
Exploring Efficient SMT Branch Predictor Design

Matt Ramsay, Chris Feucht & Mikko H. Lipasti
ramsay@ece.wisc.edu, feuchtc@cae.wisc.edu, mikko@engr.wisc.edu

Department of Electrical & Computer Engineering
University of Wisconsin-Madison

Abstract: Branch prediction in simultaneous
multithreaded processors is difficult because
multiple independent threads interfere with
shared prediction resources. We evaluate
the prediction accuracy of four branch
predictor configurations: 1) a totally shared
predictor, 2) a completely split predictor, 3) a
predictor with a shared history and split
BHT, and 4) a predictor with a shared BHT
and separate history registers, each for two
static prediction schemes, a generic 2-bit
predictor, a Gshare predictor, and a YAGS
predictor. We simulate each combination
listed with four threads executing a different
benchmark and with each thread executing
the same code.
 We conclude that for an execution with
unique threads, separating the branch
history register for each thread allows for
higher prediction accuracy by eliminating the
negative aliasing between threads.
Surprisingly, this splitting of predictor
resources still performs better than a shared
predictor even when each thread is running
the same code. This study demonstrates
that allotting each thread its own history
register to access a shared predictor table
gives performance close to that of a totally
split predictor while using significantly less
resources. Overall system performance, as
measured in CPI, is only marginally affected
by branch prediction accuracy in a
multithreaded environment because thread-
level parallelism allows for the hiding of long
latency hazards, such as branch mispredicts.
As such, we feel that branch prediction
accuracy is not of peak importance when
running multithreaded applications and that
valuable development time and chip
resources should be spent on other issues.

1. Introduction & Motivation
 Simultaneous multithreading (SMT) is a form
of multithreading [7] that seamlessly interleaves
the processing of instructions from multiple
threads of execution in a single, shared
processor pipeline [15]. In a typical SMT

system, a single set of branch predictors is
shared between several concurrently running
threads. Prior work has shown that this can lead
to negative interference within the branch
predictor as threads with very different control
behavior interfere with shared prediction
resources (e.g. [2,6,9]). By allocating an
independent branch predictor for each thread,
we demonstrate that there is potential to reduce
negative aliasing, thus improving branch
prediction accuracy. In contrast, the
interference that occurs due to the sharing of
branch predictors between threads could in fact
be positive aliasing, where the leading thread
trains the predictor for the trailing threads with
similar control flow. If each thread were given its
own branch predictor, the potential benefits of
that positive aliasing would be lost and branch
prediction accuracy would be reduced. Such
positive interference may be demonstrated by
allowing each thread to run the exact same
program.
 In this study, we determine the frequency of
branch predictor interference for a set of
multiprogrammed SMT workloads, whether the
aliasing that occurs is positive or negative, and
draw some conclusions as to an advisable
design approach for branch predictors in SMT
systems. This is accomplished by analyzing
various branch predictor types as well as
different combinations of branch predictor
resource sharing. Each of these various
configurations is then tested with workloads that
are consistent with the cases presented above.
 We also consider the tradeoffs between total
processor performance and branch predictor
size and complexity in an SMT system. Since
there are other threads that can fill the void of a
branch mispredict penalty, we hypothesize that
less accurate, simple branch prediction schemes
could be implemented in order to save
resources with only a minimal performance loss.
Prior work (e.g. [2,6,9]) has quantified the effect
of sharing a branch predictor between threads
on branch misprediction rate. Here, we also
report performance effects, and find them to be
surprisingly unimportant. Hence, we conclude
that complex branch predictors are not called for

in SMT processors, since nearly the same
performance (measured in CPI) can be achieved
with a much simpler branch predictor, whereas
the simpler design may enable faster cycle time
or reduced design and verification time.
 To describe these issues in further detail, the
remainder of the paper is broken up as follows.
Section 2 provides some basic information on
simultaneous multithreading as well as
additional motivation for this study. Section 3
explains the types of branch predictors that we
studied. The overall test methodology that we
employed for this work is covered in Section 4.
Following that is a discussion of the test results
in Section 5. Finally, Section 6 contains the
conclusions that can be drawn from this study.

2. SMT Overview
 In general, multithreading permits additional
parallelism in a single processor by sharing the
functional units across various threads of
execution. In addition to the sharing of
functional units, each thread must have a copy
of the architected state. To combat this
overhead, many other processor resources end
up being shared by multiple threads.
Accomplishing this sharing of resources also
requires that the processor be able to perform
switching between the threads efficiently, so as
to not drastically affect performance. In fact,
one can hide many of the memory stalls and
control changes by switching threads at those
occurrences.

