
Exploiting Partial Operand Knowledge

Brian R. Mestan

University of Wisconsin-Madison
Department of Electrical and Computer Engineering

1415 Engineering Drive
Madison, WI 53706

Submitted in partial fulfillment of the M.S. Degree in Electrical and Computer Engineering
Project Option

May 17, 2002

Abstract

Conventional microprocessor designs treat register operands as atomic units. In such designs, no
portion of an operand may be consumed until the entire operand has been produced. In practice,
logic circuits and arithmetic units that generate some portion of an operand in advance of the
remaining portions are both feasible and desirable, and have been employed in several existing
designs. In this report, we propose to exploit the early partial knowledge of an instruction’s input
operands for overlapping the execution of dependent instructions and resolving unknown depen-
dences. In particular, four applications of partial operand knowledge are examined: bypassing par-
tial operands, resolving mispredicted conditional branches, disambiguating loads from earlier
stores, and performing partial tag matching in set-associative caches. We find that each of these is
feasible with limited knowledge of input operands. With the goal of fully exploiting this characteris-
tic, we propose and evaluate a bit-sliced microarchitecture that decomposes a processors’s data
path into 16- and 8-bit slices. We show that a bit-sliced design which uses partial operand knowl-
edge can outperform a conventional design with pipelined functional units, and can achieve IPC
only slightly lower than a best-case non-pipelined design running at the same clock frequency. Spe-
cifically, we find that a bit-slice design using two 16-bit slices achieves IPC within 1% of an ideal
design with non-pipelined functional units, representing a 16% speed-up over a conventional pipe-
lined design.

1 Introduction and Motivation
Historically, instruction set processors have always adhered to the sequential execution model of program

execution. Each machine instruction is treated as an atomic unit, and changes to architected program state must be

tracked at each instruction boundary to enable precise exceptions. However, aggressive compiler scheduling (as in

VLIW machines) and/or microarchitectural innovations like register renaming and out-of-order execution have

relaxed the internal application of the sequential execution model while preserving its appearance to the user. That is,

the internal execution core of a modern processor will in fact perform many of the program’s operations out of pro-

gram order, subject only to correctness constraints imposed by the program’s control and data dependences, while

maintaining the appearance of sequential execution. In such machines, dependences are enforced by detecting reads

and writes to and from architected register names and serializing any conflicting references to the same register

names.

Figure 1 shows an example of a program segment that executes more efficiently as a result of dataflow anal-

ysis that exposes parallelism. However, in this example, the load instruction must still be delayed so its address can be

checked against the pending store’s address to determine if a dependence exists. A conventional microprocessor

design that treats register operands as atomic units would not allow any portion of an operand to be consumed until

the entire operand has been produced. Hence, it would stall execution of the load until all three arithmetic computa-

tions are complete and the store address has been written to r7.

In practice, however, logic circuits and arithmetic units that generate some portion of an operand in advance

of the remaining portions are both feasible and desirable, and have been employed in several proposed and existing

designs. Figure 1 also shows what can happen under partial register dataflow analysis: here, each register is divided

into an upper and lower half, each half is computed independently subject to carry propagation dependences, and par-

tial operands can be used to initiate dependent computations and resolve unknown dependences. In this example, the

load can be initiated early, since showing that the lower half of r7 differs from the lower half of r9 is sufficient to dis-

ambiguate the two. Of course, if r7.0 and r9.0 are identical, the load must wait for the upper halves to be computed to

resolve the dependence. In practice, we find that partial register operands are often sufficient for this and other pur-

poses; detailed characterization is presented in Section 5.

This work is also motivated by the current trend towards deeper pipelining as an enabler for higher fre-
Mestan: Exploiting Partial Operand Knowledge 1

quency. The degree of pipelining utilized in recent microprocessor implementations has sharply increased over previ-

ous generation designs. Decode, issue, and register file logic that was able to evaluate in a single cycle in the past,

now is typically divided across several cycles in order to meet aggressive frequency goals. We observe, accordingly,

that as clock frequency increases, there is a decrease in the number of cascaded logic stages able to evaluate in a sin-

gle cycle. Traditionally, the number of logic stages needed to produce a complete 32- or 64-bit result in the execution

stage, whether that be the evaluation of an adder or address generation for a primary data cache access, has been one

limiter on clock frequency [14]. Pipelining the execution stage, although enabling a higher clock frequency, can neg-

atively impact performance much more so than deeper pipelining in the front-end of a design, since the extra stages

lengthen the scheduler loop between dependent instructions [2,12]. Furthermore, additional execution stages for

address or condition flag generation can delay the resolution of various types of pipeline hazards, including read-

after-write (RAW) hazards for load and store instructions, control hazards for mispredicted branch instructions, and

hit/miss detection for cache accesses.

In essence, the decrease in performance is a result of dependent or potentially dependent instructions not

FIGURE 1. Relaxed Execution Atomicity. Historically, each machine instruction was considered an atomic unit.
Advances in dataflow analysis relaxed this assumption, treating only the execution stage as atomic, and enabling
execution at the dataflow limit. We are proposing a further relaxation, where partial register values can be indepen-
dently read and written, and execution is no longer an atomic event. This exposes additional concurrency by over-
lapping computation of partial operands and resolving unknown dependences early. In this example, the load must
wait for the store’s address generation to complete to resolve a potential same-address dependence. As shown, the
partial register contents in r7.0 differ from r9.0, and are sufficient to disambiguate the load from the store. Since
partial results can be computed faster, particularly for arithmetic operations, the load is issued earlier.

Register

Example code: Serial Execution
add r1, r2, r3 Cycle 0
sub r4, r5, r6 Cycle 1
add r7, r1, r4 Cycle 2
store r9, 0x8(r7) Cycle 3
load r8, 0x8(r9) Cycle 4-5

Dataflow Analysis add r1 sub r4

add r7

store r9

Execution
At
Dataflow
Limit

load r8

True RAW
Dependence RAW

add r1.0 sub r4.0

add r7.0

store r9

load r8

add r1.1 sub r4.1

add r7.1

Partial Register Dataflow Analysis

True RAW
Dependence RAW
Carry-Propagate RAW

Execution
At
Partial

Dataflow
Limit
Mestan: Exploiting Partial Operand Knowledge 2

being able to benefit from the increased throughput of the pipeline since they still observe the entire end-to-end

latency of an earlier instruction’s execute stage. This causes a reduction in instruction throughput (measured in

instructions-per-cycle or IPC), negating the effects of an increase in clock frequency. Nevertheless, the continuing

demand for increased frequency makes pipelining of the execute stage appear inevitable. Solutions that focus on par-

ticular computations only, such as redundant representations that can avoid carry-propagation delays for arithmetic

operations [4], can mitigate this problem. However, a more general solution that also avoids the conversion problems

caused by redundant representations appears desirable.

