2 connections, which do not require

a global reward signal. While the S2 neurons can utilize simple inhibitory competition to

learn unique features, the Cla− shape layer must be trained to classify translated inputs

as the same item.

Preliminary experiments showed that for linearly-separable classes, a single neuron is

sufficient to categorize the input. However, learning rates were improved when using a

pool of classifier neurons. The main advantage of using a neuron pool is that the response

of each neuron in the pool will depend on its initial weak and random connectivity, which

in turn will elicit rewards or punishment. The more neurons that are activated, the more

the reward system induces the value dependent burst-STDP and drives the classifier

layer to strengthen appropriate connections. Furthermore, other works have shown that

populations of simple neurons are quite capable of learning non-linearly separable classes

given appropriate constraints and learning mechanisms [123].

4.5.2 Motion Detection Module

The simple spiking LLIF building blocks can also be used to model the regions of the visual

cortex which detect and process motion. As shown in Figure 4.2, the motion of a simple

line of pixels can be detected using a simple circuit of LLIF spiking neurons. First, three

neurons (E1, I1 and C1) are used to detect a contrast change within a receptive field. When
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Figure 4.2: A simple circuit for motion detection.

a moving line enters the receptive field of neuron E1, it spikes in response. The inhibitory

neuron I1 shares the same receptive field. Both neurons project their output axons to the

contrast detection neuron C1, but the connection from the inhibitory neuron requires a

longer delay. In this way, C1 will fire for the positive contrast change (caused by excitatory

neuron E1), but will be silenced by the inhibitory neuron shortly after.

In the neighboring receptive field, another three neurons (E2, I2 and C2) similarly detect

contrast changes. Finally, a motion detecting cell (R1) receives excitatory inputs from both

of the contrast detecting cells, with one of the inputs using an axonal delay (blue axon). In

this example, a contrast change on the left (from the past) paired with the current contrast

change on the right signifies the detection of a rightward moving line.

The Motion Detection Module in Figure 4.1 builds on this basic circuit of neurons. The

S1− inst and S1−del populations each implement the same contrast detecting circuitry as

shown in Figure 4.2; however, the outputs of S1− inst are received by the S1−where− ex
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population instantaneously, while the outputs of S1 − del include an axonal delay. The

necessity for both the S1 − inst and S1 − del populations stems from the choice to only

give one value of axonal delay per neuron, hence the duplication.

Neurons in the S1 −where− ex population use the burst-STDP learning rule to detect

coincidence firings of contrast changes in nearby receptive fields. The S1 − where −

ex is recurrently connected with the inhibitory population S1 − where − inh to again

implement the weak WTA circuitry to encourage different cells to detect different directions

of local motion. In this way, cells in the S1 − where − ex region learn to fire for local

motion in one of the four cardinal directions (up, down, left, right). As with the Shape

Categorization Module described above, the lower levels of the Motion Detection Module

rely on topographically organized receptive fields. The overlapping receptive field of each

S1 −where − ex neuron covers a 4x4 area of the retina. These cells show no preference

for a particular object, but simply fire when visual features are moving in its preferred

direction.

The Cla−where layer uses the value dependent burst-STDP learning rule to classify

each of the local motions into one of the four cardinal directions. In this sense, the Cla−

where cells are able to learn longer range trajectories and directions of motion over a

much broader receptive field (and in the case of this simple model, the entire visual field).

Neurons in the Cla−where layer are pooled into groups of ten neurons. After sufficient

training with reward and punishment, the appropriate Cla − where neuron pool fires

consistently as an object moves across the retina. This architecture is a simple yet effective
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model of cortical motion detection systems.

4.5.3 Attention Module

Because of the vast amount of raw data the retina provides to the visual cortex, it is useful

to have a mechanism to discriminate important features and objects from other distractors.

Attention accomplishes this important task by providing top-down signalling to the lower

level visual processing areas through back connections to place emphasis on important

features and filter out distractors. It is known that in the cortex, feedback connections are

just as numerous as the forward connections, though their full functionality is far from

understood. In this foundational model, these feedback connections are used to provide

focus on the objects in the visual receptive field determined to be the most important, while

silencing the neurons firing for distractor objects.

As can be seen in Figure 4.1, the attention module receives excitatory input from both

the Shape and Motion Modules. The Attention Module receives hardwired one-to-one

connections from the motion detection module, while the synapses received from the shape

module are initially random and strengthened through value dependent burst-STDP. In this

way, the Attention Module learns through reward the associations of a particular important

shape and direction of motion. After learning, inhibitory neurons project outputs back

to the motion detection and shape categorization modules to silence neurons that are

propagating distractor shapes and their motions.
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4.5.4 Decision Module and Motor Outputs

Finally, the decision module is responsible for determining the motor output reaction to

the state of the visual environment. This decision module helps the network cope with

the presence of noise in the input environment. In particular, it evaluates whether the

classifications performed by the Shape and Motion Detection Modules are consistent over

time or just sporadic activations (and thus likely to be erroneous detections caused by noise).

In this preliminary network, one population of neurons responds to target objects, and

another for obstacle objects. Both populations are trained through supervised value-gated

burst-STDP learning, and respond maximally as evidence of each object (and its direction

of motion) is accumulated over time. This Decision module drives the motor outputs of the

entire neural network, either to approach target objects or avoid obstacles. Presently, such

motor outputs are only considered at a very high decision level, though future extensions

to the system will likely entail performing more detailed, fine grained, and self-correcting

motor outputs. Biologically one can consider the simple decision and motor output module

to be similar to the high level decisions an animal makes to seek food or avoid predators,

while lower level motor outputs actually orchestrate the motion and minute actions.

4.6 Experimental Results

This section highlights several experiments that test the computational capability of the

simple LLIF neuron model. In the following sections, the network of LLIF neurons demon-
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Figure 4.3: Simple shapes learned by the network of LLIF neurons.

strates object recognition, motion detection, and simple top-down attentional modulation.

4.6.1 Experiment 1: Shape Categorization

In this experiment, the ability of the foundational model to discriminate multiple learned

categories is tested. The Shape Categorization Module is trained on three simple letters, a

"T", "J", and "L", as shown in Figure 4.3. For this task, the network is trained in a noiseless

environment on the objects randomly placed in a 10x10 pixel visual stimulus environment.

The object remained still (clamped) for 100ms (100 time steps) to allow the burst-STDP

learning rule to modify connections.

After training, each object was randomly placed in the retina. Figure 4.4 shows the

classification results for the task. While the learning task is quite simple, it demonstrates

that the minimal spiking LLIF model used in these simulations is quite capable of object

discrimination when paired with the burst-STDP/homeostatic renormalization learning

mechanisms.
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Figure 4.4: Classification accuracy after a single epoch of burst-STDP training and offline
homeostatic renormalization.

4.6.2 Experiment 2: Catching Targets and Avoiding Obstacles

In this experiment, the network is tested on a task where a single moving object is present

at a time, and the network must choose the correct motor output for the object. To simplify

analysis, only two objects were used in this experiment - the "T" object was trained as

the target object, while the "L" object was trained as the avoidance object. The object, the

starting position, and direction of motion are chosen at random. A response is considered

correct if the correct Motor output neuron fires before the object has moved out of the

visual environment. The response is considered incorrect if the motor output is to the

wrong location for target and avoidance objects. Finally, all other responses are categorized

as non decisions, in which no motor output was chosen at all. Furthermore, the amount

of noise in the visual receptive field was varied between 0 and 10%. That is, in the 10x10

pixel environment, if there is 8% noise injection, on average 8 pixels may be flipped at any
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Figure 4.5: 10x10 pixel retina. An object
(white T) appears in the upper left corner
and moves along the top edge of the vi-
sual field. After learning, motor output
moves the catcher object (dark gray) to
the correct location and orientation.

Figure 4.6: Visual environment with 8%
noise injection. The object (here a white
T) appears in the upper left corner and
moves along the top edge of the visual
field.

given simulation cycle. Figures 4.5 and 4.6 show the network’s task with 0 and 8% noise,

respectively.

Figure 4.7 shows the results of the network performance on this task (as noise is varied).

The testing phase (for each percent of noise injection) consisted of 100 object presentations,

and target object and avoidance object were chosen with equal probability. With no noise

injection, the correct response is chosen 96% of the time. As the level of noise increases,

the correct motor response degrades gracefully as the number of non decisions increases.

For a range of 0 to 10% noise injection, the number of incorrect responses is negligible.

Since the cells modeled in the neural network are LLIF, the cell membranes still potenti-

ate in response to noisy inputs and maintain a memory across multiple time steps, so long

as the noise is within a reasonable limit. As a result, the network has an inherent resilience

to filter out much noise on its own, as even noisy inputs will eventually cause the cell tuned
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Figure 4.7: Performance of the network
with single object presentation and a
varying level of noise.

Figure 4.8: Performance of the network
with two simultaneous objects presented
and a varying level of noise.

for a particular edge, feature, or object to fire. Additionally, the decision module makes the

network more robust by determining if classifications performed by the shape and motion

detection modules are consistent over a reasonable time interval.

4.6.3 Experiment 3: Anticipating a Target Object Location with

Multiple Objects

Finally, the network was also tested in an environment where multiple objects could appear

in the presence of noise. In this experiment, the system was tested on a total of 100

presentations (for each percent of noise injection). On each presentation, 25% of the time a

target object "T" appeared, 25% of the time the avoidance object "L" appeared, and 50% of

the time both appeared. The starting position and direction of motion of all objects were
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chosen independently and randomly. During training, the attention neurons were value

gated to reward firing for presentations of the "T" - that is, to pay attention to the target

object over the avoidance object. For this learning task, the network was trained to catch

the target object, regardless of what other objects may be present.

Figure 4.8 details the performance of the network with a variable amount of noise

injection. Here, the correct motor response is to catch the "T" if the "T" is present and avoid

the "L" if the target object "T" is not present. The performance is similar to the results

of Figure 4.7, though the number of correct responses is slightly lower. The number of

incorrect responses varies between 5 and 14%. However, even in the presence of multiple

moving objects, the network responds correctly over 70% of the time with a 3% noise

injection.

4.7 Summary

This chapter serves to demonstrate the computational power of one of the simplest imple-

mentations of biological spiking neurons: the leaky integrate-and-fire (LIF) neuron. Paired

with simple biologically-inspired learning mechanisms, a network of LIF neurons demon-

strates its ability to perform simple tasks such as invariant object recognition and motion

detection. Furthermore, this simple network takes advantage of feedback connections to

achieve top-down attentional modulation. With a strong understanding of the capabilities

of the simple LIF neuron, the subsequent chapters investigate a number of more complex

neuronal behaviors that can enhance these capabilities.
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5 visual cortex model

This chapter provides a detailed description of the biologically inspired model of the visual

cortex. Many of the components and features of this model build upon the foundational

model described in Chapter 4. However, this chapter also explores a set of more complex

neuronal behaviors leveraged by biological brains and explains their usefulness in the

visual cortex model. Specifically, these complex neuronal behaviors allow the Visual Cortex

model to be organized as a hierarchical metastable attractor. Next, Chapter 6 details the

abilities of this attractor-based network.

5.1 Extending the LLIF Neuron Model

Chapter 4 demonstrated how a minimal linear leaky integrate-and-fire neuron could be

used as a basic building block for a visual system capable of invariant object recognition,

motion detection, and noise filtering. However, it is known that biological neurons leverage

a host of nonlinear behaviors, which some researchers believe enhance their computational

capability [14]. In developing a model of the visual cortex, a number of these complex

neuronal behaviors are identified, and their usefulness is described in detail.

5.1.1 Short-Term Plasticity

While many neuronal network models include long-term plasticity rules such as Hebbian

or STDP learning (or burst-STDP, as discussed in the previous chapter), few consider the
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much shorter timescale plastic changes known to exist in biological neurons. These types of

synaptic modulations last for tens of milliseconds to minutes [109, 88]. Short-term plasticity

appears to be primarily driven by the presynaptic firing rate, though several factors relating

to the postsynaptic neuron are known to be related, including postsynaptic receptors which

have become saturated [145, 42] or desensitized [25, 140].

Short-term synaptic plasticity can either be potentiating (that is, a frequency-dependent

strengthening of the synapse occurs) or depressing (that is, the strength of the synapse

decays as a function of presynaptic firing frequency). In fact, experimental evidence has

shown that the same neuron may exhibit short-term potentiation on its synapses to one

neuron group, while showing short-term depression on its synapses to another [134, 135].

Such behavior appears computationally more powerful, as the same neuron’s outputs can

exhibit differential effects to different neurons.

For example, short-term depression can be used to signal the presence of a novel input

to a downstream neuron. Initially, the presynaptic neuron is at rest. When it detects an

input stimulus, it propagates spikes to the postsynaptic neuron with a strong synaptic

connection. If the input persists and the presynaptic neuron continues to fire at a high rate,

the synapse to the downstream neuron becomes depressed [28]. Hence, when a new/novel

input first appears, its effect is stronger than an input that has persisted for an extended

period of time. Other work has explored the use of short-term plasticity for developing

directional-selective circuits [41, 23].