Figure 1: SMT Demonstration [11]

 The form of multithreading studied in our
work is simultaneous multithreading (SMT)
[10,15]. SMT processors are able to use
resources that are provided for extracting
instruction-level parallelism (e.g. rename
registers, out-of-order issue) to also extract
thread-level parallelism. An SMT processor

uses multiple-issue and dynamic scheduling
resources to schedule instructions from different
threads that can operate in parallel. Since the
threads execute independently, one can issue
instructions from these various threads without
considering dependencies between them.
 Figure 1 shows a comparison of executions
from a single-threaded processor to that of an
SMT system. The middle picture shows an
example of simple multithreading, which rotates
through the available threads without exploiting
the inter-thread parallelism. Overall, this
solution does have some advantages over the
single-threaded machine, but there are still
many open functional units. This coarse-grained
multithreading does not have the capability to
allow different threads to work in parallel, and
therefore many functional units are still
underutilized. Thus, the SMT machine has the
greatest potential for full resource utilization.

3. Branch Prediction Overview

 To show the validity of our work, we chose to
apply our changes to five well-known branch
prediction schemes. We study two static
schemes, always taken and forward-not-taken-
backward-taken [12]. We also examine three
dynamic prediction schemes, the traditional 2-Bit
predictor [12], the Gshare predictor [8], and the
YAGS (Yet Another Global Scheme) predictor
[5]. This section provides a brief overview of
each prediction scheme.

3.1: Static Branch Predictors: The first static
branch prediction scheme that we evaluated
was the always taken scheme. Due to the high
frequency of taken branches in most codes due
to loop termination branches, this seemingly
naive scheme has some validity. Building on the
premise that most taken branches occur at the
end of loops, a logical progression would be to
predict that all backward branches are going to
be taken and all forward branches not taken. In
most codes, this scheme performs better than
the always taken scheme. Although these static
schemes have poor prediction accuracy, their
major advantages are that they can be accessed
instantly and they require no state to be
maintained [12].

3.2: Traditional 2-Bit Predictor: One of the
simplest dynamic branch prediction schemes is
the traditional 2-bit predictor (Fig. 2) [12]. In this
scheme, the lower bits of the branch instruction
address index into a memory of 2-bit predictors
called the branch-prediction buffer or branch

history table (BHT). Each BHT entry contains a
saturating 2-bit counter that indicates whether
the branch was recently taken or not. The
prediction is read from the BHT in order to
speculatively determine whether to begin
fetching instructions from the taken or not-taken
path. If the 2-bit counter is greater than 0x01,
then the branch is predicted taken; else it is
predicted not taken. Later in the pipeline when
the branch outcome is determined, the predictor
is updated by incrementing the counter if the
branch was taken or decrementing it if the
branch was not taken. Identical 2-bit saturating
counters are used for branch prediction in the
Gshare [8] and YAGS schemes [5].

Figure 2: Traditional 2-Bit Predictor

 The 2-bit scheme’s simplicity and speed
make it an attractive option. However, its simple
indexing method does not take advantage of
global history information. Correlating branch
prediction on the recent branch history has
proven to increase prediction accuracy in most
programs. [16]

3.3: Gshare Branch Predictor: The Gshare
branch prediction scheme (Fig. 3) uses a recent
global branch outcome history as well as the
branch instruction address to index the BHT [8].
Indexing the BHT with the XOR of the branch
history and address eliminates a significant
amount of the aliasing that occurs using the
traditional 2-bit prediction scheme and also
takes advantage of recent branch history
information.

Figure 3: Gshare Predictor

Figure 4: YAGS Predictor [5]

3.4: YAGS Branch Predictor: As can be seen
in Figure 4, the YAGS predictor [5] is a much
more complicated and expensive prediction
scheme that contains three different predictors:

• BHT for biased taken branches
• BHT for biased not taken branches
• Choice PHT: BHT to choose between

the taken and not taken predictors
 In this scheme, the branch address is used to
index into the Choice PHT and for the tag
comparison from the bias taken and not taken
BHTs. The taken and not taken BHTs are
indexed strictly by the XOR of the branch history

Table 1: Tested Machine Parameters
of Threads 4 # Instructions Simulated ~40M

Address Spaces 4 L1 Latency 1 cycle
Bits in Branch History 12 L2 Latency 10 cycles

of BT Entries 4096 Memory Latency 200 cycles
bits in Indirect History 10 L1 Size 32KB

IT Entries 1024 L1 Assoc. DM
Pipeline Depth 15 L1 Block Size 64B
Machine Width 4 L2 Size 1MB

