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Abstract:  Branch prediction in simultaneous 
multithreaded processors is difficult because 
multiple independent threads interfere with 
shared prediction resources.  We evaluate 
the prediction accuracy of four branch 
predictor configurations:  1) a totally shared 
predictor, 2) a completely split predictor, 3) a 
predictor with a shared history and split 
BHT, and 4) a predictor with a shared BHT 
and separate history registers, each for two 
static prediction schemes, a generic 2-bit 
predictor, a Gshare predictor, and a YAGS 
predictor.  We simulate each combination 
listed with four threads executing a different 
benchmark and with each thread executing 
the same code. 
     We conclude that for an execution with 
unique threads, separating the branch 
history register for each thread allows for 
higher prediction accuracy by eliminating the 
negative aliasing between threads.  
Surprisingly, this splitting of predictor 
resources still performs better than a shared 
predictor even when each thread is running 
the same code.  This study demonstrates 
that allotting each thread its own history 
register to access a shared predictor table 
gives performance close to that of a totally 
split predictor while using significantly less 
resources.  Overall system performance, as 
measured in CPI, is only marginally affected 
by branch prediction accuracy in a 
multithreaded environment because thread-
level parallelism allows for the hiding of long 
latency hazards, such as branch mispredicts.  
As such, we feel that branch prediction 
accuracy is not of peak importance when 
running multithreaded applications and that 
valuable development time and chip 
resources should be spent on other issues. 
 

1.  Introduction & Motivation 
     Simultaneous multithreading (SMT) is a form 
of multithreading [7] that seamlessly interleaves 
the processing of instructions from multiple 
threads of execution in a single, shared 
processor   pipeline   [15].    In   a   typical   SMT  
 

 
system, a single set of branch predictors is 
shared between several concurrently running 
threads.  Prior work has shown that this can lead 
to    negative   interference   within   the   branch 
predictor as threads with very different control 
behavior interfere with shared prediction 
resources (e.g. [2,6,9]).  By allocating an 
independent branch predictor for each thread, 
we demonstrate that there is potential to reduce 
negative aliasing, thus improving branch 
prediction accuracy.  In contrast, the 
interference that occurs due to the sharing of 
branch predictors between threads could in fact 
be positive aliasing, where the leading thread 
trains the predictor for the trailing threads with 
similar control flow.  If each thread were given its 
own branch predictor, the potential benefits of 
that positive aliasing would be lost and branch 
prediction accuracy would be reduced.  Such 
positive interference may be demonstrated by 
allowing each thread to run the exact same 
program. 
     In this study, we determine the frequency of 
branch predictor interference for a set of 
multiprogrammed SMT workloads, whether the 
aliasing that occurs is positive or negative, and 
draw some conclusions as to an advisable 
design approach for branch predictors in SMT 
systems.  This is accomplished by analyzing 
various branch predictor types as well as 
different combinations of branch predictor 
resource sharing.  Each of these various 
configurations is then tested with workloads that 
are consistent with the cases presented above. 
     We also consider the tradeoffs between total 
processor performance and branch predictor 
size and complexity in an SMT system.  Since 
there are other threads that can fill the void of a 
branch mispredict penalty, we hypothesize that 
less accurate, simple branch prediction schemes 
could be implemented in order to save 
resources with only a minimal performance loss.  
Prior work (e.g. [2,6,9]) has quantified the effect 
of sharing a branch predictor between threads 
on branch misprediction rate.  Here, we also 
report performance effects, and find them to be 
surprisingly unimportant.  Hence, we conclude 
that complex branch predictors are not called for 



in SMT processors, since nearly the same 
performance (measured in CPI) can be achieved 
with a much simpler branch predictor, whereas 
the simpler design may enable faster cycle time 
or reduced design and verification time. 
     To describe these issues in further detail, the 
remainder of the paper is broken up as follows.  
Section 2 provides some basic information on 
simultaneous multithreading as well as 
additional motivation for this study.  Section 3 
explains the types of branch predictors that we 
studied.  The overall test methodology that we 
employed for this work is covered in Section 4.  
Following that is a discussion of the test results 
in Section 5.  Finally, Section 6 contains the 
conclusions that can be drawn from this study. 
 