In the context of a model of the visual cortex, the usefulness of short-term depression is
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quite clear. Feedforward connections from lower sensory-input layers can use short-term

depressing synapses to indicate a change in the input. In a real-time system with streaming

sensory input, such a feature can provide important signalling to a new object or feature of

interest. Short-term potentiation can also play important roles. For example, one could

control the firing rate of an excitatory neuron (or population of neurons) by recurrently

connecting it to an inhibitory neuron (or population of neurons). If the excitatory neuron

projects short-term potentiating synapses to the inhibitory neuron, the response of the

inhibitory neuron will increase as an effect of the excitatory neurons firing frequency, and

in turn, project more inhibition back. By leveraging these types of behaviors, a large scale

model of the visual cortex can respond quickly to new inputs, and maintain balanced firing

rates.

The LLIF neuron is extended to include a short-term plasticity model based on work by

Markram et al. [88]. For each synapse modulated by short-term plasticity, the dynamics

are governed by two variables, x and u, using two differential equations:

dx/dt = (1 − x)/τd (5.1)

du/dt = (U− u)/τf (5.2)

Here, τd is the time constant that governs synaptic depression, while τf is the time

constant for synaptic potentiation. U is a constant variable chosen from the range [0, 1]which
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indicates the percent of synaptic strength that becomes unavailable after a presynaptic

spike. When the presynaptic neuron spikes, the variables x and u are updated using the

equations below:

x (t) = x (t− 1) ∗ (1 − u (t− 1)) (5.3)

u (t) = u (t− 1) +U ∗ (1 − u (t− 1)) (5.4)

Synapses are then modulated through scaling the synaptic weight by u ∗x. By choosing

the parameters of U, τd, and τf, the synapses can be tuned to model synaptic potentiation

or depression.

5.1.2 NMDA Modulated Synapses

While feedforward connections are primarily responsible for driving signals from sensory

inputs up through the various processing regions of the cortex, the role of feedback (that

is, top-down connections from higher cortical regions) appears to be quite different. As op-

posed to feedforward, these feedback connections are not well understood. However, these

feedback connections are thought to be more modulatory, rather than driving, in nature,

providing top-down context from higher cortical regions. Studies have suggested the role

of feedback connections in attentional modulation [34] and figure-ground segregation [66].

A recent experimental study examined the biological differences between feedforward
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and feedback connections in the visual cortex [122] and revealed that excitatory feedforward

synapses are dominated by AMPA (2-amino-3-hydroxy-5-methyl-4-isoxazolepropionic

acid) receptors, while excitatory feedback synapses are dominated by NMDA (N-methyl-D-

aspartic acid) receptors. The activation time course of AMPA receptors is fairly short; after a

presynaptic spike the effect on the postsynaptic neuron lasts a few milliseconds. Conversely,

it has been found that the time course for NMDA-mediated synapses is substantially longer,

lasting tens to hundreds of milliseconds [75]. NMDA-mediated synapses are also distinct

in the fact that their activation is voltage-dependent [75]. That is, the activation of NMDA

receptors is dependent on an initial depolarization of the postsynaptic neuron. In simple

terms, a neuron must receive stimuli at voltage-independent synapses (e.g. those mediated

by AMPA receptors) before the stimuli at the voltage-dependent synapses can affect the

postsynaptic neuron membrane potential.

As with short-term plasticity, there appear to be unique advantages of NMDA-mediated

synapses for a visual cortex model. Because of the long lasting effects of NMDA-mediated

synapses, top-down activations can provide long-timescale contextual signalling to lower

cortical regions. Furthermore, as NMDA receptors are more modulatory, rather than

driving in nature, this top-down signalling can be quite diffuse without causing interference.

Only neurons which receive feedforward evidence (through AMPA-mediated synapses)

are affected by these top-down context signals.

The neuron model is first extended to include the long time constant behavior of NMDA-

mediated synapses. Each presynaptic neuron is extended to include a variable s. When
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the presynaptic neuron spikes, s is updated via:

s (t) = (1 − s (t− 1))/τNMDArise (5.5)

For each time step the presynaptic neuron doesn’t spike, s is updated via:

s (t) = (s (t− 1))/τNMDAdecay (5.6)

Here, the τNMDArise parameter controls the rise time of NMDA, while τNMDAdecay

controls its decay. For synapses that are mediated by NMDA-receptors, the synaptic weight

is scaled by s on each simulated time step and integrated with the postsynaptic neuron’s

membrane potential (as opposed to other synapses, which are integrated only in the time

steps where a spike is present). So long as the value of s is non-zero, it is integrated at each

time step.

To capture the voltage-dependent behavior of NMDA-mediated synapses, a simple

"depolarization threshold" variable, Dth, is used. The neuron model first integrates the

inputs from all the voltage-independent connections the same as before (Equation 5.7). If the

membrane potential Vi (t) exceedsDth, the inputs from the NMDA-mediated synapses are

integrated. This is an extreme simplification of voltage-dependent behavior, but nonetheless

captures the general principle.

Vi (t) = Vi (t) +

L∑
l=1

s ∗Wli (5.7)
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After this integration, the neuron may fire and reset its potential (as before in Equa-

tions 4.2 and 4.3).

5.2 The Visual Cortex as a Hierarchical Metastable

Attractor

This section describes a large-scale model of the cortex, on the order of 100,000 LLIF neurons.

Building upon the model outlined in Chapter 4, the Visual Cortex model is composed

of a number of hierarchical processing levels, which perform feature detection in lower

areas and ultimately invariant object recognition in the highest areas [89]. Furthermore,

this section proposes that the visual cortex is a metastable attractor network, driven by

feedforward input from the retina and stabilized through recurrent connections between

different neural areas.

5.2.1 Hierarchical Organization and the Feedforward Pathways

Figure 5.1 shows the hierarchical model which captures the organization of the ventral

stream of the visual cortex. Much of the organization builds upon the foundational model

of the visual cortex outlined in Chapter 4, though here, each of the regions of the visual

cortex are modeled at a larger scale and with a greater degree of complexity.

The input to the model is a 64x32 pixel retina, where simple objects (uniform color)

appear and move across the retina. These inputs project (feedforward) to the Lateral
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Figure 5.1: A block diagram of the Visual Cortex model. All modeled regions contain
recurrent connectivity (unshown for simplicity) and both excitatory and inhibitory neurons,
except the NRT, which is an entirely inhibitory population.

Geniculate Nucleus (LGN) cells. The LGN cells have small (typically 3x3 pixels) center-

surround receptive fields; center-on cells respond with their highest firing rate when their

input is a light pixel surrounded by dark pixels, while center-off cells respond maximally

when their input is a dark pixel surrounded by light pixels. Thus, the modeled LGN cells

provide the first step toward salient edge detection and convert the retinal input into spikes

for the rest of the model.
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As shown in the figure, the LGN is tightly coupled with another modeled region of

the thalamus, the thalamic reticular nucleus (NRT). The NRT is an entirely inhibitory

population of neurons. It does not project to the cortex, but rather, modulates the activity of

other regions in the thalamus through inhibition [150], helping to regulate the information

coming in through the sensory pathways. In this way, the NRT provides a high degree of

noise filtering for the inputs propagated from the retina. Furthermore, since feedforward

activations begin at the LGN (and feedback is voltage-dependent), the NRT plays a critical

role in modulating the overall firing rate of the network through its inhibition.

In the feedforward direction, spikes propagate from the LGN to the modeled primary

visual cortex (V1). Here, the modeled LIF neurons have slightly larger receptive fields

(typically 5x5 LGN cells) which maximally respond to an edge of a preferred orientation.

The modeled LIF neurons are topographically organized with overlapping receptive fields;

each neuron is tuned to detect either a horizontal or a vertical edge.

The V2 neurons perform a max-pooling operation across a local neighborhood of V1

cells (typically a 3x3 region of V1 cells), thus providing a higher degree of invariant edge

detection. V2 cells only pool neurons of the same type (i.e. a V2 cell will only pool

horizontally-oriented V1 cells, or only vertically-oriented V1 cells).

In turn, the activations of these V2 cells propagate to the V4 region, where neurons re-

spond to more complex features over a larger receptive field. A portion of these feedforward

connections exhibit short-term depression; since the V2 provide a degree of translation

invariance, they fire for longer periods of time than the V1 cells (when an object is moving).
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However, when a new V2 cell detects an edge within its receptive field, it responds with an

initially strong connection to indicate a new input; after a period of high firing, its feed-

forward connection strength is moderately depressed. The V4 neurons typically receive

inputs from a 4x4 region of V2 cells; here, the same V4 cells receive inputs from both the

horizontally and vertically-oriented V2 cells. In this way, the V4 cells can be tuned to detect

a more invariant, but more complex shapes, such as conjunctions of multiple edges.

Finally, the activations of the V4 cells propagate to the modeled IT. Neurons in the IT

have a receptive field over the entire V4 region (and thus, have a receptive field over the

entire retina). These neurons respond maximally to the recognition of complex objects

composed of multiple features detected in the V4 region. While the synaptic weights of the

lower regions are hard-wired (i.e. the edge detectors, invariant edge detectors, and simple

feature detectors), the connections to the neurons in the IT can be trained via Hebbian

learning (though other paradigms such as STDP and burst-STDP work as well). Thus, when

a new object is presented to the Visual Cortex model, the LGN through the V4 perform

feature extraction, while cells in the IT learn to recognize the combination of these features

compose an object.

5.2.2 Lateral Connections within Modeled Areas

Each of the modeled regions in Figure 5.1 contains both excitatory and inhibitory popu-

lations of neurons, except for the NRT, which is inhibitory neurons only. Aside from the

NRT (which is 100% inhibitory), typically 80% of cells are excitatory and 20% are inhibitory,
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which is consistent with biological evidence [115]. While the figure does not show all

connections (for simplicity), each of these neural regions contains recurrent connectivity

between excitatory and inhibitory neurons, primarily to balance the firing rate and add

stability to the system.

In the upper levels of the model (The V4 and IT), many of the excitatory-to-excitatory

connections are modulated by short-term potentiation and short-term depression. As

discussed below, these modulatory connections help ensure that attractor states form and

dissolve quickly with changing inputs.

5.2.3 Invariant Object Recognition Through Feedforward Pathways

To perform invariant object recognition, the Visual Cortex model requires only its feed-

forward connections. In the Visual Cortex model, the connections between the higher

regions (V4 and IT) are plastic, learned during training sequences, while the lower levels

of the model use hardwired connections. As the lower levels capture much simpler fea-

tures (center-surround contrasts, edges, and simpler conjunctions of edges), there is little

benefit provided by plastic changes in these areas. Furthermore, experimental evidence

has pointed out that much of the tuning of the lower thalamic and cortical areas may take

place before birth or early thereafter [24, 47]. However, there is benefit to having an IT that

can learn the conjunctions of different features and ultimately recognize invariant objects.

During training, the network was presented with two simple objects: a helicopter and a

car. The IT was configured with two populations of neurons (80% excitatory and 20% in-
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hibitory [115]) recurrently connected, with initially weak random feedforward connections

from the V4. As feedback connections are voltage-dependent (that is, only modulatory

rather than driving in nature), they were initialized to a predetermined strength and did

not require plasticity; however, it has been proposed that these feedback connections also

exhibit plasticity in biological systems [139].

On each training epoch, either the car or the helicopter was randomly placed in the

retina for 1000 ms (or stimulated time steps). Activation percolated up through the net-

work, ultimately reaching the IT. As with the foundational model presented in Chapter 4,

the learning rule was modulated by a value-dependent learning - which also required

competitive inhibition between the two populations of the IT. When the correct population

in the IT had the higher firing rate, Hebbian learning strengthened the corresponding

connections. After training, the competitive inhibition between the IT populations were

removed (since after training, the network was capable of recognizing multiple objects at a

time). The network was able to recognize the helicopter and the car moving through the

retina, invariant of their position.

5.2.4 Why Attractors?

The brain is autonomously active, exhibits transiently stable internal dynamical states as

well as sensitivity to incoming stimuli [51, 52]. A number of studies have considered these

attractor states to underlie the mechanisms and processes of the brain, including decision

making [7, 46, 18], short-term working memory [8], and the storage and recall of long term
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memories [65]. Each of these examples consider that a single spike doesn’t provide enough

evidence to signify an important event; therefore it is more likely that neurons (or groups

of neurons, minicolumns [99], etc.) signal important outputs through a temporary but

stable increased firing rate.

Besides the applicability to decision making and memory storage networks, the ques-

tion still exists: why would the brain (or in the context of this dissertation, a model of

the visual cortex) be organized as an attractor network? It has been proposed that the

brain is organized by two fundamental principles: functional segregation and functional in-

tegration [44, 149]. Functional segregation in the cortex is quite clear: different cortices

process the information of different sensory pathways. Even within the Visual Cortex

model as described above, functionally segregated regions perform different computations.

Functional integration in the cortex is the ability of these segregated areas to influence

each other [138]. Thus, a global attractor state is capable of integrating information across

spatially separated neural regions which may process entirely different information [44].

This type of network is significantly different from successful feedforward classifier

networks like Convolution Neural Networks (CNNs) or Poggio’s HMAX [111]. Such

schemes are highly successful at image classification, since they are organized to create

robust invariant representations the visual stimuli they were trained on. However, these

types of visual systems completely ignore binding the particular details in sensory input

with the invariant representations stored in the higher regions of the cortex.