Max Issue Window 64 L2 Assoc. 4
Physical Registers 512 L2 Block Size 128B

and branch address. The biased taken and not
taken BHTs both produce their prediction for the
branch outcome and one is chosen by the
prediction produced by the PHT. If there is a hit
on the address in the chosen predictor, the
entry’s counter is used as the branch prediction.
If there is a miss, the way prediction from the
PHT is used as the overall prediction. Using this
combination of the branch history and address
eliminates virtually all aliasing in traditional
single-threaded programs. This scheme also
performs well for multi-threaded applications
because there is less history interference
between threads (Graphs 5 & 8). As usual, this
higher prediction accuracy does not come for
free. The YAGS prediction scheme requires an
amazing amount of state, as there are three
predictors, two of which hold large address tags
in addition to 2-bit counters. It is reasonable to
assume that the access to this predictor is much
slower and more power intensive than the other
prediction schemes.

3.5: Indirect Branch Prediction: An indirect
branch, also known as a Jump-Register
instruction, is an unconditional branch that
receives its target address from a register. In
many cases the value of the target register is not
known when the indirect branch issues.
Therefore, performance can be gained from
accurately predicting the target of the indirect
branch and sequentially fetching instructions
from the predicted target rather than stalling
fetch while the target is computed [3]. In
general, indirect branches are much more
difficult to predict than conditional branches
because the predictor must select the correct
target address rather than just a taken/not taken
result. Aliasing in the indirect branch predictor
compounds the problem. Aliasing is much more
of a problem in the indirect branch predictor
because the BTB, called the ITB (Indirect Target

Buffer) in the indirect predictor, must hold full
addresses rather than just 2-bit saturating
counters and therefore must have much fewer
entries. The indirect branch predictor that we
study is indexed in the same manner as the
Gshare branch predictor, with the XOR of the
branch history and the branch instruction
address. This hashing helps with the aliasing
problem, and for the codes we simulated indirect
branch prediction is very accurate. This result is
not typical. [3]

4. Test Methodology
4.1: Simulation Environment: For our study
we used the SIM-MULTI simulator, developed in
part by Craig Zilles at UW–Madison, which is
based on the Simplescalar distribution [1]. It
supports multiprogramming of several
independent programs, so it is capable of being
passed multiple input programs and assigning
those to various threads. We used optimized
Spec2000 [14] Alpha binaries that were provided
with the simulator [13].
 For our experiments we configured the
simulator to run four threads. An important
feature of the simulator with regard to branch
prediction is that when a mispredict occurs, only
the instructions associated with the thread that
was mispredicted are squashed. Key machine
parameters used in our simulations are shown in
Table 1.

4.2: Simulated Benchmark Description: To
effectively test with the above simulator, a series
of benchmarks would be needed. Given that the
multiprogramming approach was used in the
design of the simulator, SPEC2000 benchmarks
would be used for the evaluation purposes.
These were used unmodified with the standard
reference input files for testing and simulated for
the first 40M instructions.
 To explore performance under various
computational environments, two program

models are tested. One configuration that can
exist in an SMT is when each thread is running a
different program. This configuration simulates
a typical multitasking environment. Another
configuration is where the processor is running
multiple copies of the same program such that
each thread has a separate copy of the
program. This setup simulates a typical web
server.
 Given the overall set of SPEC benchmarks,
we decided that for the first case we would run
two integer and two floating-point benchmarks
(ammp, crafty, equake, gcc). This would result
in four unique threads and overall a good mix of
performance. To simulate the second case, one
of the selected integer benchmarks (crafty)
would be used and copied for each of the
threads. The integer benchmark was chosen
because it was felt that this would better mimic
the type of workload that a web server would
employ.

4.3: Branch Predictor Configurations: In
order to observe the amount of branch
prediction interference that occurs between
threads in an SMT, we simulated eight different
configurations of conditional and indirect branch
predictors. The various predictor configurations
are described below and were used for each of
the predictor types. In each diagram, the branch
predictor is shown as two blocks: the “History”
block which encompasses the recent branch
history register and the “Predictor” block which
encompasses the rest of the predictor. Although
each of the diagrams shows a generic predictor
that includes a history register, the same
configuration principles can be applied to the
traditional 2-bit predictor even though no history
register is used. There obviously can be only
one configuration for the static prediction
schemes so we compare that single case to
each configuration of the dynamic schemes
when appropriate.

4.3.1: Shared Configuration: The most
resource conservative branch predictor
configuration for an SMT is a totally shared
predictor (Fig. 5). In this case, each thread
shares both the history register and BHT. This
configuration allows for the most interference
between threads. This interference can occur
both in the history register and in the BHT. As
you would expect, the configuration that allows
for the most interference requires the least state.