2.  SMT Overview 
     In general, multithreading permits additional 
parallelism in a single processor by sharing the 
functional units across various threads of 
execution.  In addition to the sharing of 
functional units, each thread must have a copy 
of the architected state.  To combat this 
overhead, many other processor resources end 
up being shared by multiple threads.  
Accomplishing this sharing of resources also 
requires that the processor be able to perform 
switching between the threads efficiently, so as 
to not drastically affect performance.  In fact, 
one can hide many of the memory stalls and 
control changes by switching threads at those 
occurrences. 
 

Figure 1:  SMT Demonstration [11] 

 
 

     The form of multithreading studied in our 
work is simultaneous multithreading (SMT) 
[10,15].  SMT processors are able to use 
resources that are provided for extracting 
instruction-level parallelism (e.g. rename 
registers, out-of-order issue) to also extract 
thread-level parallelism.  An SMT processor 

uses multiple-issue and dynamic scheduling 
resources to schedule instructions from different 
threads that can operate in parallel.  Since the 
threads execute independently, one can issue 
instructions from these various threads without 
considering dependencies between them. 
     Figure 1 shows a comparison of executions 
from a single-threaded processor to that of an 
SMT system.  The middle picture shows an 
example of simple multithreading, which rotates 
through the available threads without exploiting 
the inter-thread parallelism.   Overall, this 
solution does have some advantages over the 
single-threaded machine, but there are still 
many open functional units.  This coarse-grained 
multithreading does not have the capability to 
allow different threads to work in parallel, and 
therefore many functional units are still 
underutilized.  Thus, the SMT machine has the 
greatest potential for full resource utilization. 

 
3.  Branch Prediction Overview 

     To show the validity of our work, we chose to 
apply our changes to five well-known branch 
prediction schemes.  We study two static 
schemes, always taken and forward-not-taken-
backward-taken [12].  We also examine three 
dynamic prediction schemes, the traditional 2-Bit 
predictor [12], the Gshare predictor [8], and the 
YAGS (Yet Another Global Scheme) predictor 
[5].  This section provides a brief overview of 
each prediction scheme. 
 
3.1:  Static Branch Predictors:  The first static 
branch prediction scheme that we evaluated 
was the always taken scheme.  Due to the high 
frequency of taken branches in most codes due 
to loop termination branches, this seemingly 
naive scheme has some validity.  Building on the 
premise that most taken branches occur at the 
end of loops, a logical progression would be to 
predict that all backward branches are going to 
be taken and all forward branches not taken.  In 
most codes, this scheme performs better than 
the always taken scheme.  Although these static 
schemes have poor prediction accuracy, their 
major advantages are that they can be accessed 
instantly and they require no state to be 
maintained [12]. 
 
3.2:  Traditional 2-Bit Predictor:  One of the 
simplest dynamic branch prediction schemes is 
the traditional 2-bit predictor (Fig. 2) [12].  In this 
scheme, the lower bits of the branch instruction 
address index into a memory of 2-bit predictors 
called the branch-prediction buffer or branch 



history table (BHT).  Each BHT entry contains a 
saturating 2-bit counter that indicates whether 
the branch was recently taken or not.  The 
prediction is read from the BHT in order to 
speculatively determine whether to begin 
fetching instructions from the taken or not-taken 
path.  If the 2-bit counter is greater than 0x01, 
then the branch is predicted taken; else it is 
predicted not taken.  Later in the pipeline when 
the branch outcome is determined, the predictor 
is updated by incrementing the counter if the 
branch was taken or decrementing it if the 
branch was not taken.  Identical 2-bit saturating 
counters are used for branch prediction in the 
Gshare [8] and YAGS schemes [5]. 