86

5.2.5 Integration and Feedback Pathways

As described above, the feedforward pathways (shown in green in Figure 5.1), through

primarily converging connectivity, are capable of feature extraction and ultimately invariant

object recognition. Neurons in the IT are quite capable of recognizing a particular person

with a high degree of invariance (e.g. a close friend can be recognized invariantly whether

they are close or far away, angry or smiling, is wearing a new shirt, etc.). However, because

the IT is so invariant, these neurons cannot distinguish particular features of that person.

Lower area neurons in the V1 however, respond to very particular and localized features

(e.g. the edges that outline a person’s facial features, the color of their clothes, etc.) but are

completely unaware that a face is present - they simply respond to the localized details

present in their smaller receptive fields. Thus, from this example, it is easily understood

that no single neuron can simply represent all the information necessary to understand

real-world inputs. Therefore, recurrent connectivity is necessary to integrate the Visual

Cortex model into a single hierarchical metastable attractor state which binds the invariant

neurons in higher cortical regions with the detail-specific neurons in lower regions. As a

whole, such attractor states are able to represent all the information necessary to understand

complex real-world inputs.

To achieve stable state behavior and integration between all modeled neural regions,

feedback connections are required. As shown in Figure 5.1, these top-down connections

are primarily modeled as NMDA-mediated synapses. Thus, top-down activations are

modulatory rather than driving in nature (since NMDA-mediated synapses are voltage-
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dependent) and are prolonged in their signalling effect (allowing for stable integration

across spatially separated neurons in lower areas).

5.2.6 Metastability of a Hierarchical Attractor

Recent experimental studies have proposed that the dynamics observed in the IT region

of monkeys are indicative of attractor states and firing rate adaptation [6]. The recorded

populations of neurons showed sustained firing for their preferred stimulus for long

periods of time (hundreds of milliseconds). Furthermore, recent computational models

have investigated "nested" attractors whose dynamics operate at different timescales [48].

This work investigated two levels of processing in an attractor: a bottom level, consisting

of populations operating on a short timescale, and an upper level, consisting of "memory

populations", which operate on a much slower timescale. This "nested" attractor was

proposed as an explanation for the bistable perception paradigm.

Building on these ideas, the Visual Cortex model proposes that the transient stability of

a neural area should reflect its location in the hierarchy and its degree of invariant response.

Considering the visual cortex again, it is clear that the primary visual cortex (V1) should

exhibit the shortest timescale. Cells in the V1 respond to specific edges, and neural activity

must change rapidly with changing retinal input. However, an area like the V4, which

responds to much more invariant representations of more complex features, should exhibit

a much longer transient stability for visual recognition tasks. And finally, neurons in the IT

should exhibit the longest timescale of the visual cortex, since neurons here respond to
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objects completely invariant of their position in the retina. While these ideas share much in

common with the idea of the "nested" attractors [48], the primary difference is the Visual

Cortex model presented here performs all the sensory processing through many levels and

allows top-down influence to occur at a timescale proportional to its degree of invariance.

Maintaining a metastable internal state is clearly essential for various tasks, such as

decision making, maintaining a short-term memory, or tracking an object even when it is

occluded (i.e. object permanence). However, it is also clear that such stable states should be

able to fade on their own (i.e. without the need for resetting an attractor "by hand" or with

a global inhibitory system) to allow new states to be driven by new stimuli [51, 52]. In short,

the brain exhibits the ability to be driven into a particular attractor state and maintain it for

a useful amount time, and this state can either fade away or be modified by future stimuli.

To achieve this type of flexible behavior, the Visual Cortex model leverages short-

term plastic connections, as shown in Figure 5.1. In the visual cortex model, short-term

potentiation and depression are primarily used in the modeled V4 and IT regions, since

these regions exhibit the longest transient stability. With short-term potentiation, a rapid

boost in connection strength between neurons allows a neural network to enter a stable

state rapidly. Short-term depression exhibits a weakening of synaptic strength over time,

allowing stable states to dissolve so the system may be driven by new sensory inputs. These

modulatory connections essentially shape the attractor states the model enters and leaves.

Figure 5.2 shows two snapshots of the hierarchical attractor formed in the visual cortex

when exposed to a simple video of a moving helicopter. Each of the black panels shows
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Figure 5.2: The hierarchical attractor is anchored by its "head" in the IT, while its "limbs" in
the lower levels flexibly change to adapt with changing/moving inputs.

one of the modeled layers from the Visual Cortex model shown in Figure 5.1 (the LGN and

V2 are not shown for simplicity). Black pixels in the model indicate neurons that are not

firing, while the intensity of the green pixels indicate the present firing rate of the neuron.

When the helicopter first appears (left panel), a feedforward volley of spikes propagates

through the various modeled regions, ultimately reaching the IT, where neurons respond

to the recognition of a helicopter. Top-down activations, in turn, stabilize firing in the

different regions. The orange dashed line shows the neurons that stabilize at a high rate of

firing in this attractor state.

As the helicopter moves through the retina (right panel), the attractor state adapts to

the changing input. The "head" of the attractor remains anchored in the IT; as shown

in the figure, the firing rate is stable for an extended period of time. So long as there

is consistent feedforward evidence of a helicopter, the "head" of the attractor is active
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indefinitely. Conversely, the "limbs" of the attractor in the lower cortical areas (V1, LGN,

etc.) also show stable activity, but on a much shorter timescale, so that neural activity can

be easily driven by changing feedforward inputs from the retina. As shown in the figure,

the "limbs" have changed between the two panels due to the small receptive field LGN and

V1 cells . Finally, intermediate areas like the V4 (and V2, unshown) fall in between - its

transient stability reflects its level of invariance.

Figure 5.3 similarly demonstrates a hierarchical attractor anchored by its "head" in the IT,

but here, the time-varying firing rate of neurons in the V4 and IT are shown. Furthermore,

in this example, there are two moving objects, a helicopter and a car. As shown in the

bottom panel on the right, populations in the V4 are initially strongly activated (by the

short-term depressing feedforward connections from the V2 region). As the helicopter

moves, new populations receive feedforward evidence and become activated, while the

previously firing populations transiently decay in their response. In the top panel, we see

two populations of neurons (one encoding the invariant representation of the helicopter, the

other, the car) remain stable and active the entire time (though, their firing rates fluctuate

with the feedforward evidence provided by the V4 neurons). This long-lasting stable

response in the IT is consistent with experimental evidence that has proposed attractor

dynamics in the IT [6].
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Figure 5.3: On the left, the Visual Cortex model is exposed to a moving helicopter and
moving bus. The right shows the average firing rates of neurons responding to the stimulus
in the V4 and IT. As shown, the timescale of neuron populations in the IT is much longer.

5.3 Summary

In this chapter, the simple LIF neuron model and basic visual system model from Chapter 4

are extended. A growing body of literature has described the brain as a metastable attractor

network, continuously changing and adapting to incoming sensory input. In this chapter,

this idea of a hierarchical metastable attractor is used to construct a functional model of

the visual cortex. However, to achieve metastable attractor states, capable of forming and

dissolving rapidly with changing sensory input, a number of complex neuronal behaviors

have been identified. Voltage-dependent synapses, prolonged signalling effects, and short-

term plasticity significantly extend the computational capabilities of the LLIF neuron. In
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the next chapter, some of the abilities of a hierarchical metastable attractor are explored.
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6 abilities of a hierarchical attractor network

In the previous chapter, it was proposed that a Visual Cortex model exhibiting metastable

attractor states is significantly more powerful than more traditional feedforward neural

network architectures. This chapter highlights three experiments which demonstrate the

capabilities provided by these metastable attractor states. First, the network’s capability to

recognize and reconstruct an incomplete image is tested. Next, the short-term working

memory capabilities of the metastable attractor are demonstrated. The final experiment

shows how a hierarchical attractor network is capable of integrating information across

spatially separated neural regions. Here, it is proposed that the hierarchical attractor

architecture allows a novel way to access information about a visual scene and route the

information to an appropriate output. As will be detailed below, the results presented here

are promising evidence for a scalable network capable of scene understanding.

6.1 Pattern Completion and Noise Resilience

One of the important features of attractors networks is, even when just a subset of the

attractor has reached stable activity levels, the attractor tends to complete itself [8]. In

this way, the Visual Cortex model can complete patterns and recognize incomplete objects

presented in the retina.

The left panel of Figure 6.1 shows a retina viewing a noisy scene of a helicopter with a

few features missing. Feedforward driven neural activity appears in green, while feedback
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Figure 6.1: Left: An incomplete helicopter pattern in a noisy retina is presented to the
visual system. Initial feedforward driven activity in the LGN mirrors the activity of the
retina. Right: Pattern completion in hierarchical attractor visual system. Feedforward
driven activity appears in green, and top-down pattern completion appears in yellow.

signalling appears in yellow. Initially, the incomplete helicopter pattern, as well as the noise

in the retina, are propagated to the LGN. However, when there are sufficient inputs to drive

the system towards an attractor state, typically the network stabilizes in less than 150 ms.

The right panel of Figure 6.1 shows a snapshot of the networks response after the attractor

has stabilized, and feedback driven activations (yellow) in the LGN are able to complete the

helicopter pattern. Furthermore, the most salient features of the helicopter are enhanced

(through top-down modulation of their firing rate), and the noise propagated from the

retina to the modeled LGN is inhibited. As such, hierarchical attractors can exhibit the

same powerful properties (such as pattern completion) that Hopfield attractor networks

do, while remaining flexible enough to change state with rapidly changing inputs.

Here, the advantage of modeling voltage-dependent synapses is clear. Top-down
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connectivity between any two layers is mostly diverging, yet the neural activity is only

enhanced in the areas that have received at least some amount of feedforward spiking

evidence. Without such voltage-dependent synapses, top-down activity from the IT could

activate many more features associated with helicopters in the V4, and from the V4 to the

lower levels of the model, resulting in unrecognizable activity in the LGN.

It should be noted that the ability of a neural model to reconstruct an image or pattern

does not help it as a classifier; if there is enough information for the network to converge

on an attractor state that completes the helicopter pattern, then there is already enough

information to classify the noisy image as a helicopter. However, what this experiment

does show is that the attractor state is able to specify the particular features that are missing,

using the feedback connections from the higher, more invariant regions. This feature of

the hierarchical attractor network is demonstrated in greater detail below in Section 6.3.

6.2 Object Occlusions (Working Memory)

The next experiment demonstrates the advantage the hierarchical attractor provides for

a working memory task. One can consider watching a helicopter fly across a landscape,

which then becomes occluded as it flies behind a building. In such a situation, one’s brain

provides object permanence; that is, it is understood that the helicopter still exists, even

though it cannot be observed. Furthermore, one expects that the helicopter will fly out from

behind the building on the opposite side.

In this experiment, the helicopter moves from right to left in a continuous motion
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Figure 6.2: Left: A helicopter moves from right to left in the retina. Right: The helicopter is
occluded by the building. However, transient stability and hierarchical organization allows
the IT and V4 to still show robust responses even in the absence of current feedforward
evidence.

(moving approximately 1 pixel location per 25 ms). Figure 6.2 shows two snapshots of the

network as the helicopter flies behind a building (the solid rectangular shape). In the panel

on the left, the helicopter is still completely visible, and the hierarchical attractor shows a

stable response in the modeled LGN, V1, V4, and IT (V2 unshown).

In the panel on the right, the helicopter has become occluded as it moves behind the

building. However, due to the transient metastability of the network, there is still a robust

response in the IT and V4, indicating a short-term memory of the moving helicopter

and its features. Thus, the system displays a sense of object permanence through this

working memory, since the concept of a helicopter is still active, even if there is little to no

feedforward evidence indicating a helicopter is present. As seen in the modeled retina and

LGN, there are clearly not enough features to recognize a helicopter in a feedforward-only
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network.

Again, this is possible only because of recurrent long timescale (NMDA) connections

and the high degree of metastability in the V4 and IT neural layers. Furthermore, as the

helicopter emerges from the left side of the building, the attractor state quickly converges in

the LGN and lower modeled areas. Since top-down connectivity is present, the formation

of the full attractor state is boosted as feedforward evidence of a helicopter appears.

6.3 Access and Routing in a Hierarchical Attractor

In this final experiment, the ability of a hierarchical attractor to functionally integrate infor-

mation across spatially distributed neurons is demonstrated. As was described in Chapter 2,

the cortex uses different neural regions to process different types of information. Even

within the visual cortex, different modalities such as motion and location, color, and form

are processed through separate streams. Thus, it appears from a first glance that the visual

cortex is quite capable of decomposing information into different concepts (e.g. the color

red, the shape of a helicopter, the location of an object).

In fact, this approach has shown to be quite successful for a number of neurally-inspired

object-recognition systems [90, 112, 127, 111]. Requiring only feedforward connectivity, an

image can be decomposed into simple features, and these features can be progressively

combined for invariant object recognition (using an approach not unlike the feedforward

pathways of Visual Cortex model). Such "detector" based neural architectures have shown

to be quite successful, capable of robustly invariant object recognition.
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Consider a feedforward detector for the invariant recognition of a helicopter. Using a

feedforward-only approach, one can construct a robust helicopter detector that classifies a

red helicopter, a green helicopter, a helicopter on the ground or in the sky, as a helicopter.