Figure 5: Shared Configuration

4.3.2: Split Branch Configuration: The next
logical configuration to test was providing each
thread with its own predictor (Fig. 6). This
configuration completely eliminates interference
between threads. In this case, the predictor acts
exactly as it would in a single-threaded
environment. Again, not surprisingly, the
configuration that eliminates all interference

Figure 6: Split Branch Configuration

requires the most state, especially with the
duplication of the YAGS predictor.
 Note this study is principally concerned with
the interference that occurs in the branch
predictor due to shared history between threads
and not reduction in branch prediction accuracy
due to effectively reduced capacity of the
predictor when multiple threads are competing
for space. Therefore, when simulating split

predictors, we model configurations of the same
size as the shared predictor to eliminate second
order effects from reduced capacity in the split
predictors.

4.3.3: Split Branch Table Configuration: The
third configuration that we simulated does a
partial split of the branch predictor (Fig. 7). In
this case, each thread accesses a common
branch history register, but then indexes into its
own predictor. This configuration allows
interference only in the branch history register.

Figure 7: Split Branch Table Configuration

4.3.4: Split History Configuration: The final
branch predictor configuration simulated does
the opposite partial split of predictor resources
(Fig. 8). This configuration allots each thread its
own history register while indexing into a
common predictor. This configuration again only
allows interference at one of the two possible
places, in the predictor. By only replicating the
branch history register, a small resource, instead
of the predictor, a much larger resource, the split
history configuration eliminates one of the
sources of interference in a much more cost and
space efficient manner than the split branch
table configuration. The hope of this
configuration is that interference in the larger
predictor will have less effect than interference
in the smaller branch history register.

4.3.5: Indirect Predictor Configuration: To
this point, we have established test cases that
vary the configuration of the branch predictor.
We simulate each of these four configurations
with a unified and split indirect branch predictor,
giving us eight test configurations. It is
important to note that replicating the indirect

Figure 8: Split History Configuration

branch predictor table is expensive because it
contains full addresses rather than 2-bit
saturating counters. Any performance benefit
gained by splitting the indirect predictor should
be weighed against that fact.

5. Results
 This section presents the results of our
experiments along with a commentary
discussing their significance. The graphs
containing data from experiments using the
YAGS prediction scheme that are presented in
sections 5.2 – 5.4 have eight bars for each
thread. They represent the following cases from
left to right:

• Shared Configuration with Unified
Indirect Branch Predictor

• Split Branch Configuration with Unified
Indirect Branch Predictor

• Split Branch Table Configuration with
Unified Indirect Branch Predictor

• Split History Configuration with Unified
Indirect Branch Predictor

• Shared Configuration with Split Indirect
Branch Predictor

• Split Branch Configuration with Split
Indirect Branch Predictor

• Split Branch Table Configuration with
Split Indirect Branch Predictor

• Split History Configuration with Split
Indirect Branch Predictor

Graphs describing the Gshare prediction
scheme only contain four bars per thread, which
correspond to the first four bullets above. Since
the Split Branch Table and Split History predictor
configurations are not applicable for the 2-bit
scheme that does not use a history register, only
the first two cases are shown in these graphs.

5.1: Branch Predictor Scheme Prediction
Accuracy: In order to evaluate our proposed
configurations of the five targeted branch
prediction schemes, we must first establish their
baseline prediction accuracy. Graph 1 shows
the misprediction rate of the five branch
prediction schemes when run in isolation, the
split branch configuration (Fig. 6). This
configuration shows how each branch predictor

Graph 1: Split Branch Predictor Accuracy

Split Branch Predictor Accuracy

56
.1

4%

48
.8

6%

52
.3

9%

46
.4

0%

53
.3

0%

46
.1

9%

50
.7

9%

42
.1

6%

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

Thread0 - ammp Thread1 - crafty Thread2 - equake Thread3 - gcc

%
 M

is
p

re
d

ic
ts

Yags
Gshare
2 Bit
FW NT & BW T
Always Taken

Graph 2: Shared Predictor Accuracy

Shared Branch Predictor Accuracy

48
.1

0%

49
.8

7%

49
.2

8%

50
.4

4%

52
.3

9%

48
.8

6%

56
.1

4%

46
.4

0%

53
.3

0%

46
.1

9%

50
.7

9%

42
.1

6%

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

Thread0 - ammp Thread1 - crafty Thread2 - equake Thread3 - gcc

%
 M

is
p

re
d

ic
ts

Yags
Gshare
2 Bit
FW NT & BW T
Always Taken

would perform in a single-threaded environment.
This data matches intuition, as the YAGS
predictor performs the best, followed by the
Gshare and finally the traditional 2-bit predictor.
The static schemes perform much worse than
each of the dynamic schemes, which is also
expected.
 Graph 2 shows how these same branch
prediction schemes perform in a shared
configuration (Fig. 5), where the total branch