 
Figure 2:  Traditional 2-Bit Predictor 

 

 
     The 2-bit scheme’s simplicity and speed 
make it an attractive option.  However, its simple 
indexing method does not take advantage of 
global history information.  Correlating branch 
prediction on the recent branch history has 
proven to increase prediction accuracy in most 
programs.  [16] 
 
3.3:  Gshare Branch Predictor:  The Gshare 
branch prediction scheme (Fig. 3) uses a recent 
global branch outcome history as well as the 
branch instruction address to index the BHT [8].  
Indexing the BHT with the XOR of the branch 
history and address eliminates a significant 
amount of the aliasing that occurs using the 
traditional 2-bit prediction scheme and also 
takes advantage of recent branch history 
information. 
 

Figure 3:  Gshare Predictor 

 
 

Figure 4:  YAGS Predictor [5] 
 

 
3.4:  YAGS Branch Predictor:  As can be seen 
in Figure 4, the YAGS predictor [5] is a much 
more complicated and expensive prediction 
scheme that contains three different predictors: 

• BHT for biased taken branches 
• BHT for biased not taken branches 
• Choice PHT:  BHT to choose between 

the taken and not taken predictors 
     In this scheme, the branch address is used to 
index into the Choice PHT and for the tag 
comparison from the bias taken and not taken 
BHTs.  The taken and not taken BHTs are 
indexed strictly by the XOR of the branch history



Table 1: Tested Machine Parameters 
# of Threads 4  # Instructions Simulated ~40M 

# Address Spaces 4  L1 Latency 1 cycle 
# Bits in Branch History 12  L2 Latency 10 cycles 

# of BT Entries 4096  Memory Latency 200 cycles 
# bits in Indirect History 10  L1 Size 32KB 

# IT Entries 1024  L1 Assoc. DM 
Pipeline Depth 15  L1 Block Size 64B 
Machine Width 4  L2 Size 1MB 

Max Issue Window 64  L2 Assoc. 4 
# Physical Registers 512  L2 Block Size 128B 

 
and branch address.  The biased taken and not 
taken BHTs both produce their prediction for the 
branch outcome and one is chosen by the 
prediction produced by the PHT.  If there is a hit 
on the address in the chosen predictor, the 
entry’s counter is used as the branch prediction.  
If there is a miss, the way prediction from the 
PHT is used as the overall prediction.  Using this 
combination of the branch history and address 
eliminates virtually all aliasing in traditional 
single-threaded programs.  This scheme also 
performs well for multi-threaded applications 
because there is less history interference 
between threads (Graphs 5 & 8).  As usual, this 
higher prediction accuracy does not come for 
free.  The YAGS prediction scheme requires an 
amazing amount of state, as there are three 
predictors, two of which hold large address tags 
in addition to 2-bit counters.  It is reasonable to 
assume that the access to this predictor is much 
slower and more power intensive than the other 
prediction schemes. 
 
3.5:  Indirect Branch Prediction:  An indirect 
branch, also known as a Jump-Register 
instruction, is an unconditional branch that 
receives its target address from a register.  In 
many cases the value of the target register is not 
known when the indirect branch issues.  
Therefore, performance can be gained from 
accurately predicting the target of the indirect 
branch and sequentially fetching instructions 
from the predicted target rather than stalling 
fetch   while   the   target   is   computed   [3].   In 
general, indirect branches are much more 
difficult to predict than conditional branches 
because the predictor must select the correct 
target address rather than just a taken/not taken 
result.  Aliasing in the indirect branch predictor 
compounds the problem.  Aliasing is much more 
of a problem in the indirect branch predictor 
because the BTB, called the ITB (Indirect Target  
 

 
Buffer) in the indirect predictor, must hold full 
addresses    rather   than   just   2-bit   saturating 
counters and therefore must have much fewer 
entries.  The indirect branch predictor that we 
study is indexed in the same manner as the 
Gshare branch predictor, with the XOR of the 
branch history and the branch instruction 
address.  This hashing helps with the aliasing 
problem, and for the codes we simulated indirect 
branch prediction is very accurate.  This result is 
not typical. [3] 
 

4.  Test Methodology 
4.1:  Simulation Environment:  For our study 
we used the SIM-MULTI simulator, developed in 
part by Craig Zilles at UW–Madison, which is 
based on the Simplescalar distribution [1].  It 
supports multiprogramming of several 
independent programs, so it is capable of being 
passed multiple input programs and assigning 
those to various threads.  We used optimized 
Spec2000 [14] Alpha binaries that were provided 
with the simulator [13]. 
     For our experiments we configured the 
simulator to run four threads.  An important 
feature of the simulator with regard to branch 
prediction is that when a mispredict occurs, only 
the instructions associated with the thread that 
was mispredicted are squashed.  Key machine 
parameters used in our simulations are shown in 
Table 1. 
 