However, in taking a feedforward-only approach, these systems have essentially "thrown

away" the information regarding the helicopters color and location in favor of robust

invariant object recognition. If it is important to classify red helicopters in the sky (say, the

detection of an enemy helicopter approaching as compared to a friendly green helicopter

grounded on a runway), one must construct a red flying helicopter detector. For every

combination of concepts across the motion and location, color, and form streams, one must

build an individual detector. While this approach would no doubt be able to robustly

classify all the combinations of concepts that are deemed important, it has two major

flaws. First, this leads to a combinatorial explosion of the number of detectors that must

be constructed. Second, this approach requires that these detectors be built a priori - one

must consider every possibility before constructing the detectors. Though it is far from

completely understood how the brain stores memories, it is quite unlikely that the brain

would utilize a different neuron or network of neurons for every possible scenario that

could possibly be encountered. Such an approach defeats the purpose of having invariant

representations of concepts in the brain.

Rather, this dissertation proposes the idea that the cortex uses integration across different

processing streams to bind multiple concepts. Again, this integration requires the organi-

zation of the network as a global attractor which leverages recurrent connectivity between
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different regions. To examine this idea as a proof of concept, the Visual Cortex model was

scaled down to approximately 2,000 neurons. This smaller version of the model, however,

was extended to include three discrete processing streams with their own concepts. The

Form stream, as with the original Visual Cortex model, performs feature extraction and

ultimately invariant object recognition of a helicopter and a car. The Color stream contains

two concepts: the recognition of the colors red and green. Finally, the Where stream simply

recognizes the location of an object, completely invariant to what the object is.

Figure 6.3 shows the simplified model of the Visual Cortex with its three discrete

processing streams. Here, the retina has been scaled down such that a helicopter or a

car can be in one of four locations. Neurons in the LGN, as before, use center-surround

receptive fields. However, they are also sensitive to the color in their receptive field; hence,

there are green and red-tuned LGN cells. In the Color stream, populations of neurons

simply detect whether there is a patch of a particular color (red or green) in their receptive

fields. At the top of the Color stream, one population of neurons detects invariantly whether

there is a patch of green in the retina, while the other detects whether there is a patch of

red. In the Form stream, the first layer contains a population of neurons that respond to

simple feature within their receptive field of the LGN (though, for simplicity, this stream

does not explicitly model each of the V1, V2, and V4 regions as in the large-scale Visual

Cortex model). These object detectors respond invariantly to the color of the object they

are detecting (i.e. the same object detector will respond to the detection of a red or green

object). At the top of the Form stream, one population invariantly detects the presence of a
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Figure 6.3: The scaled-down version of the Visual Cortex model. Three simple modalities
recognize two invariant concepts each. The orange "Q" nodes are activated when the
concept is being queried. The "Yes" population is activated when the query is consistent
with the visual scene in the retina.

helicopter, while the other detects the presence of a car. Finally, in the Where stream, the

first layer contains a population of neurons that simply detects whether there is any object

or feature at all in their receptive field, regardless of the shape or color. The top layer of

the Where stream pools the response over these cells; one population detects invariantly

whether there is an object in the top half of the retina, while the other population detects

whether an object exists in the bottom half of the retina.
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When an object appears in the retina, each of the different processing streams extracts a

different set of features and ultimately recognizes different invariant concepts. For example,

when a green helicopter appears in the sky, the helicopter concept in the Form stream shows

stable activation, as does the green concept in the Color stream and the top concept in the

Where stream. Simply looking at these invariant concept populations, one may argue

that the network "understands" what it is looking at; since the green, helicopter, and top are

activated, there must be a green helicopter in the top of the retina. However, if a red car also

appears on the ground, the invariant concepts car, red, and bottom are all activated, making

the color and location of the two objects appear ambiguous, that is, if one is considering

only the state of the invariant concept detectors.

To test the ability of the hierarchical attractor to integrate information across different

processing streams, the simplified Visual Cortex model is slightly extended to answer

"questions" about the scene it is observing. To "ask" the model questions, an additional

invariant auditory concept is connected to each of the invariant concepts in the Visual Cortex

model, as shown in Figure 6.3 (orange circles). Each of these auditory concepts could be

considered to be the high level concepts of the auditory cortex; when one of the auditory

concepts is active, the model is being asked a "yes/no" question about that concept. For

example, if the helicopter auditory concept is activated, the Visual Cortex model is being

asked "Is there a helicopter?". If the helicopter, top, and green auditory concepts are activated,

the model is being asked "Is there a green helicopter in the sky?".

When the auditory concepts are activated during a query, they project excitatory con-
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nections to each of their corresponding visual concepts. In turn, the firing rate of the

corresponding visual concepts go up, and likewise, project more top-down excitation

to the neurons below them. Again, in terms of the stabilization of the hierarchical at-

tractor, the voltage-dependent behavior of these top-down connections is vital; only the

appropriate neurons in the level below will see these top-down modulations, while other

neurons remain unaffected. As a result, the lower level feature-processing populations of

the corresponding streams also experience a higher firing rate as a result of the top-down

modulation. Finally, these levels project voltage-dependent feedback connections to the

LGN cells which perform the first level of feature extraction in the Visual Cortex model.

It is also important to consider the feedback connections from the cortical areas to the

inhibitory NRT population, as shown in Figure 6.3, which is consistent with biological

evidence [150]. In this model, the role of these top-down connections allows the NRT to

balance the extra excitation during the query with inhibition to the LGN. Since each of the

visual and auditory concept populations sends a feedback connection to the NRT, the NRT

receives an excitatory boost proportional to the complexity of the query; that is, if asked

about a helicopter alone, one feedback pathway shows an enhanced firing rate, while the

query "Is there a green helicopter in the sky?" results in three enhanced feedback pathways

to the NRT.

The organization as an attractor allows the network to truly integrate information across

these spatially separated neural regions. Through the enhanced firing rate provided by the

auditory concept populations, the network is able to access the appropriate information
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in regard to the conjunction of concepts. When the network is asked "Is there a green

helicopter in the sky?", the helicopter, green, and top concepts enhance their firing rate, and

enhance the firing rate of the corresponding features below them, in a way that could be

compared to top-down attention. In turn, the excitatory input to the NRT goes up, which

means more inhibition for the LGN. However, since each of the three streams is providing

strong feedback to the same cells in the LGN, the attractor state balances.

Finally, the network needs to be extended to effectively route this information to a

population of neurons that could simply answer "yes/no" questions. As shown in Figure 6.3,

each of the visual concepts sends an excitatory input to a single Yes population at the top

of the network. Each of the auditory concepts sends an inhibitory input to the same

Yes population. This essentially "primes" the Yes population to answer a default "no" by

preventing it from firing. In this way, if the Visual Cortex model is asked about a conjunction

of two or three concepts, each of these concepts must stabilize at an enhanced firing rate to

answer "yes" to the query.

In Figures 6.5 through 6.7, the Visual Cortex model is tested on its ability to correctly

answer queries, a task, as has been described, that truly requires an integrated attractor

state. In Figure 6.4, the Visual Cortex model is presented with a green helicopter in the

top of the retina, and the system is asked "Is there a helicopter?". As shown, the firing rate

of the helicopter concept is enhanced by the query, which in turn, projects extra feedback

to the corresponding LGN cells. The NRT population enhances its firing rate during the

query, but the feedback balances out the extra inhibition; as a result, the helicopter concept
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Helicopter 

Yes 

Figure 6.4: The system is asked whether it sees a helicopter. The population which
invariantly recognizes the concept helicopter stabilizes to a higher firing rate and activates
the Yes population.

stabilizes at a higher firing rate, and the Yes population correctly answers the query with

robust firing, as shown in the figure.

Next, under the same conditions, the system is asked "Is there a car?" (see Figure 6.5).

In this case, since the feedback connections are voltage-dependent, the system is unable

to activate any neurons in the lower levels. As shown, the car concept does not exhibit a

high firing rate, and hence its input to the Yes population falls short of activating it. The

inactivation of the Yes population is an implied "no" to the query, hence the system correctly

answers this query as well.

Next, a more complex scene is presented to the Visual Cortex model: a green helicopter

in the sky and a red car on the ground. In Figure 6.6, the system is asked "Is there a green
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Car 

Yes 

Figure 6.5: The system is asked whether it sees a car. Since feedback connections are mod-
ulatory (voltage-dependent), but there is no feedforward evidence of a car, the population
does not stabilize at a high firing rate, and the Yes population is silent (implied "no").

helicopter in the sky?". All three concepts activate at a higher firing rate due to the query,

and subsequently, each send feedback to the same neurons in the LGN population. When

the NRT enhances its firing rate proportionally to the query, the feedback excitation and

extra inhibition balance out, allowing the cells in the LGN to remain active at their typical

levels. As a result, the helicopter, green, and top concepts stabilize at a higher firing rate, and

the Yes population correctly answer the query, as shown in the figure.

Finally, under the same conditions, the system is queried "Is there a green car?" (see

Figure 6.7). In this case, the green and car concepts are both active, as something green

and a car exist in the retinal input. However, top-down activations follow their respective

voltage-dependent paths, and the feedback is diffused over two locations in the LGN.
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Helicopter 

Top 

Figure 6.6: The system is asked "Is there a green helicopter on top?". Feedback activations
converge to the same neurons in the LGN, balancing the inhibition of the NRT. All three
populations stabilize to a high firing rate, and the Yes population is activated.
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Green 

Yes 

Car 

Figure 6.7: The system is asked "Is there a green car?". Feedback activations propagate to
different neurons in the LGN, and therefore, feedback is unable to balance out the inhibition
of the NRT. As a result, neither the green or car concepts stabilize to a high firing rate, and
the Yes population is silent (implied "no").
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When the firing rate of the NRT is enhanced proportionally to the query, it depresses both

locations in the LGN. As a result, there is less voltage-independent feedforward activation

to the higher levels in the Visual Cortex model, and both the green and car concepts do not

stabilize at a higher firing rate (see Figure 6.7). As a result, the feedforward excitation to

the Yes population is insufficient to make it fire; hence, the system correctly answers "no"

to this query.

In this simple system, three basic vision-related streams capture six invariant concepts,

yet the system can be queried about the location, color, and presence of simple objects. If a

feedforward-only architecture was used, the system would need an invariant helicopter

detector, a red helicopter detector, a green helicopter detector, a green helicopter on top

detector, and so on. The feedforward-only approach would require 20 individual detectors

for each of these possible cases. As the number of concepts and processing streams increases,

such an approach is clearly quite expensive, requiring a combinatorial explosion of detectors

for each possible case. Thus, even at a simple system level, with very few invariant concepts,

the advantage of a system organized as a single integrated attractor is quite obvious.

Future work will extend this ability to the large-scale visual cortex model, as well

as consider a larger number of invariant concepts across different processing streams.

However, the simple example network presented here does not detract from the generality

of this approach, which appears promising for larger scale models. By organizing the

network as a single integrated hierarchical attractor, the attractor state specifies both the

invariant concepts in the higher modeled regions as well as the neurons firing for the specific
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details of the retinal input. As demonstrated, this approach works even with the invariant

concepts detected by different processing streams, so long as the attractor state allows the

top-down enhanced firing rate to converge on the same topographical locations (in this

case, the same LGN cells).

6.4 Summary

In this chapter, the abilities of the hierarchical metastable attractor model of the Visual

Cortex are explored. Consistent with other research on attractor networks, the Visual Cortex

model demonstrates noise resilience, pattern completion, and is capable of leveraging short-

term working memory for the task of object recognition. Furthermore, this chapter also

considers how the hierarchical attractor architecture integrates information across different

streams of processing. Thus, the results of this architecture demonstrate a network that is

capable of recognizing invariant concepts, but can also bind related concepts in a much

more efficient manner than building a specific detector for every possible conjunction

of concepts. Future work will necessarily examine the scalability of this approach and

investigate a much larger number of concepts; however, the results described in this chapter

serve as a proof of concept, demonstrating the potential of a hierarchical attractor network.
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7 deployment on neuromorphic substrate

This chapter considers the complex relationship between neuromorphic hardware and neu-

ral models such as the one described in the previous chapter. First, this chapter highlights

the neuromorphic semantic gap that exists between state of the art software models and the

neuromorphic substrates on which they will be deployed. Second, this chapter details

the challenges of deploying large scale neural models on neuromorphic hardware. These

challenges are studied in detail using IBM’s digital Neurosynaptic Core hardware, where

simple digital neurons provide no complex neuronal behavior and each Core is limited to

256 digital neurons with limited fan-in and fan-out capabilities.

7.1 The Neuromorphic Semantic Gap

While a number of different neuromorphic substrates have been proposed and imple-

mented [27, 119, 118, 2, 11, 125, 67, 93, 128], the common goal of such hardware is to

leverage the beneficial properties of biological neurons and brains. While neuroscien-

tific research has certainly improved the understanding of the brain in recent years, the

full functionality of this complex system is still far from understood. In this way, de-

veloping a neuromorphic substrate appears to be a continuously moving target; as new

scientific discoveries are made, new neuronal functions and structures may prove vital

to the information processing that occurs in biological brains. However, the lack of a

universal understanding of the brain does not diminish the importance of developing
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neurally-inspired hardware today.