predictor is shared between threads. This data
demonstrates the interference that occurs when
branch prediction resources are shared between
unrelated threads. This interference reduces the
accuracy of each scheme. The YAGS and 2-bit
prediction schemes are similarly affected by
sharing, but the Gshare scheme is affected
significantly by thread interference, even to the
point of being outperformed by some of the
static schemes. The Gshare prediction scheme
is affected much more because interference
happens both at the branch history register and
in the BHT. The 2-bit predictor only incurs
interference in the BHT, therefore its
performance holds, as does that of the YAGS
scheme where the complexity of the scheme
overwhelms the interference. The accuracy for
the static schemes does not change because
their predictions are not affected by program
behavior.

5.2: Branch Prediction with Unique Threads:
This section shows the prediction accuracy for
each dynamic prediction scheme running in
each of the four predictor configurations with the
threads running a unique program, as in a multi-
tasking environment. Graph 3 shows the

Graph 3: 2-Bit with Unique Threads

2-Bit Branch Prediction With Unique Threads

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

16.00%

Thread0 - ammp Thread1 - crafty Thread2 - equake Thread3 - gcc

%
 M

is
p

re
d

ic
ts

Shared

Split Branch

prediction accuracy of the traditional 2-bit
predictor for each configuration mentioned
earlier. Providing each thread with its own
predictor increases prediction accuracy for each
of the benchmarks by eliminating interference
between the unrelated threads.
 Graph 4 presents each configuration for the
Gshare predictor. For similar reasons to the 2-
bit scheme, completely dividing the predictor
increases prediction accuracy by a significant

amount. However, when the branch history
register is shared between threads (shared and
split branch table configurations), accuracy
suffers greatly, producing near 50% mispredicts
in all cases. This is due to the significant effect
of interference in a small, shared resource. As
expected, the highest prediction accuracy for the
Gshare predictor is seen when the predictor is
completely split, thus eliminating the aliasing

Graph 4: Gshare with Unique Threads

Gshare Branch Prediction With Unique Threads

50
.4

4%

49
.2

8%

49
.8

7%

48
.1

0%

54
.3

2%

47
.8

9%

50
.7

4%

45
.8

5%

17
.6

0%

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

16.00%

Thread0 - ammp Thread1 - crafty Thread2 - equake Thread3 - gcc

%
 M

is
p

re
d

ic
ts

Shared
Split Branch
Split Branch Table
Split History

Graph 5: YAGS with Unique Threads

Yags Branch Prediction With Unique Threads

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

16.00%

Thread0 - ammp Thread1 - crafty Thread2 - equake Thread3 - gcc

%
 M

is
p

re
d

ic
ts

Shared
Split Branch
Split Branch Table
Split History
Shared & Split Indirect
Split Branch & Split Indirect
Split Branch Table & Split Indirect
Split History & Split Indirect

that can occur in two places in the predictor. In
addition, the split history configuration is only
slightly less accurate than the split branch
configuration. In this case, the accuracy is
maintained without having to duplicate the BHT,
a significant expense.
 Sharing only the branch history register has a
similar negative effect on the YAGS predictor
(Graph 5). However, in this case, much less
accuracy is gained by a complete split of the

branch predictor. We believe that this is due to
the complexity of the YAGS scheme, which is
able to eliminate most aliasing even when
multiple threads access a shared predictor.
Similar to the Gshare scheme, the split history
configuration again retains most of the accuracy
provided by the split branch configuration while
using significantly less resources.
 Another interesting point is that the splitting
of the indirect branch predictor has virtually no
effect on the branch prediction accuracy, even
though it shares the branch history register with
the branch predictor (Graph 5). This is due to
the fact that indirect branches are infrequent in
our simulations. It is also worth noting that
indirect branch prediction accuracy was stable
across all simulation configurations.

5.3: Branch Prediction with Identical Threads:
This section shows results from experiments
using identical threads. This corresponds to a
web server application. One might expect that
in this case a shared predictor would benefit
from positive aliasing between the identical
threads. But in fact, for each branch prediction
scheme, the split predictor is still much more
accurate than the shared configuration (Graphs
6, 7, 8). In each case, the shared and split
branch table configurations still perform very
poorly. These results again show that the split
history configuration provides similar prediction
accuracy to the split branch configuration, even
more closely mirroring it than in the unique
thread studies. This occurs because in many
cases the thread that leads the execution will
train the BHT for the trailing threads. When
these trailing threads encounter the branch, their