In Section 6 we propose such a design, which mitigates the effect that deeper pipelining has on dependent

operations by shortening the effective length of dependence loops. The key observation we make is that dependent

instructions can begin their execution without entire knowledge of their operands, and that partial operand knowl-

edge can be used to guide their execution. This exposes concurrency between dependent instructions allowing their

execution to be overlapped in a pipelined design. We show that partial operand knowledge can not only speed up sim-

ple ALU dependency chains, as studied briefly in the past, but that when treated more generally, it can be used

throughout a processor core to expose greater concurrency. In particular, we demonstrate that the following opera-

tions can proceed with only portions of their input register operands: resolving mispredicted conditional branches,

disambiguating loads from earlier stores, and accessing set-associative caches. With the goal of more fully exploiting

this characteristic, we propose and evaluate a bit-slice-pipelined design that decomposes a processor’s data path into

16- and 8-bit slices. In a bit-slice design, register operands are no longer treated as atomic units; instead, we divide

them into slices, which are used to independently compute portions of an instruction’s full-width result. Section 7

contains a detailed evaluation of our proposed design. In summary, when pipelining the execution stage into 2 slices,

we show that a bit-slice-pipelined design which exploits partial operand knowledge achieves average IPC within 1%

of an ideal design with non-pipelined functional units. This is significantly faster than a conventional design with a

pipelined execution stage, which is 23% slower than the ideal case. When the execution stage is pipelined into 4

stages, a bit-sliced design achieves IPC 11% less than the best case, while a conventional pipelined design is 45%

slower than the ideal. In summary, our proposed bit-slice design obtains a 16% and 43% speedup over a 2- and 4-

stage conventional execution pipeline, respectively.
Mestan: Exploiting Partial Operand Knowledge 3

2 Partial Operand Knowledge
The data flow of a program is communicated through register operands that a microprocessor manages as

atomic units. In doing so, the scheduling logic assumes that all bits of a register are generated in parallel and are of

equal importance. As pipeline stages are added to the execution of an instruction, however, this assumption may no

be longer valid. In designs which pipeline the execution stage, certain bits of a result can be produced before others,

and by exposing this knowledge to the scheduler it may be possible for dependent instructions to begin useful work

while their producers remain in execution. We refer to these partial results produced during an instruction’s pipelined

execution as partial operand knowledge.

Conceptually, if we treat each bit of an operand as an independent unit, a dependent instruction can begin its

execution as soon as a single bit of each of its operands have been computed. In this manner, dependent operations

are chained to their producers, similar to vector chaining in vector processors [7]. Since functional units are designed

to compute groups of bits in parallel (referred to as slices), it is more efficient to chain together slices of instructions.

This abstraction fits well into a pipeline implementation, since portions of a result are naturally produced before oth-

ers as an instruction proceeds in its execution. Figure 2 presents a high-level overview of pipelined execution using

partial operand knowledge. Conventional pipelining in the execution stage, (b) in the figure, can lead to increased

FIGURE 2. Pipelining with Partial Operand Knowledge. In a conventional pipelined execution stage (b),
dependent instructions do not benefit from the increased throughput of the pipeline. By exploiting partial operand
knowledge (c), parallelism is exposed between slices of dependent instructions allowing their execution to be over-
lapped.

pipeline
overhead

addi R3,R3,4

Early Speculative Cache
Access

(b) Conventional Pipelined Execution Stage

add R3,R2,R1

add R3,R2,R1 addi R3,R3,4 lw R4, 0(R3) beq R5,R4, targ sub R5,R5,R1

M ispredict Detected
Early

lw R4, 0(R3) beq R5,R4, targ sub R5,R5,R1

add R3,R2,R1

addi R3,R3,4

lw R4, 0(R3)

beq R5,R4, targ

sub R5,R5,R1

(a) Non-pipelined Execution Stage

Dependent Instructions
Observe End-to-End Latency

(c) Pipelined Execution Stage w ith
 Partial Operand Know ledge

Dependent Instructions
Overlapped
Mestan: Exploiting Partial Operand Knowledge 4

IPC if partial results are not exposed, since dependent instructions do not benefit from the increased throughput of the

pipeline; they must still observe the end-to-end latency of the producers of their operands. When partial operand

knowledge is exposed, as shown in (c), portions of a dependency chain can be overlapped.

3 Partial Operand Bypassing
Recent designs have exploited partial operand knowledge exclusively through the technique of partial oper-

and bypassing. In these designs, rather than waiting for an entire result to be produced in execution, partial results are

forwarded to consuming instructions, with the goal of improving the throughput of long dependence chains of simple

integer instructions. Hsu et. al. in their TIDBITS design were one of the first to demonstrate that integer instructions

did not have to wait for their entire operands to be produced before beginning execution [9]. In their design, a 32-bit

adder is pipelined into four 8-bit adders, each of which writes its result into an 8-bit slice of the global register file.

This enables long dependency chains of simple integer instructions to be efficiently processed since each instruction

only waits for the first 8-bits of its operands to become available before it is issued. More recently, a design similar to

TIDBITS was implemented in the Intel Pentium 4 microprocessor. In this design, simple integer instructions are

issued to an ALU that is clocked at twice the frequency of the other pipeline stages [8]. This low-latency ALU is

pipelined to produce the low-order 16-bits of a result in the first stage, which can be bypassed to a dependent instruc-

tion in the next fast clock cycle. In this manner, the execution of two dependent instructions can be overlapped since

dependences are resolved on 16-bit boundaries. Both of these designs demonstrate that higher throughput pipelines

are possible if partial results are exposed to the scheduler and bypassed to dependent instructions. Similar techniques

to partial operand bypassing have been utilized for improving timing critical data paths in non-pipelined functional

unit implementations. For example, in IBM’s Star series microprocessors, the adder for effective address generation

uses dual-rail dynamic logic to produce the low-order 24-bits faster than the remaining 40-bits (implemented in

slower single-rail logic) in order to overlap the access to the TLB and level 1 data cache with the generation of the

high-order address bits [1].

Partial operand bypassing is useful for efficiently processing long chains of simple integer instructions.

However, other instruction types, such as loads and branches, traditionally require that all bits of their input operands

be available before they can begin their execution. In the next sections, we show that opportunity exists for using par-

tial operand knowledge to reduce the latency of these instructions as well.
Mestan: Exploiting Partial Operand Knowledge 5

4 Experimental Framework
This section describes the benchmarks and machine model used in our evaluation. The simulation infrastruc-

ture described here is used for the characterization of partial operand knowledge applications and for the evaluation

of our bit-sliced microarchitecture described in the forthcoming sections.

A benchmark suite consisting of 11 programs randomly chosen from SPECint2000 and SPECint95 are used

in this study and are shown in Table 1 with their baseline characteristics in our simulation model. These benchmarks

were compiled to the SimpleScalar PISA instruction set with optimization level -O3, and are used both for the char-

acterization in this section as well as in our timer model used later in Section 7. The benchmarks are run with the full

reference input sets.