4.2:  Simulated Benchmark Description:  To 
effectively test with the above simulator, a series 
of benchmarks would be needed.  Given that the 
multiprogramming approach was used in the 
design of the simulator, SPEC2000 benchmarks 
would be used for the evaluation purposes.  
These were used unmodified with the standard 
reference input files for testing and simulated for 
the first 40M instructions.   
     To explore performance under various 
computational environments, two program 



models are tested.  One configuration that can 
exist in an SMT is when each thread is running a 
different program.  This configuration simulates 
a typical multitasking environment.  Another 
configuration is where the processor is running 
multiple copies of the same program such that 
each thread has a separate copy of the 
program.  This setup simulates a typical web 
server. 
     Given the overall set of SPEC benchmarks, 
we decided that for the first case we would run 
two integer and two floating-point benchmarks 
(ammp, crafty, equake, gcc).  This would result 
in four unique threads and overall a good mix of 
performance.  To simulate the second case, one 
of the selected integer benchmarks (crafty) 
would be used and copied for each of the 
threads.  The integer benchmark was chosen 
because it was felt that this would better mimic 
the type of workload that a web server would 
employ. 
 
4.3:  Branch Predictor Configurations:  In 
order to observe the amount of branch 
prediction interference that occurs between 
threads in an SMT, we simulated eight different 
configurations of conditional and indirect branch 
predictors.  The various predictor configurations 
are described below and were used for each of 
the predictor types.  In each diagram, the branch 
predictor is shown as two blocks:  the “History” 
block which encompasses the recent branch 
history register and the “Predictor” block which 
encompasses the rest of the predictor.  Although 
each of the diagrams shows a generic predictor 
that includes a history register, the same 
configuration principles can be applied to the 
traditional 2-bit predictor even though no history 
register is used.  There obviously can be only 
one configuration for the static prediction 
schemes so we compare that single case to 
each configuration of the dynamic schemes 
when appropriate. 
 
4.3.1:  Shared Configuration:  The most 
resource conservative branch predictor 
configuration for an SMT is a totally shared 
predictor (Fig. 5).  In this case, each thread 
shares both the history  register and  BHT.   This 
configuration allows for the most interference 
between threads.  This interference can occur 
both in the history register and in the BHT.  As 
you would expect, the configuration that allows 
for the most interference requires the least state. 
 
 

Figure 5:  Shared Configuration 

 
 
4.3.2:  Split Branch Configuration:  The next 
logical configuration to test was providing each 
thread with its own predictor (Fig. 6).  This 
configuration completely eliminates interference 
between threads.  In this case, the predictor acts 
exactly as it would in a single-threaded 
environment.  Again, not surprisingly, the 
configuration   that   eliminates   all   interference  
 

Figure 6:  Split Branch Configuration 

 
 
requires the most state, especially with the 
duplication of the YAGS predictor. 
     Note this study is principally concerned with 
the   interference   that   occurs   in   the   branch 
predictor due to shared history between threads 
and not reduction in branch prediction accuracy 
due to effectively reduced capacity of the 
predictor when multiple threads are competing 
for space.  Therefore, when simulating split 



predictors, we model configurations of the same 
size as the shared predictor to eliminate second 
order effects from reduced capacity in the split 
predictors. 
 
4.3.3:  Split Branch Table Configuration:  The 
third configuration that we simulated does a 
partial split of the branch predictor (Fig. 7).  In 
this case, each thread accesses a common 
branch history register, but then indexes into its 
own predictor.  This configuration allows 
interference only in the branch history register. 
 