Neuromorphic hardware such as IBM’s Neurosynaptic Core presents a set of unique

features and benefits: a non von Neumann computing substrate composed of neuron-like

processing elements, an architecture that avoids the von Neumann bottleneck by storing

processing elements and memory together in a distributed and massively parallel way,

and ultra-low power event driven computation [94]. However, the hardware implements

a simple LLIF neuron lacking nonlinear neuronal behaviors and transcendental function

support. In Chapter 4, the foundational visual system model demonstrated how such a

simple neuron model was capable of performing motion detection and object recognition

at a small scale. However, in Chapter 5, it was proposed that the visual cortex may leverage

a number of nonlinear neuronal behaviors, such as connections modulated by short-term

plasticity, or voltage-dependent NMDA-mediated synapses. Furthermore, online learning

rules, such as Hebbian or STDP, are also important features, allowing neuronal networks

to adapt over time. Such neuronal behaviors are inherently more complex than the simple

digital neuron primitives implemented in IBM’s Neurosynaptic Core hardware. As a result,

there exists a neuromorphic semantic gap between the biologically inspired model and the

hardware substrate on which it is deployed.

To computer architects, the problem of the semantic gap is not a new one. Several

decades ago, the same problem was solved in the context of the reduced instruction set

computing (RISC) architecture. The algorithms and programs being developed in high-

level languages may not have had directly supported primitive on a RISC architecture; yet,
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Figure 7.1: NCN circuit emulating short-term potentiation.

NCN Axon Type Threshold S0 S1 S2 Leak Stochastic Leak
NA 0 100 120 0 0 10 0
NB 0 100 20 90 0 10 0
NSyn 1 200 40 204 0 0 5

Table 7.1: One set of parameters for the NCN circuit to exhibit short-term potentiating
behavior.

through translation or compilation, these algorithms and programs could be expressed in

a way that was compatible with the underlying simple hardware primitives, thus bridging

the semantic gap. In a similar vein, the following sections demonstrate that the complex

neuronal behaviors leveraged by the Visual Cortex model can effectively be translated to

simple digital neuron primitives compatible with the Neurosynaptic Core hardware.

7.1.1 Emulating Short-Term Plasticity

Short-term modulation of synaptic strength, whether potentiating or depressing, enhances

the computational power of a neuron, as the same neuron’s outputs can exhibit differential

effects to different neurons [88]. However, IBM’s Neurosynaptic Core features only fixed

synapses; connections between neurons are binary, and each neuron is afforded only three

synaptic weight values for incoming axons [94, 125, 11]. While it is not possible to configure
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a single Neurosynaptic Core Neuron (NCN) to demonstrate this short-term modulation of

synapses, simple circuits of NCNs can effectively emulate this behavior.

In its most basic sense, short-term potentiation is marked by a relative increase in

synaptic strength as a function of the presynaptic neuron’s firing rate. This effect can be

emulated using the NCN circuit shown in Figure 7.1. In the figure, NCNs NA and NB

are the presynaptic and postsynaptic neurons, respectively. A third NCN, NSyn, acts as a

detector for NCN NA’s firing rate, and in turn, projects a potentiating output to NCN NB.

Table 7.1 shows one possible configuration of the NCN parameters, which are com-

patible with IBM’s Neurosynaptic Core hardware. NCNNA projects an axon of type 0 to

NB, which uses a small positive synaptic weight for this connection. As a result, when NA

spikes, the effect on NB is fairly small. Since the primitives provided by the Neurosynaptic

Core hardware mean that each NCN has only one output axon (and it must be assigned a

static axon type), NA also projects an axon of type 0 to the synapse NCN NSyn. The firing

threshold and linear leak parameters of NSyn are set such that NSyn will only fire if NA

outputs spikes at a fairly high rate. NSyn projects an axon of type 1 to NB, which uses a

strong synaptic weight value for a potentiating effect. This axon also synapses with NSyn

with a large positive synaptic weight value, allowing the potentiating effect to last without

the need to accumulate many spikes from the presynaptic NA again. Finally, NSyn uses

a stochastic leak, which ensures that after NA has stopped firing for a period, NSyn too

will leak back to its resting potential. Given these ingredients, the NCN assembly shows

short-term potentiating effects when the presynaptic NCN spike rate is high, but eventually
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Figure 7.2: Short-term potentiation circuit deployed on Neurosynaptic Core. Each neuron
is assigned one axon with a parameterized axon type.

returns to normal synaptic strength once the presynaptic neuron rests. Figure 7.2 illustrates

how the NCN circuit maps onto IBM’s Neurosynaptic Core.

To validate the NCN circuit for short-term potentiation, its functionality is compared

with the software implementation of short-term potentiation presented in Chapter 5. Since

the Visual Cortex model uses populations of neurons (rather than individual neurons in

each modeled region), this experiment considers the average effect between 100 pairs of

presynaptic and postsynaptic neurons exhibiting the complex neuronal behavior. Figure 7.3

(a) shows the desired behavior of short-term potentiation. The average firing rate of the

presynaptic neurons is 100 Hz. As a result of the short-term potentiating synapses, the

average firing rate of the postsynaptic neurons grows over time, eventually reaching 100
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Figure 7.3: (a) Short-term potentiation behavior modeled in software. (b) Short-term
potentiation behavior of NCN circuit.

Hz as well.

Figure 7.3 (b) shows the behavior of the NCN circuits emulating short-term potentiation.

As before, the average firing rate of the presynaptic neurons is 100 Hz. In turn, once the

NSyn NCNs have become active due to the high rate of the presynaptic NCN, the firing

rate of the postsynaptic NCNs (NB) grows to 100 Hz as well. From the standpoint of

functionality, the behavior of the postsynaptic NCN population is equivalent to that shown

in Figure 7.3 (a). Importantly, this demonstrates that while the primitives of an individual

digital NCN do not allow for such nonlinear functions, the aforementioned neuromorphic

semantic gap can be bridged using additional NCNs to emulate the appropriate behavior.

Similarly, short-term depression (that is, a temporary decay in synaptic strength as a

function of presynaptic firing rate) can also be emulated using a circuit of digital NCNs, as

shown in Figure 7.4. Table 7.2 shows one possible configuration of the NCN parameters
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Figure 7.4: NCN circuit emulating short-term depression.

NCN Axon Type Threshold S0 S1 S2 Leak Stochastic Leak
NA 0 100 120 0 0 10 0
NB 0 100 100 -120 0 10 0
NSyn 1 200 40 204 0 0 5

Table 7.2: One set of parameters for the NCN circuit to exhibit short-term depressing
behavior.

to emulate short-term depression. NCN NA projects an axon of type 0 to NB, which uses

a positive synaptic weight value. This synaptic weight value is chosen to be the baseline

synaptic strength between the two NCNs. NA also projects the same axon type to NSyn,

which, as before, uses a threshold and leak parameter such that it fires only when the firing

rate of NCN NA is high. NSyn, in turn, projects an axon of type 1 to NB, which uses a

negative synaptic weight value. As NSyn becomes activated, it essentially cancels out the

excitatory input received from NA (to whatever degree is desired, as the synaptic weight

values are user-defined parameters). As before, NSyn uses a strong positive recurrent

connection to allow the depressing effect to last without the need to accumulate many

input spikes fromNA, and a stochastic leak to ensure that afterNA has stopped firing for a

period, NSyn leaks back to its resting state.

The short-term depression NCN circuit is experimentally validated against the software
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Figure 7.5: (a) Short-term depressing behavior modeled in software. (b) Short-term
depressing behavior of NCN circuit.

implementation of short-term depression. As before, the experiment considers the average

effect between 100 pairs of presynaptic and postsynaptic neurons. Figure 7.5 (a) shows the

desired effect of short-term depression obtained with the software implementation of the

synaptic modulation. The average firing rate of the presynaptic neurons is 100 Hz, while the

average firing rate of the postsynaptic neurons is initially 100 Hz, but significantly decays.

Figure 7.5 (b) shows the average behavior of the 100 NCN circuits emulating this effect. As

with short-term facilitation, the functional response of this NCN circuit is equivalent, again

demonstrating that the semantic gap can be bridged by using an extra NCN per synapse

and appropriately configuring the NCN parameters. Furthermore, this NCN circuit is

mapped to the Neurosynaptic Core in the exact same way as presented in Figure 7.4; only

the synaptic weight value for the depressing effect is different.
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Figure 7.6: NCN circuit emulating the prolonged signalling of NMDA-mediated synapses.

NCN Axon Type Threshold S0 S1 S2 Leak Stochastic Leak
NA 0 100 120 0 0 10 0
NB 0 100 0 120 0 10 0
NSyn 1 155 255 255 0 0 100

Table 7.3: One set of parameters for the NCN circuit to exhibit the prolonged signalling
effects of NMDA.

7.1.2 Emulating the Long Timescale Effects of NMDA-Mediated

Synapses

For many of the connections in biological nervous systems, a spike from a presynaptic (i.e.

source) neuron affects the postsynaptic (i.e. target) neuron for a brief time, typically less

than a few milliseconds. The NCNs of the Neurosynaptic Core capture the short timescale

effects of these spikes, as each spike lasts for a single time step of the digital hardware (1

ms). However, as discussed in Chapter 5, the Visual Cortex model leverages the prolonged

signalling effects captured by NMDA-mediated synapses. These prolonged signalling

effects are important, since they provide spiking neurons with a mechanism to integrate

temporally correlated activity across spatially distributed neurons.

Figure 7.6 shows an NCN circuit which emulates this prolonged signalling effect. Ta-
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ble 7.3 shows one possible configuration of the NCN parameters to emulate the effect. As

before, NCNs NA and NB are the presynaptic and postsynaptic neurons, respectively. An

intermediate NCN,NSyn, is inserted between the presynaptic and postsynaptic NCNs. The

threshold of NSyn is set below the value of the synaptic weight value of axon 0 from NA,

such that it fires immediately after the firing of NA. NSyn uses a recurrent connection to

itself with a strong synaptic weight value, so that even after NA has stopped firing,NSyn

will continue to fire for an extended period. NSyn uses a stochastic leak to ensure that it

returns to its resting potential when NA is silent for an extended period of time.

As with short-term plasticity, the NCN circuit emulating the prolonged signalling of

NMDA-mediated synapses is validated against a software model of an NMDA-mediated

synapse. As before, the results presented consider the average behavior of 100 pairs of

presynaptic and postsynaptic neurons. In Figure 7.7 (a) shows a presynaptic neurons, which

initially exhibits a firing rate of 100 Hz for 500 ms, followed by silence. The postsynaptic

neurons (here, assuming voltage independent connections for simplicity) show a 100 Hz

firing rate for the first 500 ms, followed by a slow decay in the average postsynaptic neuron

firing rate. This demonstrates that the effect on the postsynaptic neurons last beyond the

instantaneous spike of the presynaptic neurons. In Figure 7.7 (b), the NCN circuits show,

on average, a qualitatively similar effect. The postsynaptic NCNs show an initially high

firing rate, followed by a decaying effect that lasts beyond the instantaneous spikes of the

presynaptic NCNs.

In the Visual Cortex model, each presynaptic neuron which projects top-down NMDA-
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Figure 7.7: (a) NMDA prolonged signalling behavior modeled in software. (b) NMDA
prolonged signalling behavior of NCN circuit.

mediated synapses requires one additional NSyn. The voltage dependent behavior of

NMDA-mediated synapses is captured by NCN circuits on the postsynaptic neurons,

discussed below.

7.1.3 Emulating the Voltage-Dependence of NMDA-mediated

Synapses

As was discussed in Chapter 5, synapses mediated by NMDA receptors are voltage-

dependent; that is, the postsynaptic neuron only integrates inputs on NMDA-mediated

synapses if it has already been depolarized by other voltage-independent inputs. This

"conditional integration" appears to be an important feature, especially in the context of

top-down connections. In this way, top-down signalling can be both very general and
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Figure 7.8: NCN circuit realizing voltage-dependent synapses.

NCN Axon Type Threshold S0 S1 S2 Leak Stochastic Leak
NA 0 100 120 0 0 10 0
NB 0 100 120 0 0 10 0
NSyn 1 99 50 50 0 50 0
NG 1 155 255 255 0 0 100

Table 7.4: One set of parameters for the NCN circuit to display the voltage-dependence of
NMDA-mediated synapses.

diverging in structure, and voltage-dependent connections ensure that this top-down

signalling is consistent with feedforward spiking evidence.

In the Visual Cortex model, this voltage-dependent behavior is captured by first inte-

grating all voltage-independent inputs, checking whether the membrane potential is above

a depolarization threshold (not to be confused with the neuron’s firing threshold), and then

integrating the voltage-dependent inputs if the threshold is exceeded. The Neurosynaptic

Core neurons do not feature a secondary "conditional integration" threshold as it has been

described. Rather, NCNs exhibit only voltage-independent inputs: if a connection exists

between two neurons, the postsynaptic neuron will integrate spikes from the presynaptic

neuron unconditionally.

However, voltage-dependent synapses can be modeled using a circuit of NCNs, as
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shown in Figure 7.8. Table 7.4 shows one possible configuration of the NCN parameters

to emulate the effect. As with previous NCN circuits, NA and NB are the presynaptic

and postsynaptic neurons, respectively. Two additional NCNs, NSyn and NG are required.

NSyn acts as the actual synapse, whileNG is used to detect the initial depolarization of the

postsynaptic NCN. Initially, both the synapse gate NG and the synapse NSyn NCNs are

inactive. Even if the presynapticNA exhibits a high firing rate, the postsynapticNB remains

unaffected. However, if NB fires once, indicating that it has received voltage-independent

evidence on another synapse, it in turn activates the synapse gate NG. NG uses a strong

self-connection to remain active for an extended period of time. NSyn exhibits a very high

leak parameter, and only fires during coincident inputs from the synaptic gate NG and the

presynaptic NCN NA; in turn, it passes on the presynaptic spike to the postsynaptic NCN.