We use a trace driven simulator for our characterization work and a detailed execution driven model for tim-

ing analysis that are each modified versions of SimpleScalar [5] with machine parameters as shown in Table 3. We

model a 15-stage out-of-order core similar to the pipeline used in the Intel Pentium 4 [8]. Our model supports specu-

lative scheduling with selective recovery; instructions that are data dependent on loads are scheduled as if the load

instruction hits in the level 1 cache, and then replayed if the load in fact misses.

Table 1: Benchmark Programs Simulated

Benchmark Simulated Instructions
(characterization / timer model)

IPC % Load
Instructions

Branch Prediction
Accuracy

bzip 1 B / 500 M 1.29 33% 93%

gcc 1 B / 500 M 1.28 29% 90%

go 1 B / 500 M 1.20 22% 84%

gzip 1 B / 500 M 1.41 23% 93%

ijpeg 1 B / 500 M 2.13 18% 93%

li 1 B / 500 M 1.42 28% 95%

mcf 1 B / 500 M 1.42 22% 98%

parser 1 B / 500 M 1.00 40% 87%

twolf 1 B / 500M 1.40 36% 93%

vortex 1 B / 500 M 1.43 33% 89%

vpr 1 B / 500 M 1.81 28% 96%
Mestan: Exploiting Partial Operand Knowledge 6

5 Partial Operand Applications
We now propose and characterize three new applications for partial operand knowledge: resolving mispre-

dicted conditional branches, disambiguating loads from earlier stores, and performing partial tag matching in set-

associative caches. These three applications represent new opportunity for further condensing dependence chains.

5.1 Early Resolution of Conditional Branch Instructions
By exposing partial results to dependent instructions, the effective length of a pipeline can be hidden. In this

section we characterize how early conditional branch mispredictions can be detected with the goal of reducing the

effective length of the branch misprediction pipeline. The more stages a branch must pass through to verify a predic-

tion, the more active wrong-path instructions enter the pipeline, and the longer the latency to redirect the fetch engine.

We find that partial results can be used to overlap the redirection of fetch with the resolution of a branch.

An example of a branch that contributes to a significant amount (18%) of the mispredictions in the program

li is shown in Figure 3. A majority of these mispredictions occur when the bne instruction (branch not equal to zero)

is predicted as not-taken. In making this prediction, the processor speculates that register $2 equals zero. Thus, when

this misprediction is detected, the execute stage reveals that in fact register $2 did not equal zero. Notice that the

andi instruction feeding the branch clears all the bits of register $2 except the low-order bit. Since the branch is com-

pared against zero, as soon as a non-zero bit is detected, the branch misprediction can be signaled to the front-end. In

this case, the branch is entirely dependent on the status of the first bit in register $2. In a machine with pipelined func-

tional units, the branch misprediction could be signaled in the first stage to reduce the misprediction penalty.

In general, there are only a limited number of conditional branch types that can detect mispredictions early

in their pipelined execution. Branch types that perform a subtraction and test the sign-bit must wait for the full result

to be produced. Furthermore, even though some branches, like the example shown in Figure 3, are capable of being

Table 2: Machine Configuration

Out-of-order Execution 4-wide fetch/issue/commit, 64-entry RUU, 32-entry load/store queue,
speculative scheduling for loads: replay load and dependent instructions
on load mis-schedule, 15-stage pipeline

Branch Prediction 64K-entry gshare, 8-entry RAS, 4-way 512-entry BTB

Memory System L1 I$: 64KB (2-way, 64B line size), 1-cycle latency
L1 D$: 64KB (4-way, 64B line size), 1-cycle latency
L2 Unified: 1MB (4-way, 64B line size), 6-cycle latency
Main Memory: 100-cycle latency

Functional Units 4 integer ALU’s (1-cycle), 1 integer mult/div (3/20 -cycle),
4 floating-pt ALU’s (2-cycle), 1 floating-pt mult/div/sqrt (4/12/24 -cycle)
Mestan: Exploiting Partial Operand Knowledge 7

detected early, this holds true only if the branch was originally predicted a specific direction. In our simulation model,

we use the SimpleScalar PISA instruction set which has the conditional branch types shown in Table 3. In the table,

we present the action taken on a misprediction and if it is possible to detect that action early in a branch’s pipelined

execution. The table shows that only two branch instructions have the ability to be detected early since they do not

require knowledge of the sign bit. These branch types, however, account for 61% of all dynamic branches and 48% of

all mispredictions averaged across our benchmark suite.

 In order to determine the effectiveness of using partial operand knowledge for resolving conditional branch

instructions early, we characterize the number of bits needed to detect a misprediction using a 64k-entry gshare pre-

dictor. The results are shown in Figure 4 below (branch misprediction rates for each of the benchmarks are shown in

Table 1). Figure 4 reports that on average 40% of all conditional branch mispredictions can be resolved by examining

only the first 8-bits of their operands. By examining the first bit in isolation, 28% of mispredictions can be detected

on average. The large spike at bit position 31 is due to the need of the sign-bit for many branch types, and that some

branches need all bit positions to determine that a misprediction occurred (as shown in Table 3). For example, if a

FIGURE 3. Early Branch Misprediction Detection. A misprediction can be detected without entire knowledge
of the branch’s input operands (code segment from Spec95int benchmark li).

Table 3: Conditional Branch Instruction Types Simulated

Instruction Description Action Taken on Misprediction

Predicted Taken Detect Early? Predicted Not Taken Detect Early?

BEQ RS, RT, offset Branch if RS == RT show RS != RT yes show RS == RT no

BNE RS, RT, offset Branch if RS != RT show RS == RT no show RS != RT yes

BLEZ RS, offset Branch if RS <= 0 show RS > 0 no show RS <= 0 no

BGTZ RS, offset Branch if RS > 0 show RS <= 0 no show RS > 0 no

BLTZ RS, offset Branch if RS < 0 show RS >= 0 no show RS < 0 no

BGEZ RS, offset Branch if RS >= 0 show RS < 0 no show RS < 0 no

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0

0 12347 6 5

Predicted not-taken and
found non-match at bit 0:
Misprediction found
without knowledge of upper
bits of Reg $2

Reg = $2

Reg = $0 (always 0)

if (this->n_flags & MARK)
 break;

else {
 this->n_flags|= MARK;
 /* continue... */
}

lbu $3,1($16)
andi $2,$3, 0x0001
bne $2,$0,$L110
Mestan: Exploiting Partial Operand Knowledge 8

misprediction occurs when a beq instruction was predicted not-taken, in order to detect the misprediction we must

show that the two registers feeding the branch are both equal. This requires all bits to be used in the branch compari-

son.

5.2 Load/Store Disambiguation
Allowing a load instruction to issue into the memory system requires its data address to be compared to all

outstanding stores to ensure that no data dependence exists. Partial knowledge of the memory address can allow

addresses in the load/store queue to be disambiguated before their address generation has fully completed. Further-

more, this disambiguation can proceed even before a virtual to physical translation has taken place by focusing solely

on the index bits of the addresses.