Figure 7:  Split Branch Table Configuration 

 
 
4.3.4:  Split History Configuration:  The final 
branch predictor configuration simulated does 
the opposite partial split of predictor resources 
(Fig. 8).  This configuration allots each thread its 
own history register while indexing into a 
common predictor.  This configuration again only 
allows interference at one of the two possible 
places, in the predictor.  By only replicating the 
branch history register, a small resource, instead 
of the predictor, a much larger resource, the split 
history configuration eliminates one of the 
sources of interference in a much more cost and 
space efficient manner than the split branch 
table configuration.  The hope of this 
configuration is that interference in the larger 
predictor will have less effect than interference 
in the smaller branch history register.  
 
4.3.5:  Indirect Predictor Configuration:  To 
this point, we have established test cases that 
vary the configuration of the branch predictor.  
We simulate each of these four configurations 
with a unified and split indirect branch predictor, 
giving us eight test configurations.  It is 
important   to   note  that  replicating  the indirect  

Figure 8:  Split History Configuration 

 
 
branch predictor table is expensive because it 
contains full addresses rather than 2-bit 
saturating counters.  Any performance benefit 
gained by splitting the indirect predictor should 
be weighed against that fact. 
 

5.  Results 
     This section presents the results of our 
experiments along with a commentary 
discussing their significance.  The graphs 
containing data from experiments using the 
YAGS prediction scheme that are presented in 
sections 5.2 – 5.4 have eight bars for each 
thread.  They represent the following cases from 
left to right: 

• Shared Configuration with Unified 
Indirect Branch Predictor 

• Split Branch Configuration with Unified 
Indirect Branch Predictor 

• Split Branch Table Configuration with 
Unified Indirect Branch Predictor 

• Split History Configuration with Unified 
Indirect Branch Predictor 

• Shared Configuration with Split Indirect 
Branch Predictor 

• Split Branch Configuration with Split 
Indirect Branch Predictor 

• Split Branch Table Configuration with 
Split Indirect Branch Predictor 

• Split History Configuration with Split 
Indirect Branch Predictor 

Graphs describing the Gshare prediction 
scheme only contain four bars per thread, which 
correspond to the first four bullets above.  Since 
the Split Branch Table and Split History predictor 
configurations are not applicable for the 2-bit 
scheme that does not use a history register, only 
the first two cases are shown in these graphs. 
 



5.1:  Branch Predictor Scheme Prediction 
Accuracy:  In order to evaluate our proposed 
configurations of the five targeted branch 
prediction schemes, we must first establish their 
baseline prediction accuracy.  Graph 1 shows 
the misprediction rate of the five branch 
prediction schemes when run in isolation, the 
split branch configuration (Fig. 6).  This 
configuration  shows  how each branch predictor   
 

Graph 1:  Split Branch Predictor Accuracy 
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Graph 2:  Shared Predictor Accuracy 
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would perform in a single-threaded environment.   
This data matches intuition, as the YAGS 
predictor performs the best, followed by the 
Gshare and finally the traditional 2-bit predictor.  
The static schemes perform much worse than 
each of the dynamic schemes, which is also 
expected. 
     Graph 2 shows how these same branch 
prediction schemes perform in a shared 
configuration (Fig. 5), where the total branch 

predictor is shared between threads.  This data 
demonstrates the interference that occurs when 
branch prediction resources are shared between 
unrelated threads.  This interference reduces the 
accuracy of each scheme.  The YAGS and 2-bit 
prediction schemes are similarly affected by 
sharing, but the Gshare scheme is affected 
significantly by thread interference, even to the 
point of being outperformed by some of the 
static schemes.  The Gshare prediction scheme 
is affected much more because interference 
happens both at the branch history register and 
in the BHT.  The 2-bit predictor only incurs 
interference in the BHT, therefore its 
performance holds, as does that of the YAGS 
scheme where the complexity of the scheme 
overwhelms the interference.  The accuracy for 
the static schemes does not change because 
their predictions are not affected by program 
behavior. 
 