As with other NCN circuits described above,NG uses a stochastic leak parameter such that,

after the postsynapticNB has been inactive for a period of time, the voltage-dependent gate

closes (and thus, the postsynaptic NCN must again be depolarized before the top-down

NMDA signalling can have an effect). Alternatively, the circuit can be constructed such

that the synapse gate NG receives the same voltage-independent inputs as NB to detect

depolarization, thus allowing the NMDA-mediated synapses to have an effect even before

NB fires.
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Figure 7.9: (a) NCN circuit emulating Hebbian learning. (b) Spike-time plot of emulated
Hebbian learning.

NCN Axon Type Threshold S0 S1 S2 Leak Stochastic Leak
NA 0 100 100 0 0 10 0
NB 0 100 0 100 0 10 0
NSyn 1 100 50 50 0 50 0
NG 1 100 50 150 0 50 0

Table 7.5: One set of parameters for the NCN circuit to exhibit Hebbian learning.

7.1.4 Emulating Online Learning

Beyond the complex neuronal mechanisms described above, the Visual Cortex model

described in Chapter 5 can be trained with online learning. Spike time dependent plasticity

(STDP) and Hebbian learning have been identified as two key learning rules supported by

biological neurons [33, 13, 130]. Again, the lack of online learning on the Neurosynaptic

Core presented by Merolla et al. [94, 11] demonstrates the semantic gap between the Visual

Cortex model and the target substrate. However, the following sections demonstrate how

NCN circuits can effectively emulate online plasticity.
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7.1.4.1 Emulating Hebbian Learning

Hebbian learning has often been described by the adage "neurons that fire together, wire

together" - simply meaning that the co-occurrence of spiking activity of both the presynaptic

and postsynaptic neurons strengthens the synapse between them. Considering the non-

plastic digital neuromorphic hardware, the simplest type of this behavior can be realized

two additional NCNs. Figure 7.9(a) shows a presynaptic neuronNA, a postsynaptic neuron

NB, a synaptic gating NCN NG, and the synapse NCN NSyn.

Figure 7.9(b) demonstrates the operation of this Hebbian plasticity NCN circuit, while

Table 7.5 shows one possible configuration of the NCN parameters. Before learning, the

synaptic gating neuron NG is silent, while neurons NA and NB spike independently from

non coincident inputs. Once neurons NA and NB fire at the same time, the synaptic gating

neuronNG acts as a coincidence detector and fires in response. The synaptic gating neuron

will then fire at 1kHz (i.e. the Neurosynaptic Core time step) due to its strong recurrent

connection, acting as a latch which stores the connection between the pre and postsynaptic

neurons indefinitely. NG also sends a spike at each time step to the synapse NCN NSyn.

When NSyn detects the coincident spikes between the presynaptic neuron NA and the

gating neuron NG, it propagates the spike to the postsynaptic neuron NB.

7.1.4.2 Emulating STDP Learning

To emulate this type of plasticity, even with a very simple interpretation, a significantly

more complicated NCN circuit is required, as shown in Figure 7.10. With STDP, synaptic
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Figure 7.10: NCN circuit emulating STDP learning.

NCN Axon Type Threshold S0 S1 S2 Leak Stochastic Leak
NA 0 100 100 0 0 10 0
NB 0 100 0 100 0 10 0
NSyn 1 100 50 50 0 50 0
NG 1 100 50 150 -150 50 0
NP 1 100 50 0 0 50 0
ND 2 100 50 0 0 50 0

NAbuff 0 100 100 -100 0 0 0
NAinh 1 20 1 0 0 0 0
NBbuff 0 100 100 0 -100 0 0
NBinh 2 20 1 0 0 0 0

Table 7.6: One set of parameters for the NCN circuit to exhibit STDP learning.

changes occur when both the presynaptic and postsynaptic spikes fall within a short

window, typically 20 ms or so [13]. Again, considering the simple digital NCNs of the

Neurosynaptic Core, a NCN has no way of remembering its own firing history. However,

an additional NCN can be employed to act as a history buffer which remembers that a

neuron has fired in the recent past.

In Figure 7.10, NCN NAbuff (NBbuff) fires whenever the presynaptic (postsynaptic)
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NCN fires, and uses a strong self connection to act as a temporary latch. To ensure that

STDP operates within a reasonable window of time (typically 20 ms), the history buffer

NCN synapses with an inhibitory NCN (NAinh and NBinh). The inhibitory NCN is given

a high threshold and a zero-value leak, such that it accumulates spikes over time from the

history buffer NCN; once it fires, it silences (or resets) the history buffer NCN through a

connection with a strong inhibitory synaptic weight value. For example, the synapse from

NAbuff to NAinh can use a synaptic weight value value of 1, while the firing threshold of

NAinh is 20; therefore NAinh ensures the STDP window is limited to 20 ms.

Two additional NCNs are required for detecting spiking events that cause plasticity,

one for synaptic potentiation (NP), and one for depression (ND). NCN NP detects the

coincident firing of the postsynaptic neuron NB and the history buffer of the presynaptic

neuron NAbuff (i.e. presynaptic before postsynaptic within the time window results in

potentiation). Conversely, NP detects the coincident firing of the presynaptic neuron

NA and the history buffer of the postsynaptic neuron NBbuff (i.e. postsynaptic before

presynaptic within the time window results in depression). Each time either of the plasticity

event detectors fire, they also send a strong inhibitory signal to the history buffer NCNs,

which simplifies the learning rule and ensures that plasticity occurs only on a presynaptic-

postsynaptic spike pair basis.

Finally, two additional NCNs act as the synapse between the presynaptic and post-

synaptic neurons. The first is the synaptic gate NG, which is enabled or disabled by the

plasticity detector neurons. NP activates NG with a strong excitatory connection, while
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ND disables NG with a strong inhibitory connection. As with many of the NCN circuits

described above,NG uses a strong self connection to latch itself "active" after a potentiating

event. OnceNG has been activated by potentiation,NSyn will fire for any coincident spikes

received by NG and the presynaptic NA, passing on the spike to the postsynaptic NB One

possible set of NCN parameters to exhibit STDP learning are shown in Table 7.6.

Figure 7.11 shows the behavior of the STDP NCN circuit. In Figure 7.11(a), the synapse

between NA and NB has not been yet potentiated, as indicated by NG’s silence. The

presynaptic neuron NA fires, and in the next cycle, its history buffer NAbuff latches this

spike (as indicated by the train of spikes). Later, the postsynaptic neuron NB spikes. NP

detects the coincident firing of the postsynaptic neuron NB and the presynaptic history

buffer NAbuff, and in turn, activates NG. Some time later, NA spikes again, and the spike

propagates throughNSyn to the postsynaptic neuronNB. So long as a synaptic depressing

event doesn’t occur (as would be indicated by a firing of ND), the synapses is potentiated

indefinitely; every spike from NA is passed to NB.

Figure 7.11(b) demonstrates the opposite effect: synaptic depression. In this example,

the synapse is initially potentiated, as indicated by the spike train of the gating neuron

NG. The postsynaptic neuron NB fires first, which is latched by its own history buffer

NBbuff. Some time later, the presynaptic neuron fires. ND detects the coincident firing (the

postsynaptic neuron has fired in the recent past, and the presynaptic neuron just fired), and

in turn, inhibits the synaptic gate NG. Later, the presynaptic neuron spikes; however, since

the synapse NCN NSyn is not receiving a coincident spike from NG, it remains silent, and
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Figure 7.11: (a) Spike-time plot of emulated STDP potentiation. (b) Spike-time plot of
emulated STDP depression.

the spike does not propagate to the postsynaptic neuron. So long as a synaptic potentiating

event does not occur, the synapse is depressed indefinitely.

7.1.4.3 Extensions to Learning Assemblies

The NCN circuits described above emulate Hebbian and STDP learning on a single synapse,

where the strength of the synaptic connection may take on two values: zero (before learning,

or in the case of synaptic depression) or a single parameterized value determined at chip

configuration (i.e. the NCNs synaptic weight value for the appropriate axon type). However,

depending on the learning task at hand, it may be beneficial to have synaptic weights

capable of a broader range of values.

In the context of non-learning neuromorphic hardware, such behavior is possible, albeit

at a high overhead. As shown in Figure 7.12, multiple NCNs can be recruited for a circuit
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Figure 7.12: NCN circuit emulating chain of synapses.

that acts as a "chain" of plastic synapses between the presynaptic and postsynaptic neurons.

This chain of synapses is generalized to work in conjunction with either the Hebbian or

STDP assemblies described above. To utilize this chain of synapses for Hebbian learning,

each of the synaptic gating NCNs (NGs) must receive inputs, and detect coincident spikes,

from neurons NA and NB. To utilize the chain for STDP learning (Figure 7.10), each of the

synaptic gating NCNs must receive connections from the plasticity detectors NP and ND.

From an initial state where none of the synapses have been potentiated, NG1 is the first

to activate after a potentiating event, which allows spikes to propagate through the first

"synapse" NCN NSyn1. NG1 projects an excitatory connection to NG2. The threshold of

NG2 is higher than NG1 such that it fires only after detecting both a potentiating event and

the firing ofNG1. An excitatory connection fromNG2 projects back toNG1 such that, when

a depressing event occurs, connections are disabled in the opposite order (i.e. if NG2 is

still activated, butNG1 receives inhibitory input from a synaptic depression event, they are

balanced, and NG1 remains active. However, if NG2 is inactive during the same scenario,
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NG1 will be inhibited and disabled). This scheme generalizes in a way that, while expensive

in terms of spiking behavior and number of NCNs required, allows very general plasticity

rules to be deployed on hardware designed without online-learning capabilities in mind.

While implementing these learning rules with NCN circuits is expensive in terms of

both hardware and spiking behavior, they provide a high degree of parameterization and

flexibility. For example, the Hebbian learning assembly can be extended to use history

buffers similar to the STDP assembly. This modification allows Hebbian learning to occur

over a broader time window. The STDP assembly can also be modified to implement

variations of burst-STDP [102, 32, 80] or triplet spike STDP [105].

7.2 Automated Approaches for Neural Network

Deployment

While the above sections demonstrate how the neuromorphic semantic gap can be bridged,

another set of challenges must be addressed before a neural model can be deployed on neu-

romorphic hardware. Considering IBM’s substrate, each Neurosynaptic Core is composed

of only 256 digital neurons with limited fan-in and fan-out capabilities. If one considers the

Neurosynaptic Core as a basic building block [106], it becomes clear that a large scale neural

model must be partitioned and deployed across many Neurosynaptic Cores. However, the

challenge still exists: large scale cortical models must be partitioned and configured such

that they can be deployed on such a tiled neuromorphic substrate.
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Rather than having the cortical model developer consider the underlying hardware (e.g.

the neuron model, the 256 neurons per core, the limited fan-in and fan-out capabilities, etc.),

this job is more appropriate for a "compiler-like" tool which can parse the designed cortical

model and generate an equivalent network for deployment on multiple Neurosynaptic

Cores. The first objective of this compilation tool is to replace each of the complex neuronal

behaviors modeled in software (such as NMDA-mediated synapses, or synapses that exhibit

Hebbian learning) with the functionally equivalent NCN circuits described above. Next,

this tool must partition the cortical model into blocks of 256 neurons (or less) to be deployed

on a Neurosynaptic Core. This process can be optimized if different hand-tuned templates

are available (as will be discussed below). Once the initial neuron placement is complete,

the compiler then must perform the axonal routing between populations that reside on

multiple Neurosynaptic Cores. The following section discusses the various solutions that

the compiler utilizes to over come the limited fan-in and fan-out of the Neurosynaptic

Core. It should be noted that these tools and concepts can be extended to support other

neuromorphic hardware and can provide automation capabilities that allow the neural

algorithm developer to construct complex cortical network models and easily deploy them

onto a neuromorphic hardware.

7.2.1 Templates for Neuronal Populations

Naively, the aforementioned compiler tool can simply parse a cortical network model

and assign neurons to a free Neurosynaptic Core without any further thought. However,
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Figure 7.13: An example of a Neurosynaptic Core template from the V4.

for a cortical network model developer with a strong understanding of both the neural

algorithm being deployed as well as the underlying neuromorphic substrate, populations

of highly interconnected neurons can be grouped into a template. These templates are

useful for cortical models which are very regular in their structure, connectivities, and

other parameters. The Visual Cortex model described in Chapter 5 exhibits high amounts

of homogeneous structure within any of the modeled neural areas (e.g. LGN, V4, IT, etc.).

Figure 7.13 shows an example of one of these templates created for the V4 layer of the

Visual Cortex model. In the V4, small populations of neurons (in the figure, 25 neurons)

exhibit a high degree of regularly structured connectivity, utilize NMDA-mediated and

short-term depressing synapses, and share a set of input and output connections. With a

large neural layer, regularly structured populations can be easily identified; only a limited

number of input and output connections will differ across the neural layer. Each population

of neurons matching this template will be deployed together on a single Neurosynaptic



133

Core. In this way, a designer can create a single template defining how SNN neurons

should be matched and deployed on a Neurosynaptic Core, and other populations can

take advantage of this hand-tuned organization without requiring the explicit placement

of each individual neuron.