Figure 5 characterizes how early a load address can be disambiguated against a store address in the

load/store queue at the time a load is placed in the queue. We start from bit 2 (since PISA uses byte addressing) and

serially compare each bit of the load address to all prior stores in the queue. At each step, more bits are added to the

comparison until we reach the 31st bit of the address, which represents the conventional comparison of the full

addresses. The results are shown for two representative benchmarks, bzip and gcc, with a 32-entry unified LSQ run-

ning on a 15-stage pipeline with parameters shown earlier in Table 2.

FIGURE 4. Early Branch Misprediction Detection. On average, 40% of all branch mispredictions can be
detected after analyzing the first 8-bits of the branch comparison.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 3 6 9 12 15 18 21 24 27 30

Bits Used in Branch Comparison (cumulative from bit 0)

 P

er
ce

nt
 o

f M
is

pr
ed

ic
tio

ns
 D

et
ec

te
d

bzip2 gcc go gzip ijpeg li
mcf parser twolf vortex vpr
Mestan: Exploiting Partial Operand Knowledge 9

There are five cases that occur as we compare the addresses: (1) zero entries in the LSQ match allowing the

load to immediately be issued to the memory system; (2) a single entry is found, but as more bits are compared, this

entry will actually not match; (3) a single entry is found, and when the entire address is compared this is an exact

match of the load data address; (4) multiple entries match the load data address thus far; (5) multiple entries match the

load data address thus far, but these multiple entries are all stores to the same address. (3) and (5) represent conditions

in which the store should forward its data to the load instruction. In particular, in the case of (5), the store data should

be taken from the latest entry in the queue that matched. To further enhance the characterization, we distinguish when

there are no stores in the LSQ (this is a subset of the zero entries match case), and separate the single entry-hit case to

FIGURE 5. Early Load/Store Disambiguation. After examining the first 9-bits of the addresses in the LSQ, a
unique forwarding address is found or all addresses are ruled out allowing a load to pass a head of an earlier store.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2 3 4 5 6 7 8 9 10 11 12 13 14 15

Pe
rc

en
t o

f A
ll

A
lia

si
ng

 R
es

ul
ts

bzip - 32 entry LSQ

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2 3 4 5 6 7 8 9 10 11 12 13 14 15

Bit Used in Addr Comparison (cumulative from bit 2)

Pe
rc

en
t o

f A
ll

A
lia

si
ng

 R
es

ul
ts

mult entries match - diff addr
mult entries match - same addr
single entry - match (mult stores)
single entry - match (one store)
single entry - non-match
zero entries match
no stores in queue

gcc - 32 entry LSQ
Mestan: Exploiting Partial Operand Knowledge 10

show when we were able to disambiguate between multiple store addresses or just a single address. The bars in Fig-

ure 4 converge to show the percent of time that a load address matches a prior store address in the LSQ.

Given the characterization in Figure 5, a partial address comparison could be used for allowing a load to

bypass a store non-speculatively. After 9 bits have been compared, we have either (1) ruled out all prior stores due to

a non-match in the low-order bits (zero entries match, no stores in queue), or (2) found a single store address in the

queue which matches the address bits thus far (single entry-match, mult-entries match-same add). In the case where a

partial match is found, the load must wait until the entire address comparison is completed. However, notice that this

address which partially matches ends up being an exact match of the load address when all bits are compared since

the single entry-non-match category has reached zero at this point. Therefore, we could speculatively forward the

store data in this case with a very high accuracy.

5.3 Partial Tag Matching in Set-Associative Caches
One of the most performance-critical data paths in a microprocessor is the access to the level 1 data cache.

Reducing the load-to-use latency can lead to higher performance since instructions that are data dependent on a load

can be issued sooner and the load shadow can be shortened, resulting in fewer instructions being flushed on a mis-

schedule [2]. Partial operand knowledge can be used to shorten the load-to-use latency by overlapping access of the

level 1 data cache with effective address generation.

As an effective address is being computed, the low-order bits, which are naturally produced early in a fast

adder circuit, can be used to index into the cache. If we consider a pipelined design, which generates a 32-bit address

in two 16-bit adder stages, enough address bits will be available in the first stage to completely index into a large

cache. Any bits that are available beyond the index can be used to perform a partial tag match to select a member

speculatively, or signal a miss in the cache early non-speculatively. Figure 6 shows an example of a partial tag cache

access. After 16-bits of the effective address are generated, the exact index of the cache is known and 3 partial tag bits

are available. These are used to perform a partial tag match to select a member in the selected equivalence class. In

this case, we can immediately rule out the member in way 1 since its low-order tag bits do not match. Since the tag

bits of the member in way 2 do match, and the hit rates of most level 1 data caches are very high, we can speculate

that this entry will indeed be a hit when the full tag bits are compared. This speculation allows the data to be returned

before the address generation is completed, saving one cycle of load-to-use latency.
Mestan: Exploiting Partial Operand Knowledge 11

Partial tag matching has been explored in the past as an enabler of large associative caches [11], and as a

method for reducing the access time of large cache arrays[13]. Our characterization is similar to that in [13] although

their goal was to use partial tag matches even after full address generation has occurred in order enable faster tag

array accesses. In our case, we use partial tag matching as a technique for allowing a cache access to be done in par-

allel with address generation by utilizing partial address bits. Sum-addressed caches take a different approach to

reducing the load-to-use latency by performing the address calculation (base+offset) in the cache array decoder [15].

Partial tag matching and sum-addressed indexing are orthogonal, in that both techniques could be combined as they

target separate areas of the level 1 cache access.

Figure 7 characterizes the number of bits of a cache tag needed in a set-associative cache to either find a

unique member that matches the full address, or to signal a miss in the cache if no members match. The results are

presented for two representative benchmarks, mcf and twolf. All of the benchmarks simulated had similar behavior.

Two different cache sizes are shown (a 64KB, 64B line cache and a 8KB, 32B line cache) for three different associa-

tivities.

Tag bits are compared serially starting from the first tag bit available. Notice that as associativity grows, the

tag bits start earlier in the address. At each step, more bits are added until all of the bits in the tag have been com-

pared. This represents the full tag comparison carried out in conventional designs. As the address bits are compared,

there are four cases that can occur: (1) a single entry matches the partial tag bits thus far, and this entry will match

when the full tag bits are compared; (2) a single entry matches the partial tag bits thus far, but this entry will not

match when the full tag bits are compared; (3) zero entries match, revealing a miss in the cache; (4) multiple entries

f

FIGURE 6. Partial Tag Cache Access. The first 16 bits of address generation are used to index into the cache
early. In this case, three tag bits are available after the index, which are used to perform a partial tag match and
speculatively select a member as a hit. The full tag bits are used in the next cycle to verify the prediction.

cache index
early tag bits

used for full tag
comparison

b[15:0] a[15:0]

b[31:16] a[31:16]

101

1010111010100

000101010100

1010111010100001

1010111010100101

data

data

Verify with full tag
bits on next cycle

Predict this member
will hit

Address Generation Cache Access

way 1 way 2
Mestan: Exploiting Partial Operand Knowledge 12

match the tag bits thus far, therefore a unique member cannot be determined. Cases (2) and (3) represent cache

misses.