5.2:  Branch Prediction with Unique Threads:  
This section shows the prediction accuracy for 
each dynamic prediction scheme running in 
each of the four predictor configurations with the 
threads running a unique program, as in a multi-
tasking  environment.     Graph   3    shows    the  
 

Graph 3:  2-Bit with Unique Threads 
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prediction accuracy of the traditional 2-bit 
predictor   for   each    configuration    mentioned 
earlier.  Providing each thread with its own 
predictor increases prediction accuracy for each 
of the benchmarks by eliminating interference 
between the unrelated threads. 
     Graph 4 presents each configuration for the 
Gshare predictor.  For similar reasons to the 2-
bit scheme, completely dividing the predictor 
increases prediction accuracy by a significant 



amount.  However, when the branch history 
register is shared between threads (shared and 
split branch table configurations), accuracy 
suffers greatly, producing near 50% mispredicts 
in all cases.  This is due to the significant effect 
of interference in a small, shared resource.  As 
expected, the highest prediction accuracy for the 
Gshare predictor is seen when the predictor is 
completely   split,  thus   eliminating the  aliasing  
 

Graph 4:  Gshare with Unique Threads 
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Graph 5:  YAGS with Unique Threads 
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that can occur in two places in the predictor.  In 
addition, the split history configuration is only 
slightly less accurate than the split branch 
configuration.  In this case, the accuracy is 
maintained without having to duplicate the BHT, 
a significant expense. 
     Sharing only the branch history register has a 
similar negative effect on the YAGS predictor 
(Graph 5).  However, in this case, much less 
accuracy is gained by a complete split of the 

branch predictor.  We believe that this is due to 
the complexity of the YAGS scheme, which is 
able to eliminate most aliasing even when 
multiple threads access a shared predictor.  
Similar to the Gshare scheme, the split history 
configuration again retains most of the accuracy 
provided by the split branch configuration while 
using significantly less resources. 
     Another interesting point is that the splitting 
of the indirect branch predictor has virtually no 
effect on the branch prediction accuracy, even 
though it shares the branch history register with 
the branch predictor (Graph 5).  This is due to 
the fact that indirect branches are infrequent in 
our simulations.  It is also worth noting that 
indirect branch prediction accuracy was stable 
across all simulation configurations. 
 
5.3: Branch Prediction with Identical Threads:  
This section shows results from experiments 
using identical threads.  This corresponds to a 
web server application.  One might expect that 
in this case a shared predictor would benefit 
from positive aliasing between the identical 
threads.  But in fact, for each branch prediction 
scheme, the split predictor is still much more 
accurate than the shared configuration (Graphs 
6, 7, 8).  In each case, the shared and split 
branch table configurations still perform very 
poorly.  These results again show that the split 
history configuration provides similar prediction 
accuracy to the split branch configuration, even 
more closely mirroring it than in the unique 
thread studies.  This occurs because in many 
cases the thread that leads the execution will 
train the BHT for the trailing threads.  When 
these trailing threads encounter the branch, their  
 

Graph 6:  2-Bit with Identical Threads 
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Graph 7:  Gshare with Identical Threads 
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Graph 8:  YAGS with Identical Threads 
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individual history registers will likely be the same 
as the leading thread at that branch because of 
similar control flow between identical threads 
and thus allow the access of the same 2-bit 
predictor in the BHT.  These trailing threads will 
then benefit from the BHT training of the leading 
thread.  This data also suggests that branch 
prediction design should be uniform across a 
broad range of workloads. 
 
5.4:  Prediction Effects on Performance (CPI):  
The data in this section shows that overall 
performance is not significantly affected by 
branch prediction accuracy in an SMT.  This is in 
contrast to traditional superscalar machines 
where branch mispredicts cause complete 
pipeline flushes and cause noticeable 
slowdowns.  This point is demonstrated by the 
fact that in a single-threaded environment the 
crafty benchmark shows a 6% increase in CPI 

using the Gshare scheme and an 11% CPI 
increase using the 2-bit scheme as compared to 
the YAGS scheme.  In an SMT environment, 
these CPI increases are 2% and 5% 
respectively with the same branch prediction 
accuracy for each scheme (split branch 
configuration).  As mentioned earlier, this occurs 
because other threads can fill the void when one 
thread encounters a mispredict penalty.  From 
this data, we draw the conclusion that branch 
prediction accuracy is much less important in  an  
 