When such templates are available, the cortical network model developer only needs to

insert commands for template matching when compiling. The compiler, upon recognizing

such flags, will organize and place each population matching the template. Another impor-

tant advantage of this method is, as cortical models are scaled up, the templates created

are still relevant so long as the connectivity of the modeled areas remains homogeneous.

7.2.2 Connecting Populations on Distributed Cores

Once an entire cortical network model has been deployed onto Neurosynaptic Cores, the

compiler must then perform the appropriate axonal routing to ensure functional equiva-

lence with the unpartitioned SNN. Initially, when a cortical network model is constructed,

the network developers do not consider any constraints on the fan-in and fan-out of indi-

vidual neurons - nor should they. However, considering the hardware constraints outlined

in Chapter 3, a NCN can only be assigned a single output axon, and its inputs are limited

to the 256 input axons on the Neurosynaptic Core. This imposes serious fan-in and fan-

out limitations. Fan-in constraints can be overcome using Firing Population Integration

Neurons (FPIs), while the fan-out limitation can be overcome using Copy Neurons and

Routing Neurons.
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Figure 7.14: An FPI neuron integrates the response of a large neuron population.

Firing Population Integration Neurons, or FPI Neurons, can be used to approximate the

signalling between two populations of neurons using a drastically reduced number of

axonal projections. As seen in Figure 7.14, an FPI neuron synapses with the axons of a

large neuronal population, aggregating their total firing rate and projecting these signals

to another Neurosynaptic Core using just one axon. This makes the FPI Neurons an

excellent optimization considering the limited fan-in of the Neurosynaptic Core. Since

these FPI Neurons integrate over populations of neurons, they do not preserve the actual

connectivity of the original cortical network model; as such, the user must indicate directly

to the compiler which connections between populations can be replaced with a single FPI

Neuron.

To address the fan-out limitations, when the compiler routes the connectivity between

the NCNs, it recognizes if a presynaptic neuron must project an axon to two (or more) NCNs

on different Neurosynaptic Cores. If there are free NCNs available on the presynaptic

neuron’s core, a Copy Neuron is created. This Copy Neuron replicates all the parameters
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Figure 7.15: Using Copy Neurons for routing.

and dendritic connectivity of the original presynaptic neuron. Hence, the output behavior

of both these neurons is functionally equivalent; the only difference is that the axons of

both these neurons target different Neurosynaptic Cores. This process is explained in

Figure 7.15. In this figure, Core 0 contains 128 neurons referred to as original neurons which

must project axonal outputs to neurons on both Core 1 and Core 2. When the connection

between Core 0 and Core 1 populations is encountered, all 128 axons are projected to Core 1.

Next, when the connection between Core 0 and Core 2 neuron populations is encountered,

none of the axons from the original neurons on Core 0 are available. Since there are 128 free

neurons available on Core 0, they are utilized as Copy Neurons, replicating the full set of

dendritic connectivities and parameters as the original neurons.

However, when an insufficient amount neurons are available to create Copy Neurons,

Routing Neurons are employed. The concept is quite similar to the Copy Neurons, except

these neurons are placed on another Neurosynaptic Core dedicated specifically for routing
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the appropriate amount of axonal projections. The only purpose of these Routing Neurons

is to forward the activations of the original neuron to multiple target neurons by creating

copies of itself. The process of creating Routing Neurons is demonstrated in Figure 7.16. In

this figure, two neuron populations reside on Core 0: Population A with 192 neurons and

Population B with 64 neurons. Population A projects its axon to Core 1 without any need for

additional routing complexity. However, Population B must connect to neurons residing on

Cores 2 through 5. Since no free neurons are available on Core 0, a free Neurosynaptic Core

(Core 6) is utilized for routing. First, Population B projects its axons to the new Routing

Core and creates one-to-one connections with the first free 64 Routing Neurons. These

Routing Neurons act as a simple relay, firing for each spike that comes in. Next, the axons

of these 64 Routing Neurons on Core 6 route to Core 2. Subsequently, to connect to Cores

3 through 5, additional neurons are created on the Routing Core (Core 6) to achieve the

appropriate fan-out. This routing scheme adds a delay of one time step; however, given

that spiking neurons collect evidence over multiple time steps, a delay of one time step

does not typically impose any functional discrepancies.

The fan-in and fan-out limitations of the Neurosynaptic Core could also be consid-

ered part of the neuromorphic semantic gap that exists between software models and the

neuromorphic hardware on which they are deployed. Cortical network models, like their

biological counterpart, can take advantage of thousands of connections [5], while the fan-in

and fan-out of a NCN is limited to 256. Furthermore, the NCNs which reside on the same

Neurosynaptic Core must share the same set of 256 inputs (i.e. incoming axons). However,
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Figure 7.16: Using routing neurons for handling axonal projections.

at present, there is no clear "all-to-all" possible connectivity scheme that could be effec-

tively employed in modern hardware. While mechanisms like the FPI, Routing, and Copy

neurons are overhead, they allow a network deployed on multiple Neurosynaptic Cores to

leverage large and diverse connectivity patterns without being subject to the limitations of

a single Core’s fan-in and fan-out.

Alternatively, the SpiNNaker project has proposed custom routers with multicast sup-

port to achieve efficient fan-out communication [100]. The clear advantage of this approach

is efficient communication of an output spike to thousands of downstream neurons. It was

shown that, as fan-out becomes large, the multicast approach (on average) requires an order

of magnitude less network resources than a traditional unicast approach. Considering this

success likely warrants an investigation of a similar approach for the Neurosynaptic Core.
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7.3 Deploying the Visual Cortex Model on Neurosynaptic

Cores

Using the NCN circuits, axonal routing techniques, and the compiler-like tool described

above, the Visual Cortex model was compiled/translated for deployment on multiple

Neurosynaptic Cores. The Visual Cortex model was scaled to approximately 100,000

neurons, many of which used complex neuronal behaviors like NMDA-mediated or short-

term plasticity modulated synapses. Furthermore, a number of connections between the

modeled V4 and IT regions utilized online Hebbian learning, giving the network the

adaptability to learn new categories in the IT region.

Using the compiler-like tool, approximately 200,000 extra NCNs were required to

emulate the prolonged signalling and voltage-dependent behavior of NMDA-mediated

synapses. Approximately 40,000 NCNs were required to emulate short-term potentiation

and depression, while an additional 24,000 NCNs were required to emulate Hebbian

learning. To achieve the appropriate axonal projections, a large number of Routing (30,000),

Copy (50,000), and FPI (10,000) NCNs were also needed. Thus, a total of 454,000 NCNs

are required to implement a model of 100,000 neurons in software (and thus, do not have

limitations on connectivity or complex neuronal behaviors).

Ultimately, this means that if the targeted neuromorphic substrate is composed of

Neurosynaptic Core like elements, for each complex modeled neuron in software, an

average of 4.54 simple digital NCNs must be used to achieve functionally equivalent
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behavior. This overhead begs the question whether the simple digital neurons of the

Neurosynaptic Core truly capture the correct set of neuromorphic primitives for these

types of models. On one hand, if the neural network models are fairly simple (such as

those used in traditional neural network engineering applications), the Neurosynaptic Core

still appears quite attractive; the hardware provides all the functionality, and few (if any)

parameters go unused. On the other hand, it is clear that more biologically realistic cortical

models must leverage neuronal behaviors and broad connectivities that are not supported

by IBM’s Neurosynaptic Core hardware. While this chapter has proved that, in spite of these

hardware limitations, large scale cortical models can still be deployed on this neuromorphic

substrate, it comes at a substantially high overhead. Adding functionality to the hardware

neuron model would likely be more efficient than recruiting extra NCNs; however, if the

neural network models being deployed are very simple, such hardware extensions would

go largely unused. Therefore, an investigation into the appropriate hardware neuron

primitives appears to be an open question for future research. While capturing the power

and areal efficiency of biological models will no doubt be a primary goal (as it was with

the Neurosynaptic Core design), future implementations of neuromorphic hardware will

likely need to consider the types of applications, neuron models, and complex neuronal

behaviors they must support.
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7.4 Summary

This chapter addresses many of the challenges of deploying a large scale neural model onto

a neuromorphic substrate. Considering IBM’s Neurosynaptic Core as the target substrate,

the first challenge is bridging the neuromorphic semantic gap that exists between the simple

digital neurons of the hardware substrate and the network model which uses complex

neuronal behaviors. The second major challenge is deploying a large-scale model onto

Neurosynaptic Cores with limited fan-in and fan-out capabilities and only 256 digital

neurons each. The first challenge is overcome by constructing circuits of Neurosynaptic

Core neurons that can effectively emulate the desired complex neuronal behaviors, while

the second challenge is addressed by developing appropriate routing methods and an

automated approach for partitioning a large-scale model across multiple Neurosynaptic

Cores.
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8 conclusion and reflections

In recent years, a number of high profile neuromorphic projects have emerged [27, 119,

118, 2, 11, 125, 67, 128]. Whether neuromorphic systems exist as hardware accelerators

cooperating with traditional von Neumann machines or as stand-alone alternative com-

puting devices, their potential as a fundamentally new and exciting architecture is clear.

However, a number of challenges and questions still exist in this domain. What aspects of

spiking neuron behavior are computationally useful, and what may simply be an artifact

of biological constraints? What are the correct set of hardware primitives that can capture

functionally useful behavior, yet still remain energy efficient given current technology?

What are the applications that are better solved (or possibly, can only be solved) with

systems inspired by the structural and functional properties of biological neurons?

This chapter summarizes this dissertation’s contributions towards these challenges,

and highlights future contributions that will expand on the work put forward by this

dissertation.

8.1 Summary

Neural models, and more recently neuromorphic hardwares, have taken different ap-

proaches toward understanding and capturing the power of biological brains. One ap-

proach targets extreme biological fidelity, developing neural models that closely mimic

every aspect of their biological counterpart [27, 119, 118, 67, 128]; the neuromorphic sub-
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strates of this domain seek to develop hardware that allows high biological accuracy for

massive cortical simulation. Another approach targets the clearly apparent computational

efficiency of biological neurons, focusing on low power implementations with simple

abstract models of biological neurons [94, 11, 125].

This dissertation more closely follows the latter method, taking a "bottom-up" approach

toward identifying the necessary computational capabilities of spiking neurons. Using

only simple leaky integrate-and-fire (LIF) neurons, this dissertation demonstrates how

even a minimal model of a spiking neuron can achieve invariant object recognition, motion

detection, and even top-down attentional modulation in a hierarchically organized network

of neurons.

Building on this minimal framework, this dissertation proposes that the visual cor-

tex can be considered a hierarchical metastable attractor, capable of integrating information

across different streams of processing in different neural regions. To achieve metastable

attractor behavior, however, requires a number of more complex neuronal behaviors that

extend the computational capability of the simple LIF model. In this dissertation, several of

these complex behaviors are identified. Modeling feedback connection as predominately

NMDA-modulated not only matches biological evidence [122], but also allows top-down

activations to be modulatory rather than driving in nature (due to the voltage-dependent

synapses) and provides a prolonged signalling effect to help attractor states stabilize across

spatially separated regions. Short-term potentiation and depression modulated synapses

allow neurons to have differential effects on different populations, signal important new



143

inputs, converge on attractor states rapidly, as well as dissolve rapidly when new feedfor-

ward evidence is encountered. With these ingredients, the presented Visual Cortex model

is capable of invariant object recognition, pattern completion, and noise resilience. Further-

more, these attractor dynamics allow the network to leverage short-term working memory,

affording the model a sense of object permanence in a rapidly changing environment.

Furthermore, the organization of the Visual Cortex model as a hierarchical metastable

attractor demonstrates functional integration across different streams of processing. Many

traditional neurally-inspired models have shown robust invariant object recognition us-

ing only feedforward architectures. However, to achieve robust invariant detection, such

approaches essentially "weed out" the details in favor of extracting the gist concept. Con-

versely, through recurrent connectivity, the Visual Cortex model is capable of top-down

excitatory modulation to access information regarding the particular details of an object

and route them to an appropriate output. As was demonstrated in Chapter 6, this type of

organization allows the network to integrate information across different streams of pro-

cessing essentially for free, without the need to consider and build every possible scenario

a priori.

Finally, with a justified neuron model and its associated complex synaptic behaviors,

this dissertation considers deployment on a state-of-the-art neuromorphic substrate: IBM’s

Neurosynaptic Core. While the hardware primitives of the Neurosynaptic Core closely

match the initial simple implementation of the LIF neuron model, they do not provide

support for the more complex behaviors identified, such as NMDA-modulated synapses,
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short-term plasticity, or online long-term plasticity. Thus, a neuromorphic semantic gap exists

between the software models being developed and the hardware substrate on which they

will be deployed. However, by using the simple digital Neurosynaptic Core neurons as a

basic building block, this dissertation demonstrates how these complex neuronal behaviors

can effectively be emulated, effectively bridging the semantic gap. Beyond the semantic

gap, the Neurosynaptic Core also has a number of constraints which make it difficult to

directly deploy a network model onto the hardware. With only 256 digital neurons per core,

and limited axonal fan-in and fan-out capabilities, large scale models must be partitioned

and configured across multiple Neurosynaptic Cores. This dissertation presents some of

the automated approaches developed to effectively partition a large scale cortical model

across multiple Neurosynaptic Cores and perform the axonal routing between them.