 Ideally, we want the bars to converge early to the single entry-hit and zero entries match categories as they

represent the hit rate and miss rate respectively. Notice that after 16 bits of the address have been generated (bit 15 in

the figures), both the 64KB and 8KB caches still show a significant number of accesses that have multiple entries that

match the tag bits thus far. However, most of these converge to the single entry-hit category. In other words, more

importantly, the single entry-miss category is quite small at this point. Therefore, a policy such as Most-Recently-

FIGURE 7. Partial Tag Matching. As more tag bits are used, the graphs converge to the single entry- hit and zero
entries match which represent the hit and miss rates of the cache respectively.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Pe
rc

en
t o

f A
ll

A
cc

es
se

s

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Pe
rc

en
t o

f A
ll

A
cc

es
se

s

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Pe
rc

en
t o

f A
ll

A
cc

es
se

s

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Pe
rc

en
t o

f A
ll

A
cc

es
se

s

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bit Used in Tag Check

Pe
rc

en
t o

f A
ll

A
cc

es
se

s

mult match
single entry - miss
zero match
single entry - hit

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Used in Tag Check

Pe
rc

en
t o

f A
ll

A
cc

es
se

s

mult match
single entry - miss

zero match
single entry - hit

8-way

2-way

4-way

2-way

4-way

8-way

twolf - 8KB , 32B linesmcf - 64KB, 64B lines
Mestan: Exploiting Partial Operand Knowledge 13

Used (MRU) could be used as a way-predictor to speculatively select one of the cache ways that match. This specula-

tion would then be verified on the next clock cycle when the full address bits become available. Implementing such a

way-predictor would reduce the load-to-use latency at the cost of modifying the load replay mechanism typical in

most out-of-order processors to account for the cases in which the speculation was incorrect.

6 A Bit-Sliced Microarchitecture
Motivated by the results of the prior section, we propose a bit-sliced microarchitecture that directly exposes

concurrency across operand bit slices and exploits this concurrency to pipeline execution of dependent instructions,

accelerates load/store disambiguation, performs partial tag matching in the primary data cache, and resolves condi-

tional branches early. The bit-sliced microarchitecture relaxes the conventional atomicity requirement of register

operand reads and writes, instead enabling independent reads and writes to each partial operand, as delineated by bit-

slice boundaries. Dependences are tracked at this level, and instruction scheduling operates at this finer level of gran-

ularity. In effect, we extend bit-slice pipelining of functional units to include the full data path and most major com-

ponents of the control path. The proposed microarchitecture is illustrated in Figure 8. In this design, the issue queue

and wake-up logic, register file, and functional units are each split into multiple units which work on a slice of the

data path (16 bits if slicing by 2, 8 bits if slicing by 4). This is reminiscent of board-level ALU designs of the past that

connect several bit-slice discrete parts together to compute a wider result.

f

FIGURE 8. Bit-Sliced Microarchitecture. The issue queue and wake-up logic, physical register file, and func-
tional units are divided into narrow slices. At dispatch, instructions are split into slices which execute indepen-
dently and write to a slice of the global register file. In this case, two slices are shown, each of which compute 16
bits at a time.

 Instruction
Cache

 Instruction Fetch / Decode

Rename / Dispatch

L1 Data CacheL
S
Q Physical

R
eg File Slice

Issue
Queue

Physical
R

eg File Slice

Issue
Queue

Scheduler

ROB
Mestan: Exploiting Partial Operand Knowledge 14

In our bit-slice design, an instruction is divided into multiple slices at dispatch and placed into each slice’s

issue queue. In this study, we explore slicing by 2, in which an instruction’s execution is divided into 2 stages each of

which compute 16 bits, and slicing by 4, in which an instruction’s execution is divided into 4 stages, each of which

compute 8 bits at a time. This is similar to pipelining the execution stage into multiple stages in that instructions now

take several cycles to execute. However, with bit-slice pipelining, dependences are resolved on slice boundaries,

results are written into a slice of the global register file, and instruction slices can execute out of order. The high-order

bit-slice of an instruction is allowed to execute before the low-order slice if no inter-slice dependency exists. Whereas

conventional data dependences force the serial execution of a pair of instructions, inter-slice dependences force the

serial execution of slices of an instruction.

Figure 9 shows how dependences are scheduled in a bit-slice pipeline when using 4 slices. In the figure, RS

and RT are the source registers, and RD the destination. An instruction dependent on RD must observe the depen-

dency edges shown in each case. Case (a) in the figure, corresponds to a traditional pipelined ALU, in which a depen-

dent instruction must wait until all slices of its operands have computed. In a bit-slice design, partial operand

knowledge is exploited so that these dependences can be relaxed. Inter-slice dependences are only required when

slices need to communicate with each other. For example, in arithmetic, the carry-out bit needs to be communicated

across slices. This dependency is scheduled via an inter-slice dependence. Logic instructions, however, do not have

any serial communication between slices and can execute out of order. Shift instructions require that more than just a

single bit be communicated across slices. An example of the scheduling of slice dependences for a code segment

f

FIGURE 9. Register Slice Dependences. Dependency edges are shown for a slice by 4 design. Each box repre-
sents an 8-bit slice of the register. RS and RT are source register operands and RD is the destination. An instruction
data dependent on RD would observe the edges shown in each case.