Graph 9:  CPI with Gshare & Unique Threads 
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Graph 10:  CPI with Gshare & Identical Threads 
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SMT processor than in a traditional superscalar 
machine, when the focus is on multithreaded 
application performance. 
     As shown by Graphs 9 and 10, the per-
thread CPI remains relatively constant across 
the split history and split branch predictor 
configurations.  Although only the Gshare 
scheme is shown, this is the case across all 



branch prediction schemes.  The previous 
prediction accuracy graphs in conjunction with 
these two graphs, indicate that sharing only the 
branch history register between threads is 
detrimental to performance.  Given the fact this 
configuration     performs    poorly     across    all 
prediction schemes, it will not be discussed 
further. 
     When running identical threads, we find that 
performance degrades dramatically (Graph 9 vs. 
Graph 10).  This is due to the fact that our 
multiprogrammed approach for SMT does not 
allow the threads to share any state in the 
cache.  Hence, the cache miss rates 
experienced by the processors double due to 
conflict and capacity misses between the 
identical threads.  The unique threads are better 
able to share the available cache memory and 
have a lower overall cache miss rate, which 
correlates with the higher observed throughput.  
This fact is magnified when using the crafty 
benchmark for the identical thread studies 
because the crafty benchmark causes more 
cache misses than the other three benchmarks 
tested.  Running four threads of crafty makes 
the   overall   cache   miss   rate    even    higher, 
resulting in the poor performance seen in Graph 
10.  Additionally, there  have  been  studies  that 
 

Graph 11:  Normalized CPI for Split Branch 
Predictor with Unique Threads 
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prove that some benchmarks do not perform 
well when run together in an SMT [4].  We 
hypothesize that crafty falls into that category. 
     The next set of graphs indicates the relative 
change in performance as the branch predictor 
is simplified.  The performance of each 
prediction scheme is  normalized  to  that  of  the  

Graph 12: Normalized CPI for Split Branch 
Predictor with Identical Threads 
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YAGS scheme on a thread-by-thread basis.  
This data is presented for both the split branch 
(Graphs 11 & 12) and split history (Graphs 13 & 
14) predictor configurations and simulated for 
both the unique and identical thread cases.  This 
data indicates that the low accuracy of static 
prediction schemes cannot be tolerated in the 
presence of other independently executing 
threads in SMTs.  While these schemes provide 
substantial savings in chip real estate, power 
consumption, and access time, these benefits 
cannot compensate for lack of delivered 
performance. 
     The other cases, however, yield some 
interesting results.  Analyzing Graphs 11 and 12, 
one can see that best-case slowdown for the 
Gshare scheme using the split branch 
configuration is in the unique thread case with 
approximately a 2% increase in CPI.  The 
impact appears to be similar with the 2-bit 
scheme with its best-case CPI increase residing 
at 3%.  The performance delta between these 
schemes and YAGS is only slightly more 
significant with the split history configuration, as 
seen in Graphs 13 and 14, where the slowdown 
is 7% and 4%, respectively. 
     These results are important to note because 
one now has some difficult choices to make.  By 
simplifying the predictor from YAGS down to one 
of the other schemes, significant savings can be 
realized in several areas.  As mentioned earlier, 
the YAGS predictor has three tables that need to 
be referenced, compared to the other schemes 
that simply have a single table.  This additional 
hardware can be rather power hungry.  Another 
major concern is that this more advanced 
scheme will take longer to access, and thus



Table 2:  Instructions Executed Per Thread (YAGS) 
Thread ID - Benchmark Instructions Committed 

  Shared Split Branch Split Branch Table Split History 
Thread0 - ammp 40466600 40396520 42201142 40432869 
Thread1 - crafty 42779617 43952717 43025427 43877029 