Graph 6: 2-Bit with Identical Threads

2-Bit Branch Prediction With Identical Threads

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

16.00%

Thread0 - crafty Thread1 - crafty Thread2 - crafty Thread3 - crafty

%
 M

is
p

re
d

ic
ts

Shared
Split Branch

Graph 7: Gshare with Identical Threads

Gshare Branch Prediction With Identical Threads

48
.8

9%

48
.8

3%

48
.7

6%

48
.6

3%

47
.5

2%

47
.4

7%

47
.3

0%

47
.3

3%

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

16.00%

Thread0 - crafty Thread1 - crafty Thread2 - crafty Thread3 - crafty

%
 M

is
p

re
d

ic
ts

Shared
Split Branch
Split Branch Table
Split History

Graph 8: YAGS with Identical Threads

Yags Branch Prediction
With Identical Threads

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

16.00%

Thread0 - crafty Thread1 - crafty Thread2 - crafty Thread3 - crafty

%
 M

is
p

re
d

ic
ts

Shared
Split Branch
Split Branch Table
Split History
Shared & Split Indirect
Split Branch & Split Indirect
Split Branch Table & Split Indirect
Split History & Split Indirect

individual history registers will likely be the same
as the leading thread at that branch because of
similar control flow between identical threads
and thus allow the access of the same 2-bit
predictor in the BHT. These trailing threads will
then benefit from the BHT training of the leading
thread. This data also suggests that branch
prediction design should be uniform across a
broad range of workloads.

5.4: Prediction Effects on Performance (CPI):
The data in this section shows that overall
performance is not significantly affected by
branch prediction accuracy in an SMT. This is in
contrast to traditional superscalar machines
where branch mispredicts cause complete
pipeline flushes and cause noticeable
slowdowns. This point is demonstrated by the
fact that in a single-threaded environment the
crafty benchmark shows a 6% increase in CPI

using the Gshare scheme and an 11% CPI
increase using the 2-bit scheme as compared to
the YAGS scheme. In an SMT environment,
these CPI increases are 2% and 5%
respectively with the same branch prediction
accuracy for each scheme (split branch
configuration). As mentioned earlier, this occurs
because other threads can fill the void when one
thread encounters a mispredict penalty. From
this data, we draw the conclusion that branch
prediction accuracy is much less important in an

Graph 9: CPI with Gshare & Unique Threads

CPI Using Gshare Branch Prediction With Unique
Threads

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

Thread0 - ammp Thread1 - crafty Thread2 - equake Thread3 - gcc

C
P

I

Shared
Split Branch
Split Branch Table
Split History

Graph 10: CPI with Gshare & Identical Threads

CPI Using Gshare Branch Prediction With
Identical Threads

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

Thread0 - crafty Thread1 - crafty Thread2 - crafty Thread3 - crafty

C
P

I

Shared
Split Branch
Split Branch Table
Split History

SMT processor than in a traditional superscalar
machine, when the focus is on multithreaded
application performance.
 As shown by Graphs 9 and 10, the per-
thread CPI remains relatively constant across
the split history and split branch predictor
configurations. Although only the Gshare
scheme is shown, this is the case across all

branch prediction schemes. The previous
prediction accuracy graphs in conjunction with
these two graphs, indicate that sharing only the
branch history register between threads is
detrimental to performance. Given the fact this
configuration performs poorly across all
prediction schemes, it will not be discussed
further.
 When running identical threads, we find that
performance degrades dramatically (Graph 9 vs.
Graph 10). This is due to the fact that our
multiprogrammed approach for SMT does not
allow the threads to share any state in the
cache. Hence, the cache miss rates
experienced by the processors double due to
conflict and capacity misses between the
identical threads. The unique threads are better
able to share the available cache memory and
have a lower overall cache miss rate, which
correlates with the higher observed throughput.
This fact is magnified when using the crafty
benchmark for the identical thread studies
because the crafty benchmark causes more
cache misses than the other three benchmarks
tested. Running four threads of crafty makes
the overall cache miss rate even higher,
resulting in the poor performance seen in Graph
10. Additionally, there have been studies that

Graph 11: Normalized CPI for Split Branch
Predictor with Unique Threads

Normalized CPI for Split Branch Predictor with
Unique Threads

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

Thread0 - ammp Thread1 - crafty Thread2 - equake Thread3 - gcc

C
P

I (
N

o
rm

al
iz

ed
 t

o
 Y

ag
s)

Yags
Gshare
2-Bit
FW NT & BW T
Always Taken

prove that some benchmarks do not perform
well when run together in an SMT [4]. We
hypothesize that crafty falls into that category.
 The next set of graphs indicates the relative
change in performance as the branch predictor
is simplified. The performance of each
prediction scheme is normalized to that of the