8.2 Future Work

The following section outlines some of the various future research avenues that build upon

the ideas put forth by this dissertation.

8.2.1 Extending the Visual Cortex Model

The Visual Cortex model presented in this work demonstrates invariant object recognition in

spite of noise, incomplete inputs, and spatial translation. However, future extensions to the

model should consider invariance to other types of distortions, such as scaling or rotation.

The successful HMAX algorithm [111] has already made an argument for utilizing neurons
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tuned to different processing scales, especially in the lower modeled neural areas (i.e. the

modeled V1 not only has neurons responding to edges of different orientation, but edges of

slightly different size). Expanding on the hierarchical attractor based system presented in

this work, localized max-pooling operations will allow the construction of scale-invariant

feature maps, and ultimately, scale-invariant and translation-invariant representations of

objects. Furthermore, the role of top-down voltage dependent connections with be even

more important, allowing the system to achieve both highly invariant concepts, but also a

high degree of detail specificity which includes features of different scales.

As was presented in Chapter 5, the large scale Visual Cortex model captures the pro-

cessing of the "form" stream. However, future extensions will add the processing of motion

and location as well as color in the large scale model. Many of the ideas regarding simple

motion detection, as put forward in Chapter 4, are directly applicable to the large scale

model.

8.2.2 Formalizing Large Scale Hierarchical Attractors

The Visual Cortex model, as well as its scaled-down implementation used for the ques-

tion/answer task, are organized as attractor networks, which ultimately enables their

capabilities in pattern completion, short-term working memory, and integration across

different processing modalities. However, even in these models, which are orders of

magnitude smaller than actual biological networks, it takes a considerable effort to tune

connections to achieve the desired behavior of the attractor dynamics.
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Other works, which have considered attractor behavior in the context of spiking neurons,

have proposed using mean-field techniques to tackle this problem [8, 110]. This approach,

modified from statistical physics applications, utilizes a mathematical interpretation of the

way populations of neurons can balance each other and achieve stable attractor states. How-

ever, to date, mean field techniques have considered only a small number of populations at

a time. Though the number of neurons in each population may be quite large, typically

the behavior of the neurons within these populations stabilize to the same firing rates.

Because the Visual Cortex model presented in this dissertation considers many (dozens

to hundreds) populations of neurons in different modeled areas, so far, these mean-field

approaches have not been applied. However, future work will consider the applicability

of these mathematical formalisms for developing large scale models with many neuron

populations.

Future work will also consider the role of plasticity in forming metastable attractor

states. As described in this dissertation, Hebbian or burst-STDP plasticity were used to

learn invariant representations of simple objects based on the coincident firing of their

detected features. However to date, little work has been done to investigate the role of

such learning rules for both bottom-up and top-down connections (in terms of both this

dissertation as well as neural network research in general). Ultimately, a plasticity rule

that adapts both feedforward and feedback connections to achieve metastable attractor

states would be quite powerful and alleviate the need to hand-tune the balance of recurrent

excitation, inhibition, and complex neural behaviors.
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8.2.3 Sequential Learning Between Attractor States

Future work will also investigate the interactions and influence between different metastable

attractor states. To a degree, this type of "context sensitivity" already appears in the hierar-

chical attractor based visual system, since the metastable activity of the higher modeled

areas lasts for longer periods of time (and thus the network is able to demonstrate object

permanence). However, more extensive influence between attractor states would ultimately

allow the network to learn sequences, capably of replaying (or predicting) temporal patters

when stimulus input is noisy or weak.

Temporal Difference (TD) learning has been shown in the past to be quite successful

at learning sequential patterns for game playing [133, 84]. Future work will consider TD

learning, as well as other sequence learning paradigms, to allow episodic-like memory in

this system.

8.2.4 Identifying the Appropriate Neuromorphic Primitives

In developing a large-scale model of the visual cortex organized as a hierarchical metastable

attractor, a number of complex, but essential, neuronal behaviors were identified. How-

ever, the targeted neuromorphic substrate, the Neurosynaptic Core, lacks the hardware

primitives necessary to directly implement the types of behaviors; hence, it was shown that

circuits of digital Neurosynaptic Core neurons can functionally implement them. While

the digital neurons of the Neurosynaptic Core were targeted at extreme power and areal

efficiency through simplicity of design, the computational power afforded by these more
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complex neuronal behaviors likely justifies a re-examination of the appropriate hardware

primitives.

As was previously mentioned, the development of a neuromorphic substrate is some-

what of a moving target. As neuroscientific study advances, researchers gain a better

understanding of biological systems and can better identify what is essential and what is

simply an artifact of biology. However, given the broad range of neuron model implemen-

tations, it may be quite some time before a consensus is reached.

Therefore, perhaps the best approach in developing a neuromorphic substrate at present

depends on the scope of its application. For large scale cortical model simulation, the

approach taken by analog neuromorphic designs, with their ability to precisely match

many neuronal behaviors, is likely appropriate. Other applications have considered neural

approaches for more traditional computing workloads such as recognition, mining, and

synthesis applications [26]. With little need for extreme biological fidelity, these types of ap-

plications instead favor a substrate that is low power and reconfigurable for fault tolerance,

therefore favoring a neuromorphic hardware more in line with IBM’s Neurosynaptic Core.

Finally, brain-inspired applications (but not necessarily brain-modeling applications) such

as the Visual Cortex model presented in this dissertation, appear to justify an "in-between"

neuromorphic substrate. These types of applications may leverage the functions of bio-

logical neurons that are justified in their computational power, and thus, would benefit

from efficient hardware support. Future work will consider the tradeoffs between directly

implementing NMDA-mediated synapses and short-term plasticity in hardware, and their
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implementation as circuits of Neurosynaptic Core neurons.

8.3 Reflections

In this section, I present opinions and thoughts regarding computational models and

neuromorphic hardware inspired by the brain. These ideas are based on my research and

experience during the past five years of graduate study. I do note that these opinions

are my own, and may not reflect the ideas and opinions of the many co-authors I have

collaborated with over the years.

8.3.1 Need for Better Neural Programming

A growing body of research has shown many applications and problems that can be solved

using neural implementations, several of which have been discussed in this dissertation.

Vision related tasks, speech recognition, and robotics applications have all used neural

networks; even more traditional computing workloads like file compression and chip layout

optimization can be done with neural implementations [26].

However, to date, developing these types of applications requires a reasonable amount

of effort and skill. Even when considering the well-understood traditional multilayered

perceptron networks trained with backpropagation - a significant amount of hand-tuning

of parameters is required to achieve optimal results. Considering the large-scale models

developed in this dissertation, an even greater effort is required to balance the excitation

and inhibition for the system to exhibit metastable attractor states.
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For neuromorphic hardware or neural accelerators to ever become widely-used, we

need better and more generalized programming models for these types of applications.

There is certainly no shortage of neural network simulators; however, most of these still

require the programmer to specify many neuron parameters, network population sizes,

and connectivity schemes. If one spends the better part of a graduate degree developing

many network models, this is no problem; however, to gain a solid understanding of these

ideas would require a significant ramp-up time for the typical programmer.

Rather, what is truly needed is a way to leverage neurally-inspired computing and

algorithms in a way that doesn’t first require an explicit knowledge of the structure, the

semantics of the neuron behavior, and learning algorithms. Even having a general way

to specify the connectivity/interaction between neuron populations would significantly

enhance the programmability of these types of models. For example, rather than explicitly

writing for-loops in code to generate a population of topographically-connected feature

detectors, one could simply specify, "I would like a population of vertical and horizontal

edge detectors of various scales with receptive fields that overlap by 2 pixels". Furthermore,

as mentioned above, when working with spiking neuron models (especially in the context

of attractor-state networks), one would rather have an easy way to balance connectivities

and firing rates, rather than hand-tuning connections until the desired behavior is achieved.

In this dissertation, I do not provide any solutions to this problem, but rather just point to it

as one of the current big challenges of neural application development that will necessarily

need to be addressed for neuromorphic hardwares to become widely adopted in the future.



151

One related idea is the concept of a neuromorphic instruction set architecture, or NISA,

as was proposed in [59]. The general notion of a NISA, as with the ISA of traditional von

Neumann machines, is that an intermediate representation should captures the structure,

semantics, and state of an abstract computational machine. Ideally, the development and

widespread-adoption of a particular NISA would help generalize neural applications, and

allow them to be deployed on different substrates (whether neuromorphic, or traditional

von Neumann) [59].

8.3.2 Need for Flexible Neuromorphic Substrates

As outlined in Chapter 7, one of the target goals of my dissertation research was to de-

velop large-scale cortical models capable of real-world tasks, including invariant object

recognition, motion detection, pattern completion, and ultimately, scene-understanding.

This task is inherently different from the approach of other large-scale cortical models,

which simply aim at deploying a large number of spiking neurons and connecting them

in a way that reflects the statistical connectivity of biological brains [9]. While building,

simulating, and deploying such models may demonstrate the weak scaling capabilities of

the underlying hardware, they fail to address many of the challenges addressed in this

dissertation. As a reminder, the primary hardware challenges addressed in this dissertation

include addressing the neuromorphic semantic gap and overcoming the fan-in, fan-out, and

routing limitations of the Neurosynaptic Core hardware. Drawing a parallel to the semantic

gap that von Neumann machines addressed decades ago, the neuromorphic semantic gap
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is the difference between the neuron models and algorithms being developed and the

neuromorphic hardware primitives on which they will be deployed. For example, the Neu-

rosynaptic Core primitives lack the capability to directly implement many of the important

complex neuronal behaviors investigated in this dissertation, including NMDA-mediated

synapses and short-term plasticity. Furthermore, achieving a functionally-equivalent neu-

ral network connectivity between the software model and its deployment on hardware

requires a significant effort. While each Neurosynaptic Core neuron can receive 256 inputs,

all 256 digital neurons on a single core must share the same 256 inputs. Combined with the

limitation that each digital neuron can project only one axon (whether to its own core, or

another core) means that any network (whether architected, or randomly connected) must

be translated into a structure that fits the rigid constraints of the hardware.

While IBM’s Neurosynaptic Core hardware nonetheless shows an impressive design

that is dense and ultra-low power [94], it is my opinion that, given the current state of

neural models and applications, a more flexible neuromorphic hardware is more useful.

While a neuromorphic substrate in line with the FACETS/BrainScaleS hardware may

avoid the aforementioned neuromorphic semantic gap with its analog circuit neuron

implementations, it has its own challenges (though I note that, not having worked with the

FACETS hardware, perhaps there are still differences between the hardware and software

models that qualify as part of the neuromorphic semantic gap). Developing large-scale

analog and mixed-circuit substrates obviously incurs challenges absent from a purely

digital CMOS designs, and wafer-level integration is an interesting problem in its own
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right. Furthermore, the availability of the more biologically accurate analog neurons may be

overkill for many neurally-inspired applications (though, it should be noted that the primary

motivation for the development of the FACETS hardware is to perform accelerated cortical

simulations, and not necessarily applications like the vision and scene understanding tasks

described in this dissertation).

Given how much room there is for future work in both cortical modeling and neurally-

inspired application development, it is my opinion that at present, a neuromorphic substrate

in line with the SpiNNaker project seems most appropriate. Since neurons are modeled

in software on low-power ARM cores, they allow a flexibility in neuron-model design

that is absent from the dedicated hardware-neuron designs [108]. Furthermore, a custom

interconnect with multicast capability allows for efficient communication between neu-

rons [100], a feature that is desirable for large-scale cortical modeling (where the fan-in

and fan-out of a neuron is on the order of 10,000 connections). Considering how little is

known (with absolute certainty) in regard to neurons, the plasticity rules that govern their

organization, and the elements of their structure and behavior that are necessary (and not

simply artifacts) for information processing and functional integration, this combination of

traditional von Neumann machines and an interconnect which supports the communica-

tion patterns of biological brains seems to be the most broadly applicable to both scientific

study and brain-inspired engineering applications.

In other work, we specifically investigated neural network implementations of tradi-

tional computing workloads, such as image classification, file compression, chip layout
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optimization, and financial applications [26]. In this context, a neuromorphic hardware

accelerator with dedicated hardware neurons (possibly in line with IBM’s Neurosynaptic

Core) would be highly attractive from an energy consumption standpoint; if the hard-

ware also allows for plasticity and retraining, such a design is also capable of overcoming

hardware faults and defects. If the set of applications (or at least the general classes of

applications) are known a priori, a custom hardware accelerator can be developed without

worry of a neuromorphic semantic gap; though one would likely never consider deploying

a large-scale cortical model on such a substrate. At a finer granularity (small segments

of code), other researchers have proposed neural accelerators for approximate computing,

gaining energy efficiency by trading off high precision computation [38].

8.3.3 Summary

With an ever-growing interest in understanding the brain, paired with the current and

future challenges faced by the von Neumann computing model, the fields of neurally-

inspired applications and neuromorphic hardware development are poised to succeed

where neural networks of the past have failed. These research endeavors still include

significant challenges; neural applications will only flourish if they can be widely adopted

by general programmers, and neuromorphic hardwares must be flexible enough that

they can accommodate the latest understanding of the computational power of biological

neurons. However, considering the capabilities of biological brains, the potential for

these neurally-inspired applications, paired with an energy efficient and fault tolerant
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neuromorphic substrate, appears quite promising for future computing systems.
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