Thread2 - equake 48617686 48617686 48617686 48617686 
Thread3 - gcc 36218492 37101290 36246587 37070529 

 
there may be some additional speed-ups for the 
simpler schemes that are not considered by our 
simulator because of additional branch 
prediction delay in the front end.  Of course, 
these gains must all be balanced by the loss of 
performance that was observed above. 
     Given this information, we propose that one 
should  utilize  either  the  Gshare   or   the  2-bit  

 
Graph 13:  Normalized CPI for Split History 

Predictor with Unique Threads 
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Graph 14:  Normalized CPI for Split Predictor 

and Identical Threads 
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predictor over implementing a more complicated 
scheme.    With     the   relative    size   of   these 
schemes, as compared to YAGS, one could 
even possibly implement one of these in a split 
branch predictor configuration in the same or 
less amount space as a shared YAGS predictor, 
if the number of threads is small.  This split 
would help to improve the performance of either 
of these simplified schemes, as evident from 
Graphs 3  and  4.   Of  course,  this  split  branch 
configuration would still have less power 
dissipation than the unified YAGS, since it is 
likely that only one thread would need to access 
the predictor at a given time, and the other 
predictors could remain idle.   It is also evident 
that the split history configuration retains most of 
the benefits of the split branch configuration with 
much less resource usage.  Overall, the split 
history configuration that utilizes one of the 
simpler dynamic prediction schemes seems to 
be the best balance between processor 
performance, power dissipation, and chip area 
when  the  goal  is  to   design   a   multithreaded 
processor capable of running concurrent threads 
efficiently. 
     An important note about the CPI numbers 
presented here is that they are only close 
estimates and direct comparison between 
simulations is not completely valid.  This is 
caused by the fact that multithreaded 
executions, like multi-processor simulations, are 
not deterministic when system parameters are 
changed.  In our experiments, branch predictor 
accuracy is altered, causing branch mispredicts 
to be encountered at different times, thus 
affecting which thread executes during a 
particular cycle.  This allows for the possibility of 
each thread committing a different number of 
instructions in multiple simulations of the same 
workload.  This fact alone makes comparison of 
CPI results across simulations less dependable.  
This point is demonstrated by the data in Table 
2.  Since we are only trying to prove that CPI is 
relatively unchanged across simulations, we feel 
that our conclusions still hold. 

 
 



6.  Conclusions 
     As a result of our studies, we have drawn 
several conclusions.  First, multithreaded 
executions can interfere with speculation, 
particularly branch prediction accuracy, because 
of aliasing in shared prediction resources.  
Second, a multithreaded simulation that 
executes unique codes on each thread is 
hindered by the negative aliasing that occurs by 
sharing a branch predictor.  This aliasing can be 
combated by allowing each thread to access its 
own pieces of the branch prediction structure.  In 
the case where each thread runs a copy of the 
same program, where intuition would suggest 
that positive aliasing between threads would 
help a shared predictor, the split predictor 
configuration still performs better.  This suggests 
that the branch predictor of an SMT can be 
designed independent of the thread relationship.  
In our studies, we also looked at the effects of 
similar strategies on the prediction of indirect 
branches.  We found that changes to the 
predictor structure had little effect on the 
accuracy of indirect branch prediction.  We 
attribute this to the relative infrequency of 
indirect branches and their high predictability in 
our simulations.   
     More importantly, we conclude that branch 
prediction accuracy is less important in an SMT 
system than in a traditional superscalar 
processor.  Misprediction ratios that increased 
by factors of two or three only caused 
slowdowns of as little as 2%.  This conclusion is 
demonstrated by the fact that the normalized 
per-thread CPI is relatively constant, even for 
cases of very poor dynamic branch prediction 
accuracy.  This phenomenon occurs because 
other threads fill in the processing void left when 
a long latency hazard is encountered by one 
thread.  Finally, because of the relative 
unimportance of branch prediction accuracy in a 
multithreaded environment, we conclude that 
valuable development time and on-chip 
resources should be applied to other more 
important issues.  Simple predictors, such as the 
Gshare and 2-bit schemes, appear to perform 
adequately in terms of CPI and can save 
significantly on chip real estate and power 
dissipation.  
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