(b) Dependences for Arithmetic
in Bit-sliced Pipelined EX Stage

4 3 2 1

4 3 2 1

4 3 2 1

RS

RT

RD

carry chain forces
serial computation

(c) Dependences for Logic in
Bit-sliced Pipelined EX Stage

4 3 2 1

4 3 2 1

4 3 2 1

RS

RT

RD

slices do not have to
execute in-order

(a) Dependences for Arithmetic/Logic in
Conventional Pipelined EX Stage

4 3 2 1

4 3 2 1

4 3 2 1

RS

RT

RD

slices must wait for all input
slices to become available

Inter-slice dependency

(b) Dependences for Arithmetic
in Bit-sliced Pipelined EX Stage

4 3 2 1

4 3 2 1

4 3 2 1

RS

RT

RD

carry chain forces
serial computation

(c) Dependences for Logic in
Bit-sliced Pipelined EX Stage

4 3 2 1

4 3 2 1

4 3 2 1

RS

RT

RD

slices do not have to
execute in-order

(a) Dependences for Arithmetic/Logic in
Conventional Pipelined EX Stage

4 3 2 1

4 3 2 1

4 3 2 1

RS

RT

RD

slices must wait for all input
slices to become available

Inter-slice dependency

(b) Dependences for Arithmetic
in Bit-sliced Pipelined EX Stage

4 3 2 1

4 3 2 1

4 3 2 1

RS

RT

RD

carry chain forces
serial computation

(c) Dependences for Logic in
Bit-sliced Pipelined EX Stage

4 3 2 1

4 3 2 1

4 3 2 1

RS

RT

RD

slices do not have to
execute in-order

(a) Dependences for Arithmetic/Logic in
Conventional Pipelined EX Stage

4 3 2 1

4 3 2 1

4 3 2 1

RS

RT

RD

slices must wait for all input
slices to become available

(b) Dependences for Arithmetic
in Bit-sliced Pipelined EX Stage

4 3 2 1

4 3 2 1

4 3 2 1

RS

RT

RD

carry chain forces
serial computation

(c) Dependences for Logic in
Bit-sliced Pipelined EX Stage

4 3 2 1

4 3 2 1

4 3 2 1

RS

RT

RD

slices do not have to
execute in-order

(b) Dependences for Arithmetic
in Bit-sliced Pipelined EX Stage

4 3 2 1

4 3 2 1

4 3 2 1

RS

RT

RD

carry chain forces
serial computation

(b) Dependences for Arithmetic
in Bit-sliced Pipelined EX Stage

4 3 2 1

4 3 2 1

4 3 2 1

RS

RT

RD

carry chain forces
serial computation

(c) Dependences for Logic in
Bit-sliced Pipelined EX Stage

4 3 2 1

4 3 2 1

4 3 2 1

RS

RT

RD

slices do not have to
execute in-order

(c) Dependences for Logic in
Bit-sliced Pipelined EX Stage

4 3 2 1

4 3 2 1

4 3 2 1

RS

RT

RD

slices do not have to
execute in-order

(a) Dependences for Arithmetic/Logic in
Conventional Pipelined EX Stage

4 3 2 1

4 3 2 1

4 3 2 1

RS

RT

RD

slices must wait for all input
slices to become available

(a) Dependences for Arithmetic/Logic in
Conventional Pipelined EX Stage

4 3 2 1

4 3 2 1

4 3 2 1

RS

RT

RD

(a) Dependences for Arithmetic/Logic in
Conventional Pipelined EX Stage

4 3 2 1

4 3 2 1

4 3 2 1

4 3 2 1

4 3 2 1

4 3 2 1

RS

RT

RD

slices must wait for all input
slices to become available

Inter-slice dependency
Mestan: Exploiting Partial Operand Knowledge 15

from vortex is shown in Figure 10.

Not all instruction types easily fit into a bit-slice pipelined design. Prior work has shown that multiplication

can proceed in a bit-serial fashion [10]. However, division and floating-point instructions require all bits to be pro-

duced before starting their execution. For these cases, a full 32-bit unit is needed. These units would collect slices of

their operands and perform the computation once all slices have arrived. Our model accounts for all such difficult

corner cases; for the most part, they are not relevant to the performance of the applications we study.

Our bit-slice microarchitecture expands upon the integer ALU design presented in [9], and is similar to the

byte-serial and byte-parallel skewed microarchitecture targeted for low power presented in [6]. We focus on perfor-

mance in this work. The low power optimizations proposed in [6] and [3] could be used to enhance performance our

design. For instance, if an instruction is known to use narrow-width operands, inter-slice dependences could be

relaxed further, since the high-order register operand would be a known value of either zero or a all 1’s. Such optimi-

zations are beyond the scope of this paper, however, we note that they could be employed for higher performance.

7 Implementation and Evaluation
In this section, we present an implementation of a bit-slice microarchitecture and evaluate its performance

against a best-case design which does not pipeline its functional units yet runs at the same clock frequency. We study

two different configurations: slice by 2, in which 32-bit register operands are divided into two 16-bit slices, and slice

by 4, in which 32-bit register operands are divided into four 8-bit slices. In each configuration, dependences are

f

FIGURE 10. Issue Queue Slices for the Slice by 2 Configuration. The issue queues hold slices of each instruc-
tion. Here, the instruction slices are shown after they have been renamed and the inter-slice dependences have been
added.

LSQ

sll r16, r17, 3
lui r2, 0x1002
addu r2, r2, r16
lw r2, 0xF3C0 (r2)

sll r48.1, r17.1, 3 [r48.0]

lui r34.1, 0x1002

addu r36.1, r34.1, r48.1 [r36.0]

add agen.1, r36.1, 0xF3C0 [agen.0]

sll r48.0, r17.0, 3

lui r34.0, 0x0000

addu r36.0, r34.0, r48.0

add agen.0, r36.0, 0xFEC0 lw r38, agen.0

Issue Queue Slice 1 Issue Queue Slice 0

Code Segment (vortex)

inter-slice dependencies

issue load after
first agen slice if
using partial tag
matching

load-upper-immediate (lui)
clears low-order bits
Mestan: Exploiting Partial Operand Knowledge 16

resolved on slice boundaries and results are written into slices of the global register file as described in Section 6.

Our machine model is the same as described earlier in Section 4 and in Table 2. Our model supports specu-

lative scheduling with selective recovery; instructions that are data dependent on loads are scheduled as if the load

instruction hits in the cache, and then replayed if the load in fact misses. This replay mechanism is extended to replay

loads that were incorrectly matched in the data cache as a result of partial tag matching. We use an MRU policy for

way prediction to select an equivalence class member when multiple entries match the partial tag in the data cache.

After 16 bits of an address are computed, we begin the cache index and partially match the virtual address tag bits.

We assume a virtually indexed-virtually tagged cache, although this could be avoided by page coloring the low-order

bits of the tag such that they do not need to go through address translation. In this case, when the full address is gen-

erated, the TLB would be accessed, and the physical address used to verify the partial tag match. We leave further

exploration of physically-tagged caches to future work.

Since clock frequency is held constant in our study, slicing the functional units adds a full clock cycle of

latency with each additional pipeline stage. This allows us to study the effect on IPC without assuming any increase

in clock frequency due to the narrow-width functional units. Our goal is then to achieve an IPC comparable to that of

a design which does not pipeline its functional units yet runs at the same clock frequency. Figure 11 summarizes the

pipelines for the three cases studied: (1) non-pipelined execution stage, (2) slice by 2, and (3) slice by 4.

FIGURE 11. Pipelines For The Three Models Studied. (a) non-pipelined execution stage, (b) slice by 2, and (c)
slice by 4. The load pipelines are shown below each case. If partial tag matching is used, then the second half of the
execute stage is overlapped with the cache access.

(c)

(a)

(b) Fetch1 Fetch2 Dec1 Dec2 DP1 DP2 Sch1 Sch2 Sch3 Iss RF1 RF2 EX1 RE CT EX2

Mem RE CT

 Fetch1 Fetch2 Dec1 Dec2 DP1 DP2 Sch1 Sch2 Sch3 Iss RF1 RF2 EX1 RE CT EX2

Mem RE CT

EX3 EX4

 Fetch1 Fetch2 Dec1 Dec2 DP1 DP2 Sch1 Sch2 Sch3 Iss RF1 RF2 EX RE CT

Mem RE CT

Mem
Mestan: Exploiting Partial Operand Knowledge 17

7.1 Performance Results
The IPC results for our machine models are shown below in Figure 12. The thin bars at the top of each IPC

stack mark the base IPC of the benchmark when the execution stage is not pipelined. The bottom-most bar in the

stack corresponds to the IPC attained with a conventional pipelined execution stage. A conventional design in this

sense is one that does simple pipelining without partial operand bypassing or utilizing any of the partial operand

knowledge techniques described in Section 5. Register operands are therefore treated as atomic units and depen-

dences are resolved at the granularity of an entire operand, causing dependent instructions to observe the end-to-end

latency of the execution stage. The results presented in the figure were obtained by running a series of simulations in

which each optimization was applied one by one. Therefore, note that the order in which the optimizations were

added matters to the impact shown for each specific optimization. Specifically, the optimizations added last benefit

from optimizations added earlier.