Graph 12: Normalized CPI for Split Branch
Predictor with Identical Threads

Normalized CPI for Split Branch Predictor with
Identical Threads

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

Thread0 - crafty Thread1 - crafty Thread2 - crafty Thread3 - crafty

C
P

I (
N

o
rm

al
iz

ed
 t

o
 Y

ag
s)

Yags
Gshare
2-Bit
FW NT & BW T
Always Taken

YAGS scheme on a thread-by-thread basis.
This data is presented for both the split branch
(Graphs 11 & 12) and split history (Graphs 13 &
14) predictor configurations and simulated for
both the unique and identical thread cases. This
data indicates that the low accuracy of static
prediction schemes cannot be tolerated in the
presence of other independently executing
threads in SMTs. While these schemes provide
substantial savings in chip real estate, power
consumption, and access time, these benefits
cannot compensate for lack of delivered
performance.
 The other cases, however, yield some
interesting results. Analyzing Graphs 11 and 12,
one can see that best-case slowdown for the
Gshare scheme using the split branch
configuration is in the unique thread case with
approximately a 2% increase in CPI. The
impact appears to be similar with the 2-bit
scheme with its best-case CPI increase residing
at 3%. The performance delta between these
schemes and YAGS is only slightly more
significant with the split history configuration, as
seen in Graphs 13 and 14, where the slowdown
is 7% and 4%, respectively.
 These results are important to note because
one now has some difficult choices to make. By
simplifying the predictor from YAGS down to one
of the other schemes, significant savings can be
realized in several areas. As mentioned earlier,
the YAGS predictor has three tables that need to
be referenced, compared to the other schemes
that simply have a single table. This additional
hardware can be rather power hungry. Another
major concern is that this more advanced
scheme will take longer to access, and thus

Table 2: Instructions Executed Per Thread (YAGS)
Thread ID - Benchmark Instructions Committed

 Shared Split Branch Split Branch Table Split History
Thread0 - ammp 40466600 40396520 42201142 40432869
Thread1 - crafty 42779617 43952717 43025427 43877029

Thread2 - equake 48617686 48617686 48617686 48617686
Thread3 - gcc 36218492 37101290 36246587 37070529

there may be some additional speed-ups for the
simpler schemes that are not considered by our
simulator because of additional branch
prediction delay in the front end. Of course,
these gains must all be balanced by the loss of
performance that was observed above.
 Given this information, we propose that one
should utilize either the Gshare or the 2-bit

Graph 13: Normalized CPI for Split History

Predictor with Unique Threads

Normalized CPI for Split History Predictor with
Unique Threads

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

Thread0 - ammp Thread1 - crafty Thread2 - equake Thread3 - gcc

C
P

I (
N

o
rm

al
iz

ed
 t

o
 Y

ag
s)

Yags
Gshare
2-Bit
FW NT & BW T
Always Taken

Graph 14: Normalized CPI for Split Predictor

and Identical Threads

Normalized CPI for Split History Predictor with
Identical Threads

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

Thread0 - crafty Thread1 - crafty Thread2 - crafty Thread3 - crafty

C
P

I (
N

o
rm

al
iz

ed
 t

o
 Y

ag
s)

Yags
Gshare
2-Bit
FW NT & BW T
Always Taken

predictor over implementing a more complicated
scheme. With the relative size of these
schemes, as compared to YAGS, one could
even possibly implement one of these in a split
branch predictor configuration in the same or
less amount space as a shared YAGS predictor,
if the number of threads is small. This split
would help to improve the performance of either
of these simplified schemes, as evident from
Graphs 3 and 4. Of course, this split branch
configuration would still have less power
dissipation than the unified YAGS, since it is
likely that only one thread would need to access
the predictor at a given time, and the other
predictors could remain idle. It is also evident
that the split history configuration retains most of
the benefits of the split branch configuration with
much less resource usage. Overall, the split
history configuration that utilizes one of the
simpler dynamic prediction schemes seems to
be the best balance between processor
performance, power dissipation, and chip area
when the goal is to design a multithreaded
processor capable of running concurrent threads
efficiently.
 An important note about the CPI numbers
presented here is that they are only close
estimates and direct comparison between
simulations is not completely valid. This is
caused by the fact that multithreaded
executions, like multi-processor simulations, are
not deterministic when system parameters are
changed. In our experiments, branch predictor
accuracy is altered, causing branch mispredicts
to be encountered at different times, thus
affecting which thread executes during a
particular cycle. This allows for the possibility of
each thread committing a different number of
instructions in multiple simulations of the same
workload. This fact alone makes comparison of
CPI results across simulations less dependable.
This point is demonstrated by the data in Table
2. Since we are only trying to prove that CPI is
relatively unchanged across simulations, we feel
that our conclusions still hold.

6. Conclusions
 As a result of our studies, we have drawn
several conclusions. First, multithreaded
executions can interfere with speculation,
particularly branch prediction accuracy, because
of aliasing in shared prediction resources.
Second, a multithreaded simulation that
executes unique codes on each thread is
hindered by the negative aliasing that occurs by
sharing a branch predictor. This aliasing can be
combated by allowing each thread to access its
own pieces of the branch prediction structure. In
the case where each thread runs a copy of the
same program, where intuition would suggest
that positive aliasing between threads would
help a shared predictor, the split predictor
configuration still performs better. This suggests
that the branch predictor of an SMT can be
designed independent of the thread relationship.
In our studies, we also looked at the effects of
similar strategies on the prediction of indirect
branches. We found that changes to the
predictor structure had little effect on the
accuracy of indirect branch prediction. We
attribute this to the relative infrequency of
indirect branches and their high predictability in
our simulations.
 More importantly, we conclude that branch
prediction accuracy is less important in an SMT
system than in a traditional superscalar
processor. Misprediction ratios that increased
by factors of two or three only caused
slowdowns of as little as 2%. This conclusion is
demonstrated by the fact that the normalized
per-thread CPI is relatively constant, even for
cases of very poor dynamic branch prediction
accuracy. This phenomenon occurs because
other threads fill in the processing void left when
a long latency hazard is encountered by one
thread. Finally, because of the relative
unimportance of branch prediction accuracy in a
multithreaded environment, we conclude that
valuable development time and on-chip
resources should be applied to other more
important issues. Simple predictors, such as the
Gshare and 2-bit schemes, appear to perform
adequately in terms of CPI and can save
significantly on chip real estate and power
dissipation.

References:
1. Burger, D. and T. Austin. “The SimpleScalar

Tool Set. Version 2.0.” Technical Report,
University of Wisconsin-Madison Computer
Science Department, 1997.

2. Cain, H., Rajwar, R., Marden, M., and
Lipasti, M. “An Architectural Evaluation of
Java TPC-W.” In Proceedings of HPCA-7,
January 2001.

3. Driesen, K. and U. Holzle. “Accurate
Indirect Branch Prediction.” Computer
Architecture, 1998. Proceedings. The 25th
Annual International Symposium on, July
1998, pages 167-178.

4. F.N. Eskesen, et.al. “Performance Analysis
of Simultaneous Multithreading in a
PowerPC-based Processor.” Workshop on
Duplication, Destructing, and Debunking,
Anchorage, AK, May 2003.

5. Eden, A. N. and T. Mudge. “The YAGS
Branch Prediction Scheme.” In Proceedings
of the 31st Annual ACM/IEEE International
Symposium on Microarchitecture, pages 69-
77, 1998.

6. Hily, Sebastien and Andre Seznec. “Branch
Prediction and Simultaneous
Multithreading.” Proceedings of PACT ’96,
October 1996, pages 169-179.

7. Hennessy, John and David Patterson.
Computer Architecture A Quantitative
Approach: Third Edition. San Francisco:
Morgan Kaufmann, 2003.

8. McFarling, S. “Combining Branch
Predictors.” Technical Report WRL TN-36,
1993.

9. Seznec, A., Felix S., Krishnan, V., and
10. Sazeides, Y. “Design Tradeoffs for the

Alpha EV8 Conditional Branch Predictor.” In
Proceedings of ISCA-29, May 2002.

10. Simulation and Modeling of a Simultaneous
Multithreading Processor, D. M. Tullsen, In
the 22nd Annual Computer Measurement
Group Conference, December, 1996.

11. Smith, B. J. “Architecture and Applications
of the HEP Multiprocessor Computer
System.” Proceedings of the International
Society for Optical Engineering, 1981, pages
241-248.

12. Smith, J.E.. “A Study of branch prediction
strategies.” In Proceedings of ISCA-8.
1981.

13. www.simplescalar.com
14. www.spec.org

15. Tullsen, D., Eggers, S.J, and Levy, H.M.
“Simultaneous Multithreading: Maximizing
On-Chip Parallelism.” In Proceedings of
ISCA-22, 1995.

16. T. Y. Yeh and Y. N. Patt. “Two-level
17. Adaptive Training Branch Prediction.”

Proceedings of the 24th Annual Workshop
on Microprogramming (MICRO-24),
Albuquerque, NM, p. 55-60, Dec. 1991.

17. Zilles, Craig B., Joel Emer, and Gurindar
Sohi. “The Use of Multithreading for
Exception Handling.” Proceedings of Micro-
32, 1999, pages 219-229.