Figure 12 shows that if partial operand knowledge is exposed to dependent instructions, the IPC achievable

approaches the best-case non-pipelined design. On average across the benchmarks simulated, when using 2 slices

there is only a 0.01% slowdown compared to the ideal base machine. This is a 16% speedup compared to simple

pipelining when no partial operand knowledge is utilized. In bzip, gzip, and li, the bit-slice design is able to exceed

the IPC of the base case; this slight improvement is due to second-order effects caused by wrong-path instructions, as

well as increased scheduling freedom that can reduce the performance impact of structural hazards. The highest slow-

down is vortex with a 7% reduction in IPC. When using 4 slices, the bit-slice design has an 18% reduction in IPC on

average compared to the base model, which is a 44% speedup over simple pipelining. Twolf experiences the highest

reduction in IPC at 21%, and bzip has the smallest reduction at 8%. It is much harder to attain the base IPC in the slice

by 4 case since the execution latency of all instructions is increased by 4 cycles. Note that in our simulation model,

when slicing by 4, we also increase the cache access time for the level 1 cache to be 2 cycles (as shown in Figure 11).

Although the execution latencies are 4 times that in the base model, the bit-slice design is able to recover a significant

amount of the IPC back from simple pipelining. Notice that a bit-slice design may be able to support a higher clock

frequency than the base case, since fewer cascaded logic stages are needed per pipeline stage now that only partial

results are computed each cycle. Of course, other stages in the pipeline may need to be balanced to this frequency.

A closer view of the speed-up achieved with the bit-slice design over simple pipelining is shown in Figure
Mestan: Exploiting Partial Operand Knowledge 18

13. Figure 13 reports that substantial speedups are possible by using the proposed partial operand techniques. Partial

tag matching accounts for much of the speed-up over simple pipelining. The simulated L1 data cache size is 64KB, 4-

way, which leaves only two bits beyond the index when the first 16-bits of the address are used for partial tag match-

ing. Although just two bits are used, we found the accuracy of partial tag matching to be very high. There is only a

2% miss rate on average across our benchmarks for the slice by 2 configuration, and a 1% miss rate for slice by 4.

Relating this back to our characterization in Section 5, while there are often multiple entries that match these two par-

tial tag bits, the way-predictor (with MRU selection policy) is usually able to find the correct member in the cache.

In summary, partial operand knowledge can be used to recover much of the IPC loss due to deeper pipelin-

ing in the execution stage. It is important that a bit-sliced microprocessor expose partial results to all instructions, and

not simply to integer dependence chains. Early branch resolution, partial tag matching, early load/store disambigua-

tion, and out-of-order slice execution can lead to an additional 8% and 13% speedup in IPC on average when slicing

by 2 and 4 respectively. Since a bit-slice design only computes a portion of a result in a clock cycle, we believe exe-

cution units will be able to utilize a higher clock frequency. If instead clock frequency is held constant when moving

to a bit-sliced design, the reduction in logic per pipeline stage can help ease critical path constraints by distributing

FIGURE 12. IPC results for a Bit-Slice Microarchitecture. The thin bars indicate the IPC of a design without a
pipelined execution stage running at the same clock frequency. The bottom-most bar of each stack corresponds to
the IPC attainable with simple pipelined design that does not exploit partial operand knowledge.

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

bz
ip

gc
c go

gz
ip

ijp
eg li

m
cf

pa
rs

er

tw
ol

f

vo
rt

ex vp
r

In
st

ru
ct

io
ns

 P
er

 C
yc

le
 (I

PC
)

partial tag matching
early l/s disambiguation
early branch resolution
out-of-order slices
partial operand bypassing
simple pipelining

2
sl

ic
es

4
sl

ic
es
Mestan: Exploiting Partial Operand Knowledge 19

these paths across several cycles while still allowing back-to-back execution of dependent instructions.

8 Conclusions and Future Work
We make three major contributions in this report. First, we formalize the concept of partial operand knowl-

edge by relaxing the atomicity of register operand reads and writes. In effect, this eliminates the need to perform a

pipeline’s execute stage atomically. Second, we extend the technique of partial operand bypassing, utilized in an ad

hoc manner by proposed and existing designs, to enable three new applications: resolving mispredicted conditional

branch instructions, disambiguating loads from earlier stores, and performing partial tag matching in set-associative

caches. Third, we propose and evaluate a bit-slice microarchitecture which divides atomic register operands into

slices and exploits partial operand knowledge for exposing concurrency between dependent instructions. A bit-slice

design is able to recover much of the IPC loss that results from pipelining the execution stage of a microprocessor.

Our detailed simulation results show that naive pipelining of the execution stage can lead to dramatic performance

loss; however, the techniques we propose can recover much if not all of this performance loss.

A bit-slice paradigm opens up several interesting avenues for future work. First, partial tag matching, stud-

ied for performance in this work, can lead to new low-power optimizations in set-associative caches. Partial address

bits could be used to selectively enable SRAM sub-arrays cycles ahead of the actual cache access, thereby allowing

FIGURE 13. Speed-Up of Bit-Slice Pipelining over Simple Pipelining. By exploiting partial operand knowl-
edge, a bit-slice design can achieve a significant speed-up in IPC over simple pipelining.

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

55%

bz
ip

gc
c go

gz
ip

ijp
eg li

m
cf

pa
rs

er

tw
ol

f

vo
rt

ex vp
r

Sp
ee

d
U

p
O

ve
r

Si
m

pl
e

Pi
pe

lin
in

g
partial tag matching
early l/s disambiguation
early branch resolution
out-of-order slices
partial operand bypassing

2
sl

ic
es

4
sl

ic
es
Mestan: Exploiting Partial Operand Knowledge 20

arrays to be shutdown for low power without effecting the speed of the cache access. Secondly, biasing branches to

facilitate early branch resolution should be further explored. By making the compiler and branch predictor aware of

the bit-sliced execution stage, more mispredicted branches may be able to be resolved in the first pipeline stage

though early branch resolution. Finally, and perhaps most intriguing, bit-sliced value prediction could be explored to

further decouple slices and relax or eliminate inter-slice dependences. Due to the frequency of narrow width oper-

ands, bit-slice value prediction is likely to be very accurate.

References
[1] D. H. Allen, S. H. Dhong, H. P. Hofstee, J. Leenstra, K. J. Nowka, D. L. Stasiak, and D. F. Wendel. Custom

Circuit Design as a Driver of Microprocessor Performance. IBM Journal of Research & Development, vol. 44,
no. 6, November 2000.

[2] E. Borch, E. Tune, S. Manne, and J. Emer. Loose Loops Sink Chips, In Proceedings of the 8th Annual Interna-
tional Symposium on High-Performance Computer Architecture, February 2002.

[3] D. Brooks and M. Martonosi, Dynamically Exploiting Narrow Width Operands to Improve Processor Power
and Performance, In Proceedings of the 5th International Symposium on High-Performance Computer Archi-
tecture, January 1999.

[4] M. D. Brown and Y. N. Patt. Using Internal Redundant Representations and Limited Bypass to Support Pipe-
lined Adders and Register Files, In Proceedings of the 8th Annual International Symposium on High-Perfor-
mance Computer Architecture, February 2002.

[5] D. C. Burger and T. M. Austin, The SimpleScalar Tool Set, Version 2.0, Technical Report CS-1342, Computer
Sciences Dept., University of Wisconsin-Madison, 1997.

[6] R. Canal, A. Gonzalez, and J. E. Smith. Very Low Power Pipelines Using Significance Compression, In Pro-
ceedings of the 33rd Annual Symposium on Microarchitecture, December 2000.

[7] J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quantitative Approach, Morgan Kaufman, San
Mateo, CA, 1994.

[8] G. Hinton, D. Sager, M. Upton, D. Boggs, D. Carmean, A. Kyker, P. Roussel. The Microarchitecture of the
Pentium 4 Processor, Intel Technology Journal Q1, 2001.

[9] P. Y.-T. Hsu, J. T. Rahmeh, E. S. Davidson, and J. A. Abraham. TIDBITS: Speedup Via Time-Delay Bit-Slic-
ing in ALU Design for VLSI Technology, In Proceedings of the 12th Annual International Symposium on Com-
puter Architecture, June 1985.

[10] P. Ienne and M. A. Viredaz. Bit-Serial Multipliers and Squarers, IEEE Transactions on Computers, 43 (12),
December 1994.

[11] R. E. Kessler, R. Jooss, A. R. Lebeck, and M. D. Hill. Inexpensive Implementations of Set-Associativity, In
Proceedings of the 16th Annual International Symposium on Computer Architecture, June 1989.

[12] I. Kim and M. H. Lipasti. Implementing Optimizations at Decode Time, To Appear In Proceedings of the 29th
Annual Symposium on Computer Architecture, June 2002.

[13] L. Liu. Cache Designs with Partial Address Matching, In Proceedings of the 27th Annual International Sym-
posium on Microarchitecture, December 1994.

[14] T. Liu and S.-L. L. Performance Improvement with Circuit-Level Speculation, In Proceedings of the 33rd An-
nual International Symposium on Microarchitecture, December 2000.

[15] W. L. Lynch, G. Lauterbach, J. I. Chamdani. Low Load Latency Through Sum-Addressed Memory (SAM), In
Proceedings of the 25th Annual International Symposium on Computer Architecture, 1998.
Mestan: Exploiting Partial Operand Knowledge 21

	Exploiting Partial Operand Knowledge
	Abstract
	1 Introduction and Motivation
	FIGURE 1. Relaxed Execution Atomicity. Historically, each machine instruction was considered an a...

	2 Partial Operand Knowledge
	FIGURE 2. Pipelining with Partial Operand Knowledge. In a conventional pipelined execution stage ...

	3 Partial Operand Bypassing
	4 Experimental Framework
	Table 1: Benchmark Programs Simulated
	Table 2: Machine Configuration

	5 Partial Operand Applications
	5.1 Early Resolution of Conditional Branch Instructions
	FIGURE 3. Early Branch Misprediction Detection. A misprediction can be detected without entire kn...
	Table 3: Conditional Branch Instruction Types Simulated
	FIGURE 4. Early Branch Misprediction Detection. On average, 40% of all branch mispredictions can ...

	5.2 Load/Store Disambiguation
	FIGURE 5. Early Load/Store Disambiguation. After examining the first 9-bits of the addresses in t...

	5.3 Partial Tag Matching in Set-Associative Caches
	FIGURE 6. Partial Tag Cache Access. The first 16 bits of address generation are used to index int...
	FIGURE 7. Partial Tag Matching. As more tag bits are used, the graphs converge to the single entr...

	6 A Bit-Sliced Microarchitecture
	FIGURE 8. Bit-Sliced Microarchitecture. The issue queue and wake-up logic, physical register file...
	FIGURE 9. Register Slice Dependences. Dependency edges are shown for a slice by 4 design. Each bo...
	FIGURE 10. Issue Queue Slices for the Slice by 2 Configuration. The issue queues hold slices of e...

	7 Implementation and Evaluation
	FIGURE 11. Pipelines For The Three Models Studied. (a) non-pipelined execution stage, (b) slice b...
	7.1 Performance Results
	FIGURE 12. IPC results for a Bit-Slice Microarchitecture. The thin bars indicate the IPC of a des...
	FIGURE 13. Speed-Up of Bit-Slice Pipelining over Simple Pipelining. By exploiting partial operand...

	8 Conclusions and Future Work
	References
	[1] D. H. Allen, S. H. Dhong, H. P. Hofstee, J. Leenstra, K. J. Nowka, D. L. Stasiak, and D. F. W...
	[2] E. Borch, E. Tune, S. Manne, and J. Emer. Loose Loops Sink Chips, In Proceedings of the 8th A...
	[3] D. Brooks and M. Martonosi, Dynamically Exploiting Narrow Width Operands to Improve Processor...
	[4] M. D. Brown and Y. N. Patt. Using Internal Redundant Representations and Limited Bypass to Su...
	[5] D. C. Burger and T. M. Austin, The SimpleScalar Tool Set, Version 2.0, Technical Report CS-13...
	[6] R. Canal, A. Gonzalez, and J. E. Smith. Very Low Power Pipelines Using Significance Compressi...
	[7] J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quantitative Approach, Morgan Ka...
	[8] G. Hinton, D. Sager, M. Upton, D. Boggs, D. Carmean, A. Kyker, P. Roussel. The Microarchitect...
	[9] P. Y.-T. Hsu, J. T. Rahmeh, E. S. Davidson, and J. A. Abraham. TIDBITS: Speedup Via Time-Dela...
	[10] P. Ienne and M. A. Viredaz. Bit-Serial Multipliers and Squarers, IEEE Transactions on Comput...
	[11] R. E. Kessler, R. Jooss, A. R. Lebeck, and M. D. Hill. Inexpensive Implementations of Set-As...
	[12] I. Kim and M. H. Lipasti. Implementing Optimizations at Decode Time, To Appear In Proceeding...
	[13] L. Liu. Cache Designs with Partial Address Matching, In Proceedings of the 27th Annual Inter...
	[14] T. Liu and S.-L. L. Performance Improvement with Circuit-Level Speculation, In Proceedings o...
	[15] W. L. Lynch, G. Lauterbach, J. I. Chamdani. Low Load Latency Through Sum-Addressed Memory (S...

